WorldWideScience

Sample records for process nano scale

  1. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  2. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  3. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  4. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  5. Simulated Nano scale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    International Nuclear Information System (INIS)

    Sasaki, N.; Okamoto, H.; Masuda, S.; Itamura, N.; Miura, K.

    2010-01-01

    The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  6. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  7. Foundations for in vivo nano-scale measurement of memory processes.

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, James Chris

    2006-09-01

    An ongoing program of research and development is utilizing nanomaterials as a basis for observing and measuring neurophysiological processes. Work commencing in fiscal year 2007 will focus on expanding current capabilities to create nanoelectrode arrays that will allow nanoscale measurement of the activity of 10's to 100's of neurons. This development is a vital step in gaining scientific insights concerning network properties associated with neural representations and processes. Specifically, attention will be focused the representation of memory in the hippocampus, for which extensive research has been conducted using laboratory rats. This report summarizes background research providing a foundation for work planned for fiscal year 2007 and beyond. In particular, the neuroanatomy and neurophysiology of the hippocampus is described. Additionally, several programs of research are described that have addressed the relationship between neurophysiological processes and behavioral measures of memory performance. These studies provide insight into methodological and analytic approaches for studying the representation of memory processes in the hippocampus. The objective of this report is to document relevant literature in a reference document that will support future research in this area.

  8. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  9. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  10. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  11. Nano integrated circuit process

    International Nuclear Information System (INIS)

    Yoon, Yung Sup

    2004-02-01

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  12. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  13. Scaling Laws for NanoFET Sensors

    Science.gov (United States)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  14. Scaling laws for nanoFET sensors

    International Nuclear Information System (INIS)

    Zhou Fushan; Wei Qihuo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width

  15. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  16. Bioinspiration From Nano to Micro Scales

    CERN Document Server

    2012-01-01

    Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive an...

  17. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Science.gov (United States)

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  18. Cross-scale modelling of the climate-change mitigation potential of biochar systems: Global implications of nano-scale processes

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes

    2014-05-01

    production, land use, thermochemical conversion (to both biochar and energy products), climate, economics, and also the interactions between these components. Early efforts to model the life-cycle impacts of biochar systems have typically used simple empirical estimates of the strength of various feedback mechanisms, such as the impact of biochar on crop-growth, soil GHG fluxes, and native soil organic carbon. However, an environmental management perspective demands consideration of impacts over a longer time-scale and in broader agroecological situations than can be reliably extrapolated from simple empirical relationships derived from trials and experiments of inevitably limited scope and duration. Therefore, reliable quantification of long-term and large-scale impacts demands an understanding of the fundamental underlying mechanisms. Here, a systems-modelling approach that incorporates mechanistic assumptions will be described, and used to examine how uncertainties in the biogeochemical processes which drive the biochar-plant-soil interactions (particularly those responsible for priming, crop-growth and soil GHG emissions) translate into sensitivities of large scale and long-term impacts. This approach elucidates the aspects of process-level biochar biogeochemistry most critical to determining the large-scale GHG and economic impacts, and thus provides a useful guide to future model-led research.

  19. Micro Nano Replication Processes and Applications

    CERN Document Server

    Kang, Shinill

    2012-01-01

    This book is an introduction to the fundamentals and processes for micro and nano molding for plastic components. In addition to the basics, the book covers applications details and examples. The book helps both students and professionals to understand and work with the growing tools of molding and uses for micro and nano-sized plastic parts.Provides a comprehensive presentation on fundamentals and practices of manufacturing for micro / nano sized plastics partsCovers a relatively new but fast-growing field that is impacting any industry using plastic parts in their products (electronics, tele

  20. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  1. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Qaisi, Ramy M.

    2012-01-01

    . One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new

  2. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  3. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  4. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-01-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  5. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L. [Department of Phsysics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  6. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  7. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  8. Nano-scaled chalcogenide-based memories

    International Nuclear Information System (INIS)

    Redaelli, Andrea; Pirovano, Agostino

    2011-01-01

    Today phase change memory (PCM) technology has reached product maturity at 90 and 65 nm nodes, while the 45 nm node is under development and is expected to enter in the market soon. The continuous decrease of the cell size with scaling leads to an effective active area as small as 150 nm 2 and an active volume involved in the phase transformation of about 10 4 nm 3 , thus entering definitively into the nanotechnology world. At this extremely reduced dimension, the reliability of the device must be carefully investigated. In this work we show that the cycling performance of the device is well maintained, not being a problem for either the bipolar transistor or the storage element. The phase transition from the amorphous to the crystalline state is, of course, one of the most interesting phenomena, impacting cell retention capability and device performance. The stochastic nature of nano-nuclei percolation in the amorphous matrix is shown as an important ingredient in the retention of PCM devices. The related dispersion in crystallization times is analyzed through a crystallization Monte Carlo model and a physical insight into nucleation and growth mechanisms is provided.

  9. Scaling properties of ballistic nano-transistors

    Directory of Open Access Journals (Sweden)

    Wulf Ulrich

    2011-01-01

    Full Text Available Abstract Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated I D - V D-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the I D - V G-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade.

  10. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  11. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  12. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  13. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  14. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  15. Computational optimization of catalyst distributions at the nano-scale

    International Nuclear Information System (INIS)

    Ström, Henrik

    2017-01-01

    Highlights: • Macroscopic data sampled from a DSMC simulation contain statistical scatter. • Simulated annealing is evaluated as an optimization algorithm with DSMC. • Proposed method is more robust than a gradient search method. • Objective function uses the mass transfer rate instead of the reaction rate. • Combined algorithm is more efficient than a macroscopic overlay method. - Abstract: Catalysis is a key phenomenon in a great number of energy processes, including feedstock conversion, tar cracking, emission abatement and optimizations of energy use. Within heterogeneous, catalytic nano-scale systems, the chemical reactions typically proceed at very high rates at a gas–solid interface. However, the statistical uncertainties characteristic of molecular processes pose efficiency problems for computational optimizations of such nano-scale systems. The present work investigates the performance of a Direct Simulation Monte Carlo (DSMC) code with a stochastic optimization heuristic for evaluations of an optimal catalyst distribution. The DSMC code treats molecular motion with homogeneous and heterogeneous chemical reactions in wall-bounded systems and algorithms have been devised that allow optimization of the distribution of a catalytically active material within a three-dimensional duct (e.g. a pore). The objective function is the outlet concentration of computational molecules that have interacted with the catalytically active surface, and the optimization method used is simulated annealing. The application of a stochastic optimization heuristic is shown to be more efficient within the present DSMC framework than using a macroscopic overlay method. Furthermore, it is shown that the performance of the developed method is superior to that of a gradient search method for the current class of problems. Finally, the advantages and disadvantages of different types of objective functions are discussed.

  16. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  17. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  18. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Huang, Xiaoxu

    2010-01-01

    dislocation structure (DDS) into a nano-sized (sub)grain structure (NGS). On the two sides of a core region, two transition layers (TRLs) exist where the T/M lamellae experienced much less shear strain. The interface boundaries separating the core region and the TRLs are characterized by very large shear...

  20. On the selection of optimized carbon nano tube synthesis method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Besharati, M. K.; Afaghi Khatibi, A.; Akbari, M.

    2008-01-01

    Evidence from the early and late industrializes shows that technology, as the commercial application of scientific knowledge, has been a major driver of industrial and economic development. International technology transfer is now being recognized as having played an important role in the development of the most successful late industrializes of the second half of the twentieth Century. Our society stands to be significantly influenced by carbon nano tubes, shaped by nano tube applications in every aspect, just as silicon-based technology still shapes society today. Nano tubes can be formed in various structures using several different processing methods. In this paper, the synthesis methods used to produce nano tubes in industrial or laboratory scales are discussed and a comparison is made. A technical feasibility study is conducted by using the multi criteria decision-making model, namely Analytic Hierarchy Process. The article ends with a discussion of selecting the best method of Technology Transferring of Carbon Nano tubes to Iran

  1. Design for manufacturability and yield for nano-scale CMOS

    CERN Document Server

    Chiang, Charles C

    2007-01-01

    Talks about the various aspects of manufacturability and yield in a nano-CMOS process and how to address each aspect at the proper design step starting with the design and layout of standard cells. This book is suitable for practicing IC designer and for graduate students intent on having a career in IC design or in EDA tool development.

  2. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    different conditions. In addition, AFM was used to measure the charge density of cell surface in physiological conditions. We found that the treatments changed the cancer cells' ultra-structural and mechanical properties at the nanometer scale. Finally, we used AFM to characterize many non-biological materials with relevance to biomedical science. Various metals, polymers, and semi-conducting materials were characterized in air and multiple liquid media through AFM - techniques from which a plethora of industries can benefit. This applies especially to the fledging solar industry which has found much promise in nanoscopic insights. Independent of the material being examined, a reliable method to measure the surface force between a nano probe and a sample surface in a variety of ionic concentrations was also found in the process of procuring these measurements. The key findings were that the charge density increases with the increase of the medium's ionic concentration.

  3. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  4. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  5. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    Science.gov (United States)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  6. PolyNano M.6.1.1 Process validation state-of-the-art

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo

    2012-01-01

    Nano project. Methods for replication process validation are presented and will be further investigated in WP6 “Process Chain Validation” and applied to PolyNano study cases. Based on the available information, effective best practice standard process validation will be defined and implemented...... assessment methods, and presents measuring procedures/techniques suitable for replication fidelity studies. The report reviews state‐of‐the‐art research results regarding replication obtained at different scales, tooling technologies based on surface replication, process validation trough design...

  7. Bulk velocity extraction for nano-scale Newtonian flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenfei, E-mail: zwenfei@gmail.com [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China); Sun, Hongyu [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China)

    2012-04-16

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  8. Bulk velocity extraction for nano-scale Newtonian flows

    International Nuclear Information System (INIS)

    Zhang, Wenfei; Sun, Hongyu

    2012-01-01

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  9. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    International Nuclear Information System (INIS)

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  10. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Science.gov (United States)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  11. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  12. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    Science.gov (United States)

    Maryam, Maryam; Dedy, Rahmad; Yunizurwan, Yunizurwan

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics.

  13. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    International Nuclear Information System (INIS)

    Maryam, Maryam; Yunizurwan, Yunizurwan; Dedy, Rahmad

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics. (paper)

  14. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  15. Design Optimization of Radionuclide Nano-Scale Batteries

    International Nuclear Information System (INIS)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  16. Nano/micro-scale magnetophoretic devices for biomedical applications

    International Nuclear Information System (INIS)

    Lim, Byeonghwa; Kim, CheolGi; Vavassori, Paolo; Sooryakumar, R

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. (topical review)

  17. Nano/micro-scale magnetophoretic devices for biomedical applications

    Science.gov (United States)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  18. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  19. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    Science.gov (United States)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  20. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  1. Micro Nano PMP (Product-Method-Process) Graduate Course

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard

    2005-01-01

    This paper describes a framework for teaching in the development (design and manufacture) of products in the micro / nano scale in the Department of Manufacturing Engineering and Management (IPL) at the Technical University of Denmark (DTU). The training of students in this field involves both...

  2. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  3. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  4. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  5. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  6. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  7. Micro- and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications

    DEFF Research Database (Denmark)

    Chronakis, Ioannis S.

    2015-01-01

    Micro- and nano-structures such as micro- and nano-fibers and micro- and nano-particles based on polymers (synthetic and natural) can be processed by electrospinning. Electrospun micro- and nano-structures are an exciting class of novel materials due to several unique characteristics, including...

  8. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  9. Electron transport in nano-scaled piezoelectronic devices

    Science.gov (United States)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  10. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  11. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  12. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  13. Nano-Scale Spatial Assessment of Calcium Distribution in Coccolithophores Using Synchrotron-Based Nano-CT and STXM-NEXAFS

    Science.gov (United States)

    Sun, Shiyong; Yao, Yanchen; Zou, Xiang; Fan, Shenglan; Zhou, Qing; Dai, Qunwei; Dong, Faqin; Liu, Mingxue; Nie, Xiaoqin; Tan, Daoyong; Li, Shuai

    2014-01-01

    Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT) and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS) techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism. PMID:25530614

  14. The effect of micro nano multi-scale structures on the surface wettability

    International Nuclear Information System (INIS)

    Lee, Sang Min; Jung, Im Deok; Ko, Jong Soo

    2008-01-01

    Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: square-pillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by Deep Reactive Ion Etching (DRIE) and Reactive Ion Etching (RIE) processes, respectively. And Plasma Polymerized FluoroCarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nano-protrusions was 6.37 .deg. higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle

  15. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  16. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  17. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  18. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  19. Photonic Interrogation and Control of Nano Processes

    Science.gov (United States)

    Jassemnejad, Baha

    2003-01-01

    My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were

  20. Micro and nano fabrication tools and processes

    CERN Document Server

    Gatzen, Hans H; Leuthold, Jürg

    2015-01-01

    For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.

  1. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    International Nuclear Information System (INIS)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed

    2011-01-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  2. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed [National Center for Radiation Research and Technology NCRRT, Atomic Energy Authority, Cairo, Egypt P. O. Box 29, Nasr City, Cairo (Egypt)

    2011-07-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  3. Manipulation of Energy Transfer Processes in Nano channels

    International Nuclear Information System (INIS)

    Devaux, A.; Calzaferri, G.

    2010-01-01

    The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Forster resonance energy transfer inside of its nano channels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.

  4. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  5. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  6. Upscaling of bio-nano-processes selective bioseparation by magnetic particles

    CERN Document Server

    Keller, Karsten

    2014-01-01

    Despite ongoing progress in nano- and biomaterial sciences, large scale bioprocessing of nanoparticles remains a great challenge, especially because of the difficulties in removing unwanted elements during processing in food, pharmaceutical and feed industry at production level. This book presents magnetic nanoparticles and a novel technology for the upscaling of protein separation. The results come from the EU Project "MagPro2Life", which was conducted in cooperation of several european institutions and companies.

  7. Nano-scale characterization of white layer in broached Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  8. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  9. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  10. NanoPack: visualizing and processing long read sequencing data.

    Science.gov (United States)

    De Coster, Wouter; D'Hert, Svenn; Schultz, Darrin T; Cruts, Marc; Van Broeckhoven, Christine

    2018-03-14

    Here we describe NanoPack, a set of tools developed for visualization and processing of long read sequencing data from Oxford Nanopore Technologies and Pacific Biosciences. The NanoPack tools are written in Python3 and released under the GNU GPL3.0 License. The source code can be found at https://github.com/wdecoster/nanopack, together with links to separate scripts and their documentation. The scripts are compatible with Linux, Mac OS and the MS Windows 10 subsystem for Linux and are available as a graphical user interface, a web service at http://nanoplot.bioinf.be and command line tools. wouter.decoster@molgen.vib-ua.be. Supplementary tables and figures are available at Bioinformatics online.

  11. Closed-looped in situ nano processing on a culturing cell using an inverted electron beam lithography system

    International Nuclear Information System (INIS)

    Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems

  12. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    International Nuclear Information System (INIS)

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-01-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  13. Nano-Scale Devices for Frequency-Based Magnetic Biosensing

    Science.gov (United States)

    2017-01-31

    show the basic measurement setup (the field is applied perpendicular to the disk plane). A radiofrequency signal is injected across the disk (disks...shown in Fig. 7(a). A spectrum analyser (S.A.) (or a high frequency oscilloscope) is used to measure the radiofrequency STO output signal with Fig...crystals and, via electrical measurements , in magnetic-vortex-containing, isolated micro- and nano-devices. Via micromagnetic simulations, we have largely

  14. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  15. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind; Battista, Edmondo; Manzo, Gianluigi; Causa, Filippo; Netti, Paolo; Di Fabrizio, Enzo M.

