WorldWideScience

Sample records for process water system

  1. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  2. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  3. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  4. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  5. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  6. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  7. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  8. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  9. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  10. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  11. Development of a novel processing system for efficient sour water stripping

    International Nuclear Information System (INIS)

    Kazemi, Abolghasem; Mehrabani-Zeinabad, Arjomand; Beheshti, Masoud

    2017-01-01

    Application of vapor recompression systems can result in enhanced energy efficiency and reduced energy requirements of distillation systems. In vapor recompression systems, temperature and dew point temperature of the top product of the column are increased through compression. By transferring heat from top to bottoms product, required boil up and reflux streams for the column are provided. In this paper, a new system is proposed for efficient stripping of sour water based on vapor recompression. Ammonia and H 2 S are the contaminants of sour water. Initially, based on a certain specifications of products, a sour water stripping system is implemented. A novel processing system is then developed and simulated to reduce utility requirements. The two processing systems are economically evaluated by Aspen Economic Evaluation software. There are 89.0% and 83.7% reduction of hot and cold utility requirements for the proposed system in comparison to the base processing system. However, the new processing system requires new equipment such as compressor and corresponding mechanical work that increases its capital and operating costs in comparison to the base case. However, the results indicate that the proposed system results in reduction of 11.4% of total annual costs and 14.9% of operating costs. - Highlights: • A novel system was developed for enhancement of performance of a distillation system based on vapor recompression. • In this system, utility streams are used for providing thermal energy. • A parametric study is carried out on the proposed processing system. • Applying the proposed system resulted in reduction of energy and utility requirements and costs of the separation process. • Environmental performance of the model was investigated.

  12. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  13. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  14. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    International Nuclear Information System (INIS)

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the large break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. This evaluation encompasses three specific areas: the failure probability of large process water piping directly from imposed loads, the indirect failure probability of piping caused by the seismic-induced failure of surrounding structures, and the failure of all other process water components. The first two of these areas are discussed in detail in other papers. This paper primarily addresses the failure frequency of components other than piping, and includes the other two areas as contributions to the overall process water system break frequency

  15. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  16. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  17. Radiological environmental risk associated with different water management systems in amang processing in Malaysia

    International Nuclear Information System (INIS)

    Ismail, B.; Yasir, M.S.; Redzuwan, Y.; Amran, A.M.

    2003-01-01

    The processing of amang (tin-tailing) for its valuable minerals have shown that it technologically enhanced naturally occurring radioactive materials, and has a potential of impacting the environment. Large volume of water is used to extract these valuable minerals from amang. Three types of water management systems are used by amang plants, i.e. Open Water System (OWS), Close Water System Man-made (CWS mm) and Close Water System Natural (CWSn). A study was carried out to determine the radiological environmental risk associated with these different water management systems in amang processing in Malaysia. The parameters studied were pH of water, Water Quality Indices, and uranium ad thorium concentrations in water and sediments. Three different sampling locations were selected for each water management system, i.e. the source, the receiver and related reference water bodies. Results obtained showed that amang reduces the pH and contaminates the water. However, OWS appears have the least radiological environmental impact. On the contrary both CWS (man-made and natural) pose a potential environmental risk if great care are not given to the treatment of accumulated sediment and contaminated water before discharge into the environment

  18. Basic processes and mechanisms of the water-rock system evolution

    OpenAIRE

    Shvartsev, Stepan Lvovich

    2007-01-01

    A new conception of progressive evolution and self-organizing presence in dead matter is developed; inner mechanisms and processes, realizing this development, are revealed. It is proven that the water-rock system satisfy these requirements

  19. Development of an advanced spacecraft water and waste materials processing system

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  20. The importance of the ammonia purification process in ammonia-water absorption systems

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Sieres, Jaime

    2006-01-01

    Practical experience in working with ammonia-water absorption systems shows that the ammonia purification process is a crucial issue in order to obtain an efficient and reliable system. In this paper, the detrimental effects of the residual water content in the vapour refrigerant are described and quantified based on the system design variables that determine the effectiveness of the purification process. The study has been performed considering a single stage system with a distillation column with complete condensation. The ammonia purification effectiveness of the column is analysed in terms of the efficiencies in the stripping and rectifying sections and the reflux ratio. By varying the efficiencies from 0 to 1, systems with neither the rectifying nor stripping section, with either the rectifying or stripping section, or with both sections can be considered. The impact of the ammonia purification process on the absorption system performance is studied based on the column efficiencies and reflux ratio; and its effects on refrigerant concentration, system COP, system pressures and main system mass flow rates and concentrations are analysed. When the highest efficiency rectifying sections are used a combination of generation temperature and reflux ratio which leads to optimum COP values is found. The analysis covers different operating conditions with air and water cooled systems from refrigeration to air conditioning applications by changing the evaporation temperature. The importance of rectification in each kind of application is evaluated

  1. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  2. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Science.gov (United States)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  3. Water Use in the United States Energy System: A National Assessment and Unit Process Inventory of Water Consumption and Withdrawals.

    Science.gov (United States)

    Grubert, Emily; Sanders, Kelly T

    2018-06-05

    The United States (US) energy system is a large water user, but the nature of that use is poorly understood. To support resource comanagement and fill this noted gap in the literature, this work presents detailed estimates for US-based water consumption and withdrawals for the US energy system as of 2014, including both intensity values and the first known estimate of total water consumption and withdrawal by the US energy system. We address 126 unit processes, many of which are new additions to the literature, differentiated among 17 fuel cycles, five life cycle stages, three water source categories, and four levels of water quality. Overall coverage is about 99% of commercially traded US primary energy consumption with detailed energy flows by unit process. Energy-related water consumption, or water removed from its source and not directly returned, accounts for about 10% of both total and freshwater US water consumption. Major consumers include biofuels (via irrigation), oil (via deep well injection, usually of nonfreshwater), and hydropower (via evaporation and seepage). The US energy system also accounts for about 40% of both total and freshwater US water withdrawals, i.e., water removed from its source regardless of fate. About 70% of withdrawals are associated with the once-through cooling systems of approximately 300 steam cycle power plants that produce about 25% of US electricity.

  4. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  5. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  6. The rSPA Processes of River Water-quality Analysis System for Critical Contaminate Detection, Classification Multiple-water-quality-parameter Values and Real-time Notification

    OpenAIRE

    Chalisa VEESOMMAI; Yasushi KIYOKI

    2016-01-01

    The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multip...

  7. Decision-Making for Systemic Water Risks: Insights From a Participatory Risk Assessment Process in Vietnam

    Science.gov (United States)

    Wyrwoll, Paul R.; Grafton, R. Quentin; Daniell, Katherine A.; Chu, Hoang Long; Ringler, Claudia; Lien, Le Thi Ha; Khoi, Dang Kim; Do, Thang Nam; Tuan, Nguyen Do Anh

    2018-03-01

    Systemic threats to food-energy-environment-water systems require national policy responses. Yet complete control of these complex systems is impossible and attempts to mitigate systemic risks can generate unexpected feedback effects. Perverse outcomes from national policy can emerge from the diverse responses of decision-makers across different levels and scales of resource governance. Participatory risk assessment processes can help planners to understand subnational dynamics and ensure that policies do not undermine the resilience of social-ecological systems and infrastructure networks. Researchers can play an important role in participatory processes as both technical specialists and brokers of stakeholder knowledge on the feedbacks generated by systemic risks and policy decisions. Here, we evaluate the use of causal modeling and participatory risk assessment to develop national policy on systemic water risks. We present an application of the Risks and Options Assessment for Decision-Making (ROAD) process to a district of Vietnam where national agricultural water reforms are being piloted. The methods and results of this project provide general insights about how to support resilient decision-making, including the transfer of knowledge across administrative levels, identification of feedback effects, and the effective implementation of risk assessment processes.

  8. Water chemistry data acquisition, processing, evaluation and diagnostic systems in Light Water Reactors: Future improvement of plant reliability and safety

    International Nuclear Information System (INIS)

    Uchida, S.; Takiguchi, H.; Ishigure, K.

    2006-01-01

    Data acquisition, processing and evaluation systems have been applied in major Japanese PWRs and BWRs to provide (1) reliable and quick data acquisition with manpower savings in plant chemical laboratories and (2) smooth and reliable information transfer among chemists, plant operators, and supervisors. Data acquisition systems in plants consist of automatic and semi-automatic instruments for chemical analyses, e. g., X-ray fluorescence analysis and ion chromatography, while data processing systems consist of PC base-sub-systems, e.g., data storage, reliability evaluation, clear display, and document preparation for understanding the plant own water chemistry trends. Precise and reliable evaluations of water chemistry data are required in order to improve plant reliability and safety. For this, quality assurance of the water chemistry data acquisition system is needed. At the same time, theoretical models are being applied to bridge the gaps between measured water chemistry data and the information desired to understand the interaction of materials and cooling water in plants. Major models which have already been applied for plant evaluation are: (1) water radiolysis models for BWRs and PWRs; (2) crevice radiolysis model for SCC in BWRs; and (3) crevice pH model for SG tubing in PWRs. High temperature water chemistry sensors and automatic plant diagnostic systems have been applied in only restricted areas. ECP sensors are gaining popularity as tools to determine the effects of hydrogen injection in BWR systems. Automatic plant diagnostic systems based on artificial intelligence will be more popular after having sufficient experience with off line diagnostic systems. (author)

  9. Effects on Water Management and Quality Characteristics of Ozone Application in Chicory Forcing Process: A Pilot System

    Directory of Open Access Journals (Sweden)

    Carlo Nicoletto

    2017-04-01

    Full Text Available Agriculture is the largest user of world water resources, accounting for 70% of all consumption. Reducing water consumption and increasing water use efficiency in agriculture are two of the main challenges that need to be faced in the coming decades. Radicchio Rosso di Treviso Tardivo (RTT is a vegetable that requires a water forcing process prior to final commercialization which presents a significant environmental impact due to the high water volumes used and then dispersed into the environment. The experiment was aimed at reducing the water use in the forcing process of RTT, by developing a pilot system with recycled water in a closed loop through ozone treatment. Concerning water quality, the redox potential value was higher in the ozonized system, whereas turbidity, pH and electrical conductivity of the ozonized system did not change significantly from the control. Yield and quality of plants obtained in the ozonized system did not significantly differ from the control plants except for the antioxidant activity that was higher in plants forced using the water treated with ozone. Our initial results suggest that the ozone treatment could be applied in the forcing process and is suitable for growers, saving up to 95% of water volumes normally used for this cultivation practice.

  10. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  11. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  12. Solid radioactive waste processing system for light water cooled reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Design, construction and performance requirements are given for the operation of the solid radioactive waste processing system for light water-cooled reactor plants. All radioactive or contaminated materials, including spent air and liquid filter elements, spent bead resins, filter sludge, spent powdered resins, evaporator and reverse osmosis concentrates, and dry radioactive wastes are to be processed in appropriate portions of the system. Sections of the standard cover: overall system requirements; equipment requirement; controls and instrumentation; physical arrangement; system capacity and redundancy; operation and maintenance; and system construction and testing. Provisions contained in this standard are to take precedence over ANS-51.1-1973(N18.2-1973) and its revision, ANS-51.8-1975(N18.2a-1975), Sections 2.2 and 2.3. The product resulting from the solid radioactive waste processing system must meet criteria imposed by standards and regulations for transportation and burial (Title 10, Code of Federal Regulations, Part 71, Title 49, Code of Federal Regulations, Parts 100 to 199). As a special feature, all statements in this standard which are related to nuclear safety are set off in boxes

  13. MODELING OF WATER DISTRIBUTION SYSTEM PARAMETERS AND THEIR PARTICULAR IMPORTANCE IN ENVIRONMENT ENGINEERING PROCESSES

    Directory of Open Access Journals (Sweden)

    Agnieszka Trębicka

    2016-05-01

    Full Text Available The object of this study is to present a mathematical model of water-supply network and the analysis of basic parameters of water distribution system with a digital model. The reference area is Kleosin village, municipality Juchnowiec Kościelny in podlaskie province, located at the border with Białystok. The study focused on the significance of every change related to the quality and quantity of water delivered to WDS through modeling the basic parameters of water distribution system in different variants of work in order to specify new, more rational ways of exploitation (decrease in pressure value and to define conditions for development and modernization of the water-supply network, with special analysis of the scheme, in frames of specification of the most dangerous places in the network. The analyzed processes are based on copying and developing the existing state of water distribution sub-system (the WDS with the use of mathematical modeling that includes the newest accessible computer techniques.

  14. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  15. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  16. Operation and control of the critical variables of the process water treatment system in a juice factory

    International Nuclear Information System (INIS)

    Trejos Quesada, Juan Carlos

    2014-01-01

    The process water treatment system in a juice factory is studied to learn how to operate and chemically control the critical variables. The variables: concentration of total chlorine; Concentration of free chlorine; Total dissolved solids; alkalinity; hardness; PH; Turbidity are studied. A learning is obtained of the handling of equipment found in the industry, such as: pumps, dosing pumps controlled by frequency variables, static mixers, multimedia filters, carbon filters, storage tanks, electrovalves, flowmeters, pressure meters and equipment Ultraviolet radiation for disinfection. The operation of this equipment is learned to verify and maintain the critical variables in the specification range established by the company. A manual of operation of the system of water treatment and water analysis in the laboratory is carried out. The experience of the management of equipment for the treatment of water is acquired, comprehending integrally the system of water treatment and the process in general. A verification of the capacity of the equipment and the recommendation of the optimization of the system is realized for system improvements [es

  17. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....

  18. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  19. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  20. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  1. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....

  2. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation

    Science.gov (United States)

    Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang

    2016-01-01

    Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...

  3. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  4. Decision support systems in water and wastewater treatment process selection and design: a review.

    Science.gov (United States)

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  5. Primary processes during water radiolysis

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1980-01-01

    Briefly reviewed are investigations of primary process mechanism taking place during radiolysis of water and similar systems, executed by direct and indirect methods. A conclusion is made on the important role of the water structure during radiolysis of aqueous solutions of some substances. A necessity to take account of this factor during consideration of radiolysis theoretical models is pointed out

  6. Incorporating Social System Dynamics into the Food-Energy-Water System Resilience-Sustainability Modeling Process

    Science.gov (United States)

    Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.

    2017-12-01

    In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents

  7. Electrolytic process for upgrading heavy water (Preprint No. PD-16)

    International Nuclear Information System (INIS)

    Rammohan, K.; Sadhukhan, H.K.

    1989-04-01

    In the reactor system the heavy water gets depleted in concentration due to leakages, intermixing and vapour collection in boiler vault system etc. Electrolysis of water was used as a secondary plant to enrich the dilute heavy water produced in the primery plant by hydrogen-sulfide-water exchange process. The studies made in the development of this process for the upgrading of downgra ded heavy water by setting up a full size Electrolyser Test Assembly are discussed a nd complete design of a heavy water upgrading plant based on electrolytic process for MAPS and NAPP is described. (author). 7 refs., 5 figs

  8. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    Science.gov (United States)

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy

    1993-03-01

    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  9. Seasonal and spatial evolution of trihalomethanes in a drinking water distribution system according to the treatment process.

    Science.gov (United States)

    Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L

    2015-11-01

    This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.

  10. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  11. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  12. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  13. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  14. Modelling the evolution of compacted bentonite clays in engineered barrier systems: process model development of the bentonite-water-air system

    International Nuclear Information System (INIS)

    Bond, A.E.; Wilson, J.C.; Maul, P.R.; Robinson, P.C.; Savage, D.

    2010-01-01

    Document available in extended abstract form only. An adequate understanding of the short- and long-term evolution of compacted bentonite clays in engineered barrier systems (EBS) for radioactive waste based on the KBS-3 disposal concept is an essential requirement for demonstrating the safe performance of the system. Uncertainties in the way that the re-saturation process occurs are intrinsically tied to the thermal and mechanical evolution of the bentonite buffer and its interaction with the disposal canister and host-rock. Furthermore, the evolution of bentonite in the presence of changing ambient saturation states, groundwater chemistry and stress states could cause the bentonite re-saturation and long-term stability (including the so-called 'buffer erosion scenario') to deviate from the behaviour required by the safety case; this has emphasised the need to consider adequately coupled thermal (T), hydraulic(H), mechanical (M) and chemical (C) processes. Historically, there have been fundamental differences in the representation of porosity and water disposition between geochemical modelling and coupled THM modelling studies. In this paper, a model for the porosity and water disposition in bentonite is presented that is more detailed than models used to date in most THM modelling studies under variably saturated conditions. The new model moves away from the conventional THM soils approach which treats bentonite as an elasto-plastic porous medium with water or air occupying a notional porosity with the inclusion of additional process models to take into account the very high observed water suctions, intrinsic permeability variation and macroscopic swelling of partially saturated compacted bentonite. It replaces the empirical parameterisation usually employed in THM models with a direct representation of the water disposition, pore structure and relevant processes, albeit at an abstracted level. The new model differentiates between water which can be

  15. Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study

    Science.gov (United States)

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    2009-01-01

    A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions. ?? 2008 Elsevier B.V.