    2015-01-01

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  16. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind

    2015-09-24

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  17. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  18. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  19. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  20. Modeling and Design of a Nano Scale CMOS Inverter for Symmetric Switching Characteristics

    Directory of Open Access Journals (Sweden)

    Joyjit Mukhopadhyay

    2012-01-01

    Full Text Available This paper presents a technique for the modeling and design of a nano scale CMOS inverter circuit using artificial neural network and particle swarm optimization algorithm such that the switching characteristics of the circuit is symmetric, that is, has nearly equal rise and fall time and equal output high-to-low and low-to-high propagation delay. The channel width of the transistors and the load capacitor value are taken as design parameters. The designed circuit has been implemented at the transistor-level and simulated using TSPICE for 45 nm process technology. The PSO-generated results have been compared with SPICE results. A very good accuracy has been achieved. In addition, the advantage of the present approach over an existing approach for the same purpose has been demonstrated through simulation results.

  1. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  2. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  3. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    Science.gov (United States)

    Kubo, Takayuki

    2015-06-01

    The field limit of a superconducting radio-frequency cavity made of a type II superconductor with a large Ginzburg-Landau parameter is studied, taking the effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for an ideal flat surface and a suppression factor that contains the effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors is derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by electropolishing is evaluated by using results of surface topographic study. The estimated field limit is consistent with the present record field of nitrogen-doped Nb cavities. Suppression factors of surfaces of other bulk and multilayer superconductors, and those after various surface processing technologies, can also be evaluated by using the formula.

  4. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Directory of Open Access Journals (Sweden)

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  5. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  6. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    Science.gov (United States)

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  7. Generic nano-imprint process for fabrication of nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurelie; Hocevar, Moira; Algra, Rienk E; Timmering, Eugene C; Verschuuren, Marc A; Immink, George W G; Verheijen, Marcel A; Bakkers, Erik P A M [Philips Research Laboratories Eindhoven, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Diedenhofen, Silke L [FOM Institute for Atomic and Molecular Physics c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Vlieg, E, E-mail: e.p.a.m.bakkers@tue.nl [IMM, Solid State Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-02-10

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 deg. C for InP and 700 deg. C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.

  8. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    International Nuclear Information System (INIS)

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  9. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  10. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  11. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  12. Writing to and reading from a nano-scale crossbar memory based on memristors

    International Nuclear Information System (INIS)

    Vontobel, Pascal O; Robinett, Warren; Kuekes, Philip J; Stewart, Duncan R; Straznicky, Joseph; Stanley Williams, R

    2009-01-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 x 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO 2 as the switching material.

  13. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  14. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  15. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    Science.gov (United States)

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  16. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.

    Science.gov (United States)

    Zhang, Peng

    2015-05-19

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.

  17. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    Science.gov (United States)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  18. Formation of Nano scale Bio imprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    International Nuclear Information System (INIS)

    Samsuri, F.; Alkaisi, M.M.; Mitchell, J.S.; Evans, J.J.

    2009-01-01

    We report a nano scale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS) or a UV-curable elastomer introduced Bio imprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bio imprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM), in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nano structures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nano scale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  19. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  20. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Özdemir, N.; Boutrup Stephansen, Karen

    2017-01-01

    The encapsulation of fish oil in carbohydrate-based nanomicrostructures obtained by electrohydrodynamic processing was investigated. Solutions of pullulan 200 kDa (15 wt%) and dextran 70 kDa (25 wt%) presented appropriate properties (viscosity, surface tension and conductivity) to allow the forma......The encapsulation of fish oil in carbohydrate-based nanomicrostructures obtained by electrohydrodynamic processing was investigated. Solutions of pullulan 200 kDa (15 wt%) and dextran 70 kDa (25 wt%) presented appropriate properties (viscosity, surface tension and conductivity) to allow...... the formation of nano-microfibers and nano-microcapsules, respectively. Although dextran 70 kDa exhibited antioxidant properties in solution, their capsules produced at lab and pilot-plant scales showed a low oxidative stability both with emulsified and neat oil. Phase separation of solution and opened capsules...... indicated a poor interaction between dextran and fish oil, which suggested that further optimization of the electrospraying solution is necessary. On the contrary, pullulan solutions were optimized to work even at pilot-plant scale. In this case, in spite of the prooxidant effect of pullulan in solution...

  1. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  2. Advances in multiscale modeling of materials behavior: from nano to macro scales

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2004-01-01

    Full text.The development of micromechanical devices, thin films, nano layered structures and nano composite coating materials, such as those used in microelectronics, transportation, medical diagnostics and implant industries, requires the utilization of materials that possess a high degree of material reliability, structural stability, mechanical strength, high ductility, toughness and resistance to fracture and fatigue. To achieve these properties many of these devices can be constructed from micro/nano structured materials, which often exhibit enhanced mechanical strength and ductility when compared to conventional materials. However, although the promise of such materials has been demonstrated in laboratories, it has not made inroads into commercial manufacturing in the area of structural materials. A primary impediment to bringing these technologies to the market is the inability to scale up from small scale laboratory experiments to manufacturing methods. Our work at WSU has been to develop theories and computational tools, verified by experiments, which are required to understand and design micro and nano structured materials for various structural applications. The results of this work have a major impact on this emerging industry and are being used in many national and international research institutes

  3. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    International Nuclear Information System (INIS)

    Lucas, G.

    2006-10-01

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  4. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  5. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    Science.gov (United States)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  6. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.

    Science.gov (United States)

    Dass, Amala

    2012-04-07

    Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012

  7. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  8. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.

    Science.gov (United States)

    Joel, Anna-Christin; Kappel, Peter; Adamova, Hana; Baumgartner, Werner; Scholz, Ingo

    2015-11-01

    Spider silk production has been studied intensively in the last years. However, capture threads of cribellate spiders employ an until now often unnoticed alternative of thread production. This thread in general is highly interesting, as it not only involves a controlled arrangement of three types of threads with one being nano-scale fibres (cribellate fibres), but also a special comb-like structure on the metatarsus of the fourth leg (calamistrum) for its production. We found the cribellate fibres organized as a mat, enclosing two parallel larger fibres (axial fibres) and forming the typical puffy structure of cribellate threads. Mat and axial fibres are punctiform connected to each other between two puffs, presumably by the action of the median spinnerets. However, this connection alone does not lead to the typical puffy shape of a cribellate thread. Removing the calamistrum, we found a functional capture thread still being produced, but the puffy shape of the thread was lost. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the nano-scale cribellate fibres. Using data from Uloborus plumipes we were able to develop a model of the cribellate thread production, probably universally valid for cribellate spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  10. Complementary techniques for solid oxide cell characterisation on micro- and nano-scale

    International Nuclear Information System (INIS)

    Wiedenmann, D.; Hauch, A.; Grobety, B.; Mogensen, M.; Vogt, U.

    2009-01-01

    High temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a way with great potential to transform clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. Also, as SOEC can operate in the reverse mode as solid oxide fuel cells (SOFC), during high peak hours e.g. hydrogen can be used in a very efficient way to reconvert chemically stored energy into electrical energy. As solid oxide cells (SOC) are working at high temperatures (700-900 o C), material degradation and evaporation can occur e.g. from the cell sealing material, leading to poisoning effects and aging mechanisms which are decreasing the cell efficiency and long-term durability. In order to investigate such cell degradation processes, thorough examination on SOC often requires the chemical and structural characterisation on the microscopic and the nanoscopic level. The combination of different microscope techniques like conventional scanning electron microscopy (SEM), electron-probe microanalysis (EPMA) and the focused ion-beam (FIB) preparation technique for transmission electron microscopy (TEM) allows performing post mortem analysis on a multi scale level of cells after testing. These complementary techniques can be used to characterize structural and chemical changes over a large and representative sample area (micro-scale) on the one hand, and also on the nano-scale level for selected sample details on the other hand. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Riso DTU, Denmark. Also, results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation from sealing material are discussed. (author)

  11. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  12. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  13. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  14. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    dimensions of the novel micro and nano production. Nowadays, design methodologies and concurrent tolerance guidelines are not yet available for advanced micro manufacture. Moreover, there are no shared methodologies that deals with the uncertainty evaluation of feature of size in the sub-millimetre scale......The technological revolution that has deeply influenced the manufacturing industry over the past two decades opened up new possibilities for the realisation of advanced micro and nano systems but, at the same time, traditional techniques for quality assurance became not adequate any longer......, as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  15. Quasi-particle spectrum of nano-scale conventional and unconventional superconductors under magnetic field

    International Nuclear Information System (INIS)

    Kato, Masaru; Suematsu, Hisataka; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu

    2005-01-01

    We have developed a numerical method to solve the Bogoliubov-de Gennes equation for nano-scaled isotropic and d-wave superconductors. It is based on the finite element method, and therefore applicable to arbitrary geometries. We argue the difference of the local density of states between isotropic and a d-wave superconducting square plate. For d-wave case, it appears as intrinsic surface bound states

  16. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  17. Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production

    Science.gov (United States)

    James, Timothy D.; Cadusch, Jasper J.; Earl, Stuart K.; Panchenko, Evgeniy; Mulvaney, Paul; Davis, Timothy J.; Roberts, Ann

    2016-03-01

    Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.

  18. Characterization of boundary layer thickness of nano fluid ZrO_2 on natural convection process

    International Nuclear Information System (INIS)

    V-Indriati Sri Wardhani; Henky P Rahardjo

    2015-01-01

    Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at BATAN Bandung have made nano fluid ZrO_2 from local materials, as well as experimental equipment for studying the thermohydraulic characteristics of nano fluid as the cooling fluid. In this study, thermohydraulic characteristics of nano fluid ZrO_2 are observed through experimentation. Nano fluid ZrO_2 is made from a mixture of water with ZrO_2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/liter. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO_2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO_2 is not much different from the conventional fluid water. (author)

  19. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  20. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  1. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  2. Bridging scales with thermodynamics: from nano to macro

    International Nuclear Information System (INIS)

    Kjelstrup, Signe; Bedeaux, Dick; Trinh, Thuat; Schnell, Sondre K; Vlugt, Thijs J H; Simon, Jean-Marc; Bardow, Andre

    2014-01-01

    We have recently developed a method to calculate thermodynamic properties of macroscopic systems by extrapolating properties of systems of molecular dimensions. Appropriate scaling laws for small systems were derived using the method for small systems thermodynamics of Hill, considering surface and nook energies in small systems of varying sizes. Given certain conditions, Hill's method provides the same systematic basis for small systems as conventional thermodynamics does for large systems. We show how the method can be used to compute thermodynamic data for the macroscopic limit from knowledge of fluctuations in the small system. The rapid and precise method offers an alternative to current more difficult computations of thermodynamic factors from Kirkwood–Buff integrals. When multiplied with computed Maxwell–Stefan diffusivities, agreement is found between computed predictions and experiments of the Fick diffusion coefficients for several binary systems. Diffusion coefficients were obtained by linking the Green–Kubo formulae to the Onsager coefficients. The formulae were used to improve/disprove empirical formulae for diffusion coefficients. (review)

  3. Neural assembly models derived through nano-scale measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Branda, Catherine; Schiek, Richard Louis; Warrender, Christina E.; Forsythe, James Chris

    2009-09-01

    This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

  4. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  5. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    Science.gov (United States)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  7. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    Science.gov (United States)

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  8. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  9. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  10. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  11. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  12. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment.

    Science.gov (United States)

    Liang, Shu-Xuan; Jin, Yu; Liu, Wei; Li, Xiliang; Shen, Shi-Gang; Ding, Ling

    2017-04-01

    The effect of the combined application of nano-hydroxyapatite (NHAP) or nano-carbon black (NCB) on the phytoextraction of Pb by ryegrass was investigated as an enhanced remediation technique for soils by field-scale experiment. After the addition of 0.2% NHAP or NCB to the soil, temporal variation of the uptake of Pb in aboveground parts and roots were observed. Ryegrass shoot concentrations of Pb were lower with nano-materials application than without nano-materials for the first month. However, the shoot concentrations of Pb were significantly increased with nano-materials application, in particular NHAP groups. The ryegrass root concentrations of Pb were lower with nano-materials application for the first month. These results indicated that nano-materials had significant effects on stabilization of lead, especially at the beginning of the experiment. Along with the experimental proceeding, phytotoxicity was alleviated after the incorporation of nano-materials. The ryegrass biomass was significantly higher with nano-materials application. Consequently, the Pb phytoextraction potential of ryegrass significantly increased with nano-materials application compared to the gounps without nano-materials application. The total removal rates of soil Pb were higher after combined application of NHAP than NCB. NHAP is more suitable than NCB for in-situ remediation of Pb-contaminated soils. The ryegrass translocation factor exhibited a marked increase with time. It was thought that the major role of NHP and NBA might be to alleviate the Pb phytotoxicity and increase biomass of plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  14. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  15. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  16. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  17. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2017-04-15

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.

  18. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  19. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  20. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  1. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  2. Gallium Nitride: A Nano scale Study using Electron Microscopy and Associated Techniques

    International Nuclear Information System (INIS)

    Mohammed Benaissa; Vennegues, Philippe

    2008-01-01

    A complete nano scale study on GaN thin films doped with Mg. This study was carried out using TEM and associated techniques such as HREM, CBED, EDX and EELS. It was found that the presence of triangular defects (of few nanometers in size) within GaN:Mg films were at the origin of unexpected electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It is shown that these defects are inversion domains limited with inversion-domains boundaries. (author)

  3. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    OpenAIRE

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  4. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  5. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  6. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  7. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  9. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    International Nuclear Information System (INIS)

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-01-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations

  10. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  11. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    Science.gov (United States)

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  12. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  13. Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB

    International Nuclear Information System (INIS)

    Haley, Benjamin P; Luisier, Mathieu; Klimeck, Gerhard; Lee, Sunhee; Ryu, Hoon; Bae, Hansang; Saied, Faisal; Clark, Steve

    2009-01-01

    Recent improvements to existing HPC codes NEMO 3-D and OMEN, combined with access to peta-scale computing resources, have enabled realistic device engineering simulations that were previously infeasible. NEMO 3-D can now simulate 1 billion atom systems, and, using 3D spatial decomposition, scale to 32768 cores. Simulation time for the band structure of an experimental P doped Si quantum computing device fell from 40 minutes to 1 minute. OMEN can perform fully quantum mechanical transport calculations for real-word UTB FETs on 147,456 cores in roughly 5 minutes. Both of these tools power simulation engines on the nanoHUB, giving the community access to previously unavailable research capabilities.

  14. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  15. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Nano-scale clusters formed in the early stage of phase decomposition of Al-Mg-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hirosawa, S.; Sato, T. [Dept. of Metallurgy and Ceramics Science, Tokyo Inst. of Tech. (Japan)

    2005-07-01

    The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening {beta}'' phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373 K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles. (orig.)

  17. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  18. Process variations in surface nano geometries manufacture on large area substrates

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2014-01-01

    The need of transporting, treating and measuring increasingly smaller biomedical samples has pushed the integration of a far reaching number of nanofeatures over large substrates size in respect to the conventional processes working area windows. Dimensional stability of nano fabrication processe...

  19. Geometric scaling in exclusive processes

    International Nuclear Information System (INIS)

    Munier, S.; Wallon, S.

    2003-01-01

    We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)

  20. Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide

    DEFF Research Database (Denmark)

    Kang, Ning; Fadil, Ahmed; Pu, Minhao

    2013-01-01

    We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption.......We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption....

  1. A Review of the Effect of Processing Variables on the Fabrication of Electro spun Nano fibers for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, Ch.; Tomar, L.; Kumar, P.; Toit, L.C.D.; Ndesendo, V.M.K.

    2013-01-01

    Electro spinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nano technology that sparked worldwide research interest in nano materials for their preparation and application in biomedicine and drug delivery. Electro spinning is a simple, adaptable, cost-effective, and versatile technique for producing nano fibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nano fibers. The nano fiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nano fiber fabrication by electro spinning has broadened the horizons for widespread application of nano fibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electro spun nano fibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of post surgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electro spun nano fibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nano fibers when applied to drug delivery.

  2. Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina) and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar; Salgueiro, W. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina); Goyanes, S. [LPMPyMC, Depto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Ramos, J. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain); Mondragon, I. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain)

    2007-02-15

    A systematic study on changes in the volumes at macro- and nano-scale in epoxy systems cured with selected aminic hardeners at different pre-cure temperatures is presented. Free- and macroscopic specific-volumes were measured by PALS and pressure-volume-temperature techniques, respectively. An analysis of the relation existing between macro- and nano-scales of the thermosetting networks developed by the different chemical structures is shown. The result obtained indicates that the structure of the hardeners governs the packing of the molecular chains of the epoxy network.

  3. Macro-scale complexity of nano- to micro-scale architecture of ...

    Indian Academy of Sciences (India)

    mobile, due to the lack of correlation between the silicon oxide layer and the final olivine particles, leading ... (olivine) systems. .... A branched forsterite crystal system (scale bar = .... therefore, that no template mechanism is operating between.

  4. Perspectives of Single-Wall Carbon Nano-tube Production in the Arc Discharge Process

    International Nuclear Information System (INIS)

    Krestinin, A.V.; Kiselev, N.A.; Raevskii, A.V; Ryabenko, A.G.; Zakharov, D.N.; Zvereva, G.I.

    2003-01-01

    Single-wall carbon nano tubes (SWNTs) promise wide applications in many technical fields. As a result purified SWNT material is sold now on the West market at more than 1000 dollars per 1 gram. Thus developing an effective technology for SWNTs production rises to a very important sintofene problem. The perspectives of three existing methods providing raw material in the technology of SWNT production have been analyzed. They are i) pulsed laser evaporation of graphite/metal composites, ii) evaporation of graphite electrodes with metal content in the are discharge process, and iii) catalytic decomposition of the mixture of CO and metal carbonyl catalyst precursor. The observed dynamites of SWNT market points to replacing the laser method of SWNTs production by the are process. The conclusion has been made that the technology based on the are process will be the major one for the fabrication of purified SWNTs at least for the next five years. A reliable estimation of a low price limit of SWNTs was derived from a comparison of two technologies based on the are discharge process: the first one is the production of SWNTs and the second one is the production of a fullerene mixture C 6 0 + C 7 0. The main conclusion was made that the price of purified SWNTs should always be more by 2-3 times the price of fullerene mixture. The parameters of a lab-scale technology for the production of purified SWNTs are listed. A large-scale application of the developed technology is expected to reduce the price of purified SWNTs by approximately ten times. The methods now employed for the characterization of products containing SWNTs are briefly observed. It is concluded that electron microscopy, thermogravimetric analysis, absorption and Raman spectroscopy, measurement of the specific surface aria, optical microscopy - each in separation is not enough for extensive characterization of a sample containing SWNTs, and all these methods should be used together. (author)

  5. Devices, materials, and processes for nano-electronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources

    International Nuclear Information System (INIS)

    Zschech, E.; Wyon, C.; Murray, C.E.; Schneider, G.

    2011-01-01

    Future nano-electronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nano-structures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nano-electronics industry is reviewed. The focus of this paper is on the study of nano-scale device and on-chip interconnect materials, and materials for 3D IC integration as well. (authors)

  6. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  7. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  8. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  9. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    International Nuclear Information System (INIS)

    Dubey, K.A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K.S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan

    2011-01-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  10. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K. S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2011-07-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  11. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    Science.gov (United States)

    Nano-titanium dioxide (nano-Ti02) catalyzes many reactions under UV radiation and is hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six different samples of nano-Ti02 and exposed to UVA radiation. The Ti02 ...

  12. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    Science.gov (United States)

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  13. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  14. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  15. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  17. Preparation of biomimetic nano-structured films with multi-scale roughness

    International Nuclear Information System (INIS)

    Shelemin, A; Nikitin, D; Choukourov, A; Kylián, O; Kousal, J; Khalakhan, I; Melnichuk, I; Slavínská, D; Biederman, H

    2016-01-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery. (paper)

  18. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  19. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  20. Nano-scale patterns of polymers and their structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yushu [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-03-01

    Nano-scale patterns formed by polymers and their related soft materials were investigated by measuring neutron scattering from them. Two apparatuses installed at cold neutron guides in JRR-3M, a small angle neutron scattering (SANS) apparatus and a neutron reflectometer, which give out elastic scattering intensities, were used. Chain dimensions of polystyrenes diluted with low molecular weight homologous polystyrenes, orientation behaviour of microphase-separated block copolymer in concentrated solutions under shear, shrinkage and recovery of polyvinylalcohol gel with temperature and structural phase transition of microemulsion under high-pressure and so on were measured by SANS, while microphase-separated polystyrene(S)/poly(2-vinylpyridine)(P) interfaces of a PSP triblock copolymer was observed by specular neutron reflectivity measurements. (author)

  1. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  2. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2013-01-01

    This review highlights the importance of developing multi-scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of insitu techniques that provides macro-, meso- and nano-scale information is required to elucidate and optimise....../heat/mass transport gradients in shaped catalysts and catalyst grains and c)meso- and nano-scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro-kinetic behaviour of the catalysts. Techniques such as X-ray diffraction (XRD), infrared (IR), Raman, X......-ray photoelectron spectroscopy (XPS), UV/Vis, and X-ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub-second time resolution. X-ray microscopy, both in the soft and more recently...

  3. System-on-a-Chip Based Nano Star Tracker and Its Real-Time Image Processing Approach

    OpenAIRE

    Wei, Minsong; Bao, Jingyu; Xing, Fei; Liu, Zengyi; Sun, Ting; You, Zheng

    2016-01-01

    The star tracker is one of the most accurate components for satellite attitude determination. With the development of the nano star tracker, it is compatible for application on small satellites. However, the drawback in dynamic property of nano star tracker has limited its extensive applications. The principal objective of this study is to introduce a system-on-a-chip (SOC) based nano star tracker with enhanced dynamic property. A morphology based image processing approach was realized based ...

  4. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  5. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  6. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  7. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  8. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  9. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  10. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  11. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  12. The peeling behaviour of a graphene sheet on a nano-scale corrugated surface

    International Nuclear Information System (INIS)

    Chen, Hao; Chen, Shaohua

    2013-01-01

    The peeling process and average peeling force of a graphene (GE) sheet on a corrugated surface are investigated using molecular dynamics simulation. It is found that the peeling behaviour varies with the substrate surface roughness and the peeling angle. Three kinds of typically peeling behaviours include (a) GE sheet directly passing the valley of the substrate roughness; (b) bouncing off from the substrate; and (c) continuously peeling off similarly to that on a flat substrate. As a result, the average peeling force is strongly dependent of the peeling behaviours. Furthermore, some interesting phenomena are caught, such as partial detaching and partial sliding of GE sheet in the valley of the substrate roughness, which are mainly due to the effects of pre-tension in GE sheet and the reduction of friction resistance. The results in this paper should be useful for the design of nano-film/substrate systems. (paper)

  13. On BLM scale fixing in exclusive processes

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We discuss the BLM scale fixing procedure in exclusive electroproduction processes in the Bjorken regime with rather large x B . We show that in the case of vector meson production dominated in this case by quark exchange the usual way to apply the BLM method fails due to singularities present in the equations fixing the BLM scale. We argue that the BLM scale should be extracted from the squared amplitudes which are directly related to observables. (orig.)

  14. On BLM scale fixing in exclusive processes

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.V. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Universite Paris-Sud, LPT, Orsay (France); Pire, B. [Ecole Polytechnique, CPHT, Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Univ. de Liege, Inst. de Physique, Liege (Belgium); Teryaev, O.V. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Wallon, S. [Universite Paris-Sud, LPT, Orsay (France)

    2005-07-01

    We discuss the BLM scale fixing procedure in exclusive electroproduction processes in the Bjorken regime with rather large x{sub B}. We show that in the case of vector meson production dominated in this case by quark exchange the usual way to apply the BLM method fails due to singularities present in the equations fixing the BLM scale. We argue that the BLM scale should be extracted from the squared amplitudes which are directly related to observables. (orig.)

  15. Scale-up of precipitation processes

    OpenAIRE

    Zauner, R.

    1999-01-01

    This thesis concerns the scale-up of precipitation processes aimed at predicting product particle characteristics. Although precipitation is widely used in the chemical and pharmaceutical industry, successful scale-up is difficult due to the absence of a validated methodology. It is found that none of the conventional scale-up criteria reported in the literature (equal power input per unit mass, equal tip speed, equal stirring rate) is capable of predicting the experimentally o...

  16. Process chain validation in micro and nano replication

    DEFF Research Database (Denmark)

    Calaon, Matteo

    to quantification of replication quality over large areas of surface topography based on areal detection technique and angular diffraction measurements were developed. A series of injection molding and compression molding experiments aimed at process analysis and optimization showed the possibility to control...... features dimensional accuracy variation through the identification of relevant process parameters. Statistical design of experiment results, showed the influence of both process parameters (mold temperature, packing time, packing pressure) and design parameters (channel width and direction with respect......Innovations in nanotechnology propose applications integrating micro and nanometer structures fabricated as master geometries for final replication on polymer substrates. The possibility for polymer materials of being processed with technologies enabling large volume production introduces solutions...

  17. Toward a new nanoLIFT transfer process

    International Nuclear Information System (INIS)

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Bourgeade, A.; Hebert, D.; Saut, O.

    2010-01-01

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  18. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    Science.gov (United States)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively

  19. Report on best practice for micro/nano replication process data acquisition systems

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    The main objective of this deliverable is to collect detailed description on the best practice for micro/ nano replication process data acquisition system. In particular the following aspects are summed up in the deliverable: Process requirements for COTECH demonstrators General description of th....... This report presents the important processes and process parameters required for the realization of COTECH demonstrator. It also presents the cutting edge sensor systems used for different process and set a guideline to integrate sensors in COTECH tools.......The main objective of this deliverable is to collect detailed description on the best practice for micro/ nano replication process data acquisition system. In particular the following aspects are summed up in the deliverable: Process requirements for COTECH demonstrators General description...... of the processes and process parameters State-of-the-art process control and data acquisition systems Sensor integration in COTECH tools Expected COTECH improvement in process control and data acquisition system Information provide by this deliverable will be used as input to the COTECH process control system...

  20. Hydrological processes at the urban residential scale

    Science.gov (United States)

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  1. The scales of brane nucleation processes

    International Nuclear Information System (INIS)

    Alwis, S.P. de

    2007-01-01

    The scales associated with Brown-Teitelboim-Bousso-Polchinski processes of brane nucleation, which result in changes of the flux parameters and the number of D-branes, are discussed in the context of type IIB models with all moduli stabilized. It is argued that such processes are unlikely to be described by effective field theory

  2. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies

    International Nuclear Information System (INIS)

    Sundaram, C. Sairam; Viswanathan, Natrayasamy; Meenakshi, S.

    2008-01-01

    This study describes the advantages of nano-hydroxyapatite (n-HAp), a cost effective sorbent for fluoride removal. n-HAp possesses a maximum defluoridation capacity [DC] of 1845 mg F - /kg which is comparable with that of activated alumina, a defluoridation agent commonly used in the indigenous defluoridation technology. A new mechanism of fluoride removal by n-HAp was proposed in which it is established that this material removes fluoride by both ion-exchange and adsorption process. The n-HAp and fluoride-sorbed n-HAp were characterized using XRD, FTIR and TEM studies. The fluoride sorption was reasonably explained with Langmuir, Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as ΔG o , ΔH o , ΔS o and E a were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second-order and pore diffusion models. Field studies were carried out with the fluoride containing water sample collected from a nearby fluoride endemic area in order to test the suitability of n-HAp material as a defluoridating agent at field condition

  3. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  4. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  5. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  6. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Mathematical and numerical modelling of fluids at Nano-metric scales

    International Nuclear Information System (INIS)

    Joubaud, R.

    2012-01-01

    This work presents some contributions to the mathematical and numerical modelling of fluids at Nano-metric scales. We are interested in two levels of modelling. The first level consists in an atomic description. We consider the problem of computing the shear viscosity of a fluid from a microscopic description. More precisely, we study the mathematical properties of the nonequilibrium Langevin dynamics allowing to compute the shear viscosity. The second level of description is a continuous description, and we consider a class of continuous models for equilibrium electrolytes, which incorporate on the one hand a confinement by charged solid objects and on the other hand non-ideality effects stemming from electrostatic correlations and steric exclusion phenomena due to the excluded volume effects. First, we perform the mathematical analysis of the case where the free energy is a convex function (mild non-ideality). Second, we consider numerically the case where the free energy is a non convex function (strong non-ideality) leading in particular to phase separation. (author)

  9. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  10. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  11. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  12. Topological superfluids confined in a regular nano-scale slab geometry

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, John; Bennett, Robert; Levitin, Lev; Casey, Andrew; Cowan, Brian [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom); Parpia, Jeevak [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Drung, Dietmar; Schurig, Thomas [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-19587, Berlin (Germany)

    2012-07-01

    Superfluid 3He confined in a regular nano-fabricated slab geometry provides a model system for the investigation of surface and thin film effects in a p-wave superfluid. We have fabricated and cooled such samples to well below 1 mK for the first time, and investigated their NMR response, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We have used NMR on a 650 nm thick superfluid slab to identify the profound effect of confinement on the relative stability of the A and B phases and to make quantitative measurements of the suppression and surface induced distortion of the order parameter. In these systems the effective confinement length scale (slab thickness/superfluid coherence length) is the new tuning parameter. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase or the planar phase. Nanofluidic samples of superfluid 3He promise a route to explore topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions.

  13. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  14. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  15. Process optimization for obtaining nano cellulose from curaua fiber

    International Nuclear Information System (INIS)

    Lunz, Juliana do N.; Cordeiro, Suellem B.; Mota, Jose Carlos F.; Marques, Maria de Fatima V.