  16. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2018-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  17. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  18. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    Science.gov (United States)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  19. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  20. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  1. The Social Process of Analyzing Real Water Resource Systems Plans and Management Policies

    Science.gov (United States)

    Loucks, Daniel

    2016-04-01

    Developing and applying systems analysis methods for improving the development and management of real world water resource systems, I have learned, is primarily a social process. This talk is a call for more recognition of this reality in the modeling approaches we propose in the papers and books we publish. The mathematical models designed to inform planners and managers of water systems that we see in many of our journals often seem more complex than they need be. They also often seem not as connected to reality as they could be. While it may be easier to publish descriptions of complex models than simpler ones, and while adding complexity to models might make them better able to mimic or resemble the actual complexity of the real physical and/or social systems or processes being analyzed, the usefulness of such models often can be an illusion. Sometimes the important features of reality that are of concern or interest to those who make decisions can be adequately captured using relatively simple models. Finding the right balance for the particular issues being addressed or the particular decisions that need to be made is an art. When applied to real world problems or issues in specific basins or regions, systems modeling projects often involve more attention to the social aspects than the mathematical ones. Mathematical models addressing connected interacting interdependent components of complex water systems are in fact some of the most useful methods we have to study and better understand the systems we manage around us. They can help us identify and evaluate possible alternative solutions to problems facing humanity today. The study of real world systems of interacting components using mathematical models is commonly called applied systems analyses. Performing such analyses with decision makers rather than of decision makers is critical if the needed trust between project personnel and their clients is to be developed. Using examples from recent and ongoing

  2. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif; Estudio geoquimico de los procesos de interaccion agua-roca sobre sistemas goetermales de aguas alcalinas en granitoides

    Energy Technology Data Exchange (ETDEWEB)

    Buil gutierrez, B; Garcia Sanz, S; Lago San Jose, M; Arranz Uague, E; Auque Sanz, L [Universidad de Zaragoza (Spain)

    2002-07-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  3. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  4. Water in the Early Solar System: Infrared Studies of Aqueously Altered and Minimally Processed Asteroids

    Science.gov (United States)

    McAdam, Margaret M.

    This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data. 75 observations of 73 asteroids are analyzed and presented in Chapter 4. Asteroids with hydrated minerals are found throughout the main belt indicating that significant ice must have been present in the disk at the time of carbonaceous asteroid accretion. Finally, some carbonaceous chondrite meteorites preserve amorphous iron-bearing materials

  5. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    Science.gov (United States)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  6. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  7. A new signal development process and sound system for diverting fish from water intakes

    International Nuclear Information System (INIS)

    Klinet, D.A.; Loeffelman, P.H.; van Hassel, J.H.

    1992-01-01

    This paper reports that American Electric Power Service Corporation has explored the feasibility of using a patented signal development process and underwater sound system to divert fish away from water intake areas. The effect of water intakes on fish is being closely scrutinized as hydropower projects are re-licensed. The overall goal of this four-year research project was to develop an underwater guidance system which is biologically effective, reliable and cost-effective compared to other proposed methods of diversion, such as physical screens. Because different fish species have various listening ranges, it was essential to the success of this experiment that the sound system have a great amount of flexibility. Assuming a fish's sounds are heard by the same kind of fish, it was necessary to develop a procedure and acquire instrumentation to properly analyze the sounds that the target fish species create to communicate and any artificial signals being generated for diversion

  8. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  9. Technical feasibility of the electrode ionization process for the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Chocron, Mauricio

    2003-01-01

    In thermal cycles of PWRs nuclear power plants with once-through steam generators as the CAREM-25, makeup water of very high purity is required to minimizing the induction of corrosion phenomena, fundamentally in the steam generators and other thermal cycle components. The makeup water treatment systems include several stages, of which the demineralization is the purification stage. The required makeup water purity is obtained in this stage. Historically, ultrapure water systems were based completely on ion exchange technology. Now, the electrode ionization process (EDI) has replaced the ion exchange technology used traditionally in the demineralization stage. Continuous demineralization in an EDI stack consists of three coupled processes: ion exchange, continuous ion removal by transport through the ion exchange resin and membranes into the concentrate stream, continuous regeneration by hydrogen and hydroxyl ions derived from the water splitting reaction and driven by the applied direct current. EDI process allows to obtain ultrapure water, with practically no use of chemical reagents and with technologies of continuous process. The objective of this work is the analysis of the electrode ionization process (EDI) for its implementation in the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant. The obtained results allow to assure the technical feasibility of implementation of the electrode ionization process, EDI, in the makeup water treatment system of the thermal cycle of this Argentinean nuclear power plant. (author)

  10. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    Science.gov (United States)

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25

  11. Fish protection at water intakes using a new signal development process and sound system

    International Nuclear Information System (INIS)

    Loeffelman, P.H.; Klinect, D.A.; Van Hassel, J.H.

    1991-01-01

    American Electric Power Company, Inc., is exploring the feasibility of using a patented signal development process and sound system to guide aquatic animals with underwater sound. Sounds from animals such as chinook salmon, steelhead trout, striped bass, freshwater drum, largemouth bass, and gizzard shad can be used to synthesize a new signal to stimulate the animal in the most sensitive portion of its hearing range. AEP's field tests during its research demonstrate that adult chinook salmon, steelhead trout and warmwater fish, and steelhead trout and chinook salmon smolts can be repelled with a properly-tuned system. The signal development process and sound system is designed to be transportable and use animals at the site to incorporate site-specific factors known to affect underwater sound, e.g., bottom shape and type, water current, and temperature. This paper reports that, because the overall goal of this research was to determine the feasibility of using sound to divert fish, it was essential that the approach use a signal development process which could be customized to animals and site conditions at any hydropower plant site

  12. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  13. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  14. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  15. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  17. Forward Osmosis System And Process

    KAUST Repository

    Duan, Jintang

    2013-08-22

    A forward osmosis fluid purification system includes a cross-flow membrane module with a membrane, a channel on each side of the membrane which allows a feed solution and a draw solution to flow through separately, a feed side, a draw side including a draw solute, where the draw solute includes an aryl sulfonate salt. The system can be used in a process to extract water from impure water, such as wastewater or seawater. The purified water can be applied to arid land.

  18. Forward Osmosis System And Process

    KAUST Repository

    Duan, Jintang

    2013-01-01

    A forward osmosis fluid purification system includes a cross-flow membrane module with a membrane, a channel on each side of the membrane which allows a feed solution and a draw solution to flow through separately, a feed side, a draw side including a draw solute, where the draw solute includes an aryl sulfonate salt. The system can be used in a process to extract water from impure water, such as wastewater or seawater. The purified water can be applied to arid land.

  19. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    Science.gov (United States)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  20. Theoretical analysis of a biogas-fed PEMFC system with different hydrogen purifications: Conventional and membrane-based water gas shift processes

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Aunsup, Pounyaporn; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    Highlights: • Thermodynamic analysis of the biogas-fed PEMFC system is performed. • Conventional and membrane-based WGS processes for H 2 purification are studied. • A flowsheet model of the PEMFC system is developed. • Effect of key parameters on yields of H 2 and carbon in the biogas reformer is shown. • Performance of PEMFC systems with different H 2 purification processes is analyzed. - Abstract: This study presents a thermodynamic analysis of biogas reforming and proton electrolyte membrane fuel cell (PEMFC) integrated process with different hydrogen purifications: conventional and membrane-based water gas shift processes. The aim is to determine the optimal reforming process for hydrogen production from biogas in the PEMFC system. The formation of carbon is concerned in the hydrogen production. The simulation results show that increases in the steam-to-methane ratio and reformer temperature can improve the hydrogen yield and reduce the carbon formation. From the performance analysis, it is found that when the PEMFC is operated at high temperature and fuel utilization, the overall system efficiency enhances. The performance of the PEMFC system with the installation of a water gas shift membrane unit in the hydrogen purification step is slightly increased, compared with a conventional process

  1. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.; Elimelech, Menachem

    2012-01-01

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  4. Process for exchanging tritium between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1981-01-01

    An improved method of exchanging and concentrating the radioactive isotope of hydrogen from water or hydrogen gas is described. This heavy water enrichment system involves a low pressure, dual temperature process. (U.K.)

  5. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    Science.gov (United States)

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  6. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  7. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  8. Development of process control capability through the Browns Ferry Integrated Computer System using Reactor Water Clanup System as an example. Final report

    International Nuclear Information System (INIS)

    Smith, J.; Mowrey, J.

    1995-12-01

    This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU system was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants

  9. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  10. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    Directory of Open Access Journals (Sweden)

    Fortelný Zdeněk

    2012-04-01

    Full Text Available The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous mixtures of refrigerants and absorbents. The working mixture isn’t only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  11. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  12. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  13. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  14. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  15. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  16. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  17. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    International Nuclear Information System (INIS)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-01-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  18. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-11-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  19. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  20. Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of Processes

    KAUST Repository

    Sudhakaran, Sairam

    2013-08-01

    The presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the

  1. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  2. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  3. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  4. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  5. Proton exchange in systems: Glucose-water and uric acid-water

    International Nuclear Information System (INIS)

    Maarof, S.

    2007-01-01

    It is clear that formation of glucose-water and uric acid-water solutions is related in principle to interaction accepter - donor between hydrogen atom in water and oxygen atom in glucose or uric acid. The proton exchange in hydrogen bond system is an integral process and it goes by tunnel mechanism (transfer of proton within the hydrogen bridge in these structures). Proton exchange process goes very quickly at low concentrations for glucose and uric acid solutions, because these compounds are able to form more than one hydrogen bond, which helps the proton transfer within obtained structure. However, at its high concentrations, the process becomes very slow due to higher viscosity of its solutions, which result in break down of the structures, and more hydrogen bonds. (author)

  6. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    International Nuclear Information System (INIS)

    DERUSSEAU, R.R.

    2000-01-01

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP)

  7. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  8. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  9. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    OpenAIRE

    Vatin Nikolai; Lavrov Nikolai; Loginov Gennadi

    2016-01-01

    In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphome...

  10. Reactor materials program process water component failure probability

    International Nuclear Information System (INIS)

    Daugherty, W. L.

    1988-01-01

    The maximum rate loss of coolant accident for the Savannah River Production Reactors is presently specified as the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping materials. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible maximum rate LOCA. The major thrust of this program is to develop an alternate worst case accident scenario by deterministic means. In addition, the probability of a DEGB is also being determined; to show that in addition to being mechanistically incredible, it is also highly improbable. The probability of a DEGB of the process water piping is evaluated in two parts: failure by direct means, and indirectly-induced failure. These two areas have been discussed in other reports. In addition, the frequency of a large bread (equivalent to a DEGB) in other process water system components is assessed. This report reviews the large break frequency for each component as well as the overall large break frequency for the reactor system

  11. Cooling tower make-up water processing for nuclear power plants: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Andres, O; Flunkert, F; Hampel, G; Schiffers, A [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Essen (Germany, F.R.)

    1977-01-01

    In water-cooled nuclear power plants, 1 to 2% of the total investment costs go to cooling tower make-up water processing. The crude water taken from rivers or stationary waters for cooling must be sufficiently purified regarding its content of solids, carbonate hardness and corrosive components so as to guarantee an operation free of disturbances. At the same time, the processing methods must be selected for operational-economic reasons in such a manner that waste water and waste problems are kept small regarding environmental protection. The various parameters described have a decisive influence on the processing methods of the crude water, individual processes (filtration, sedimentation, decarbonization) are described, circuit possibilities for cooling water systems are compared and the various processes are analyzed and compared with regard to profitableness and environmental compatability.

  12. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    Science.gov (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  13. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  14. The filtering of raw water with partition system in pool row water for the process

    International Nuclear Information System (INIS)

    Harahap, Sentot Alibasya; Djunaidi

    2003-01-01

    The purpose of filtering raw water in the pool is decreasing soluble dirty in the water from Puspiptek PAM also the dirty from the environments. The monitoring of raw water since 1998 that the raw water is not so good in the quality. This partition system use tree type of screen a.i. the opened 10 mm, Mesh 60 and Mesh 100. The down position use a plat with 400 mm higher from the floor of the pool that given support frame from the L profile and strip plate by stainless steel (SS-304), use for deposited the impurities. The filter capability from the monitoring that the filtering result is a good quality, the TDS drop (Total Dissolved Solvent) is 2,5 gram/liter and the water filtering static type is (4 - 8,5) gram/liter

  15. THE WATER FROM NATURE AND THE EROSION PROCESS

    Directory of Open Access Journals (Sweden)

    G. PANDI

    2015-03-01

    Full Text Available The water from nature and the erosion process. Studying earth's surface erosion process is necessary for practical reasons. The theoretical approach requires knowledge of the alluvial system’s structure and operation as the cascade sequence of fluvial system’s mass and energy. Geosystem research methodology requires that the water energy and the role of adjacent surface must be expressed. The expression of water power can be grouped according to the shape of movement and action in the basin. A particular, important case is the energy variation in a basin-slope. An important role in energy expressions is considering the existence in nature of biphasic fluid - water as dispersion phase and solid particles as dispersed phase. The role of the adjacent surface is taken into account by using the erosion resistance indicator, which is calculated using the indicator of geological resistance and the indicator of plant protection. The evolution of natural systems, therefore of river basins too, leads to energy diminishing, thus affecting their dynamic balance. This can be expressed using the concept of entropy. Although erosion processes are usual natural phenomena for the evolution of river basins, they induce significant risks in certain circumstances. Depending on the circulated water energies, water basins can be ranked in terms of potential risks.

  16. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  17. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams.

    Science.gov (United States)

    Stang, Christoph; Bakanov, Nikita; Schulz, Ralf

    2016-01-01

    Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.

  18. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  19. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  20. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  1. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  2. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  3. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  4. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  5. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  6. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  7. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  8. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  9. Policies lost in translation? Unravelling water reform processes in African waterscapes

    NARCIS (Netherlands)

    Kemerink-Seyoum, J.S.

    2015-01-01

    Since the 1980s a major change took place in public policies for water resources management. The role of governments shifted under this reform process from an emphasis on investment in the development, operation and maintenance of water infrastructure to a focus on managing water resources systems

  10. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  11. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  12. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  13. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  14. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Vatin Nikolai

    2016-01-01

    Full Text Available In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphometric characteristics of the mountain rivers is given. Complex hydraulic researches of kinematic characteristics and carrying ability of a two-phase stream on water intake structures are executed. Bases of a technique of engineering calculation of the offered designs of water intake structures and the recommendation of their designing and maintenance in various hydrological regimes are developed.

  15. Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion, E-mail: ion.cristescu@kit.edu

    2016-11-01

    Highlights: • An enhanced configuration of ITER WDS has been developed. • The proposed configuration allows minimization of hazards due to the reduction of tritium inventory. • The load on the tritium recovery system (ITER ISS) is minimized with benefits on mitigation of the explosion hazards. - Abstract: Tritiated water is generated in the ITER systems by various sources and may contain deuterium and tritium at various concentrations. The reference process for the ITER Water Detritiation System is based on Combined Electrolysis Catalytic Exchange (CECE) configuration. During long time operation of the CECE process, the accumulation of deuterium in the electrolysis unit and consequently along the Liquid Phase Catalytic Exchange (LPCE) column is unavoidable with consequences on the overall detritiation factor of the system. Beside the deuterium issue in the process, the large amount of the tritiated water with tritium activity up to 500 Ci/kg in the electrolysis cells is a concern from the safety aspect of the plant. The enhanced configuration of a system for processing tritiated water allows mitigation of the effects due to deuterium accumulation and also reduction of tritium inventory within the electrolysis system. In addition the benefits concerning to the interface between the water detritiation system and tritium recovery based cryogenic distillation are also presented.