    2011-01-01

    This study focuses on the methodology for optimization to obtain nanocellulose from vegetal fibers. An experimental planning was carried out for the treatment of curaua fibers and parameters were estimated, having the concentration of H 2 SO 4 , hydrolysis time, reaction temperature and time of sonication applied as independent variables for further statistical analysis. According to the estimated parameters, the statistically significant effects were determined for the process of obtaining nanocellulose. According to the results obtained from the thermogravimetric analysis (TGA) it was observed that certain conditions led to cellulose with degradation temperatures near or even above that of untreated cellulose fibers. The crystallinity index (IC) obtained after fiber treatment (X-ray diffraction) were higher than that of the pure fiber. Treatments with high acid concentrations led to higher IC. (author)

  16. A multi-physics modelling framework to describe the behaviour of nano-scale multilayer systems undergoing irradiation damage

    International Nuclear Information System (INIS)

    Villani, Aurelien

    2015-01-01

    Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors. While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited. The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement. Nano-scale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage. In addition, they exhibit outstanding mechanical properties. The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstructural evolution and behavior under irradiation. Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces. In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior. The diffusion creep strain rate is related to the gradient of the vacancy flux. A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries. In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread. The model is then implemented numerically

  17. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  18. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  19. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Science.gov (United States)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  20. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Ghoneim, Mohamed T.; Kutbee, Arwa T.; Sridharan, Ashvitha; Hussain, Muhammad Mustafa

    2015-01-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  1. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  2. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, X.G.; Ying, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, M.Y., E-mail: zhenghe@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, E.D.; Wu, K.; Hu, X.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gan, W.M.; Brokmeier, H.G. [Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany); Golovin, I.S. [Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISiS”, Leninsky ave. 4, 119049 Moscow (Russian Federation)

    2016-11-15

    Nano-SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were extruded at 350 °C, then processed by equal channel angular pressing (ECAP) at various temperatures (250 °C, 300 °C and 350 °C). Grains are significantly refined after the extrusion and the ECAP. A basal fibre texture was detected by neutron diffraction after the extrusion, which inclines about 45° to the extrusion direction (ED) after the ECAP. Nano-scaled SiC particles agglomerate in the as-cast composite. After the extrusion, the agglomeration tends to form continuous or discontinuous strips along the extrusion direction. By application of the ECAP, the agglomerated SiC particles are partly dispersed and the strips formed during the extrusion tend to be thinner and broken with the increasing pass number. The yield tensile strength (YTS) and the ultimate tensile strength (UTS) of the composite are dramatically increased after the extrusion. ECAP for one pass at various temperatures further increases the strength, however, the YTS decreases with the increasing ECAP temperature and the pass number. The Orowan equations predict the maximum YTS of the composite may be up to 400 MPa providing SiC particles are homogenously distributed in the matrix. - Highlights: •Nano-scaled SiC particles were successfully added into AZ91 by stirring casting. •Agglomeration of nano-particles were improved by extrusion and ECAP. •Yield strength of the composite is 328 MPa after one pass of ECAP. •Further ECAP process with optimized parameters may fully disperse nano-particles. •Yield strength is predicted to up to 400 MPa when particles are fully dispersed.

  3. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-01-01

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  4. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu Jin [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Chung, Haegeun [Department of Environmental Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Min-Seop [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Woong, E-mail: woongkim@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-11-15

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  5. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  6. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  7. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    Science.gov (United States)

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  8. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A new multiscale model to describe a modified Hall-Petch relation at different scales for nano and micro materials

    Science.gov (United States)

    Fadhil, Sadeem Abbas; Alrawi, Aoday Hashim; Azeez, Jazeel H.; Hassan, Mohsen A.

    2018-04-01

    In the present work, a multiscale model is presented and used to modify the Hall-Petch relation for different scales from nano to micro. The modified Hall-Petch relation is derived from a multiscale equation that determines the cohesive energy between the atoms and their neighboring grains. This brings with it a new term that was originally ignored even in the atomistic models. The new term makes it easy to combine all other effects to derive one modified equation for the Hall-Petch relation that works for all scales together, without the need to divide the scales into two scales, each scale with a different equation, as it is usually done in other works. Due to that, applying the new relation does not require a previous knowledge of the grain size distribution. This makes the new derived relation more consistent and easier to be applied for all scales. The new relation is used to fit the data for Copper and Nickel and it is applied well for the whole range of grain sizes from nano to micro scales.

  10. Effect of Nano-clay on Rheological and Extrusion Foaming Process of a Block-Copolymerized Polypropylene

    Directory of Open Access Journals (Sweden)

    Wang Mingyi

    2016-01-01

    Full Text Available The effects of nano-clay and the corresponding coupling agent maleic anhydride grafted polypropylene (PP-g-MAH on thermal properties, rheological properties and extrusion foaming process of a block-copolymerized polypropylene (B-PP were studied. Supercritical CO2 (SC CO2 was used as the foaming agent with a concentration of 5wt%. Each step of foamed B-PP/ PP-g-MAH/ nano-clay composites processing is addressed, including mixing of the composites, manufacture of the composites, foaming process of the composites and characterization of the cell structure. The results showed that incorporation of nano-clay and PP-g-MAH caused reduced melt strength and complex viscosity of B-PP. However, the heterogeneous nucleation induced by nano-clay and PP-g-MAH improved the maximum foaming expansion ratio and cell-population density of B-PP foam.

  11. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  12. Specimen preparation for nano-scale investigation of cementitious repair material.

    Science.gov (United States)

    Azarsa, Pejman; Gupta, Rishi

    2018-04-01

    Cementitious Repair Materials (CRMs) in the construction industry have been used for many decades now and has become a very important part of activities in cement world. The performance of some of these CRMs when applied to retrofitting concrete structural elements is also well documented. However, the characterization of some of the CRMs at the micro- and nano level is not fully documented. The first step to studying materials at the microscopic level is to be able to fabricate proper specimens for microscopy. In this study, a special and newly developed class of CRM was selected and fabricated by Focused Ion Beam (FIB) using well-known "Lift-out" technique. The prepared specimen was later examined using various analytical techniques such as energy dispersive x-ray analysis using one of the highest and most stable Scanning Transmission Electron Holography Microscopy (STEHM) around the world. This process enabled understanding of the composition, morphology, and spatial distribution of various phases of the CRM. It was observed that the microstructure consisted of a very fine, compact, and homogenous amorphous structure. X-ray analysis indicated that there was considerable deviation between the Si/Ca ratios for the hydrated product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nano silver diffusion behaviour on conductive polymer during doping process for high voltage application

    Science.gov (United States)

    Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.

    2017-06-01

    Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

  14. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  15. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination

    International Nuclear Information System (INIS)

    Chatraei, Fatemeh; Zare, Hamid R.

    2013-01-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON–GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, k s , for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s −1 respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON–GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k′, for the reduction of iodate and periodate at RuON–GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively. Highlights: ► Ruthenium oxide nanoparticles, RuON, were used for electrocatalytic reduction iodate and periodate. ► Formal potential, E 0 ′, of the surface redox couple of RuON is pH-dependent. ► The heterogeneous electron transfer rate constant values between both analytes and RuON were calculated.

  16. A novel nonlinear nano-scale wear law for metallic brake pads.

    Science.gov (United States)

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  17. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    International Nuclear Information System (INIS)

    Cunningham, J; Gatenby, R

    2014-01-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  18. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Gatenby, R [Moffitt Cancer Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  19. Semihard processes with BLM renormalization scale setting

    Energy Technology Data Exchange (ETDEWEB)

    Caporale, Francesco [Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15 and U. Autónoma de Madrid, E-28049 Madrid (Spain); Ivanov, Dmitry Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Murdaca, Beatrice; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)

    2015-04-10

    We apply the BLM scale setting procedure directly to amplitudes (cross sections) of several semihard processes. It is shown that, due to the presence of β{sub 0}-terms in the NLA results for the impact factors, the obtained optimal renormalization scale is not universal, but depends both on the energy and on the process in question. We illustrate this general conclusion considering the following semihard processes: (i) inclusive production of two forward high-p{sub T} jets separated by large interval in rapidity (Mueller-Navelet jets); (ii) high-energy behavior of the total cross section for highly virtual photons; (iii) forward amplitude of the production of two light vector mesons in the collision of two virtual photons.

  20. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  1. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    International Nuclear Information System (INIS)

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  2. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  3. Decoupling processes and scales of shoreline morphodynamics

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.

    2016-01-01

    Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.

  4. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  5. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.; Hanna, Amir; Yapici, Tahir; Wehbe, N.; Diallo, Elhadj; Kutbee, Arwa T.; Bahabry, Rabab R.; Hussain, Muhammad Mustafa

    2017-01-01

    , in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured

  6. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  7. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Science.gov (United States)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  8. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    Science.gov (United States)

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  9. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  10. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  11. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  12. Elucidating dominant pathways of the nano-particle self-assembly process.

    Science.gov (United States)

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  13. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    Science.gov (United States)

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  14. Nano materials for Renewable Energy Storage: Synthesis, Characterization, and Applications

    International Nuclear Information System (INIS)

    Rather, S.U.; Zacharia, R.; Stephan, A.M.; Petrov, L.A.; Nair, J.R.

    2015-01-01

    Nano technology and nano scale materials have been part of human history and in use since centuries. Staining of glass windows hundreds of years ago is one of the examples where people created beautiful works without knowing that they are using nano processing. The beginning of modern era of nano technology dates back to the talk of the Nobel laureate Professor Richard Feynman in There plenty of room at the bottom. Professor Feynman hypothesized that in near future scientists would be able to control and modulate individual molecules and atoms. After a decade, Professor Norio Taniguchi introduced the magical word nano technology. However, in 1981, the introduction of scanning tunnelling microscope enabled the scientists to see the materials in nano scale that propagated the new age of nano technology.

  15. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  16. Feed process studies: Research-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  17. Feed process studies: Research-Scale Melter

    International Nuclear Information System (INIS)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ''channeling'' which allowed the top section to cool, reducing production rates

  18. Characterizing the nano-structure and defect structure of nano-scaled non-ferrous structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Samimi, Peyman; Liu, Yue [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States); Poorganji, Behrang; Vasudevan, Vijay K. [Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Peter C. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States)

    2016-03-15

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterization of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.

  19. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  20. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  1. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    NPD is designed in various nano wires scale size from 100 nm down to 20 nm. Next, the nano fabrication process flow development which consists of the detailed parameters and recipes are developed for nano wires formation. In order to produce very small nano wires, the dimensions, developments, etch profiles of nano wires and size reduction by thermal oxidation was investigated. Finally, the combination on top-down nano fabrication method and size-reduction has resulted in successful reduction of Nano wires reduced from 100 nm to approximately 20 nm. Spacer Patterning Lithography (SPL) is another technique used to fabricate nano structure especially nano wire. It is a low-cost and compatible to standard CMOS fabrication process. SPL, in general is a combination of conventional photolithography, anisotropic etchings and the excellent homogeneity and reproducibility of conformal chemical vapor deposition processes. The detail process flow involving every step in SPL including the deposition of a sacrificial layer, the definition of vertical step by means of lithography and etch-back process, the deposition of a conformal layer, final anisotropic etching and formation of gold pad. A wire with the scale in nano size has a wide range of applications. Up to present, the nano wires have been implemented in electronics, optics, mechanics, and sensing technology etc. One of the fields where nano wires have been used as building blocks is biosensor. Biosensor has been developed for different applications such as health care, industrial process control, environmental monitoring, quality control of food applications etc. Nevertheless, the conventional biosensor has its disadvantages, which are expensive, time-consuming, and require highly trained personnel. Therefore, there is increasing interest in the development of new type of biosensor which has the advantages of label-free, ultrasensitive, and near real-time operation. (author)

  2. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  3. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    Science.gov (United States)

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  4. Effect of processing conditions on the mechanical properties of polypropylene/bentonite nano composites

    International Nuclear Information System (INIS)

    Alves, Tatianny S.; Cipriano, Pamela B.; Lira, Vanize F.; Canedo, Eduardo L.; Carvalho, Laura H. de

    2009-01-01

    This work dealt with the effect of processing conditions on the properties of polypropylene/bentonite compounds, using natural clay and an organoclay prepared with hexadecyl trimethyl ammonium bromide. Compounds with 1% clay were prepared by melt compounding in a single-screw extruder and in a counter-rotating twin-screw extruder, and characterized x-ray diffraction; tensile and impact mechanical tests. X ray diffraction results on clays and compounds show that the surfactant was incorporated within the clay galleries and that intercalated nano composites were obtained with the organoclay processed in either the single or the twin-screw extruder. The data also indicated that, without the addition of a compatibilizer, no significant variation of mechanical properties was observed for the composites processed in either extruder. (author)

  5. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite

    Directory of Open Access Journals (Sweden)

    Samuel Ranti Oke

    2018-04-01

    Full Text Available This research optimized spark plasma sintering (SPS process parameters in terms of sintering temperature, holding time and heating rate for the development of a nano-structured duplex stainless steel (SAF 2205 grade reinforced with titanium nitride (TiN. The mixed powders were sintered using an automated spark plasma sintering machine (model HHPD-25, FCT GmbH, Germany. Characterization was performed using X-ray diffraction and scanning electron microscopy. Density and hardness of the composites were investigated. The XRD result showed the formation of FeN0.068. SEM/EDS revealed the presence of nano ranged particles of TiN segregated at the grain boundaries of the duplex matrix. A decrease in hardness and densification was observed when sintering temperature and heating rate were 1200 °C and 150 °C/min respectively. The optimum properties were obtained in composites sintered at 1150 °C for 15 min and 100 °C/min. The composite grades irrespective of the process parameters exhibited similar shrinkage behavior, which is characterized by three distinctive peaks, which is an indication of good densification phenomena. Keywords: Spark plasma sintering, Duplex stainless steel (SAF 2205, Titanium nitride (TiN, Microstructure, Density, Hardness

  6. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  7. The Metacognitive Anger Processing (MAP) Scale

    DEFF Research Database (Denmark)

    Moeller, Stine Bjerrum

    2015-01-01

    : The present data indicate that positive as well as negative beliefs are involved in the tendency to ruminate about angry emotions. Clinical interventions may benefit from an exploration of the patient´s experience of anger, as structured by the MAP's factors and their interrelationships. The psychometric...... preliminary studies was to apply a metacognitive framework to anger and put forward a new anger self-report scale, the Metacognitive Anger Processing (MAP) scale, intended as a supplement to existing measures of anger disposition and to enhance anger treatment targets. METHOD: The new measure was tested...... in a nonclinical and a clinical sample together with measures of anger and metacognition to establish factor structure, reliability, concurrent, and convergent validity. RESULTS: The MAP showed a reliable factor structure with three factors - Positive Beliefs about anger, Negative Beliefs about anger...

  8. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  9. Bottom-Up Nano-heteroepitaxy of Wafer-Scale Semipolar GaN on (001) Si

    KAUST Repository

    Hus, Jui Wei

    2015-07-15

    Semipolar {101¯1} InGaN quantum wells are grown on (001) Si substrates with an Al-free buffer and wafer-scale uniformity. The novel structure is achieved by a bottom-up nano-heteroepitaxy employing self-organized ZnO nanorods as the strain-relieving layer. This ZnO nanostructure unlocks the problems encountered by the conventional AlN-based buffer, which grows slowly and contaminates the growth chamber. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    Science.gov (United States)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  11. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  12. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  13. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  14. A New Insight into Morphology of Solvent Resistant Nano filtration Membranes: Image Processing Assisted Review

    International Nuclear Information System (INIS)

    Pouresmaeel-Selakjani, P.; Jahanshahi, M.; Peyravi, M.; Fauzi Ismail, A.; Nabipoor, M. R.