  16. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  17. Process water treatment at the Ranger uranium mine, Northern Australia.

    Science.gov (United States)

    Topp, H; Russell, H; Davidson, J; Jones, D; Levy, V; Gilderdale, M; Davis, S; Ring, R; Conway, G; Macintosh, P; Sertorio, L

    2003-01-01

    The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance data are presented for each stage. The unique features of the proposed process are: recycling of the lime/CO2 softening sludge to the uranium mill as a neutralant, the use of power station off-gas for carbonation, the use of residual ammonia as the pH buffer in carbonation; and the recovery and recycling of ammonia from the RO reject stream.

  18. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  19. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  20. Discussion of the enabling environments for decentralised water systems.

    Science.gov (United States)

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).

  1. Investigation of a separation process involving liquid-water-coal systems

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jr, D V; Burry, W

    1987-01-01

    A liquid-liquid-solid separation procedure wherein a water-oil-coal-mineral matter slurry is allowed to come to equilibrium through mechanical agitation has for many years been applied to the separation of coal from mineral matter. The product is a black cottage cheese-like mass of agglomerated coal particles and oil suspended in the excess water which supports the dispersed mineral matter particles. A liquid bridge model which was proposed by earlier investigators is reviewed critically and used to estimate the free energy per unit area of the separation of coals of different ranks. Observations of the kinetics of the process suggest that the simple liquid bridge model is insufficient, probably due to the heterogeneous surfaces of the coal. An alternative model is proposed. 14 references.

  2. Water treatment process in the JEN-1 Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Perez-Bustamante, J A; Batuecas, T

    1965-07-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs.

  3. Water treatment process in the JEN-1 Research Reactors

    International Nuclear Information System (INIS)

    Urgel, M.; Perez-Bustamante, J. A.; Batuecas, T.

    1965-01-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs

  4. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  5. Genesis Eco Systems, Inc. soil washing process

    International Nuclear Information System (INIS)

    Cena, R.J.

    1994-01-01

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system

  6. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  7. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  8. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  9. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  10. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  11. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling

    International Nuclear Information System (INIS)

    Morán-Ramírez, J.; Ledesma-Ruiz, R.; Mahlknecht, J.; Ramos-Leal, J.A.

    2016-01-01

    In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant Na−HCO_3 water type, followed by Na−Mg−Ca−HCO_3 and Na−Ca−HCO_3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO_2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO_2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination. - Highlights: • The Inverse geochemical modeling was used to study to processes occurring in a volcanic aquifer. • Three flow sections were selected to apply inverse hydrogeochemical modeling. • Three main groundwater flows were identified: a local, intermediate and regional flow. • The models show that in the study area that groundwater is mixed with local recharge. • In the south, the aquifer has thermal influence.

  12. THE SEQUENTIAL WATER TREATMENT CONTAINING MYCOESTROGENS IN PHOTOCATALYSIS AND NANOFILTRATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2014-10-01

    Full Text Available The results of the study focused on the impact of membrane on the performance of the integrated system photocatalysis/nanofiltration applied to remove mycoestrogens from water are discussed in the paper. The results were compared with ones obtained during single step photocatalysis and nanofiltration processes. The subject of the study were simulated waters containing difference concentration of humic acids to which mycoestrogens were added to the concentration level 500 μg/dm3. It was shown, that the application of integrated system improved the efficiency of mycoestrogens removal in comparison with single step photocatalysis process. In case of nanofiltration, the efficiency of the treatment was comparable in both, integrated and single nanofiltration processes regardless of the membrane type applied. However, it was found that investigated membranes differ in the affinity to fouling and removal rate of inorganic compounds, what should be considered during water treatment technology development.

  13. A new submarine oil-water separation system

    Science.gov (United States)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  14. Water feed and effluent treatment for hydrogen sulfide-water system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1981-01-01

    This invention provides a feed and effluent treatment system for improving the recovery of a gas (e.g. H 2 S) from solution in a liquid (e.g. water) when the liquid also contains dissolved nonvolatile components (e.g. the salts of sea water) at low temperatures. In a gas/liquid contact process in which the gas is at least partially soluble in the liquid, a portion of the liquid is extracted after it passes through a hot zone, the pressure of the liquid is reduced by flashing it through pressure reduction means to remove a portion of the dissolved gas, and the gas thus recovered is returned to the process

  15. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  16. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  17. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  18. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    This work presents the development of an automated batch-process water disinfection system ... Locally sourced materials in addition to an Arduinomicro processor were used to control ..... As already mentioned in section 3.1.1, a statistical.

  19. Device and method to enrich and process heavy water

    International Nuclear Information System (INIS)

    Hammerli, M.M.; Butler, J.P.

    1979-01-01

    A device to process and enrich heavy water is proposed which is based on a combined electrolysis catalyst exchange system in which a D 2 O enrichment of more than 99.8% is achieved in the end stage. Water partly enriched with D 2 -containing hydrogen gas from an electrolysis cell is brought into contact in a catalyst column. The water is further enriched here with deuterium. It is then fed to the electrolysis cell. Details of the apparatus are closely described. (UWI) [de

  20. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  1. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  2. Water hammer and cavitational hammer in process plant pipe systems

    International Nuclear Information System (INIS)

    Dudlik, A.; Schoenfeld, S.B.H.; Hagemann, O.; Fahlenkamp, H.

    2003-01-01

    Fast acting valves are often applied for quick safety shut-down of pipelines for liquids and gases in the chemical and petrochemical industry as well as in power plants and state water supplies. The fast deceleration of the liquid leads to water hammer upstream the valve and to cavitational hammer downstream the fast closing valve. The valve characteristics given by manufacturers are usually measured at steady state flow conditions of the liquid. In comparison, the dynamic characteristics depend on the initial liquid velocity, valve closing velocity, the absolute pipe pressure and the pipe geometry. Fraunhofer UMSICHT conducts various test series examining valve dynamic characteristics in order of the dynamic analysis of pressure surges in fast closing processes. Therefore a test rig is used which consists of two pipelines of DN 50 and DN 100 with an approximate length of 230 m each. In this paper the results of performed pressure surge experiments with fast closing and opening valves will be compared to calculations of commercial software programs such as MONA, FLOWMASTER 2. Thus the calculation software for water supply, power plants oil and gas and chemical industry can be permanently improved. (orig.)

  3. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  4. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  5. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  6. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  7. Process and system for removing tritium

    International Nuclear Information System (INIS)

    Ridgely, J.N.

    1976-01-01

    A process and system for removing tritium, particularly from high temperature gas cooled atomic reactors (HTGR), is disclosed. Portions of the reactor coolant, which is permeated with the pervasive tritium atom, are processed to remove the tritium. Under conditions of elevated temperature and pressure, the reactor coolant is combined with gaseous oxygen, resulting in the formation of tritiated water vapor from the tritium in the reactor coolant and the gaseous oxygen. The tritiated water vapor and the remaining gaseous oxygen are then successively removed by fractional liquefaction steps. The reactor coolant is then recirculated to the reactor

  8. Simplifying and upscaling water resources systems models that combine natural and engineered components

    Science.gov (United States)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  9. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  10. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  11. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  12. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  13. Radioecological models for inland water systems

    International Nuclear Information System (INIS)

    Raskob, W.; Popov, A.; Zheleznyak, M.J.

    1998-04-01

    Following a nuclear accident, radioactivity may either be directly discharged into rivers, lakes and reservoirs or - after the re-mobilisation of dry and wet deposited material by rain events - may result in the contamination of surface water bodies. These so-called aquatic exposure pathways are still missing in the decision support system IMIS/PARK. Therefore, a study was launched to analyse aquatic and radioecological models with respect to their applicability for assessing the radiation exposure of the population. The computer codes should fulfil the following requirements: 1. to quantify the impact of radionuclides in water systems from direct deposition and via runoff, both dependent on time and space, 2. to forecast the activity concentration in water systems (rivers and lakes) and sediment, both dependent on time and space, and 3. to assess the time dependent activity concentration in fish. To that purpose, a literature survey was conducted to collect a list of all relevant computer models potentially suitable for these tasks. In addition, a detailed overview of the key physical process was provided, which should be considered in the models. Based on the three main processes, 9 codes were selected for the runoff from large watersheds, 19 codes for the river transport and 14 for lakes. (orig.) [de

  14. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  15. Plutonium - its behavior in natural-water systems and assimilation by man

    International Nuclear Information System (INIS)

    Larsen, R.P.; Nelson, D.M.; Bhattacharyya, M.H.; Oldham, R.D.

    1981-01-01

    There are a number of factors which must be considered in establishing whether or not the inadvertent intrusion of a sizable amount of plutonium-bearing material into a natural-water system may have a significant impact on the health of those individuals who use that system as a drinking-water resource. These factors include the chemical form(s) and solubility of plutonium in natural waters, its behavior in relation to natural processes (geochemical and biological), its fate in water-treatment systems, and its uptake by man from drinking water. From the results obtained of the behavior in natural-water systems, it appears that (1) the chemical forms of plutonium dissolved in natural waters are Pu(IV) and Pu(V), (2) the soluble plutonium in many waters is bound to the organic constituents which probably enhance plutonium solubility, (3) the natural process responsible for the removal of plutonium from water is adsorption onto sediments, and (4) in water-treatment systems, soluble plutonium is oxidized to the VI state and this form is not removed. From investigations of gastrointestinal absorption, it appears that the value for f 1 , the fraction transferred from the gut to blood, is greater than 1 x 10 - 3 and may be as high as 2 x 10 - 1

  16. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  17. TECHNOLGIES AND SYSTEMS FOR WATER MANAGEMENT AND CONDENSATES IN THE SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2015-01-01

    Full Text Available Sugar factories do achieve an efficient use of process water, but this process should be self-sufficient for consumption because these sugar factories have the special characteristic of having as its main raw material, sugar cane, which consists in approximately 70% of water Those condensed recovered will be the first option to recover process water and are aimed to the feeding of boilers. The quantities of the condensate types are dependent of the evaporator’s configuration, also the grade in that show up the vapor extractions. In this paper the fundamental aspects are described as for the use and handling of water in the process of sugar production. Also, important considerations are shown on the treatment systems of residual that are generated in these factories. The evaporation system is shown as the most important area for the handling of water in the process, in it, vegetable vapor takes place and it is used in other technological equipment. A major surplus of steam will be produced in this area if the process is more energetically efficient. It is shown through a balance of water that the process is self-sufficient for water consumption.

  18. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    Science.gov (United States)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  19. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  20. Process development, design and operation of off-line purification system for oil-contaminated impure heavy water

    International Nuclear Information System (INIS)

    Bose, H.; Rakesh Kumar; Gandhi, H.C.; Unny, V.K.P.; Ghosh, S.K.; Mishra, Vivek; Shukla, D.K.; Duraisamy, S.; Agarwal, S.K.

    2004-01-01

    A large volume of degraded, tritiated heavy water contaminated with mineral oil and ionic impurities have accumulated at Dhruva in the past years of reactor operation as a result of routine operation and maintenance activities. The need was felt for a simple and efficient process that could be set up and operated locally at site using readily available materials, to purify the accumulated impure heavy waters at Dhruva so as to make them acceptable at the up gradation facilities. After a detailed laboratory study, a three stage clean-up process was developed which could purify a highly turbid oil-water emulsion to yield clear, oil-free and de-mineralized heavy water at reasonable rates of volume through-put. Based on the laboratory data, a suitably scaled up purification unit has been designed and commissioned which in the past few months has processed a sizeable volume of oil-contaminated heavy water waste from Dhruva, with most satisfactory results

  1. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.

    2016-04-26

    Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones

  2. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  3. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  4. Simulation of non-isothermal gas-water processes in complex fracture-matrix systems

    International Nuclear Information System (INIS)

    Jakobs, H.

    2004-01-01

    Degassing effects may occur in fractures in the vicinity of deep radioactive-waste-disposal sites as a result of a pressure drop. These effects play an important role in the investigation of the hydraulic conditions in the near field of the disposal sites. The assumption of single-phase conditions may lead to the misinterpretation of experimental data as degassing leads to two-phase conditions and to a reduction of the effective permeability. The aim of this work is to contribute to the simulation of non-isothermal behaviour of water-gas systems in the near field of atomic waste disposal sites in fractured porous media. We distinguish between sub-REV effects within single fractures and effects due to super-REV heterogeneities which result from the fracture matrix system. We assume to have undisturbed physical conditions as report from the AespoeHard Rock Laboratory in Sweden, i.e.: - a fully water saturated system - a hydrostatic pressure of 5 million Pa. For the simulation on the laboratory scale we use a percolation model. To transfer the information from the laboratory scale to the field scale we use a renormalisation scheme. On the field scale we use a numerical simulator which solves the multiphase flow equations based on the extended form of Darcy's law. In order to investigate the limits of our models we analyse the importance of the forces taken into account, i.e., capillary forces, gravity forces, and viscous forces. This method allows us to quantify the constraints of our models. Furthermore, we investigate the influence of strong parameter heterogeneities caused by the fracture-matrix system on the flow behaviour of gas and water. We consider in particular the influence of the large difference between the entry pressures of matrix and fracture on the migration of the gas phase from the fracture system into the matrix system. (orig.)

  5. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  6. Optimal design of zero-water discharge rinsing systems.

    Science.gov (United States)

    Thöming, Jorg

    2002-03-01

    This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.

  7. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  8. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  9. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  10. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  11. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  12. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  13. Iron turbidity removal from the active process water system of the Kaiga Generating Station Unit 1 using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.

    2007-01-01

    Iron turbidity is observed in the intermediate cooling circuit of the active process water system (APWS) of Kaiga Generating Station (KGS). Deposition of hydrous/hydrated oxides of iron on the plate type heat exchanger, which is employed to transfer heat from the APWS to the active process cooling water system (APCWS), can in turn result in higher moderator D 2 O temperatures due to reduced heat transfer. Characterization of turbidity showed that the major component is γ-FeOOH. An in-house designed and fabricated electrochemical filter (ECF) containing an alternate array of 33 pairs of cathode and anode graphite felts was successfully tested for the removal of iron turbidity from the APWS of Kaiga Generating Station Unit No. 1 (KGS No. 1). A total volume of 52.5 m 3 water was processed using the filter. At an average inlet turbidity of 5.6 nephelometric turbidity units (NTU), the outlet turbidity observed from the ECF was 1.6 NTU. A maximum flow rate (10 L . min -1 ) and applied potential of 18.0-20.0 V was found to yield an average turbidity-removal efficiency of ∝ 75 %. When the experiment was terminated, a throughput of > 2.08 . 10 5 NTU-liters was realized without any reduction in the removal efficiency. Removal of the internals of the filter showed that only the bottom 11 pairs of felts had brownish deposits, while the remaining felts looked clean and unused. (orig.)

  14. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  15. Gated or ungated : water control in government-built irrigation systems : comparative research in Nepal

    NARCIS (Netherlands)

    Pradhan, T.M.S.

    1996-01-01


    The control, allocation and distribution, of water is the core process of an irrigation system. It is the process by which the available water is divided and distributed to the smaller irrigation units within the system, which in turn is distributed further down to the individual water

  16. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  17. Study on the Coupling Coordination Degree between Metropolitan Economic System and Water Environmental System - Taking Beijing as an Example

    Directory of Open Access Journals (Sweden)

    Chen Ming

    2017-01-01

    Full Text Available The generation of metropolis is the inevitable outcome of the development of urbanization to a certain stage. The economy and society of metropolis are in the rapid development, but this process brings great pressure to the ecological environment, especially the water resources environment at the same time. In this paper, the relationship between metropolitan economic system and water environmental system is deeply studied, and the concept of “coupling” is introduced. Based on the framework of “pressure-state-response” (PSR, 12 detailed indexes, such as total population and water consumption per ten thousand Yuan GDP, were selected to construct four subsystems. The coordination degree measurement model has been used to calculate the degree of coupling between the economic system and water environmental system. On this basis, the following conclusions are drawn through the example of Beijing city: (1 In the process of metropolitan development, the economic system and the water environmental system are interrelated and there exist a complex coupling mechanism. (2 With the adjustment of economic structure and the progress of technology, the coupling index between the metropolitan economic system and the water environmental system has been increasing, and this process shows an upward trend

  18. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  19. Troubleshooting the General Electric Company Neutron Devices Department's deionized water system

    International Nuclear Information System (INIS)

    Gillespie, T.J.