    2016-01-01

    The aim of this review is to investigate the morphological properties of polyimide based Solvent Resistant Nano filtration membranes by mean of image processing. Effect of phase inversion parameters like polymer concentration, volatile co-solvent, pre-evaporation time, additives in coagulation bath, polymers weight ratio in composite membranes, addition of nano particles and cross-linking agents have been reviewed. The voids of membrane were targeted to survey in the aspect of void area concentration in the scanning electron microscopy micrograph, mean of voids area, voids orientation and circle equivalent diameters of voids. This method by mean of the developed software could make the morphological studies of membranes easy. The population of different measured parameters of the voids could also measure. In conclusion for polyimide based membranes there are specific trends for change in voids properties by changing of phase inversion parameters. It was predictable, but investigated qualitatively up to now and this review can confirm the qualitative observations and also open new discussions about, for example void orientations that are not investigated in any study up to now

  15. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  16. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  17. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  18. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  19. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application

    Science.gov (United States)

    Li, Jing; Fan, Kun; Cai, Weiwei; Ma, Liying; Xu, Guoxiao; Xu, Sen; Ma, Liang; Cheng, Hansong

    2016-11-01

    A novel in-situ nano-scale swelling-filling (SF) strategy is proposed to modify commercial Nafion membranes for performance enhancement of direct methanol fuel cells (DMFCs). A Nafion membrane was filled in-situ with proton conductive macromolecules (PCMs) in the swelling process of a Nafion membrane in a PCM solution. As a result, both proton conductivity and methanol-permeation resistivity of the SF-treated Naifion membrane was substantially improved with the selectivity nearly doubled compared to the original Nafion membrane. The mechanical strength of the optimal SF treated Nafion membrane was also enforced due to the strong interaction between the PCM fillers and the Nafion molecular chains. As a result, a DMFC equipped with the SF-treated membrane yielded a 33% higher maximum power density than that offered by the DMFC with the original Nafion membrane.

  20. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    International Nuclear Information System (INIS)

    F Gaslain; J Parmentier; V Valtchev; J Patarin; C Vix Guterl

    2005-01-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter ≤ 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite β (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N 2 and CO 2 adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and compared to those

  1. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells.

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-11-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO(2)) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO(2), either uncoated (TiO(2)-1, hydrophilic) or coated with stearic acid (TiO(2)-2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO(2)-1, but not TiO(2)-2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO(2)-1 and TiO(2)-2 treatments. However, TiO(2)-2, but not TiO(2)-1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO(2)-1 and TiO(2)-2 resulted in intracellular ROS formation, TiO(2)-2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO(2)-2, but not TiO(2)-1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO(2) toxicity acquired a tumorigenic phenotype. TiO(2)-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO(2) has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells.

  2. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  3. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  4. Self-Assembly of Large-Scale Shape-Controlled DNA Nano-Structures

    Science.gov (United States)

    2014-12-16

    for single-molecule imaging. Nano Lett. 11, 657-660 (2011). 46. Dang, X. N. et at. Virus -templated self-assembled single-walled carbon nanotubes for...email: alik(a)rics.bwh.harvard edu). NATURE C0,M.MUN! CAT !0N5 14:2275 I DOI: 10.1038/ncomm53275 | wwwnature.com/naturecommunications 1 @ 2013 Macmillan...prevent non-specific binding between hydrogel and microtube, the inside surface of microtube was treated with a corona treater (BD-20AC from Electro

  5. Laser direct writing of micro- and nano-scale medical devices

    Science.gov (United States)

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  6. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  7. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  8. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  9. Quantitative anomalous small-angle X-ray scattering - The determination of chemical concentrations in nano-scale phases

    International Nuclear Information System (INIS)

    Goerigk, G.; Huber, K.; Mattern, N.; Williamson, D.L.

    2012-01-01

    In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nano-structures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed. (authors)

  10. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  11. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  12. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    Plank, Harald

    2015-01-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga + liquid ion sources towards higher resolution gas field ion sources (He + and Ne + ). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne + beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  13. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  14. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  15. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  16. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  17. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  18. Process of making titanium carbide (TiC) nano-fibrous felts

    Science.gov (United States)

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  19. Nano scale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    International Nuclear Information System (INIS)

    Miskovsky, N.M.; Cutler, P.H.; Miskovsky, N.M.; Cutler, P.H.; Lerne, P.B.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.

    2012-01-01

    We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal) or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp tip or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction) acts as the absorber of the incident radiation and the rectifier. Using current nano fabrication techniques and the selective atomic layer deposition (ALD) process, junctions of 1?nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nano antenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  20. Study on treatment of radioactive liquid waste from uranium ore processing by the use of nano oxide ferromagnetic

    International Nuclear Information System (INIS)

    Vuong Huu Anh; Nguyen Van Chinh; Nguyen Ba Tien; Doan Thi Thu Hien; Luu Cao Nguyen

    2015-01-01

    Nano oxide ferromagnetic Fe_3O_4 KT which was produced by the Military Institute of Science and Technology were used to adsorbed heavy metal elements in liquid waste. In this report, the nano oxide ferromagnetic Fe_3O_4 KT with the particle size of 80-100 nm and the specific surface area of 50-70 m"2/g was applied to study the adsorption of radioactive elements in the liquid waste of uranium ores processing. The effective parameters on adsorption process included temperature, stirring rate, stirring time, the pH value of the solution, the initial concentration of uranium in solution were investigated. The results showed that the maximum adsorption capacity for uranium of the nano Fe_3O_4 KT was 53.5 mgU/g with conditions such as: room temperature, stirring speed 120 rounds/minute, the pH value of solution was 8, stirring time about 2 hours . From the results obtained, nano Fe_3O_4 KT was tested to treatment real liquid waste of uranium ore processing after removing almost heavy metals and a part of radioactive elements by preliminary precipitation at pH 8. The results were analyzed on the ICP-MS and α, β total activity equipment, the solution concentration after treatment suitable for Vietnamese Technical Regulation on industrial wastewater QCVN 40: 2011 (concentrations of heavy metals; total activity of α and β). (author)

  1. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    Science.gov (United States)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  2. Nano- and microfabrication for industrial and biomedical applications

    NARCIS (Netherlands)

    Luttge, R.

    2016-01-01

    Nano- and Microfabrication for Industrial and Biomedical Applications, Second Edition, focuses on the industrial perspective on micro- and nanofabrication methods, including large-scale manufacturing, the transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. The

  3. Atomic scale study of thermal reduction of nano goethite coexisting with magnetite

    Science.gov (United States)

    singh, L. Herojit; Govindaraj, R.; Mythili, R.; Amarendra, G.; Sundar, C. S.

    2013-02-01

    Evolution of the local structure and magnetic properties of nano particles of goethite having magnetite as a composite due to controlled annealing treatments in vacuum has been studied using Mossbauer spectroscopy. Importance of size, defect associated with structural OH- for the observed structural and magnetic properties of goethite has been emphasized in this study. Present Mossbauer results show that thermal annealing at low temperatures (420-550 K) lead to a partial conversion / reduction of orthorhombic goethite to cubic spinel oxides such as maghemite and off-stochiometric magnetite. This study further establishes that annealing treatments beyond 650 K predominantly results in topotactic conversion of goethite to haematite. Underlying physics of the transitions of goethite to iron oxides and the important role of desorbed hydrogen for the orthorhombic to cubic structural transitions has been elucidated in this study.

  4. Atomic scale study of thermal reduction of nano goethite coexisting with magnetite

    Directory of Open Access Journals (Sweden)

    L. Herojit singh

    2013-02-01

    Full Text Available Evolution of the local structure and magnetic properties of nano particles of goethite having magnetite as a composite due to controlled annealing treatments in vacuum has been studied using Mossbauer spectroscopy. Importance of size, defect associated with structural OH- for the observed structural and magnetic properties of goethite has been emphasized in this study. Present Mossbauer results show that thermal annealing at low temperatures (420-550 K lead to a partial conversion / reduction of orthorhombic goethite to cubic spinel oxides such as maghemite and off-stochiometric magnetite. This study further establishes that annealing treatments beyond 650 K predominantly results in topotactic conversion of goethite to haematite. Underlying physics of the transitions of goethite to iron oxides and the important role of desorbed hydrogen for the orthorhombic to cubic structural transitions has been elucidated in this study.

  5. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    International Nuclear Information System (INIS)

    Bilton, M; Brown, A P; Milne, S J

    2010-01-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca 10 (PO 4 ) 6 (OH) 2 that contain a number of cation and anion impurities, for example CO 3 2- , F - , Na + , Mg 2+ and Sr 2+ . Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 0 C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  6. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  7. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  8. Nano-scale patterning on sulfur terminated GaAs (0 0 1) surface by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Yagishita, Yuki; Toda, Yusuke; Hirai, Masakazu; Fujishiro, Hiroki Inomata

    2004-01-01

    We perform nano-scale patterning on a sulfur (S) terminated GaAs (0 0 1) surface by a scanning tunneling microscope (STM) in ultra-high vacuum (UHV). A multi-layer of S deposited by using (NH 4 ) 2 S x solution is changed to a mono-layer after annealing at 560 deg. C for 15 h, which terminates the GaAs (0 0 1) surface. Groove structures with about 0.23 nm in depth and about 5 nm in width are patterned successfully on the S-terminated surface. We investigate dependences of both depth and width of the patterned groove on the tunneling current and the scanning speed of tip. It is observed that topmost S atoms are extracted together with first-layer Ga atoms, because of the larger binding energy of S-Ga bond

  9. The applications of small-angle X-ray scattering in studying nano-scaled polyoxometalate clusters in solutions

    Science.gov (United States)

    Li, Mu; Zhang, Mingxin; Wang, Weiyu; Cheng, Stephen Z. D.; Yin, Panchao

    2018-05-01

    Nano-scaled polyoxometalates (POMs) clusters with sizes ranging from 1 to 10 nm attract tremendous attention and have been extensively studied due to POMs' fascinating structural characteristics and prospects for wide-ranging applications. As a unique class of nanoparticles with well-defined structural topologies and monodispersed masses, the structures and properties of POMs in both bulk state and solutions have been explored with several well-developed protocols. Small-angle X-ray scattering (SAXS) technique, as a powerful tool for studying polymers and nanoparticles, has been recently extended to the investigating of solution behaviors of POMs. In this mini-review, the general principle and typical experimental procedures of SAXS are illustrated first. The applications of SAXS in characterizing POMs' morphology, counterion distribution around POMs, and short-range interactions among POMs in solutions are highlighted. [Figure not available: see fulltext.

  10. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    Science.gov (United States)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are

  11. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    Science.gov (United States)

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  12. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  13. Production of talc nano sheets via fine grinding and sonication processes

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Noorina Hidayu Jamil Khairun Azizi Mohd Azizli; Syed Fuad Saiyid Hashim; Hashim Hussin

    2009-01-01

    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 μm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nano sheets. (author)

  14. A ferrite nano-particles based fully printed process for tunable microwave components

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    With the advent of nano-particles based metallic inks, inkjet printing emerged as an attractive medium for fast prototyping as well as for low cost and flexible electronics. However, at present, it is limited to printing of metallic inks on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver-organo-complex (SOC) ink for metal traces printing. Due to the magnetic nature of the ink, this process is highly suitable for tunable microwave components. The printed magnetic substrate is characterized for the magnetostatic as well as microwave properties. The measured B(H) curve shows a saturation magnetization and remanence of 1560 and 350 Gauss respectively. As a proof of concept, a patch antenna is implemented in the proposed stack up which shows a tuning range of 4 % around the center frequency. © 2016 IEEE.

  15. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  16. Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Bu, Fanqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yangzhou Hongfu Aluminium Co. Ltd, Yangzhou 100049 (China); Li, Yangde; Li, Weirong [E-ande Scientific & Technology Co. Ltd, Dongguan 523000 (China); Sun, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu, Xiaojuan, E-mail: lxjuan@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-04-25

    In this paper we report a quantitative study of the age-hardening in the high-pressure die-cast Mg–4Al−5.6Sm−0.3Mn alloy. The results indicate that a number of nano-scale spherical precipitates identified as Al{sub 3}Sm using high-angle annular dark-field scanning transmission electron microscopy, precipitated in Mg matrix after aging at 150–225 °C, with no obvious changes on grain sizes, intermetallic phases formed during solidification, and dislocation densities. From the existing strengthening theory equations in which some lacking parameters were taken from the first-principles density functional theory (DFT) calculations, a quantitative insight into the strengthening mechanisms of the nano-scale precipitate was formulated. The results are in reasonable agreement with the experimental values, and the operative mechanism of precipitation strengthening was revealed as Orowan dislocation bypassing. - Highlights: • The yield strength of Mg–Al–Sm alloy was improved by aging treatment. • A number of nano-scale precipitates formed in matrix after aging treatments. • The nanoscale precipitate was confirmed as Al{sub 3}Sm based on the data of HAADF-STEM study. • The strengthening mechanisms of the nano-scale precipitate were quantitatively formulated. • The operative mechanism of precipitate strengthening is Orowan dislocation bypassing.

  17. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    Science.gov (United States)

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  18. Design and construction of UVSOR-BL4A2 beam line for nano-structure processing

    CERN Document Server

    Takezoe, N; Tanaka, T; Kurosawa, K; Nonogaki, Y; Noda, H; Mekaru, H; Urisu, T

    2001-01-01

    We have designed and constructed a new beam line BL4A2 at UVSOR mainly for nano-structure fabrication based on synchrotron radiation stimulated surface photochemical reactions. In order to obtain high-photon flux, we use white ray beam focused with only one mirror. The beam line is connected with ultra-high vacuum scanning tunneling microscope for in-situ atomic scale observations, low energy electron diffraction and Auger electron spectroscope for surface crystal structure characterization, and photo-stimulated surface reaction chamber. In order to monitor the optical properties with atomic scale, a near field optical microscope is planned to be installed.

  19. Design and construction of UVSOR-BL4A2 beam line for nano-structure processing

    International Nuclear Information System (INIS)

    Takezoe, N.; Yanagida, H.; Tanaka, T.; Kurosawa, K.; Nonogaki, Y.; Noda, H.; Mekaru, H.; Urisu, T.

    2001-01-01

    We have designed and constructed a new beam line BL4A2 at UVSOR mainly for nano-structure fabrication based on synchrotron radiation stimulated surface photochemical reactions. In order to obtain high-photon flux, we use white ray beam focused with only one mirror. The beam line is connected with ultra-high vacuum scanning tunneling microscope for in-situ atomic scale observations, low energy electron diffraction and Auger electron spectroscope for surface crystal structure characterization, and photo-stimulated surface reaction chamber. In order to monitor the optical properties with atomic scale, a near field optical microscope is planned to be installed

  20. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  1. A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport

    Science.gov (United States)

    Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.

    2017-12-01

    The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.

  2. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    Science.gov (United States)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on

  3. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process

    Directory of Open Access Journals (Sweden)

    Wang L

    2017-11-01

    superior for 317L-Cu SS. Histological staining displayed large amounts of fibrous tissues at 3 weeks, and cartilage and new bone at 6 weeks. Further, histomorphometric analysis indicated that the callus possessed higher osteogenic efficiency at 6 weeks, and a high Cu2+ content and increased Runx2 expression were observed in the callus for 317L-Cu SS. Besides, the mechanical strength of the fracture site was much better than that of the control group. Overall, we conclude that 317L-Cu SS possesses the ability to increase Cu2+ content and promote osteogenesis in the callus, which could accelerate the callus evolution process and bone formation to provide faster and better fracture healing. Keywords: nano-sized copper, lysyl oxidase, osteogenesis, fracture healing, callus evolution 

  4. Deformation processed Al/Ca nano-filamentary composite conductors for HVDC applications

    Science.gov (United States)

    Czahor, C. F.; Anderson, I. E.; Riedemann, T. M.; Russell, A. M.

    2017-07-01

    Efficient long-distance power transmission is necessary as the world continues to implement renewable energy sources, often sited in remote areas. Light, strong, high-conductivity materials are desirable for this application to reduce both construction and operational costs. In this study an Al/Ca (11.5% vol.) composite with nano-filamentary reinforcement was produced by powder metallurgy then extruded, swaged, and wire drawn to a maximum true strain of 12.7. The tensile strength increased exponentially as the filament size was reduced to the sub-micron level. In an effort to improve the conductor’s ability to operate at elevated temperatures, the deformation-processed wires were heat-treated at 260°C to transform the Ca-reinforcing filaments to Al2Ca. Such a transformation raised the tensile strength by as much as 28%, and caused little change in ductility, while the electrical conductivity was reduced by only 1% to 3%. Al/Al2Ca composites are compared to existing conductor materials to show how implementation could affect installation and performance.

  5. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  6. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    Science.gov (United States)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  7. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    Science.gov (United States)

    Tian, Ye; Shao, Gang; Wang, Xingwei; An, Linan

    2013-09-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications.

  8. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    International Nuclear Information System (INIS)

    Tian, Ye; Wang, Xingwei; Shao, Gang; An, Linan

    2013-01-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications. (paper)

  9. A test of a design process scale

    NARCIS (Netherlands)

    Marinakis, Yorgos; Harms, Rainer; Walsh, Steven Thomas

    2015-01-01

    Design is a type of innovation that focuses on creating new product and service meanings. Models of the design process are important because they can help firms manage their product and service design processes to obtain competitive advantage. Empirically-based models of the design process are

  10. Scaling the Information Processing Demands of Occupations

    Science.gov (United States)

    Haase, Richard F.; Jome, LaRae M.; Ferreira, Joaquim Armando; Santos, Eduardo J. R.; Connacher, Christopher C.; Sendrowitz, Kerrin

    2011-01-01

    The purpose of this study was to provide additional validity evidence for a model of person-environment fit based on polychronicity, stimulus load, and information processing capacities. In this line of research the confluence of polychronicity and information processing (e.g., the ability of individuals to process stimuli from the environment…

  11. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  12. Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Cho, Chae-Ryong; Kim, Jong-Man; Kim, Yongsung; Kim, Byung Min; Ko, Jong Soo

    2011-01-01

    This paper presents a uniform micro/nano double-roughened superhydrophobic surface with a high static contact angle (CA) and low contact angle hysteresis (CAH). The proposed micro/nano complex structured surfaces were self-fabricated simply and efficiently using a very simple and low-cost nonlithographic sequential process, which consists of aluminum (Al) sputtering, anodization of the Al layer and pore widening, without specific equipment and additional subsequent processes. The wetting properties of the fabricated surfaces were characterized by measuring the static CAs and the CAHs after plasma polymerized fluorocarbon coating with a low surface energy. The measured static CA and CAH were 154 ± 2.3° and 5.7 ± 0.8°, respectively, showing that the fabricated double-roughened surfaces exhibit superhydrophobic behaviors clearly. In addition, the proposed double-scaled surfaces at a wafer-level exhibited uniform superhydrophobic behaviors across the wafer with an apparent CA and CAH of 153.9 ± 0.8° and 4.9 ± 1.3°, respectively.

  13. Large-scale simulation of ductile fracture process of microstructured materials

    International Nuclear Information System (INIS)

    Tian Rong; Wang Chaowei

    2011-01-01

    The promise of computational science in the extreme-scale computing era is to reduce and decompose macroscopic complexities into microscopic simplicities with the expense of high spatial and temporal resolution of computing. In materials science and engineering, the direct combination of 3D microstructure data sets and 3D large-scale simulations provides unique opportunity for the development of a comprehensive understanding of nano/microstructure-property relationships in order to systematically design materials with specific desired properties. In the paper, we present a framework simulating the ductile fracture process zone in microstructural detail. The experimentally reconstructed microstructural data set is directly embedded into a FE mesh model to improve the simulation fidelity of microstructure effects on fracture toughness. To the best of our knowledge, it is for the first time that the linking of fracture toughness to multiscale microstructures in a realistic 3D numerical model in a direct manner is accomplished. (author)

  14. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  15. Large scale processing of dielectric electroactive polymers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  16. Optimization of silver-assisted nano-pillar etching process in silicon

    International Nuclear Information System (INIS)

    Azhari, Ayu Wazira; Sopian, Kamaruzzaman; Desa, Mohd Khairunaz Mat; Zaidi, Saleem H.

    2015-01-01

    Graphical abstract: - Highlights: • Statistical analysis for synthesis of nano-pillar in crystalline Si substrates is presented. • Model is in good agreement with experimental for the etching rate and lateral etching respectively. • Optimum values for all parameters in fabrication of nanostructured Si are attained. - Abstract: In this study, a respond surface methodology (RSM) model is developed using three-level Box–Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert ® software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H 2 O 2 ), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H 2 O 2 concentration and etching time. The predicted model is in good agreement with the experimental data where R 2 is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant concentration or the etching time

  17. Optimization of silver-assisted nano-pillar etching process in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Azhari, Ayu Wazira, E-mail: ayuwazira@unimap.edu.my [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia); School of Environmental Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia); Desa, Mohd Khairunaz Mat [School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300 (Malaysia); Zaidi, Saleem H. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • Statistical analysis for synthesis of nano-pillar in crystalline Si substrates is presented. • Model is in good agreement with experimental for the etching rate and lateral etching respectively. • Optimum values for all parameters in fabrication of nanostructured Si are attained. - Abstract: In this study, a respond surface methodology (RSM) model is developed using three-level Box–Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert{sup ®} software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H{sub 2}O{sub 2}), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H{sub 2}O{sub 2} concentration and etching time. The predicted model is in good agreement with the experimental data where R{sup 2} is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant

  18. Nano-scale observations of interface between lichen and basaltic rock: Pseudomorphic growth of amorphous silica on augite

    Science.gov (United States)

    Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.

    2017-12-01

    Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds

  19. Fiscal 1998 research report on the R and D on produce process technology of eco-tailored tribo-materials/R and D on produce process technology of nano structure materials; Eco tailored tribo material sosei process gijutsu no kenkyu kaihatsu / nano metoru oda de seigyosareta material sosei process gijutsu no kenkyu kaihatsu 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the R and D on produce process technology of nano structure materials, for reduction of friction and abrasion due to severe use conditions of automobile piston rings and valves, development of optimized produce process technology of eco-tailored tribo-materials with nano structures is in promotion by applying complex ion processing technology possible to control nano structures. In fiscal 1998, study was made on comparison of various ion processes and formation of nano structure single-phase films, and formation of Ti-Si system films was attempted as one of candidates of nano structure films. Problem points of existing test equipment as evaluation equipment of friction and abrasion for cams, shims and piston rings were arranged, and improvement and development of such equipment were considered. In the development of tribology evaluation technology, study was made on the sliding condition, environment and situation of a test equipment possible to simulate sliding of cams and shims, and the applicability of such equipment was also evaluated. (NEDO)

  20. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process

    Directory of Open Access Journals (Sweden)

    V. Kishan

    2017-02-01

    Full Text Available The aim of present study is to analyze the influence of volume percentage (vol.% of nano-sized particles (TiB2: average size is 35 nm on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process (FSP. The microstructure of the fabricated surface nanocomposites is examined using optical microscopy (OM and scanning electron microscope (SEM for distribution of TiB2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 μm along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB2 particles, the microhardness is increased up to 132 Hv and it is greater than as-received Al alloy's microhardness (104 Hv. It is also observed that at 4 volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.

  1. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  2. Scaling laws in (e,3e) processes

    International Nuclear Information System (INIS)

    Gasaneo, G; Rodriguez, K V; Ancarani, L U; Cappello, C Dal; Charpentier, I

    2009-01-01

    We study the double ionization of helium-like ions by impact of electrons with high incident energy. Within the isoelectronic sequence, an approximate scaling law for (e,3e) differential cross sections is proposed and confirmed by calculations. The latter are performed using 14-parameters Hylleraas-like wave functions to represent the bound electrons in the initial channel, plane waves for the fast incoming and scattered electrons, and a continuum distorted wave approach for the two ejected electrons in the final channel.

  3. Learning design and feedback processes at scale

    DEFF Research Database (Denmark)

    Ringtved, Ulla L.; Miligan, Sandra; Corrin, Linda

    2016-01-01

    Design for teaching in scaled courses is shifting away from replication of the traditional on-campus or online teaching-learning relationship towards exploiting the distinctive characteristic and potentials of that environment to transform both teaching and learning. This involves consideration...... design and would benefit from learning analytics support? What is the character of analytics that can be deployed to help deliver good design of online learning platforms? What are the theoretical and pedagogical bases inherent in different analytics designs? These and other questions will be examined...

  4. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  5. Cotton fibers nano-TiO2 composites prepared by as-assembly process and the photocatalytic activities

    International Nuclear Information System (INIS)

    Xia, J.H.; Hsu, C.T.; Qin, D.D.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► TiO 2 nanoparticles self-assemble process under the assistant of carboxylic group. ► The carboxylic group was introduced by displacement reaction. ► The loading amount of nano-TiO 2 was depended on the displacement degree of C-6-OH. ► UV–Vis experiments showed these fibers had efficient photocatalysis. ► The degradation reaction Rhodamine 6G under UV light obeys zero-order rate law. -- Abstract: This paper describes photocatalytic cotton fibers produced by a TiO 2 nanoparticle self-assembly process with the assistance of carboxylic groups. The carboxylic group was introduced by a displacement reaction, the molecular structure of the glucose unit was studied by utilizing solid 13 C NMR. The appearance of the prepared fibers was observed by scanning electron microscopy, it was found that nano-TiO 2 coated uniformly on the fiber surface. The loading amount of nano-TiO 2 was depended on the displacement degree of C-6-OH. UV–Vis experiments showed these coated fibers undergo photocatalysis efficiently. The degradation reaction of Rhodamine 6G under UV light obeys the zero-order rate law.

  6. Effect of TMAH Etching Duration on the Formation of Silicon Nano wire Transistor Patterned by AFM Nano lithography

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Lew, K.C.

    2012-01-01

    Atomic force microscopy (AFM) lithography was applied to produce nano scale pattern for silicon nano wire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nano patterns. A conductive AFM tip was used to grow the silicon oxide nano patterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nano wire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nano wire transistor structure has been investigated. A completed silicon nano wire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nano wire transistor consists of a silicon nano wire that acts as a channel with source and drain pads. A lateral gate pad with a nano wire head was fabricated very close to the channel in the formation of transistor structures. (author)

  7. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  8. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    Science.gov (United States)

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bridging scales in polymer physics and processing

    NARCIS (Netherlands)

    Hütter, M.; Kröger, M.; Öttinger, H.C.; Schweizer, T.

    2001-01-01

    Understanding both the flow behavior of polymers during processing and the end-use properties offinished plastic products from a molecular picture of the constituent polymers has been a long-standing dreamin polymer engineering and science. It is the goal of our work in the Polymer Physics Group to

  10. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  11. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    Science.gov (United States)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  12. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  13. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Herná ndez-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid M.; Monteiro, Paulo J M

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  14. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  15. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  17. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    International Nuclear Information System (INIS)

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Hernández-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid; Monteiro, Paulo J.M.

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C–S–H fibers are composed of particles that are 1.5–2 nm thick and several tens of nanometers long. 29 Si NMR shows 47.9% Q 1 and 52.1% Q 2 , with a mean SiO 4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C 3 S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L 3,2 -edge indicates that Ca 2+ in C–S–H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO 4 4− tetrahedron chain.

  18. Apparent scale correlations in a random multifractal process

    DEFF Research Database (Denmark)

    Cleve, Jochen; Schmiegel, Jürgen; Greiner, Martin

    2008-01-01

    We discuss various properties of a homogeneous random multifractal process, which are related to the issue of scale correlations. By design, the process has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based on a coarse......-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several puzzling empirical details...

  19. Nano finish grinding of brittle materials using electrolytic in-process ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Recent developments in grinding have opened up new avenues for finishing of hard and brittle materials with nano-surface finish, high tolerance and accuracy. Grinding with superabrasive wheels is an excellent way to produce ultraprecision surface finish. However, superabrasive diamond grits need ...

  20. Abstraction of Drift-Scale Coupled Processes

    International Nuclear Information System (INIS)

    Francis, N.D.; Sassani, D.

    2000-01-01

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  1. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  2. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  3. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  4. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  5. Thermal, Microchannel, and Immersed Boundary Extension Validation for the Lattice-Boltzmann Method: Report 2 in Discrete Nano Scale Mechanics and Simulations Series

    Science.gov (United States)

    2017-07-01

    Lattice- Boltzmann Method Report 2 in “Discrete Nano-Scale Mechanics and Simulations” Series In fo rm at io n Te ch no lo gy L ab or at or y...William P. England and Jeffrey B. Allen July 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and...Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and

  6. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI – integrating aerosol research from nano to global scales

    Directory of Open Access Journals (Sweden)

    D. Simpson

    2011-12-01

    Full Text Available In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI. EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b comprehensive aerosol measurements in four developing countries, (c a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.

  7. How fast are the ultra-fast nano-scale solid-liquid phase transitions induced by energetic particles in solids?

    International Nuclear Information System (INIS)

    Lopasso, E.M.; Caro, A.; Caro, M.

    2003-01-01

    We study the thermodynamic forces acting on the evolution of the nanoscale regions excited by collisions of energetic particles into solid targets. We analyze the role of diffusion, thermo-migration, and the liquidus-solidus two-phase field crossing, as the system cools down from the collision-induced melt under different conditions of energy deposition. To determine the relevance of these thermodynamic forces, solute redistribution is evaluated using molecular dynamics simulations of equilibrium Au-Ni solid solutions. At low collision energies, our results show that the quenching of spherical cascades is too fast to allow for solute redistribution according to equilibrium solidification as determined from the equilibrium phase diagram (zone refining effect), and only thermo-migration is observed. At higher energies instead, in the cylindrical symmetry of ion tracks, quenching rate is in a range that shows the combined effects of thermo-migration and solute redistribution that, depending on the material, can reinforce or cancel each other. These results are relevant for the interpretation of the early stage of radiation damage in alloys, and show that the combination of ultra-fast but nano-scale characteristics of these processes can still be described in terms of linear response of the perturbed system

  8. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  9. Optical shaping of a nano-scale tip by femtosecond laser assisted field evaporation

    Science.gov (United States)

    Di Russo, E.; Houard, J.; Langolff, V.; Moldovan, S.; Rigutti, L.; Deconihout, B.; Blavette, D.; Bogdanowicz, J.; Vella, A.

    2018-04-01

    We have investigated the morphology of a nanotip under femtosecond laser pulse illumination and a high electric field. We show that both the symmetry and the local radius of the tip change with the direction of laser polarization as against the tip axis. The experiments were performed on the very same GaN nanotip by laser-assisted atom probe tomography and electron tomography. This allowed an accurate assessment of the tip features by following the order of evaporation of single atoms from the surface. A change of atom emission sites was observed when a change of the angle between the tip axis and the linearly polarized electric field of the laser was imposed. This enables an optical control of field-evaporation sites. A close optical control of the tip morphology on a scale below 10 nm is thus achievable. Calculations of the field at nanotip apex and absorption maps support the experimental observations. Based on the present study, methods can be developed for reshaping nanotips at the nanometer level. This finding opens perspectives for numerous applications, making use of nanotips as probes or field emitters, and for plasmonic devices.