    1983-01-01

    In May 1982, the General Electric Neutron Devices Department's deionized (DI) water system was found to be highly contaminated with fresh water roundworms which caused severe filter plugging problems. Subsequently, a DI water improvement program was developed by GEND's Process Technology, Contamination Control, and Facilities Engineering groups. This program included removal of dead ends in the distribution system, a consultant's review, significant modification of the DI water system, modification of system operation, design of a quality plan, and changes in the types of water analysis. During implementation of the improvement program, a severe bacteria contamination problem occurred due to a contractor accident. Correction of this problem required sterilization of portions of the DI water system and significant modification of the water filtration system. The system modifications and sterilization procedures have significantly reduced bacteria and total solids contamination while resistivity is generally increasing

  20. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  1. Support on water chemistry and processes for nuclear power plant auxiliary systems

    International Nuclear Information System (INIS)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B.; Allemandi, W.; Fernandez, A.N.; Ovando, L.

    2002-01-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D 2 O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  2. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process.......The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  3. Assessment of the urban water system with an open, reproducible process applied to Chicago

    Science.gov (United States)

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green...

  4. Geologic processes and sedimentary system on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A S

    1988-01-01

    The subject is covered under following headings: (1) morphology and processes at the martian surface (impact craters, water and ice, landslide, aeolian processes, volcanism, chemical weathering); (2) the sedimentary system (martian geologic documentation, sedimentary balance, regolith, pyroclastics, erosion phenomena, deposit and loss of sediments) as well as (3) summary and final remarks. 72 refs.

  5. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  6. Hydrochemical characterizatin and water quality monitoring by means of specific computer systems

    International Nuclear Information System (INIS)

    Alvarez, E.; Fagundo, J.R.

    1998-01-01

    The computer systems SAPHIQ and SIMUCIN, for the hydrochemical data process with the aim to characterize and control the water quality, as well as to simulate the water-rock interaction process are presented. (author)

  7. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  8. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  9. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  10. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    Science.gov (United States)

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  11. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  12. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  13. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  14. Co-engineering Participatory Water Management Processes: Theory and Insights from Australian and Bulgarian Interventions

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniell

    2010-12-01

    Full Text Available Broad-scale, multi-governance level, participatory water management processes intended to aid collective decision making and learning are rarely initiated, designed, implemented, and managed by one person. These processes mostly emerge from some form of collective planning and organization activities because of the stakes, time, and budgets involved in their implementation. Despite the potential importance of these collective processes for managing complex water-related social-ecological systems, little research focusing on the project teams that design and organize participatory water management processes has ever been undertaken. We have begun to fill this gap by introducing and outlining the concept of a co-engineering process and examining how it impacts the processes and outcomes of participatory water management. We used a hybrid form of intervention research in two broad-scale, multi-governance level, participatory water management processes in Australia and Bulgaria to build insights into these co-engineering processes. We examined how divergent objectives and conflict in the project teams were negotiated, and the impacts of this co-engineering on the participatory water management processes. These investigations showed: (1 that language barriers may aid, rather than hinder, the process of stakeholder appropriation, collective learning and skills transferal related to the design and implementation of participatory water management processes; and (2 that diversity in co-engineering groups, if managed positively through collaborative work and integrative negotiations, can present opportunities and not just challenges for achieving a range of desired outcomes for participatory water management processes. A number of areas for future research on co-engineering participatory water management processes are also highlighted.

  15. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  16. Study on low pressure evaporation of fresh water generation system model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Shik; Wibowo, Supriyanto; Shin, Yong Han; Jeong, Hyo Min [Gyeongsang National University, Tongyeong (Korea, Republic of); Fajar, Berkah [University of Diponegoro, Semarang (Indonesia)

    2012-02-15

    A low pressure evaporation fresh water generation system is designed for converting brackish water or seawater into fresh water by distillation in low pressure and temperature. Distillation through evaporation of feed water and subsequent vapor condensation as evaporation produced fresh water were studied; tap water was employed as feed water. The system uses the ejector as a vacuum creator of the evaporator, which is one of the most important parts in the distillation process. Hence liquid can be evaporated at a lower temperature than at normal or atmospheric conditions. Various operating conditions, i.e. temperature of feed water and different orifice diameters, were applied in the experiment to investigate the characteristics of the system. It was found that these parameters have a significant effect on the performance of fresh water generation systems with low pressure evaporation.

  17. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  18. Radiation influence on heterogenous processes in stainless steel contact with sea-water

    International Nuclear Information System (INIS)

    Agayev, T.N.; Garibov, A.A.; Velibekova, G.Z.; Aliyev, A.Q.; Aliyev, S.M.

    2005-01-01

    Full text: Austenitic stainless steel (s.s.) with Cr content 16 %, Ni - 15 % is widely used in nuclear reactors as construction material, for fuel cladding production and also is used in oil and gas production and transportation. They possess comparatively large section of slow neutron capture and as a result high corrosion resistance. In real exploitation condition of nuclear reactors s.s. are exposed to ionizing radiation influence in contact of different media. That's why during their corrosion and destruction processes the surface defect formation processes and further heterogenous processes with their participation are of great importance. The research results of mechanism during radiation-heterogenous processes in nuclear reactor stainless steel contact with sea-water under the influence of γ-radiation in temperature interval 300-1074 K are represented in the given work. Radiolytic processes in water are comprehensively studied and therefore it was taken as model system for dating the surface defects and secondary electrons emitted from metal. The same model system was applied also in sea-water radiolysis processes. It's been established that radiation processes in s.s. lead to molecular hydrogen yield increase and at T=300 K up to 6.5 molec./100 eV. With the temperature increase molecular hydrogen yield increase up to 25.3 molec./100 eV at T≤773 K. During the further temperature increase up to 1073 K radiation constituent of radiation-thermal process in comparison with thermal becomes unnoticeable and W T (H 2 )≅W p (H 2 ). The kinetics of oxide phase formation of investigated sample surface in the result of thermal and radiation-thermal processes in their contact with sea-water has been studied. At that it's been shown that radiation leads to protective oxidation process rate increase and promotes the beginning of stainless steel destruction oxidation in contact with sea-water. At T≥573 K insoluble oxide phase is formed on metal surface that promotes

  19. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  20. Water cooler towers and other man-made aquatic systems as environmental collection systems for agents of concern

    Science.gov (United States)

    Brigmon, Robin; Kingsley, Mark T.

    2018-04-03

    An apparatus and process of using existing process water sources such as cooling towers, fountains, and waterfalls is provided in which the water sources are utilized as monitoring system for the detection of environmental agents which may be present in the environment. The process water is associated with structures and have an inherent filtering or absorbing capability available in the materials and therefore can be used as a rapid screening tool for quality and quantitative assessment of environmental agents.

  1. Process for preparing organoclays for aqueous and polar-organic systems

    Science.gov (United States)

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  2. New contact system in crude oil desalting process

    International Nuclear Information System (INIS)

    Forero, J; Duque; Diaz, J; Nunez, A; Guarin, F; Carvajal, F

    2001-01-01

    The effect of the ICP contactor and the mixture valve on the desalting process was evaluated as a contact system in the crude oil washing process. The evaluation was carried out in the two desalters at the Cartagena refinery (GRC) and a desalter at the Barrancabermeja refinery (GCB) of ECOPETROL. The pressure drop was measured and the efficiency of the desalting processes, dehydration and hydrocarbon crude intake in the water was calculated based on the BS and W measurement, salt content and hydrocarbon concentration in the water. Results showed that the contactor improved desalting, water in the crude oil was reduced and crude carry-over in the wastewater was reduced between 50 and 92% at the Barrancabermeja refinery, and between 40 and 95% at the Cartagena refinery, which mean savings of approximately us$ 373.000 dollars per year at both refineries, due to the fact that less water is loaded into the process. Furthermore, hydrocarbon 1055 in wastewater was reduced by about 3650 barrels per year. The pressure drop was reduced between 88 and 94 % in relation to the mixing valve

  3. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  4. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  5. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  6. A breakthrough low energy desalination process : production of sustainable water from brackish water for the oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Man, M.; Sparrow, B.; Zoshi, J. [Saltwork Technologies Inc., BC (Canada)

    2010-07-01

    This paper described an innovative desalination system pilot study that is currently being conducted in Vancouver, British Columbia (BC). The thermo-ionic proof-tested system has the potential to achieve an electrical energy consumption rate of less than 1 kW per m{sup 3} through the harnessing of low grade heat. The energy transfer is accomplished by manipulating concentration gradients established and maintained through the evaporation of salt water into the atmosphere. The ion exchange mechanism reduced pre-treatment requirements and provided a self-cleaning mechanism to maintain steady production levels. The electrical energy created during the process was used to run low-pressure circulation pumps and process controls. The driving force for evaporation was the vapor pressure difference between the solution and moisture in the air. Discharges from the system can be tuned to various salt water concentrations. Results of the pilot study to date indicate that it is suitable for use in oil sands steam assisted gravity drainage (SAGD) processes. 8 refs., 1 tab., 4 figs.

  7. Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources

    Science.gov (United States)

    Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.

    2017-08-01

    In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.

  8. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  9. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  10. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems.......Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  11. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  12. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  13. Effects of water treatment processes used at waterworks on natural radionuclide concentrations

    International Nuclear Information System (INIS)

    Haemaelaeinen, K.; Vesterbacka, P.; Maekelaeinen, I.; Arvela, H.

    2004-08-01

    Commission recommendation (2001/928/Euratom), were exceeded for lead in one and for polonium in three catchments. Membrane filtration removed over 90% and sand filtration 10-20% of uranium in raw water. Uranium reduction varied a lot in the catchments using slow sand filtration. Mere alkalization did not affect the uranium concentration. The reduction of uranium in the distribution system was also low. Aeration during water treatment process was recognized as an effective radon removal method. Polonium removal in sand filtration was over 70% in almost each case studied. Radon concentration decreases in the distribution system because of radioactive decay. For the same reason the concentration of radioactive lead, which is a long-lived decay product of radon, is elevated in the distribution system. The results of this study and the former results in the STUK database show that the uranium and radon concentrations remained quite stable both over short and long time period in raw waters used by water catchments. Whereas, lead and polonium concentrations varied a lot over a short time period compared to those of uranium and radon. (orig.)

  14. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  15. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  16. Novel configurations of solar distillation system for potable water production

    International Nuclear Information System (INIS)

    Riahi, A; Yusof, K W; Sapari, N; Hashim, A M; Singh, B S

    2013-01-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  17. Technological processing waste water using the dressing the ejector system for pretreament

    Directory of Open Access Journals (Sweden)

    Božović Milan

    2017-01-01

    Full Text Available Slaughter industry produces large amounts of waste water, which endanger and degrade the natural recipients - recipients, given that the waste vode najčešće discharged without any form of treatment or purification. Wastewater slaughter industry carry faeces, straw, unprocessed animal feed, various stomach secretions, blood, fat, a variety of solid waste and other organic matter present. Many applied technical and technological solutions in order to prevent harming the recipients are not given adequate results from the ecological aspect. The reconstruction of a system for pre-treatment and slaughter waste water by applying technological solutions ejector - pump, not only have obtained good results required by the project, but also pointed to the possibility of their use in many types of agro-industrial waste water, especially with the growing number of small agro-industrial drive .

  18. System and process for producing fuel with a methane thermochemical cycle

    Science.gov (United States)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  19. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  20. INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER

    Science.gov (United States)

    An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...

  1. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  2. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  3. An anticipative escape system for vehicles in water crashes

    Science.gov (United States)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  4. Oily bilge water treatment with a tubular ultrafiltration system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L.R.; Jackson, D.F.; Schatzberg, P.

    1976-11-01

    The Navy has been developing various oil pollution abatement systems. One potential process for the separation of oil in bilge water is ultrafiltration, a pressure-driven membrane process which can separate, concentrate, and fractionate macromolecular solutes and suspended species from water. A tubular ultrafiltration system using cellulosic and noncellulosic membranes was tested with bilge oil obtained from a patrol craft. Tests were also conducted with tap water, river water, a turbine lubricating oil, and a fuel oil, alone and in combination with a nonionic detergent. The addition of the detergent was observed to result in a steeper flux decline than when any of the fluids were evaluated alone. Both membrane types produced a permeate with an oil content generally less than 15 mg/l. Although the noncellulosic membranes exhibited higher flux rates than the cellulosic membranes, only the former could be restored by a cleaning operation to its initial water flux after experiencing a decline in flux. A cumulative irreversible flux decline was exhibited by the cellulosic membrane. Cleaning operations, some of which were time-consuming, consisted of flushing the membrane with ultrafiltrate, distilled water, tap water, or the manufacturer's enzyme-detergent formulation. Only the last of these, when employed at elevated temperature (125/sup 0/F), restored the initial water flux of the noncellulosic membrane.

  5. Indicating anthropogenic effectson urban water system - indicators and extension

    Science.gov (United States)

    Strauch, G.; Ufz-Team

    2003-04-01

    Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments

  6. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  7. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  8. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  9. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  10. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.

    2015-01-01

    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of

  11. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  12. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  13. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  14. Degradation of process water containing polymers UV/H{sub 2}O{sub 2} system; Degradacao de agua de processo contendo polimeros via sistema UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Will, Isabela B.S.; Telemaco, Emmanuelle P.; Chiavone-Filho, Osvaldo; Guardani, Roberto; Nascimento, Claudio A.O. do

    2004-07-01

    The water rationalization has been one of the goals of the petrochemical industry. Such goals in such a way demand technological innovations for new productive processes how much for new techniques of treatment and reuse of water in the production chain. The high industrial water costs in Brazil, particularly in the regions metropolitans, have stimulated the national industries to evaluate the possibilities of reuse. The objective of this work is the application of the process water treatment containing polypropylene using ultraviolet radiation and hydrogen peroxide, that is system UV/H{sub 2}O{sub 2}, aiming at to adjust them for reuses in the proper process, reducing the water capitation daily pay-treated and improving the water exploitation. Photochemical annular reactor with medium pressure mercury vapor lamp was used and the following parameters of process had been evaluated: radiation, temperature of reaction and hydrogen peroxide concentration. The monitoring of the experiments was based on the measurement of contents of dissolved organic carbon, total carbon and inorganic carbon. Additionally, experiments using solar radiation had been evaluated. The experimental results had indicated the viability of application of system UV/H{sub 2}O{sub 2} having used artificial and solar light sources. The quality of the water obtained in the treatment was adequate to reuse it. (author)

  15. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    Science.gov (United States)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  16. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  17. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  18. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    Science.gov (United States)

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  19. Optimizing the air flotation water treatment process. Final report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  20. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  1. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  2. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  3. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    Science.gov (United States)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  4. Desalting a process cooling water using nanofiltration

    NARCIS (Netherlands)

    Radier, R.G.J.; van Oers, C.W.; Steenbergen, A.; Wessling, Matthias

    2001-01-01

    The cooling water system of a chemical plant of Akzo Nobel is a partly open system. The site is located at the North Sea. The air in contact with the cooling water contains seawater droplets dissolving and increasing the chloride concentration. The cooling water contains chromate to protect the

  5. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    Science.gov (United States)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  6. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  7. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  8. Separation setup for the light water detritiation process in the water-hydrogen system based on the membrane contact devices

    International Nuclear Information System (INIS)

    Rozenkevich, M. B.; Rastunova, I. L.; Prokunin, S. V.

    2008-01-01

    Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafion-type membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm 2 of the membrane and 10 cm 3 of the catalyst. The column is washed by tritium free light water (L H2O ) and the tritium-containing flow (F HTO ) feeds the electrolyser at λ = G H2 /L H2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa. (authors)

  9. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  10. Ab Initio Density Functional Theory Investigation of the Interaction between Carbon Nanotubes and Water Molecules during Water Desalination Process

    Directory of Open Access Journals (Sweden)

    Loay A. Elalfy

    2013-01-01

    Full Text Available Density functional theory calculations using B3LYP/3-21G level of theory have been implemented on 6 carbon nanotubes (CNTs structures (3 zigzag and 3 armchair CNTs to study the energetics of the reverse osmosis during water desalination process. Calculations of the band gap, interaction energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, electronegativity, hardness, and pressure of the system are discussed. The calculations showed that the water molecule that exists inside the CNT is about 2-3 Å away from its wall. The calculations have proven that the zigzag CNTs are more efficient for reverse osmosis water desalination process than armchair CNTs as the reverse osmosis process requires pressure of approximately 200 MPa for armchair CNTs, which is consistent with the values used in molecular dynamics simulations, while that needed when using zigzag CNTs was in the order of 60 MPa.