  10. Interference of processing variables on the mechanical behavior of nano composites HDPE/clay; Interferencia das variaveis de processamento no comportamento mecanico de nanocompositos PEAD/argila

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Universidade Federal do Piaui, Teresina, PI (Brazil); Souza, D.D.; Nobrega, K.C.; Araujo, E.M.; Melo, T.J. [Universidade Federal de Campina Grande - UAEMa Campina Grande, PB (Brazil)

    2010-07-01

    Nano composites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer / organo clay (PE-g-MA / organo clay) prepared in an internal mixer. The concentrate was incorporated into the matrix of PEAD by two methods: (I) twin screw contrarrotational extruder and (II) twin screw corrotational extruder, using two thread profiles (ROS and 2KB90), after extrusion, the specimens of the extruded composites were injection molded. The diffraction of X-ray was used to analyze the degree of expansion of the clays prepared, and the degree of exfoliation of nano composites developed. The interference of processing variables on mechanical properties was studied by the behavior of the modulus and tensile strength of nano composite systems. Observed similar behavior in the use of thread (or 2KB90 ROS) of the nano composites, with a reduction in modulus and tensile strength. (author)

  11. Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale

    DEFF Research Database (Denmark)

    Wiedenmann, D.; Hauch, Anne; Grobety, B.

    2010-01-01

    ), material degradation and evaporation can occur, e.g., from the cell-sealing material, leading to poisoning effects and aging mechanisms that decrease the cell efficiency and long-term durability. To investigate such cell degradation processes, thorough examination of SOCs often requires a chemical...... approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Risø DTU, Denmark. Additionally, we present results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation of sealing material....

  12. Nano-scale surface modification of materials with slow, highly charged ion beams

    International Nuclear Information System (INIS)

    Sakurai, M.; Tona, M.; Takahashi, S.; Watanabe, H.; Nakamura, N.; Yoshiyasu, N.; Yamada, C.; Ohtani, S.; Sakaue, H.A.; Kawase, Y.; Mitsumori, K.; Terui, T.; Mashiko, S.

    2007-01-01

    Some results on surface modification of Si and graphite with highly charged ions (HCIs) are presented. Modified surfaces were observed using scanning tunneling microscopy. Crater-like structure with a diameter in nm region is formed on a Si(1 1 1)-(7 x 7) surface by the incidence of a single HCI. The protrusion structure is formed on a highly oriented pyrolytic graphite surface on the other hand, and the structure becomes an active site for molecular adsorption. A new, intense HCI source and an experimental apparatus are under development in order to process and observe aligned nanostructures created by the impact of collimated HCI beam

  13. Scaling behaviour of randomly alternating surface growth processes

    CERN Document Server

    Raychaudhuri, S

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depe...

  14. Finite-size scaling of survival probability in branching processes

    OpenAIRE

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro

    2014-01-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...

  15. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Science.gov (United States)

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  16. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    Science.gov (United States)

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  17. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.

    Science.gov (United States)

    Cui, Zhe; Yin, Long; Wang, Qingjun; Ding, Jianfu; Chen, Qingmin

    2009-09-15

    Superhydrophobic surfaces with multi-scale nano/microstructures have been prepared on epoxy paint surfaces using a feasible dip-coating process. The microstructures with 5-10 microm protuberances were first prepared on epoxy paint surface by sandblast. Then the nanostructures were introduced on the microstructure surface by anchoring 50-100 nm SiO(2) particles (nano-SiO(2)) onto the sandblasted paint surface, which was completed by dip-coating with a nano-SiO(2)/epoxy adhesive solution (M1). At last the surface was further modified for enhancing hydrophobicity by another dip-coating with a solution of a low surface energy polymer, aminopropyl terminated polydimethylsiloxane (ATPS) modified epoxy adhesive (M2). The water contact angle of the as-prepared samples reached as high as 167.8 degrees and the sliding angle was 7 degrees. The prepared superhydrophobic surface exhibited excellent durability to the high speed scouring test and high stability in neutral and basic aqueous solutions and some common organic solvents. In addition, this method can be adopted to fabricate large scale samples with a good homogeneity of the whole surface at very low cost.

  18. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  19. Replication Fidelity Assessment in Nano Moulding

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2015-01-01

    to remove technology barrier between lab-scale proof-of-principle and high-volume low-cost production of nanotechnology-based products. In the current study research work has been devoted to develop methods and approaches to process chain characterization for final polymer micro and nano structures...

  20. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens

    Science.gov (United States)

    El-Moslamy, Shahira H.; Elkady, Marwa F.; Rezk, Ahmed H.; Abdel-Fattah, Yasser R.

    2017-03-01

    Development of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.8 nm) from extracellular filtrate of local endophytic T. harzianum SYA.F4 strain which have interested mixed bioactive metabolites (alkaloids, flavonoids, tannins, phenols, nitrate reductase (320 nmol/hr/ml), carbohydrate (25 μg/μl) and total protein concentration (2.5 g/l) was reported. Industrial mycosynthesis of nano-Ag can be induced with different characters depending on the fungal cultivation and physical conditions. Taguchi design was applied to improve the physicochemical conditions for nano-Ag production, and the optimum conditions which increased its mass weight 3 times larger than a basal condition were as follows: AgNO3 (0.01 M), diluted reductant (10 v/v, pH 5) and incubated at 30 °C, 200 rpm for 24 hr. Kinetic conversion rates in submerged batch cultivation in 7 L stirred tank bioreactor on using semi-defined cultivation medium was as follows: the maximum biomass production (Xmax) and maximum nano-Ag mass weight (Pmax) calculated (60.5 g/l and 78.4 g/l respectively). The best nano-Ag concentration that formed large inhibition zones was 100 μg/ml which showed against A.alternate (43 mm) followed by Helminthosporium sp. (35 mm), Botrytis sp. (32 mm) and P. arenaria (28 mm).

  1. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Elijah J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pinto, Roger A. [Department of Chemical Engineering, University of Michigan, Ann Arbor (United States); Shi, Xiangyang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Qingguo, E-mail: qhuang@uga.edu [Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer nZVIs were synthesized using a layer-by-layer or poly(acrylic acid) stabilization approach. Black-Right-Pointing-Pointer These nZVIs were used to degrade TCE and PCB. Black-Right-Pointing-Pointer nZVI coatings impacted reactivity by altering pollutants/particle interactions. Black-Right-Pointing-Pointer Smaller nZVI particle size led to greater reactivity. - Abstract: Nano-scale zerovalent iron (nZVI) has been studied in recent years for environmental remediation applications such as the degradation of chlorinated organic contaminants. To overcome limitations related to the transport of nZVI, it is becoming common to add a polymer stabilizer to limit aggregation and enhance the particle reactivity. Another method investigated to enhance particle reactivity has been to limit particle size through novel synthesis techniques. However, the relative impacts of particle size and interactions of the chemicals with the coatings are not yet well understood. The purpose of this study was to investigate the mechanisms of particle size and polymer coating or polyelectrolyte multilayer (PEM) synthesis conditions on degradation of two common chlorinated contaminants: trichloroethylene (TCE) and polychlorinated biphenyls (PCBs). This was accomplished using two different synthesis techniques, a layer-by-layer approach at different pH values or iron reduction in the presence of varying concentrations of poly(acrylic acid). nZVI produced by both techniques yielded higher degradation rates than a traditional approach. The mechanistic investigation indicated that hydrophobicity and sorption to the multilayer impacts the availability of the hydrophobic compound to the nZVI and that particle size also had a large role with smaller particles having stronger dechlorination rates.

  2. New SCALE-4 features related to cross-section processing

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.; Greene, N.M.; Parks, C.V.

    1991-01-01

    The SCALE code system has a standardized scheme for processing problem-dependent cross section from problem-independent waste libraries. Some improvements and new capabilities in the processing scheme have been incorporated into the new Version 4 release of the SCALE system. The new features include the capability to consider annular cylindrical and spherical unit cells, and improved Dancoff factor formulation, and changes to the NITAWL-II module to perform resonance self-shielding with reference to infinite dilute values. A review of these major changes in the cross-section processing scheme for SCALE-4 is presented in this paper

  3. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.

    Directory of Open Access Journals (Sweden)

    Corina Frick

    Full Text Available Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.

  4. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  5. Identification of low order models for large scale processes

    NARCIS (Netherlands)

    Wattamwar, S.K.

    2010-01-01

    Many industrial chemical processes are complex, multi-phase and large scale in nature. These processes are characterized by various nonlinear physiochemical effects and fluid flows. Such processes often show coexistence of fast and slow dynamics during their time evolutions. The increasing demand

  6. Interactions of radionuclides and CO2 with clays: elucidating mechanisms at nano-scale level

    International Nuclear Information System (INIS)

    Yang, Wei

    2014-01-01

    In order to predict and regulate the environmental impact of human activities such as uranium mining and radioactive waste disposal, it is necessary to understand the behavior of actinides in the environment because their interaction with clay mineral is an important factor to control the migration of radionuclide in the environment. The behavior of actinides in the soil is mainly the surface adsorption interactions, which change the forms of radioactive elements and reduces the mobility of actinides in the natural systems. Therefore, it is important to search how the actinides interact with clay mineral such as the fundamental process of surface precipitation. Uranium is the predominant heavy metal content of the final waste in the nuclear fuel cycle (≥95% UO 2 ). In addition, uranium is a major contaminant in the soil, subsurface and groundwater as a result of human activity. Under standard environmental conditions, the most stable chemical form of U(VI) is the uranyl ion UO 2 2+ , which is potentially very mobile and readily complexes with organic and inorganic matter. On the other hand, carbon dioxide is an important greenhouse gas, warming the earth's surface to a higher temperature by reducing outward radiation. However, problems may occur when the atmospheric concentration of greenhouse gases increases. Amounts of carbon dioxide were produced since the industrial revolution, which is behind the significant global warming and rising sea level. Clay minerals are of great practical importance here, in storage of carbon dioxide due to its hydraulic permeability and ability to retain mobile species. We have chosen kaolinite and montmorillonite as prototypes of clay minerals of 1:1 and 2:1. Classical Monte Carlo (MC) and molecular dynamics (MD) methods have been used in this work in order to understand the adsorption behaviour of radionuclide and carbon dioxide in clays surface. In this thesis, we will investigate first the adsorption of uranyl on kaolinite

  7. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics

    Directory of Open Access Journals (Sweden)

    Han Li

    2017-12-01

    Full Text Available Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS, bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100–200 nm and the InSb nano-phase with a typical size of 5–15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.

  8. Scaling considerations for modeling the in situ vitrification process

    International Nuclear Information System (INIS)

    Langerman, M.A.; MacKinnon, R.J.

    1990-09-01

    Scaling relationships for modeling the in situ vitrification waste remediation process are documented based upon similarity considerations derived from fundamental principles. Requirements for maintaining temperature and electric potential field similarity between the model and the prototype are determined as well as requirements for maintaining similarity in off-gas generation rates. A scaling rationale for designing reduced-scale experiments is presented and the results are assessed numerically. 9 refs., 6 figs

  9. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  10. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    Science.gov (United States)

    Plaza Rodriguez, Nayomi Z.

    modifications, namely, adhesive infiltration and acetylation, on the wood nanostructure as well as its moisture-induced swelling. Tangential-longitudinal latewood loblolly pine 0.5 mm thick sections were acetylated or treated with an adhesive (Phenol-formaldehyde (PF) or polymeric methylene diisocyanate (pMDI)) using deuterated or hydrogenated chemicals. Contrast variation experiments on wood modified with deuterated chemicals revealed that PF can infiltrate the regions between the elementary fibrils, while acetylation does not. The moisture-induced swelling of the chemically modified wood was studied, by studying the samples modified with hydrogenated chemicals using SANS and the previously built humidity chamber. These studies revealed that while both PF and pMDI can infiltrate the microfibrils, only PF reduced significantly the swelling at both the elementary fibril and bulk levels. In acetylated samples, the elementary fibril spacing was proportional to the moisture-content of the sample, which was reduced with increasing acetylation. This suggested that the acetylation treatment did not reduce the swelling at the elementary fibril but prevented water from entering the microfibril by modifying the regions surrounding the elementary fibrils. Using quasi-elastic neutron scattering (QENS) and a custom-built in situ relative humidity sample environment I measured experimentally the (5 - 400 ps) water dynamics inside wood cell walls for the first time and found that there are two types of bound water in the cell wall, namely, slow and fast water. The motion of both water types is well described by a jump-diffusion model, which corresponds to water molecules whose movement follows a stop and go process. Here, the slow water corresponds to water molecules that are highly associated to the wood polymers, whereas the fast water corresponds to water confined inside nanopores within the wood cell wall.

  11. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  12. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  13. Saltstone studies using the scaled continuous processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Facility since its conception with bench-scale laboratory experiments, mid-scale testing at vendor facilities, and consultations and testing at the Saltstone Facility. There have been minimal opportunities for the measurement of rheological properties of the grout slurry at the Saltstone Production Facility (SPF); thus, the Scaled Continuous Processing Facility (SCPF), constructed to provide processing data related to mixing, transfer, and other operations conducted in the SPF, is the most representative process data for determining the expected rheological properties in the SPF. These results can be used to verify the laboratory scale experiments that support the SPF using conventional mixing processes that appropriately represent the shear imparted to the slurry in the SPF.

  14. Waste Receiving and Processing (WRAP) Weight Scale Analysis Results

    International Nuclear Information System (INIS)

    JOHNSON, M.D.

    2000-01-01

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures

  15. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  16. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  17. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  18. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  19. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  20. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  1. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  2. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.; Chae, R. S.; Bihannic, I.; Michot, L.; Guttmann, P.; Thieme, J.; Schneider, G.; Monteiro, P. J. M.; Levitz, P.

    2012-01-01

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a

  3. Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results

    International Nuclear Information System (INIS)

    JOHNSON, M.D.

    1999-01-01

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures

  4. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  5. Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

    CERN Document Server

    Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research

    2012-01-01

    Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...

  6. Scaling behaviour of randomly alternating surface growth processes

    International Nuclear Information System (INIS)

    Raychaudhuri, Subhadip; Shapir, Yonathan

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depend on the timing of the applications. The analytical results are supported by numerical simulations of various pairs of primary processes and with different distribution functions. Self-affine surfaces grown by two randomly alternating processes are common in nature (e.g., due to randomly changing weather conditions) and in man-made devices such as rechargeable batteries

  7. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  8. The Impact of Process Scaling on Scratchpad Memory Energy Savings

    Directory of Open Access Journals (Sweden)

    Bennion Redd

    2014-09-01

    Full Text Available Scratchpad memories have been shown to reduce power consumption, but the different characteristics of nanometer scale processes, such as increased leakage power, motivate an examination of how the benefits of these memories change with process scaling. Process and application characteristics affect the amount of energy saved by a scratchpad memory. Increases in leakage as a percentage of total power particularly impact applications that rarely access memory. This study examines how the benefits of scratchpad memories have changed in newer processes, based on the measured performance of the WIMS (Wireless Integrated MicroSystems microcontroller implemented in 180- and 65-nm processes and upon simulations of this microcontroller implemented in a 32-nm process. The results demonstrate that scratchpad memories will continue to improve the power dissipation of many applications, given the leakage anticipated in the foreseeable future.