  11. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  12. Model of an aquaponic system for minimised water, energy and nitrogen requirements.

    Science.gov (United States)

    Reyes Lastiri, D; Slinkert, T; Cappon, H J; Baganz, D; Staaks, G; Keesman, K J

    2016-01-01

    Water and nutrient savings can be established by coupling water streams between interacting processes. Wastewater from production processes contains nutrients like nitrogen (N), which can and should be recycled in order to meet future regulatory discharge demands. Optimisation of interacting water systems is a complex task. An effective way of understanding, analysing and optimising such systems is by applying mathematical models. The present modelling work aims at supporting the design of a nearly emission-free aquaculture and hydroponic system (aquaponics), thus contributing to sustainable production and to food security for the 21st century. Based on the model, a system that couples 40 m(3) fish tanks and a hydroponic system of 1,000 m(2) can produce 5 tons of tilapia and 75 tons of tomato yearly. The system requires energy to condense and recover evaporated water, for lighting and heating, adding up to 1.3 GJ/m(2) every year. In the suggested configuration, the fish can provide about 26% of the N required in a plant cycle. A coupling strategy that sends water from the fish to the plants in amounts proportional to the fish feed input, reduces the standard deviation of the NO3(-) level in the fish cycle by 35%.

  13. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A METROPOLITAN DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The b...

  14. Optimization of the Clarification System for Raw Water from the Pakra Reservoir Lake

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2011-10-01

    Full Text Available The first step in processing raw water from the Pakra lake for use in fertilizer production at Petrokemija is oxidation of total organic carbon matter with gaseous chlorine, Cl2. Thereupon it is clarified and filtered with the help of a clarification reactor and sand filters. Construction of the clarification reactor and process sand filters enables only the removal of the suspended matter from the raw water, without affecting its overall hardness. Process control of the clarification reactor and removal of the suspended matter from the raw water is achieved by adding corresponding mass concentration water solutions of aluminum sulphate, Al2(SO43 · 18 H2O and organic polyelectrolyte. The effectiveness of flocculation is carried out by laboratory determination of the m-alkalinity difference between inlet and outlet of raw water from the clarification reactor. For the most effective clarification of raw water, the optimal empirical value of the m-alkalinity difference is 0.65 mmol L-1 in the pH range of raw water from 7.0 to 8.0. Prior to processing clarified water by ionic decarbonatisation and demineralisation for protection of the ionic exchange resin from excess free Cl2, a corresponding mass concentration of a sodium bisulfite water solution, NaHSO3, is added. An improved system is proposed for continuous measurement of mass concentrations of free Cl2 in raw and clarified water, and pH difference value at the inlet and outlet of the clarification reactor. The proposed system can achieve optimal dosage of gaseous Cl2 in the raw water, improving the clarification process in the reactor as well as optimal dosage of water solution of NaHSO3. It is shown that the average pH difference from 0.65 to 0.75 at the inlet and outlet of the clarification reactor in the pH range of the raw water from 7.0 to 8.0 is an equally effective replacement for the laboratory determination of m-alkalinity. Also shown is the connection between dosage mass of the

  15. The process matters: cyber security in industrial control systems

    NARCIS (Netherlands)

    Hadziosmanovic, D.

    2014-01-01

    An industrial control system (ICS) is a computer system that controls industrial processes such as power plants, water and gas distribution, food production, etc. Since cyber-attacks on an ICS may have devastating consequences on human lives and safety in general, the security of ICS is important.

  16. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  17. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  18. Numerical study of a water distillation system using solar energy

    International Nuclear Information System (INIS)

    Zarzoum, K.; Zhani, K.; Bacha, H. Ben

    2016-01-01

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results

  19. Numerical study of a water distillation system using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoum, K.; Zhani, K. [Sfax University, (Turkey); Bacha, H. Ben [Prince Sattam Bin Abdulaziz University, Alkharj (Saudi Arabia)

    2016-02-15

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results.

  20. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  1. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  2. Process for recovering water enriched with deuterium

    International Nuclear Information System (INIS)

    Mandel, H.

    1975-01-01

    By the process proposed herewith, enrichment of deuterium in water by cooling water recirculation through series-connection of several cooling ciruits in the form of columns is obtained. With this method, conventional, open-type cooling towers without special installations can be applied, which is an important advantage as compared with a formerly proposed single-stage process with specially designed, complicated cooling towers. Series-connection of the cooling towers is carried out in such a way that the circulating water of a certain cooling circuit, which has a corresponding output value of deuterium enrichment, is conveyed to a succeeding circuit where further enrichment is achieved. The water enriched with deuterium is removed from the last cooling circuit of the series while an amount of fresch water equivalent to the water removed or evaporated altogether is fed to the first circuit of the series. (RB) [de

  3. Technical report on operating experience with boiling water reactor offgas systems

    International Nuclear Information System (INIS)

    Lo, R.; Barrett, L.; Grimes, B.; Eisenhut, D.

    1978-03-01

    Over 100 reactor years of Boiling Water Reactor (BWR) operating experience have been accumulated since the first commercial operation of BWRs. A number of incidents have occurred involving the ''offgas'' of these Boiling Water Reactors. This report describes the generation and processing of ''offgas'' in Boiling Water Reactors, the safety considerations regarding systems processing the ''offgas'', operating experience involving ignitions or explosions of ''offgas'' and possible measures to reduce the likelihood of future ignitions or explosions and to mitigate the consequences of such incidents should they occur

  4. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  5. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  6. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    International Nuclear Information System (INIS)

    Le Cloirec, P.

    2005-01-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  7. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  8. A new data transmission system for deep water applications

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    A novel data transmission system is now available. Conventional data transmission methods include systems that require satellites, hard wires, fiber optics and other methods that do not lend themselves to buried, remote, or deep water applications. The Data Transmission System (DTS) induces a signal into a structure such as the transmission line and retrieving the signal at a distant point. In deep water applications the power required comes from an anode array that generates its own power. In addition to deep water applications, the DTS can be used in onshore, drilling, and downhole applications. With repeater stations, most lengths of gathering and transmission lines can be used. Therefore data from control valves, strain gauges, corrosion monitoring, sand monitoring, valve position and other process variables can all be transmitted. Comparisons are made between the different data transmission systems showing the advantages and disadvantages of each type with comparative costs showing the advantages of the new DTS system. (author)

  9. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  10. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  11. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  12. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    Guzman R, G.H.

    1980-01-01

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH 3 -H 2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  13. Integrated assessment of water-power grid systems under changing climate

    Science.gov (United States)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  14. Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation

    International Nuclear Information System (INIS)

    Peng, Xiaowei; Ma, Xiaoqian; Lin, Yousheng; Wang, Xusheng; Zhang, Xiaoshen; Yang, Cheng

    2016-01-01

    Highlights: • Microalgae liquefaction in ethanol–water promoted bio-oil yield and property. • There existed synergistic effect between ethanol and water. • Ethanol contributed to deoxygenation and hydrogen-donating for bio-oil. • Net energy ratios of 20% and 40% ethanol were larger than pyrolysis technology. - Abstract: In this work, Chlorella pyrenoidosa was converted into bio-oil via solvolysis liquefaction in sub/supercritical ethanol–water system. The influence of reaction temperature (220–300 °C), retention time (0–120 min), solid/liquid ratio (6.3/75–50.0/75 g/mL) and ethanol content (0–100%) on bio-oil yield and property was investigated. The increase of reaction temperature and retention time both improved the bio-oil yield. The bio-oil yield increased firstly and then decreased when the solid/liquid ratio and ethanol content exceeded 18.8/75 g/mL and 80%, respectively. As the reaction temperature <260 °C and retention time <30 min, a soft and unsticky product was insoluble in dichloromethane (DCM) during the extraction process. The chemical composition of the DCM-insoluble product was analyzed by FTIR (Fourier Transform Infrared Spectrometry). The change tendency of O/C and H/C atomic ratio of bio-oil indicated that the addition of ethanol contributed to deoxygenation and hydrogen-donating for bio-oil, due to the dehydration and decarboxylation reaction. "1H NMR (hydrogen-1 nuclear magnetic resonance) analysis indicated that the main chemical compositions of bio-oil were aliphatic functional groups and heteroatomic functionalities (80.00–83.58%). The addition of ethanol enhanced the transesterification to form more ester. The NER (net energy ratio, the ratio of energy output to energy consumption) of solvolysis liquefaction in ethanol–water system (NER < 1) was less than that of hydrothermal liquefaction in sole water system (NER = 1.29), but the NERs of 20% and 40% ethanol content (NER = 0.91, 0.70 for 20% and 40% ethanol content

  15. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  16. On the choice of a rational system of water economy of the industrial enterprice

    International Nuclear Information System (INIS)

    Tsikhelashvili, Z.; Khatiuri, Kh.; Verulava, G.; Zakutashvili, G.

    2009-01-01

    Rational systems and projects of water economy of the industrial enterprise (allowing for the development of waste-free production processes, industrial water recycling with water treatment or without it, and cooling recycling) are discussed. The analysis of rational systems is of primary importance when designing and/or reconstructing the industrial water economy. Such systems and projects must account for all local conditions determining the advantage of their employment from the sanitary and economic viewpoints. (author)

  17. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  18. Design of water detritiation system for fusion reactor

    International Nuclear Information System (INIS)

    Xie Bo; Wang Heyi; Liu Yunnu; Guan Rui

    2006-01-01

    The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange and Gas Chromatography (CECE-GC) process was selected for the system and subsystems' descriptions of the WDS. ITER-WDS is characterised from the present demonstration system by rejecting the use of a recombiner and alkali electrolyzer, but a solid polymer electrolyzer (SPE) and a Pd/Ag membrane permeator system are adopted to recover tritium. (authors)

  19. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this

  20. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  1. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    International Nuclear Information System (INIS)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-01-01

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q 2 , Q-hydrocarbons) into Q 2 O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q 2 mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  2. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R. [JET-EFDA, Culham Science Center, Abingdon, Oxon (United Kingdom)

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  3. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  4. Intelligent monitoring of water chemistry - Diagnostic expert system DIWATM

    International Nuclear Information System (INIS)

    Metzner, W.; Streit, K.

    2002-01-01

    For fast and comprehensive evaluation of power plant water chemistry conditions and reliable diagnosis in the event of disturbances considerable advantages are provided by employment of the Diagnostic Expert System DIWA. The interface to the process control system (I and C) and the integration of the DIWA system in the office PC network are the preconditions that DIWA operates as a monitoring system in real time. The performance of diagnosis, which are processed by a fuzzy-logic-supported knowledge base ensures not only the detection of all disturbances but also different analyses of the plant operation mode. By editing the knowledge base the Al of the system can increase without system programming. (authors)

  5. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  6. Monitoring, characterization and comparison. Operation-project of oil and oil water systems in platforms

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Louvisse, Ana M.T.; Ramalho, Joao B.V.S.; Miragaya, Jose C.G.

    2000-01-01

    During the process of petroleum production, water are also commonly produced. Usually, a standard oil-water separation process will not lead to water phase ready to be discharged - the present legislation requires oily contents (oil and/or greases) bellow 20 mg/L concentration level value. Thus, secondary treatment is required to bring such oily concentration to the allowed level or lower, prior to the water discard in the environment. This paper describes the adopted systematic work in the Campos Basin Petroleum Production Platforms, which has allowed to evaluate and optimize the water treatment performed in there. Such description includes the typical water treatment systems installed, the typical physical-chemistry of the effluents and also presents comparisons between the basic designs that guided such systems construction and their present operational conditions and set-ups. The analysis of such results has allowed the introduction of minor modifications leading to the process optimization. The common use of Pilot Plants in such optimization process is also described and their contribution reported. (author)

  7. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  8. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  9. 40 CFR 420.08 - Non-process wastewater and storm water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  10. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches...

  11. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facility's Process Water Handling System

    International Nuclear Information System (INIS)

    KESSLER, S.F.

    2000-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  12. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  13. Rotor-stator and disc systems for emulsification processes

    Energy Technology Data Exchange (ETDEWEB)

    Urban, K.; Roeglin, D.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, FB Ingenieurwissenschaften, Institut fuer Verfahrenstechnik/TVT, D-06099 Halle (Saale) (Germany); Wagner, G.; Schaffner, D. [DSM Nutritional Products AG, CH-4002 Basel (Switzerland)

    2006-01-01

    Emulsions now find a wide range of applications in industry and daily life. In the pharmaceutical industry lipophilic active ingredients as well as many nutritional products such as vitamins are often formulated in the dispersed phase of oil-in-water emulsions. Emulsions can be produced with different mechanical emulsification techniques. In the following review, the process of rotor-stator systems and disc systems are compared to other popular mechanical emulsification systems. On the basis of experimental results from the authors' laboratory, a discontinuous gear-rim dispersing system, discontinuous disc system, and a continuous high pressure system are compared with regard to their attainable mean droplet diameter and drop size distribution in an oil-in-water emulsion. It can be shown that dissolver discs with a very simple geometry attain very small mean droplet diameters and a very narrow droplet size distribution, comparable to the emulsions obtained with established rotor-stator systems such as gear-rim dispersers. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  15. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  16. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  17. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  18. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  19. ITER task D316 (1996): design review of isotope separation system (WBS 3.2 B) and water detritiation system (WBS 3.2 E)

    International Nuclear Information System (INIS)

    Sood, S.K.; Fong, C.

    1997-05-01

    The design review performed on the ITER Isotope Separation System and the Water Detritiation System are summarized. The objectives of the task are: to produce a Design Description Document for the Feed Treatment and Vacuum system for the Water Detritiation system; to review the process system operation and control philosophy for the Water Detritiation System; to review the equipment arrangement drawings where available. 1 fig., 3 refs

  20. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  1. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  2. System of environmental and economic accounting for water pollution and the result analysis

    Science.gov (United States)

    Tan, Yarong

    2017-10-01

    With the gradual acceleration of China's industrialization process, the environmental pollution caused by industrial production is more and more serious, especially water pollution. To construct a System of Environmental and Economic Accounting for water pollution, to a certain extent, can promote the green development of national economy in China. The System of Environmental and Economic Accounting for water pollution is analyzed and studied in this paper.

  3. Monitoring the Water Quality in the Recycling Process

    International Nuclear Information System (INIS)

    Antonyová, A; Antony, P; Soewito, B

    2015-01-01

    Specific water contamination requires the recycling process prior to its discharge into the public sewerage network. Electro-flotation technology was used for cleaning of waste water contaminated with the disperse colorants. Dispersion colorants were used to decorate the boxes, made of corrugated board, in the company for the production of packaging. The objective of this paper is to present a method of optimization to determine the length of the time interval for electro-flotation process. Interval should be set so as to achieve the degree of cleaning the water that is the maximum possible in the process of electro-flotation. The measurement of the light passing through the measuring the translucent tube determines the actual degree of the water purity. The measurement is carried out by means of a photodiode in different wavelengths. The measured values in the measuring tube are compared with the nominal value, which corresponds to pure distilled water. Optimization the time interval to clean the water using electro-flotation was determined for yellow color. The optimum interval for the water contaminated with the yellow color was set to 1800s. (paper)

  4. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid; Smith, Edward

    2012-01-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without

  5. A Web GIS Enabled Comprehensive Hydrologic Information System for Indian Water Resources Systems

    Science.gov (United States)

    Goyal, A.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Hydrological systems across the globe are getting increasingly water stressed with each passing season due to climate variability & snowballing water demand. Hence, to safeguard food, livelihood & economic security, it becomes imperative to employ scientific studies for holistic management of indispensable resource like water. However, hydrological study of any scale & purpose is heavily reliant on various spatio-temporal datasets which are not only difficult to discover/access but are also tough to use & manage. Besides, owing to diversity of water sector agencies & dearth of standard operating procedures, seamless information exchange is challenging for collaborators. Extensive research is being done worldwide to address these issues but regrettably not much has been done in developing countries like India. Therefore, the current study endeavours to develop a Hydrological Information System framework in a Web-GIS environment for empowering Indian water resources systems. The study attempts to harmonize the standards for metadata, terminology, symbology, versioning & archiving for effective generation, processing, dissemination & mining of data required for hydrological studies. Furthermore, modelers with humble computing resources at their disposal, can consume this standardized data in high performance simulation modelling using cloud computing within the developed Web-GIS framework. They can also integrate the inputs-outputs of different numerical models available on the platform and integrate their results for comprehensive analysis of the chosen hydrological system. Thus, the developed portal is an all-in-one framework that can facilitate decision makers, industry professionals & researchers in efficient water management.

  6. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NARCIS (Netherlands)

    Grift, B. van der; Broers, H.P.; Berendrecht, W.; Rozemeijer, J.; Osté, L.; Griffioen, J.

    2016-01-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream

  7. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  8. Man-made organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    Science.gov (United States)

    Kingsbury, James A.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Initial findings from a national study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterize the occurrence of about 250 anthropogenic organic compounds in source water (defined as water collected at a surface-water intake prior to water treatment) at nine community water systems in nine States in the Nation. The organic compounds analyzed in this study are primarily man-made and include pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. The study also describes and compares the occurrence of selected compounds detected in source water with their occurrence in finished water, which is defined as water that has passed through treatment processes but prior to distribution. This fact sheet summarizes major findings and implications of the study and serves as a companion product to two USGS reports that present more detailed and technical information for the nine systems studied during 2002-05 (Carter and others, 2007; Kingsbury and others, 2008).

  9. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Science.gov (United States)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  10. Development of the ELEX process for water detritiation

    International Nuclear Information System (INIS)

    Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Goossens, W.R.A.; Baetsle, L.H.

    1984-01-01

    The ELEX process which appears to be very suitable for the detritiation of CTR cooling water and wastewater, is based on the electrolysis of water and the catalytic exchange of tritium between hydrogen and water. The exchange is carried out in a simple countercurrent packed-bed reactor and it is promoted by a proprietary hydrophobic catalysts. After a study of the single constituent steps with a.o. the development of an appropriate hydrophobic catalyst, the integrated ELEX process was successfully demonstrated by detritiating more than 1000 dm 3 water in a 0.18 dm 3 h -1 bench-scale installation. (author)

  11. A web-based system for the integrated water management

    Science.gov (United States)

    Giordano, R.; Passarella, G.; Uricchio, V. F.; Lopez, N.

    2003-04-01

    The success of complexity theory has posed new challenges also in the environmental resources management. From the complexity point of view, in fact, the environment has to be considered as a system with numerous parts interrelated each other by strongly and no-linear feedback relationships. In this perspective, when an action is performed its results become difficult to control. Therefore, to construct and to select the most suitable alternatives for environmental resources management, an holistic approach has to be adopted. In water resources management domain, increasing interest is posed to the integrated management, in which the total system of biotic and a-biotic elements of certain water environment is taken into account. Our contribution moves from the idea that the term integrated has to be referred also to human agents which take decisions influencing the water environment. In other words, Integrated Water Management (IWM) considers how different action affect, and can reinforce, each other and it promotes the coordinated development and management of water, land and related resources. The IWM stresses the interrelationships among the actions at different types, working at different levels of influence, coordinating stakeholders' actions. The coordination requires an appropriate information level about the strategies used by each stakeholder. To improve the information flow inside a watershed and therefore the coordination among agents, a web-based system is proposed. It could be defined as an electronic agora where a set of stakeholders can be involved both in information exchange and in conflicts resolution. More in detail, to improve the coordination process, the proposed system allows the stakeholders to find someone with similar or conflicting interests to collaborate with; to make contact with selected people; to build a common understanding (that is the identification of a common goal, the negotiation about the way this goal should be reached); to

  12. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  14. Development of a diagnostic expert system for secondary water chemistry

    International Nuclear Information System (INIS)

    Suganuma, S.; Ishikawa, S.; Kato, A.; Yamauchi, S.; Hattori, T.; Yoshikawa, T.; Miyamoto, S.

    1990-01-01

    Water chemistry control for the secondary side of the PWR plants is one of the most important tasks for maintaining the reliability of plant equipment and for extending the operating life of the plant. Water chemistry control should be maintained according to the plant chemist' considered judgement which is based on continual experienced observation. Mitsubishi Heavy Industries (MHI) has been developing a comprehensive data management and diagnosis system, which continuously observes the secondary water chemistry data with on-line monitors, immediately diagnosing causes whenever any symptoms of abnormality are detected and does the necessary data management, in order to support plant staff to controll water chemistry. This system has the following three basic functions: data management, diagnosis and simulation. This paper presents the outline of the total system, and then describes in detail the procedure of diagnosis, the structure of the knowledge and its validation process

  15. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  16. Effect of water purification process in radioactive content: analysis on small scale purification plants

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F.

    2009-10-01

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  17. Vulnerability of water supply systems to cyber-physical attacks

    Science.gov (United States)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi

    2016-04-01

    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  18. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  19. Waste minimization through process optimization/integration and resource management at eco-friendly Heavy Water Plants

    International Nuclear Information System (INIS)

    Nageshri, Jagdish; Gupta, S.K.

    2004-01-01

    Heavy Water Board has celebrated 2003 as Environmental Conservation Year captivating a range of enviro-friendly measures. This article attempts to give a brief overview of the outcome of systems and adapted procedures for waste minimization through process integration and resource management at Heavy Water Plants

  20. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  1. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    International Nuclear Information System (INIS)

    Benitez, F. Javier; Real, Francisco J.; Acero, Juan L.; Garcia, Carolina

    2006-01-01

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H 2 O 2 ). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained

  2. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)]. E-mail: javben@unex.es; Real, Francisco J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Garcia, Carolina [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2006-11-16

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H{sub 2}O{sub 2}). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained.

  3. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    Science.gov (United States)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  4. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  5. Progress of electron processing system useful for environmental preservation

    International Nuclear Information System (INIS)

    Hoshi, Yasuhisa

    1998-01-01

    Electron Processing has been used in the field of industrial application, mainly to process plastics or polymers, which is represented by the cross-linking of Polyethylene to improve heat resistance. On the other hand, there has been many research studies to use Electron Beam for an environmental preservation. Typical examples are Sterilization of Food, Flue Gas Treatment, Sterilization of Waste Water Sludge, Purification of Water, Removal of Volatile Organic Compound (VOC), etc. These research works have been done in the USA, Germany, Austria, Japan, etc. They reported some of the features of electron beam method. In addition, there is an unique report that the combination of Ozone and Electron Beam provides a better efficiency of the purification of the water. Recently, they have started the investigation for the practical use of Electron Beam in the environmental application. Flue gas treatment is a remarkable example of the investigation. They built the demonstration plant last year and they started the operation last fall. Presently, the system is in a demonstrative operation. This paper will report an outline of the R and D works of environmental applications of Electron Beam and also will introduce the latest technologies of Electron Processing Systems which will be available for the environmental preservation. (author)

  6. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  7. The impacts of indoor Amang processing to the quality of water and locally sediments

    International Nuclear Information System (INIS)

    Muhammad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari; Wong, Siew Kim

    2007-01-01

    The impact of amang industry to the environment and community health has long been studied since the industry uses a large amount of water as well the accumulation of TENORM. A study was carried out to measure the water quality as well as the contents of radioactive substances and selected heavy metals in the water and sediments in the vicinity of an amang processing plant in Kampar, Perak, which is using a close water system. The sampling locations selected are; the natural pond, closed to the plant which supply the water for the processing (L1), a recycling concrete pond outside the plant (L2) and an affluent discharge point inside the plant (L3). The techniques of analysis used included in-situ measurement and laboratory analysis of water quality, direct counting of radioactivity ( 238 U and 232 Th) and chemical extraction for atomic absorption spectroscopy of heavy metals (zinc, lead, copper). Chemical extraction was carried out using potassium nitrate, sodium hydroxide, disodium ethylene-diamine tetra-acetic acid (Na 2 EDTA) and concentrated nitric acid solutions. the results show that the water quality indices for the natural pond are much better than at the effluent discharge point or the recycling concrete pond. The average 238 U and 232 Th concentrations were the highest in sediment samples at L3 (1110.5 ± 7.3 Bq/ Kg and 1966.6 ± 4.7 Bq/ kg respectively). For the water samples, the radioactivity was highest in the water sample collected at concrete pond (L2), which is 35.42 ± 1.63 Bq/ L ( 238 U) and 36.16 ± 1.02 Bq/ L ( 232 Th). The average value of extracted Pb (194.13 μg/ g) and Cu (9.71 μg/ g) was highest in the sediment from L3, while for Zn in sediment taken from L1 (38.78 μg/ g). In general, the water quality indices of L1 are better than L2 and L3. The closed water recycling system currently practiced by the amang processing plant has successfully contained the contamination to the environment caused by amang processing activities. (author)

  8. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid

    2012-08-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.

  9. Reactor process water (PW) piping inspections, 1984--1990

    International Nuclear Information System (INIS)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-01-01

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR's) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk's Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations

  10. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  11. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  12. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    Science.gov (United States)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  13. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  14. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  15. Process for the preparation of ammonia and heavy water

    International Nuclear Information System (INIS)

    Mandrin, C.

    1980-01-01

    A process for the production of ammonia and heavy water comprises the steps of enriching a flow of water with deuterium in a monothermal isotropic process; supplying a first portion of the deuterium-enriched water to a heavy water preparation plant to produce heavy water and hydrogen; storing a second portion of the deuterium-enriched water substantially without interruption during the colder half of a year; electrolytically dissociating the stored deuterium-enriched water substantially without interruption during the wamer half of a year to form hydrogen; storing a portion of the electrolytically-produced hydrogen during said warmer half of a year while supplying the remainder to a synthesis circuit of a synthesizing plant and subsequently supplying the stored hydrogen to the synthesis circuit during said colder half of a year; removing some of the synthesis gas mixture from the synthesis circuit of the synthesizing plant; burning the removed synthesis gas mixture with air to produce a mixture consisting mainly of water and nitrogen; thereafter condensing and separating the water from the mixture of water and nitrogen; supplying the nitrogen of the mixture of water and nitrogen, the hydrogen from the heavy water preparation plant and the electrolytically-produced hydrogen to the synthesis circuit of the synthesizing plant to produce ammonia; and collecting deuterium-depleted water resulting from said burning step and feeding the collected deuterium-depleted water into the monothermal process

  16. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  17. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Energy Technology Data Exchange (ETDEWEB)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)

    2016-01-15

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  18. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    International Nuclear Information System (INIS)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho

    2016-01-01

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  19. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  20. Simulation of Deposition the Corrosion Waste in a Water Distribution System

    Directory of Open Access Journals (Sweden)

    Peráčková Jana

    2013-04-01

    Full Text Available In water distribution systems can be found particles of rust and other mechanical contaminants. The particles are deposited in locations where the low velocity of water flow. Where a can cause the pitting corrosion. Is a concern in the systems made of galvanized steel pipes. The contribution deals with CFD (Computational Fluid Dynamics simulations of water flow and particles deposition in water distribution system. CFD Simulations were compared with the corrosive deposits in real pipeline. Corrosion is a spontaneous process of destruction of metal material due to electrochemical reactions of metal with the aggressive surrounding. Electrochemical corrosion is caused by the thermodynamic instability of metal and therefore can not be completely suppress, it can only influence the speed of corrosion. The requirement is to keep metal properties during the whole its lifetime. Requested service lifetime the water pipe according to EN 806-2 is 50 years.

  1. Re-Engineering Control Systems using Automatic Generation Tools and Process Simulation: the LHC Water Cooling Case

    CERN Document Server

    Booth, W; Bradu, B; Gomez Palacin, L; Quilichini, M; Willeman, D

    2014-01-01

    This paper presents the approach used at CERN (European Organization for Nuclear Research) to perform the re-engineering of the control systems dedicated to the LHC (Large Hadron Collider) water cooling systems.

  2. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  3. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  4. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  5. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    International Nuclear Information System (INIS)

    Postigo, Cristina; Richardson, Susan D.

    2014-01-01

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H 2 O 2 . • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment

  6. Evaluation of biocide efficacy on microbiological induced corrosion of pipes and equipment from the 'process water system' of Embalse nuclear power plant (CNE)

    International Nuclear Information System (INIS)

    Forte Giacobone, A F; Burkart, A L; Pizarro, R; Rodriguez S; Belloni, M; Croatto, F; Ferrari, F; Herrera, C; Mendizabal, M; Montes, J; Rodriguez Aliciardi, M; Saucedo, R; Ovando, L

    2012-01-01

    In order to improve water quality, and mitigate recurrent bio corrosion phenomena affecting the components of the Process Water System of the CNE, a combined water treatment adding a commercial biocide product, based on bromide, to the currently injected chlorine was proposed. The aim of this study was to evaluate the effect of the added biocide on the kinetics of biofilm formation and growth, which is the precursor process to microbiological corrosion, and on the corrosion rates of carbon steel of pipes, heat exchanger shells and other system devices. For this purpose, a test bench was designed and built, reproducing the flow conditions at certain parts of the system. This facility was installed in the filtration shed of the Water Plant of the CNE. The test bench consisted of two parallel chambers, I and II, each in turn divided into a section for determining biofilm growth and corrosion rates of carbon steel coupons and another one to measure the kinetics of biofilm growth on stainless steel coupons. Both chambers received lake water chlorinated for 15 minutes each day. The chamber II received also the biocide. The corrosion rate in carbon steel coupons was evaluated by weight loss and Linear Polarization Resistance (LPR) measurements. The kinetics of biofilm growth on carbon steel coupons was measured using disruptive methods followed by quantification of the protein and carbohydrate content as an estimation of total biomase. The following bacterial groups were quantified through the dilution-extinction method: total aerobic bacteria, acid-producing bacteria, total anaerobic bacteria, sulfate reducing bacteria and bacteria precipitating iron and manganese. On the stainless steel coupons, the percent of coverage was evaluated by epi fluorescence microscopy. The corrosion rate results obtained both by weight loss as by LPR, showed no significant differences between both chambers, with and without biocide. Regarding the kinetics of biofilm growth on carbon steel

  7. Draining and drying process development of the Tokamak Cooling Water System of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seokho, E-mail: kims@ornl.gov [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Van Hove, Walter; Ferrada, Juan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Di Maio, Pietro Alessandro [University of Palermo, Viale delle Scienze, Palermo 90128 (Italy); Felde, David [Reactor and Nuclear Systems Division, ORNL, Oak Ridge, TN (United States); Raphael, Mitteau; Dell’Orco, Giovanni [ITER Organization, 13067 St Paul Lez Durance (France); Berry, Jan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-11-01

    Highlights: • A thermal-hydraulic model using RELAP was developed for the ITER FW/BLK modules to determine design parameters for the nitrogen blowout flow rate and pressure. • The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will sufficiently evacuate the water in blankets. • A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation. - Abstract: The ITER Organization (IO) developed a thermal-hydraulic (TH) model of the complex first wall and blanket (FW/BLK) cooling channels to determine gas flow rate and pressure required to effectively blow out the water in the FW/BLK. In addition, US ITER conducted experiments for selected geometries of FW/BLK flow channels to predict the blowout parameters. The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will ensure substantial evacuation of the water in blankets with just a few percent remaining in the blanket flow channels. A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation.

  8. Adapting a geographical information system-based water resource management to the needs of the Romanian water authorities.

    Science.gov (United States)

    Soutter, Marc; Alexandrescu, Maria; Schenk, Colin; Drobot, Radu

    2009-08-01

    The need for global and integrated approaches to water resources management, both from the quantitative and the qualitative point of view, has long been recognized. Water quality management is a major issue for sustainable development and a mandatory task with respect to the implementation of the European Water Framework Directive as well as the Swiss legislation. However, data modelling to develop relational databases and subsequent geographic information system (GIS)-based water management instruments are a rather recent and not that widespread trend. The publication of overall guidelines for data modelling along with the EU Water Framework Directive is an important milestone in this area. Improving overall water quality requires better and more easily accessible data, but also the possibility to link data to simulation models. Models are to be used to derive indicators that will in turn support decision-making processes. For this whole chain to become effective at a river basin scale, all its components have to become part of the current daily practice of the local water administration. Any system, tool, or instrument that is not designed to meet, first of all, the fundamental needs of its primary end-users has almost no chance to be successful in the longer term. Although based on a pre-existing water resources management system developed in Switzerland, the methodological approach applied to develop a GIS-based water quality management system adapted to the Romanian context followed a set of well-defined steps: the first and very important step is the assessment of needs (on the basis of a careful analysis of the various activities and missions of the water administration and other relevant stakeholders in water management related issues). On that basis, a conceptual data model (CDM) can be developed, to be later on turned into a physical database. Finally, the specifically requested additional functionalities (i.e. functionalities not provided by classical

  9. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  10. Minimization of water consumption under uncertainty for PC process

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, J.; Diwekar, U.; Zitney, S.

    2009-01-01

    Integrated gasification combined cycle (IGCC) technology is becoming increasingly important for the development of advanced power generation systems. As an emerging technology different process configurations have been heuristically proposed for IGCC processes. One of these schemes combines water-gas shift reaction and chemical-looping combustion for the CO2 removal prior the fuel gas is fed to the gas turbine reducing its size (improving economic performance) and producing sequestration-ready CO2 (improving its cleanness potential). However, these schemes have not been energetically integrated and process synthesis techniques can be used to obtain optimal flowsheets and designs. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). For the alternative designs, large differences in the performance parameters (for instance, the utility requirements) predictions from AEA and AP were observed, suggesting the necessity of solving the HENS problem within the AP simulation environment and avoiding the AEA simplifications. A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case.

  11. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  12. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review.

    Science.gov (United States)

    Vlad, Silvia; Anderson, William B; Peldszus, Sigrid; Huck, Peter M

    2014-12-01

    Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.

  13. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  15. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  16. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  17. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  18. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  19. Research on water management system based on Android

    Science.gov (United States)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  20. The Importance of Water for High Fidelity Information Processing and for Life

    Science.gov (United States)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  1. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  2. Expert System Development on On-line Measurement of Sewage Treatment Based Process

    Directory of Open Access Journals (Sweden)

    Jianjun QIN

    2014-02-01

    Full Text Available This article puts forward a solution in which an instrument on-line automatic measurement and expert system process are optimized according to the complexity and great process dynamics of sewage treatment process. Firstly modeling has been set up with configuration sewage treatment process in which the process has been integrated into the computer software environment. Secondly certain number of water quality automatic monitoring instruments and sensor probes are set in the reaction tanks according to the needs of process changes and management. The data information acquired can be displayed and recorded at the real time. A human-machine integration expert system featuring computer automation management is developed for the base by one-off method thus to realize the intelligent and unmanned management. The advantages brought about from it can fill up the inexperience of the on-site management personnel and solve the contradiction between the water quality dynamics and difficulty in the process adjustment.

  3. Poster 29. Modelling of ion exchange processes in ultrapure water

    International Nuclear Information System (INIS)

    Berg, A.; Torstenfelt, B.; Fejes, P.; Foutch, G.L.

    1992-01-01

    The ion exchange process of the Reactor Water Clean-up (RWCU) system has been studied to better use the maximum possible exchange capacity of the ion exchange resin. Laboratory data have been correlated with computer simulations of the ion exchange process. Data were correlated using a mixed-bed ion exchange model for ultralow ionic concentrations developed at Oklahoma State University. Experimental results of the ion exchange column operation in the concentration range of 10 -3 M boric acid is compared with the simulated performance predicted by the computer model. The model is found to agree reasonably well with the data. (author)

  4. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  5. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  6. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  7. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  8. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  9. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  10. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  11. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  12. An Evaluation of the Acoustic Signal processing Techniques for Sodium-Water Reaction Detection in KALIMER-600

    International Nuclear Information System (INIS)

    Hur, Seop; Seong, S. H.; Kim, T. J.; Kim, S. O.; Lee, M. K.

    2005-02-01

    KALIMER-600 is a pool type fast breeder reactor using liquid sodium as a coolant. Although it has the several advantages such as long-term fuel cycle and enhanced safety concepts, it is possible to leak the secondary side water/steam into sodium boundary. This event could make the plant abnormal condition. One of the major design issues in KALIMER-600 is, therefore, to develop the system which can early detect the sodium-water reaction to protect the sodium-water reaction event. After evaluating the various signal processing techniques for passive acoustic leak detection, we have proposed the early leak detection logics. the signal processing techniques for evaluation were the spectral estimation using the linear modeling, the estimation error of linear modeling, the system adaptation rate using an adaptive signal processing, and the background noise cancellation using adaptive and fixed filtering. As the analysis results regarding the stationary and the cross-correlation of leak signals and background noises, the two signal systems met a wide-dense stationary process and there was only the week cross correlation relationship between two signals. It is ,therefore, possible to use the linear/harmonic modeling of signal systems, and the leak signal in sensor outputs can be discriminated. As the results of the evaluation of the various spectral estimation methods, the spectral estimation method based on autoregressive modeling was more practical comparing with other methods in the sodium-water reaction detection. The passive acoustic leak detection logics were suggested based on above evaluations. the logics consist of 3 levels; transient identification, leak determination and leak symptom identification. The simulation results using sodium-water reaction signals showed that it was possible to determine the leak at above -3dB of SNR, while between -3 dB and -10 dB of SNR the logics determined the leak symptom identification. The detection sensitivity can be enhanced

  13. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  14. DRINKING WATER QUALITY IN DISTRIBUTION SYSTEMS OF SURFACE AND GROUND WATERWORKS IN FINLAND

    Directory of Open Access Journals (Sweden)

    Jenni Meirami Ikonen

    2017-06-01

    Full Text Available Physico-chemical and microbiological water quality in the drinking water distribution systems (DWDSs of five waterworks in Finland with different raw water sources and treatment processes was explored. Water quality was monitored during four seasons with on-line equipment and bulk water samples were analysed in laboratory. Seasonal changes in the water quality were more evident in DWDSs of surface waterworks compared to the ground waterworks and artificially recharging ground waterworks (AGR. Between seasons, temperature changed significantly in every system but pH and EC changed only in one AGR system. Seasonal change was seen also in the absorbance values of all systems. The concentration of microbially available phosphorus (MAP, μg PO₄-P/l was the highest in drinking water originating from the waterworks supplying groundwater. Total assimilable organic carbon (AOC, μg AOC-C/l concentrations were significantly different between the DWDSs other than between the two AGR systems. This study reports differences in the water quality between surface and ground waterworks using a wide set of parameters commonly used for monitoring. The results confirm that every distribution system is unique, and the water quality is affected by environmental factors, raw water source, treatment methods and disinfection.

  15. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  16. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    Science.gov (United States)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  17. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  18. Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation

    KAUST Repository

    Phuntsho, Sherub; Kim, Jung Eun; Johir, Mohammad AH; Hong, Seungkwan; Li, Zhenyu; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-01-01

    The pilot-scale fertiliser driven forward osmosis (FDFO) and nanofiltration (NF) system was operated in the field for about six months for the desalination of saline groundwater from the coal mining activities. Long-term operation of the FDFO-NF system indicates that simple hydraulic cleaning could effectively restore the water flux with minimal chemical cleaning frequency. No fouling/scaling issues were encountered with the NF post-treatment process. The study indicates that, FDFO-NF desalination system can produce water quality that meets fertigation standard. This study also however shows that, the diffusion of solutes (both feed and draw) through the cellulose triacetate (CTA) FO membrane could be one of the major issues. The FO feed brine failed to meet the effluent discharge standard for NH4+ and SO42+ (reverse diffusion) and their concentrations are expected to further increase at higher feed recovery rates. Low rejection of feed salts (Na+, Cl−) by FO membrane may result in their gradual build-up in the fertiliser draw solution (DS) in a closed FDFO-NF system eventually affecting the final water quality unless it is balanced by adequate bleeding from the system through NF and re-reverse diffusion towards the FO feed brine. Therefore, FO membrane with higher reverse flux selectivity than the CTA-FO membrane used in this study is necessary for the application of the FDFO desalination process.

  19. Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation

    KAUST Repository

    Phuntsho, Sherub

    2016-02-20

    The pilot-scale fertiliser driven forward osmosis (FDFO) and nanofiltration (NF) system was operated in the field for about six months for the desalination of saline groundwater from the coal mining activities. Long-term operation of the FDFO-NF system indicates that simple hydraulic cleaning could effectively restore the water flux with minimal chemical cleaning frequency. No fouling/scaling issues were encountered with the NF post-treatment process. The study indicates that, FDFO-NF desalination system can produce water quality that meets fertigation standard. This study also however shows that, the diffusion of solutes (both feed and draw) through the cellulose triacetate (CTA) FO membrane could be one of the major issues. The FO feed brine failed to meet the effluent discharge standard for NH4+ and SO42+ (reverse diffusion) and their concentrations are expected to further increase at higher feed recovery rates. Low rejection of feed salts (Na+, Cl−) by FO membrane may result in their gradual build-up in the fertiliser draw solution (DS) in a closed FDFO-NF system eventually affecting the final water quality unless it is balanced by adequate bleeding from the system through NF and re-reverse diffusion towards the FO feed brine. Therefore, FO membrane with higher reverse flux selectivity than the CTA-FO membrane used in this study is necessary for the application of the FDFO desalination process.

  20. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  1. Evaluation of the bottom water reservoir VAPEX process

    Energy Technology Data Exchange (ETDEWEB)

    Frauenfeld, T.W.J.; Jossy, C.; Kissel, G.A. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    The mobilization of viscous heavy oil requires the dissolution of solvent vapour into the oil as well as the diffusion of the dissolved solvent into the virgin oil. Vapour extraction (VAPEX) is an enhanced oil recovery (EOR) process which involves injecting a solvent into the reservoir to reduce the viscosity of hydrocarbons. This paper describes the contribution of the Alberta Research Council to solvent-assisted oil recovery technology. The bottom water process was also modelled to determine its feasibility for a field-scale oil recovery scheme. Several experiments were conducted in an acrylic visual model in which Pujol and Boberg scaling were used to produce a lab model scaling a field process. The model simulated a slice of a 30 metre thick reservoir, with a 10 metre thick bottom water zone, containing two horizontal wells (25 metres apart) at the oil water interface. The experimental rates were found to be negatively affected by continuous low permeability layers and by oil with an initial gas content. In order to achieve commercial oil recovery rates, the bottom water process must be used to increase the surface area exposed to solvents. A large oil water interface between the wells provides contact for solvent when injecting gas at the interface. High production rates are therefore possible with appropriate well spacing. 11 refs., 4 tabs., 16 figs.

  2. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    Science.gov (United States)

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  3. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  4. Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems

    Science.gov (United States)

    Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.

    2014-12-01

    Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration

  5. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  6. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  7. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  8. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  9. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  10. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  11. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    Science.gov (United States)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  12. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  13. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  14. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  15. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2016-03-01

    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  16. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    Directory of Open Access Journals (Sweden)

    Sangmin Shin

    2018-02-01

    Full Text Available Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measures addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.

  17. Valuing flexibilities in the design of urban water management systems.

    Science.gov (United States)

    Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali

    2013-12-15

    Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The effects of water filtration systems on fluoride: Washington, D.C. metropolitan area.

    Science.gov (United States)

    Jobson, M D; Grimm, S E; Banks, K; Henley, G

    2000-01-01

    According to the U.S. Environmental Protection Agency (EPA), approximately one in eight Americans is exposed to potentially harmful microbes, pesticides, lead, or radioactive radon whenever they drink a glass of tap water or take a shower. One reason for this exposure is that the water plants are aging or ill equipped to process the huge amounts of raw sewage and agricultural pollutants that are still being discharged into our drinking-water sources. Other compounds such as fluoride and chloride have been added to the community water supplies for health benefits. Water filtration systems are becoming more popular as people become concerned with pollutants in the public water supply and questions are being raised as to whether fluoride is affected by these filters. The aim of this pilot study was to assess the efficacy of three types of water filtration systems and to determine their impact on fluoride content of the water in the Washington, D.C. metropolitan area. One sample of water was collected daily for fourteen days, from one location. The sample was divided to use as a control and the test samples which were processed through various filter systems. With the use of a fluoride ion specific electrode, the fluoride concentration level was tested in all samples in order to determine the percentage of fluoride removed. This study was intended to prove that the water filtration systems did not affect the advantage offered by optimum water fluoride levels. The experimental samples were ascertained and compared to the control group, resulting in three of the four carbon filters showing statistically significant amounts of fluoride removed from the water. Both Reverse Osmosis and Distillation, as expected, removed the fluoride at a high rate.

  19. Loss of Water to Space from Mars: Processes and Implications

    Science.gov (United States)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  20. Hydraulic optimization and modeling of hydro-cyclone-systems for treatment and purification of any kind of waters

    Science.gov (United States)

    Spangemacher, Lars; Fröhlich, Siegmund; Buse, Hauke

    2017-11-01

    Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.

  1. Sanitization of an Automatic Reverse-Osmosis Watering System: Removal of a Clinically Significant Biofilm

    Science.gov (United States)

    Molk, Denise M; Karr-May, Charlene L; Trang, Elaine D; Sanders, George E

    2013-01-01

    During environmental monitoring of our institution's rodent watering systems, one vivarium was found to have high bacterial loads in the reverse-osmosis (RO) automatic water system. These findings prompted evaluation of the entire RO water production and distribution system. Investigation revealed insufficient rack and RO system sanitization, leading to heavy biofilm accumulation within the system. Approximately 2 wk after discovery in the water system, one of the bacterial organisms isolated in the water supply, Sphingomonas paucimobilis, was isolated from a peritoneal abscess of a severely immunodeficient B6.Cg-Slc11a1r Rag1tm1Mom/Cwi mouse housed in the same vivarium, suggesting that rodents drinking from this system were being exposed randomly to fragments of biofilm. Plans were developed to sanitize the entire system. Hypercholorination was used first, followed by treatment with a combination of peracetic acid and hydrogen peroxide. Between system sanitizations, a low-level chlorine infusion was added to the system as a biocide. Heterotrophic plate counts and bacterial isolation were performed on water samples obtained before and after sanitization procedures. We here discuss the process of identifying and correcting this important water-quality issue. PMID:23562105

  2. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    Science.gov (United States)

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  3. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko

    2006-01-01

    treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios......In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...

  4. Nuclear Heat Application: Desalination as an Alternative Process for Potable Water Production in Indonesia (part 2)

    International Nuclear Information System (INIS)

    Amir-Rusli

    2000-01-01

    A survey of water supply and demand system and identification of desalination process need for Indonesia has been carried out. Even Indonesia is located in tropical zone of equator; it is still reported lack of water resources, especially during 6 months dry season. Due to miss-water management and bad attitude of the people itself occurred in the past; most of conventional water resources of river, lake and reservoir were damaged during development period of industrial and agriculture sectors. A half of 200 millions peoples of Indonesian population are still scarce of potable drinking water during the year of 1997. Jakarta as the capital has a population of 10 millions people which is the worse water availability in capita per year in the world at present. Seawater intrusion problem to about more than 11 km away is also detected in big cities of the main islands of Indonesia, and these same conditions are faced to other thousands of small islands. Therefore it is an urgent situation to develop a total integrated water management system in order to improve the performance of water resources. Desalination system of seawater/brackish water is considered and showed a good alternative for potable water production for domestic or industrial purposes. But in the long-term, water management system of the effectiveness cycle use of water should be implemented at sites. (author)

  5. Investigating the feasibility of using recycled processed water

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J. [Urban Systems, Kelowna, BC (Canada)

    2009-07-01

    By the year 2025, 52 countries, with two-thirds of the world's population, are expected to have water shortages. Approximately 3,800 cubic kilometres of fresh water is withdrawn annually from the world's lakes, river and aquifers, which is twice the volume extracted 50 years ago. Water use considerations, alternative water sources, and considerations when using recycled water were discussed in this presentation. A case study of the city of Dawson Creek was provided as it pertained to water reuse in the oil and gas industry. Considerations for recycled water use include health concerns; perception of sewage versus effluent; industrial workers' concerns; and the end product concept. Quality issues were also discussed along with access to water sources, regulations and risks. The case study included a discussion of guiding principles; Dawson Creek's water system; industrial water uses; wastewater system; effluent characteristics; and effluent reuse opportunities. It was concluded that concerns regarding water reuse are not insurmountable providing the driving factors are strong. figs.

  6. Cascade air stripping: Techno-economic evaluation of a new ground water treatment process

    International Nuclear Information System (INIS)

    Nirmalakhandan, N.; Peace, G.L.; Shanbhag, A.R.; Speece, R.E.

    1992-01-01

    A simple modification of the conventional air-stripping process introduced as cascade air stripping is proposed for efficient and economical removal of semivolatile and low volatility contaminants from ground water. The technical feasibility and economic viability of this process are evaluated using field test results and cost model simulations. The field tests enabled the process model to be verified at various water flow rates ranging from 150 gpm to 400 gpm. The field study also demonstrated the feasibility of the proposed system at a near full-scale level. Cost models were used to compare the proposed process to conventional air stripping and granular-activated carbon adsorption in removing a range of contaminants. This analysis showed that the treatment cost (cents/1,000 gal) of cascade air stripping is about 15% lower than conventional air stripping and about 40% lower than granular-activated carbon adsorption

  7. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  8. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  9. Medium-resolution autonomous in situ gamma detection system for marine and coastal waters

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Addleman, R.S.; Davidson, J.D.; Douglas, M.; Meier, D.; Mullen, O.D.; Myjak, M.; Jones, M.E.; Woodring, M.L.; Johnson, B.; Santschi, P.H.

    2009-01-01

    We are developing a medium-resolution autonomous in situ gamma detection system for marine and coastal waters. The system is designed to extract and preconcentrate isotopes of interest from natural waters prior to detection in order to eliminate signal attenuation of the gamma rays traveling through water and lower the overall background from the presence of naturally occurring radioactive isotopes ( 40 K and U-Th series radionuclides). Filtration is used to preconcentrate target isotopes residing on suspended particles, while chemosorption is employed to preferentially extract truly dissolved components from the water column. Used filter and chemosorbent media will be counted autonomously using two LaBr 3 detectors in a near 4-π configuration around the samples. A compact digital pulse processing system, developed in-house and capable of running in coincidence mode, is used to process the signal from the detectors to a small on-board computer. The entire system is extremely compact (9' dia. x 30' len.) and platform independent, but designed for initial deployment on a research buoy. A variety of commercial and in-house nano-porous chemosorbents have been selected, procured or produced, and these and filter and detector components have been tested. (author)

  10. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  11. PHOTO ENCODING OF ANALOG WATER METER FOR USER ACCESS AND PAYMENT SYSTEM

    OpenAIRE

    GODFREY A. MILLS; MOSES A. ACQUAH; APPAH BREMANG

    2012-01-01

    This paper presents design reconfiguration of analog water meter to provide remote access to user water consumption and billing records, payments, and meter device monitoring using photo-encoding as the detecting method for water consumption, a PIC18F2423 microcontroller for data processing, and SMS (short message service) technology for data transportation. To validate the system design, an analog water meter was converted into a digital equivalent and interfaced to the cellular network to t...

  12. Water cycles in closed ecological systems: effects of atmospheric pressure.

    Science.gov (United States)

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  13. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  14. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  15. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  16. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  17. Effect of process water chemistry and particulate mineralogy on model oilsands separation using a warm slurry extraction process simulation

    Energy Technology Data Exchange (ETDEWEB)

    S. Wik; B.D. Sparks; S. Ng; Y. Tu; Z. Li; K.H. Chung; L.S. Kotlyar [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Center

    2008-06-15

    Variability in ore composition and process parameters is known to affect bitumen recovery from natural oilsands. In this work, we extend our earlier investigations with model oilsands systems (MOS) to determine the effects of calcium, magnesium and bicarbonate ion concentrations in the process water and their interactions with 'active' solids such as: kaolinite, montmorillonite and ultra-fine silica. Our results demonstrate that solids mineralogy and decreasing particle size produce negative outcomes on bitumen recovery related to concomitant effects on bitumen droplet size during flotation. In some cases, certain process water chemistries were found to restore recovery, but clay concentration was the key factor. Naturally acidic oilsands are known to give poor bitumen recoveries. An MOS prepared with connate water at pH 2 responded in the same way. Comparison with a typical oilsands showed no significant differences in middlings pH and the large, negative effect on bitumen recovery was not reversed by higher caustic loading during separation. This result may be caused by irreversible co-flocculation of bitumen and mineral particles during preparation of the MOS and may reflect similar behavior in comparable natural samples. 29 refs., 20 figs., 1 tab.

  18. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  19. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  20. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  1. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  2. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    Science.gov (United States)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  4. Tennessee Valley Authority becomes first to install digital process protection system

    International Nuclear Information System (INIS)

    Miller, W.; Doyle, J.

    1991-01-01

    Westinghouse Pressurized Water Reactors were originally furnished with analog process protection equipment of various vintages. The older equipment is quickly reaching the point of obsolescence, becoming costly to maintain and operate, its qualification increasingly difficult to achieve. Newer digital-based systems offer improved performance, automatic calibration, and streamlined surveillance test features, as discussed here. For these reasons, the Tennessee Valley Authority installed the world's first digital process protection system, complete with automatic test and calibration features, in its Sequoyah units 1 and 2 last year. The US utility replaced its ageing analog system with Westinghouse Electric's Eagle 21 Process Protection System during a routine maintenance shutdown in a record 23 days. (author)

  5. Technical and thermodynamic problems of medium-temperature membrane processes, illustrated by the example of water splitting

    International Nuclear Information System (INIS)

    Behr, F.

    1983-01-01

    The author discusses the economic, technical, and thermodynamic aspects of hydrogen production from water by means of nuclear process heat and then proceeds to describe membranes used in electrolysis cells and in systems in which thermochemical or hybrid processes take place. (GG) [de

  6. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying...... is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap......, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family and examples of measured...

  7. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study.

    Science.gov (United States)

    Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang

    2018-01-01

    This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples

    Science.gov (United States)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.

    2009-05-01

    An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.

  9. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  10. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  11. Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology

    Science.gov (United States)

    Sivapalan, M.; Bloeschl, G.

    2014-12-01

    Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal

  12. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  13. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  14. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  15. Hydraulic optimization and modeling of hydro-cyclone-systems for treatment and purification of any kind of waters

    Directory of Open Access Journals (Sweden)

    Spangemacher Lars

    2017-01-01

    Full Text Available Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.

  16. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  17. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  18. Effectiveness of a Barge-Based Ballast Water Treatment System for Multi-Terminal Ports

    Directory of Open Access Journals (Sweden)

    Lovro Maglić

    2015-10-01

    Full Text Available The paper presents outcomes of the discrete event simulation of the ballast water management in a multi-terminal port. The simulation includes ship’s manoeuvring, cargo and ballast operations and a barge-based ballast water treatment system operating within all terminal areas. The barge-based ballast water treatment system is used by ships unable to use their own equipment, not equipped with an appropriate ballast treatment system or non-compliant with the Ballast Water Management (BWM Convention 2004 for whatever reason. The main goal is to estimate the productivity and cost effectiveness of such systems as an option to support ships not able to comply with the BWM Convention, once it enters into force. The model was built and tested in Arena simulation software. Process parameters are based on real traffic data for the port of Rijeka. The results indicate that barge-based ballast treatment facility will be heavily underutilized, and that such systems are cost-effective only in ports where large volumes of ballast water need to be delivered to shore treatment systems.

  19. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  20. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  1. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  2. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  3. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  4. Processing device for discharged water from radioactive material handling facility

    International Nuclear Information System (INIS)

    Kono, Takao; Kono, Hiroyuki; Yasui, Katsuaki; Kataiki, Koichi.

    1995-01-01

    The device of the present invention comprises a mechanical floating material-removing means for removing floating materials in discharged water, an ultrafiltration device for separating processed water discharged from the removing means by membranes, a reverse osmotic filtration device for separating the permeated water and a condensing means for evaporating condensed water. Since processed water after mechanically removing floating materials is supplied to the ultrafiltration device, the load applied on the filtering membrane is reduced, to simplify the operation control as a total. In addition, since the amount of resultant condensed water is reduced, and the devolumed condensed water is condensed and dried, the condensing device is made compact and the amount of resultant wastes is reduced. (T.M.)

  5. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  6. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  7. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  8. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  9. INTEGRATION OF MANAGEMENT SYSTEM QMS/EMS/OHSAS/FMS/LMS IN WATER SUPPLY ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-12-01

    Full Text Available Level of difficulties arises when goes up number of integrated management systems (IMS. In this paper are given model and empirical research which provide the details of an integrated management system with five component subsystems in area of water supply. Presented model addresses the issues of scope and carracterisctics based on process approach and is tested in water supply organization in Kragujevac, Serbia. Testing in the proposed model is accomplish through realization project of design and implementation of IMS in regional water supply organization in Kragujevac.

  10. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  11. Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties

    Directory of Open Access Journals (Sweden)

    A. Hartmann

    2013-08-01

    Full Text Available More than 30% of Europe's land surface is made up of karst exposures. In some countries, water from karst aquifers constitutes almost half of the drinking water supply. Hydrological simulation models can predict the large-scale impact of future environmental change on hydrological variables. However, the information needed to obtain model parameters is not available everywhere and regionalisation methods have to be applied. The responsive behaviour of hydrological systems can be quantified by individual metrics, so-called system signatures. This study explores their value for distinguishing the dominant processes and properties of five different karst systems in Europe and the Middle East. By defining ten system signatures derived from hydrodynamic and hydrochemical observations, a process-based karst model is applied to the five karst systems. In a stepwise model evaluation strategy, optimum parameters and their sensitivity are identified using automatic calibration and global variance-based sensitivity analysis. System signatures and sensitive parameters serve as proxies for dominant processes, and optimised parameters are used to determine system properties. By sensitivity analysis, the set of system signatures was able to distinguish the karst systems from one another by providing separate information about dominant soil, epikarst, and fast and slow groundwater flow processes. Comparing sensitive parameters to the system signatures revealed that annual discharge can serve as a proxy for the recharge area, that the slopes of the high flow parts of the flow duration curves correlate with the fast flow storage constant, and that the dampening of the isotopic signal of the rain as well as the medium flow parts of the flow duration curves have a non-linear relation to the distribution of groundwater storage constants that represent the variability of groundwater flow dynamics. Our approach enabled us to identify dominant processes of the

  12. An axisymmetric non-hydrostatic model for double-diffusive water systems

    Science.gov (United States)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  13. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  14. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  15. Synthesis and Design of Integrated Process and Water Networks

    DEFF Research Database (Denmark)

    Handani, Zainatul B.; Quaglia, Alberto; Gani, Rafiqul

    2015-01-01

    This work presents the development of a systematic framework for a simultaneous synthesis and design of process and water networks using the superstructure-based optimization approach. In this framework, a new superstructure combining both networks is developed by attempting to consider all...... possible options with respect to the topology of the process and water networks, leading to Mixed Integer Non Linear Programming (MINLP) problem. A solution strategy to solve the multi-network problem accounts explicitly the interactions between the networks by selecting suitable technologies in order...... to transform raw materials into products and produce clean water to be reused in the process at the early stage of design. Since the connection between the process network and the wastewater treatment network is not a straight forward connection, a new converter interval is introduced in order to convert...

  16. Analysis of Ion-Exchange Resin Capability of the RSG-GAS Demineralized Water System (GCA01)

    International Nuclear Information System (INIS)

    Diyah Erlina Lestari; Setyo Budi Utomo; Harsono

    2012-01-01

    The Demineralized water system (GCA01) is a system which is function to process raw water to be demineralized water using ion exchange resin unit consisting of a column of cation exchange resins, anion exchange resin column and the column resin mix bed. After certain time the ion exchange resins to be saturated so that is needed regeneration. The RSG-GAS demineralized water system (GCA01) not operated continuously and indication of when does an ion exchange resin regeneration on The RSG-GAS demineralized water system (GCA01) is the water conductivity from anion exchange resin column output indicates ≥ 5μS/cm. Analysis of capability of the ion exchange resin demineralized water system (GCA01) line I has been performed. The analysis was done by comparing the time required in the system operating cycle of regeneration to the next regeneration during the period 2011 and 2012. From the results of the analysis showed the cycle regeneration time is varies. This shows that ion exchange resin capability of the RSG-GAS demineralized water system (GCA01) is varies depending on the raw water quality and success of the regeneration ion exchange resin. (author)

  17. Study on environmental background values of uranium in water of Dongting Lake system

    International Nuclear Information System (INIS)

    Zhai Pengji; Kang Tiesheng

    1987-01-01

    Study on environmental background values in water is the base of evaluating water quality and also is the foundational work of studying the law of distribution, accumulation and transfer of the elements. Research on background values of U in water not only can understand radioactive level but also has actual significance for the general survey of U by water. In the work uranium contents were determined by fission track analytical technique in the filtered and unfiltered specimens of river water, reservoir water and spring water taken from more than one hundred sections located in Dongting Lake system and the statistical process of data were carried out by computer. The environmental background values in water of various river system were obtained and compared with the situation of home and abroad. The seasonal variety of uranium content and the level of U in reservoir, spring water and natural reserve were discussed

  18. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  19. Microbiologically influenced corrosion in the service water system of a test reactor

    International Nuclear Information System (INIS)

    Subba Rao, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    This paper addresses the biofouling and corrosion problems in the service water system of a test reactor. Results of microbiological, electron microscopic and chemical analyses of water and deposit samples indicate the role of bacteria in the corrosion process. The primary role played by iron oxidising bacteria is emphasised. (author). 7 refs., 2 figs., 1 tab

  20. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  1. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    Science.gov (United States)

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  2. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  3. An innovative attached-growth biological system for purification of pond water.

    Science.gov (United States)

    Chang, Chia-Yuan; Chang, Jing-Song; Chen, Chien-Min; Chiemchaisri, Chart; Vigneswaran, Saravanamuthu

    2010-03-01

    This study applied the non-woven material from used diaper as the carrier for bio-film process to purify the recycled water from a landscape pond at the Tainan City Municipal Culture Center (TCMCC), Taiwan. An on-site system was installed and the experiment was accomplished through three stages in 192 days with different time periods of 70 days, 63 days, and 59 days, respectively. The results showed that the non-woven media is functional for SS removal. The average SS removal of stages 1, 2, and 3 were 91%, 96%, and 95%, respectively. The highest SCOD removal efficiency of 90% occurred at stage 3. A significant color improvement of the pond water was achieved through this non-woven bio-carrier treatment system. Whole system can be without any maintenance for 139 days. The result indicated that the non-woven medium system was with a great potential in treating and recycling the pond water with stable operation and satisfactory removal performance. 2009 Elsevier Ltd. All rights reserved.

  4. Process for water-gas generation from degassed combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1906-05-23

    A process for water-gas generation in a continuous operation from degassed combustibles in the lower part of a vertical exterior-heated retort, whose middle part can serve to degas the combustibles, is described. It is characterized in that the water vapor employed is obtained by vaporizing water in the upper part of the retort by means of the waste heat from the heating gases, which had effected the coking of the combustibles before the water-gas recovery or after the latter.

  5. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  6. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  7. OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Murad

    2017-12-01

    Full Text Available The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.

  8. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  9. System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    B. Mokhtar

    2016-01-01

    Full Text Available This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS, and Operation Management Subsystem (OMS. The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

  10. International Virtual Observatory System for Water Resources Information

    Science.gov (United States)

    Leinenweber, Lewis; Bermudez, Luis

    2013-04-01

    Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link

  11. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  13. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  14. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  15. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  16. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  17. A framework for joint management of regional water-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira-Cardenal, S.J.

    2013-09-15

    Water and energy systems are closely linked. Energy is needed in most stages of water usage, while water is needed to extract and process energy resources and generate electric power. However, policy goals associated with providing adequate water and energy supplies are often in opposition, causing conflicts over these two resources. This problem will be aggravated by population growth, rising living standards and climate change, highlighting the importance of developing integrated assessment and solutions. In this context, this study focused on the interaction between water and electric energy (or power) systems, with the goal of identifying a method that could be used to assess the broader spatio-temporal interactions between water and energy systems. The proposed method is to include water users and power producers into a joint optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation. This approach turns the multiobjective problem of water and power system management into a single objective one: net costs minimization. The economic value of water is calculated as a function of the state of the system, and this value is used to determine optimal allocations for each time step of the planning horizon. The physical linkages between the two systems are described as constraints in the optimization problem, and the problem is solved using stochastic dynamic programming or stochastic dual dynamic programming. The method was implemented on the Iberian Peninsula to assess some of the interactions between the water and power system. The impact of climate change on the current Iberian power system was assessed. It was found that expected precipitation reductions will reduce runoff, decrease hydropower production, and increase irrigation water demand; whereas expected temperature increases will modify seasonal power demand patterns. The proposed approach was also used to determine hydropower benefits in a coupled water

  18. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  19. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    International Nuclear Information System (INIS)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun

    2013-01-01

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena

  20. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.