  9. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  10. Photoresponsive smart surface of LC azo-dendrimer: photomanipulation of topological structures and real-time imaging at a nano-scale

    Science.gov (United States)

    Araoka, Fumito; Eremin, Alexey; Aya, Satoshi; Lee, Guksik; Ito, Atsuki; Nadasi, Hajnalka; Sebastian, Nerea; Ishikawa, Ken; Haba, Osamu; Stannarius, Ralf; Yonetake, Koichiro; Takezoe, Hideo

    2017-02-01

    In this paper, we review some results on our recent studies on photo-induced phenomena of liquid crystals (LCs) by means of interfaces decorated with a photo-responsive azobenzene dendrimer (azo-dendrimer). The azo-dendrimer molecules doped in a LC are spontaneously segregated from bulk and adsorbed onto substrate/LC or solvent/LC interfaces, and their photo-isomerization can bring about the so-called anchoring transition, i.e. reversible switching between homeotropic and planar alignment states of the bulk LC, when exposed to UV/VIS light. In addition to photoinduced anchoring transition in a LC cell, several interesting photo-induced phenomena through the azo-dendrimerdecorated interfaces have been reported, such as photo-induced transformation of the interior topological structures of nematic, cholesteric and smectic droplets, photo-mechanical motion of the micro particles dispersed in a nematic matrix, and optical assistance of the athermal anchoring transition with the aid of a perfluoropolymer surface. In addition to such phenomena, we also discuss the conditions of such photo-responsive interfaces in terms of the polar anchoring energy at the interface upon photo-isomerization under illumination of UV and/or VIS lights. The anisotropy of the polar anchoring energy was evaluated experimentally by means of Polarization Microscopy (POM), Dielectric Spectroscopy (DS), Second Harmonic Generation (SHG), and Attenuated Total Reflection Fourier Transform Infrared (ATR-IR) Spectroscopy, and theoretically based on the simple Rapini-Papoular model. We also demonstrate the continuous bulk orientation change by the photo-dynamic process through the fine control of the polar anchoring energy. Besides, the state-of-the-art video-rate atomic force microscopy (ν-AFM) was carried out to visualize the dynamics of such interfaces at a nano-meter scale.

  11. Rationalization of specific structure formation in electrospinning process: Study on nano-fibrous PCL- and PLGA-based scaffolds.

    Science.gov (United States)

    Saeed, Mahdi; Mirzadeh, Hamid; Zandi, Mojgan; Irani, Shiva; Barzin, Jalal

    2015-12-01

    Formation of specific structures on poly-ɛ-caprolactone (PCL) and poly lactide-co-glycolide (PLGA) based electrospun mats is rationalized and the effect of interactive parameters; high voltage and flow rate on unique surface topography is evaluated. By increasing the collecting time in electrospinning process and enhancing fiber to fiber repulsion, surface characteristics of mats changes from nano- to micro-topography. In this study surface topography of the fabricated mats based on PCL and PLGA were assessed using AFM and SEM techniques to display the distinct phenomenon occurs on collected random fibers. In this research the rationale behind the formation of bump and flower like structures on fibrous mats was discussed. Because of great potential application of the fabricated substrates in the fields of medical purposes, cell-matrix interaction was evaluated and in vitro biological test with human dermal fibroblast and mouse L929 fibroblast cells was performed to study the cell responses to different roughness of nano-fibers collected at different time intervals. Our results show that after 7 days, cell proliferation is improved on PCL collected at 40 min in the case of human fibroblast cells and on PCL collected in 70 min in the case of L929 mouse fibroblast cells. © 2015 Wiley Periodicals, Inc.

  12. Patterning of gold nano-octahedra using electron irradiation combined with thermal treatment and post-cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Kum, Jong Min [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of); Lee, Hyeok Moo [Korea Atomic Energy Research Institute (KAERI), Research Division for Industry and Environment (Korea, Republic of); Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of)

    2012-03-15

    A novel approach to pattern nanocrystalline gold (Au) octahedra is presented based on electron irradiation combined with thermal treatment and post-cleaning process using HAuCl{sub 4}-loaded poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) as a precursor material. The BCP tends to cross-link under electron irradiation, and thus a patterned film can be prepared by selectively irradiating an electron beam onto a precursor film using a shadow mask. A post-thermal treatment leads to the formation of crystalline Au nano-octahedra inside the patterned film with a help of the BCP acting as a capping agent. Subsequently, the BCP can be removed by O{sub 2} plasma etching combined with oxidative degradation, with the Au nanoparticles remaining. As a result, a patterned film consisting of high-purity nanocrystalline Au octahedra is fabricated. The sizes of the Au octahedral nanoparticles can be readily controlled from 49 to 101 nm by changing the thickness of the precursor film. The patterned Au nano-octahedra films exhibit excellent surface-enhanced Raman scattering behavior with the maximum enhancement factor of {approx}10{sup 6}.

  13. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  14. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  15. Determination of lead 210 in scales from industrial processes

    International Nuclear Information System (INIS)

    Faria, Lígia S.; Moreira, Rubens M.; Kastner, Geraldo F.; Barbosa, João B.S.

    2017-01-01

    Industrial processes such as oil and gas extraction and groundwater exploitation are examples of installations that can accumulate naturally occurring radioactive materials (NORM) during the extraction and production. Lead-210 deposits in the production can be formed by the same mechanisms that occur in the environment through the support of Radon-222, (where 210 Pb is produced at 222 Rn decay) or without support, as 210 Pb. The objective of this work is to evaluate the mineralogical characteristics and determine the activity of lead-210 in the scales using the X-Ray Diffraction and Gamma Spectrometry techniques. Were analyzed fifteen samples, four scales from oil industry, ten scales from groundwater conductors and one for groundwater supply pipe. The highest activity found in the oil scale and groundwater conductors scale was 0.30 ± 0.06 Bq g -1 and 3.80 ± 0.20 Bq g -1 , respectively. (author)

  16. Determination of lead 210 in scales from industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Lígia S.; Moreira, Rubens M.; Kastner, Geraldo F.; Barbosa, João B.S., E-mail: ligsfaria@gmail.com, E-mail: rubens@cdtn.br, E-mail: gfk@cdtn.br, E-mail: jbsb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Industrial processes such as oil and gas extraction and groundwater exploitation are examples of installations that can accumulate naturally occurring radioactive materials (NORM) during the extraction and production. Lead-210 deposits in the production can be formed by the same mechanisms that occur in the environment through the support of Radon-222, (where {sup 210}Pb is produced at {sup 222}Rn decay) or without support, as {sup 210}Pb. The objective of this work is to evaluate the mineralogical characteristics and determine the activity of lead-210 in the scales using the X-Ray Diffraction and Gamma Spectrometry techniques. Were analyzed fifteen samples, four scales from oil industry, ten scales from groundwater conductors and one for groundwater supply pipe. The highest activity found in the oil scale and groundwater conductors scale was 0.30 ± 0.06 Bq g{sup -1} and 3.80 ± 0.20 Bq g{sup -1}, respectively. (author)

  17. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  18. Role of phase breaking processes on resonant spin transfer torque nano-oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2018-05-01

    Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.

  19. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  20. Pilot-scale tests of HEME and HEPA dissolution process

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  1. Pilot-scale tests of HEME and HEPA dissolution process

    International Nuclear Information System (INIS)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME's) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump

  2. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  3. Enhancement of a-IGZO TFT Device Performance Using a Clean Interface Process via Etch-Stopper Nano-layers

    Science.gov (United States)

    Chung, Jae-Moon; Zhang, Xiaokun; Shang, Fei; Kim, Ji-Hoon; Wang, Xiao-Lin; Liu, Shuai; Yang, Baoguo; Xiang, Yong

    2018-05-01

    To overcome the technological and economic obstacles of amorphous indium-gallium-zinc-oxide (a-IGZO)-based display backplane for industrial production, a clean etch-stopper (CL-ES) process is developed to fabricate a-IGZO-based thin film transistor (TFT) with improved uniformity and reproducibility on 8.5th generation glass substrates (2200 mm × 2500 mm). Compared with a-IGZO-based TFT with back-channel-etched (BCE) structure, a newly formed ES nano-layer ( 100 nm) and a simultaneous etching of a-IGZO nano-layer (30 nm) and source-drain electrode layer are firstly introduced to a-IGZO-based TFT device with CL-ES structure to improve the uniformity and stability of device for large-area display. The saturation electron mobility of 8.05 cm2/V s and the V th uniformity of 0.72 V are realized on the a-IGZO-based TFT device with CL-ES structure. In the negative bias temperature illumination stress and positive bias thermal stress reliability testing under a ± 30 V bias for 3600 s, the measured V th shift of CL-ES-structured device significantly decreased to - 0.51 and + 1.94 V, which are much lower than that of BCE-structured device (- 3.88 V, + 5.58 V). The electrical performance of the a-IGZO-based TFT device with CL-ES structure implies that the economic transfer from a silicon-based TFT process to the metal oxide semiconductor-based process for LCD fabrication is highly feasible.

  4. Enhancement of a-IGZO TFT Device Performance Using a Clean Interface Process via Etch-Stopper Nano-layers.

    Science.gov (United States)

    Chung, Jae-Moon; Zhang, Xiaokun; Shang, Fei; Kim, Ji-Hoon; Wang, Xiao-Lin; Liu, Shuai; Yang, Baoguo; Xiang, Yong

    2018-05-29

    To overcome the technological and economic obstacles of amorphous indium-gallium-zinc-oxide (a-IGZO)-based display backplane for industrial production, a clean etch-stopper (CL-ES) process is developed to fabricate a-IGZO-based thin film transistor (TFT) with improved uniformity and reproducibility on 8.5th generation glass substrates (2200 mm × 2500 mm). Compared with a-IGZO-based TFT with back-channel-etched (BCE) structure, a newly formed ES nano-layer (~ 100 nm) and a simultaneous etching of a-IGZO nano-layer (30 nm) and source-drain electrode layer are firstly introduced to a-IGZO-based TFT device with CL-ES structure to improve the uniformity and stability of device for large-area display. The saturation electron mobility of 8.05 cm 2 /V s and the V th uniformity of 0.72 V are realized on the a-IGZO-based TFT device with CL-ES structure. In the negative bias temperature illumination stress and positive bias thermal stress reliability testing under a ± 30 V bias for 3600 s, the measured V th shift of CL-ES-structured device significantly decreased to - 0.51 and + 1.94 V, which are much lower than that of BCE-structured device (- 3.88 V, + 5.58 V). The electrical performance of the a-IGZO-based TFT device with CL-ES structure implies that the economic transfer from a silicon-based TFT process to the metal oxide semiconductor-based process for LCD fabrication is highly feasible.

  5. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  6. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing

    International Nuclear Information System (INIS)

    Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A.

    2009-01-01

    In this study, a new processing technique, friction stir processing (FSP) was attempted to incorporate nano-sized Al 2 O 3 into 6082 aluminum alloy to form particulate composite surface layer. Samples were subjected to various numbers of FSP passes from one to four, with and without Al 2 O 3 powder. Microstructural observations were carried out by employing optical and scanning electron microscopy (SEM) of the cross sections both parallel and perpendicular to the tool traverse direction. Mechanical properties include microhardness and wear resistance, were evaluated in detail. The results show that the increasing in number of FSP passes causes a more uniform in distribution of nano-sized alumina particles. The microhardness of the surface improves by three times as compared to that of the as-received Al alloy. A significant improvement in wear resistance in the nano-composite surfaced Al is observed as compared to the as-received Al

  7. Charm production and mass scales in deep inelastic processes

    International Nuclear Information System (INIS)

    Close, F.E.; Scott, D.M.; Sivers, D.

    1976-07-01

    Because of their large mass, the production of charmed particles offers the possibility of new insight into fundamental dynamics. An approach to deep inelastic processes is discussed in which Generalized Vector Meson Dominance is used to extend parton model results away from the strict Bjorken scaling limit into regions where mass scales play an important role. The processes e + e - annihilation, photoproduction, deep inelastic leptoproduction, photon-photon scattering and the production of lepton pairs in hadronic collisions are discussed. The GCMD approach provides a reasonably unified framework and makes specific predictions concerning the way in which these reactions reflect an underlying flavour symmetry, broken by large mass differences. (author)

  8. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  9. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  10. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    International Nuclear Information System (INIS)

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-01-01

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  11. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  12. Development of Ultra-High Mechanical Damping Structures Based on the Nano-Scale Properties of Shape Memory Alloys

    Science.gov (United States)

    2013-07-29

    Condensada Facultad de Ciencia y Tecnologia Aptdo 644 Bilbao, Spain 48080 EOARD Grant 10-3074 Report Date: July 2013 Final Report...Ciencia y Tecnologia Aptdo 644 Bilbao, Spain 48080 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY...Ciencia y Tecnologia , Aptdo 644, 48080 Bilbao, Spain. E-mail: jose.sanjuan@ehu.es Summary In recent years it was discovered that micro and nano

  13. Finite-size scaling of survival probability in branching processes.

    Science.gov (United States)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  14. SHAPE FROM TEXTURE USING LOCALLY SCALED POINT PROCESSES

    Directory of Open Access Journals (Sweden)

    Eva-Maria Didden

    2015-09-01

    Full Text Available Shape from texture refers to the extraction of 3D information from 2D images with irregular texture. This paper introduces a statistical framework to learn shape from texture where convex texture elements in a 2D image are represented through a point process. In a first step, the 2D image is preprocessed to generate a probability map corresponding to an estimate of the unnormalized intensity of the latent point process underlying the texture elements. The latent point process is subsequently inferred from the probability map in a non-parametric, model free manner. Finally, the 3D information is extracted from the point pattern by applying a locally scaled point process model where the local scaling function represents the deformation caused by the projection of a 3D surface onto a 2D image.

  15. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  16. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    International Nuclear Information System (INIS)

    Rahimi, M.H.; Saramad, S.; Tabaian, S.H.; Marashi, S.P.; Zolfaghari, A.; Mohammadalinezhad, M.

    2009-01-01

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  17. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M.H. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saramad, S., E-mail: ssaramad@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Hafez Avenue, Tehran (Iran, Islamic Republic of); Tabaian, S.H.; Marashi, S.P. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zolfaghari, A. [Chemistry and Chemical Engineering Research Centre of Iran, Tehran (Iran, Islamic Republic of); Mohammadalinezhad, M. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2009-10-15

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  18. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    Science.gov (United States)

    Rahimi, M. H.; Saramad, S.; Tabaian, S. H.; Marashi, S. P.; Zolfaghari, A.; Mohammadalinezhad, M.

    2009-10-01

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 °C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  19. Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    Directory of Open Access Journals (Sweden)

    Masaharu Nishikino

    2017-01-01

    Full Text Available The initial stages of the femtosecond (fs laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton’s rings (NRs were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  20. Precision Scaling of Neural Networks for Efficient Audio Processing

    OpenAIRE

    Ko, Jong Hwan; Fromm, Josh; Philipose, Matthai; Tashev, Ivan; Zarar, Shuayb

    2017-01-01

    While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural networks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and ...

  1. A sustainable process for gram-scale synthesis of stereoselective ...

    Indian Academy of Sciences (India)

    RAJAN ABRAHAM

    2018-02-07

    Feb 7, 2018 ... for the additional structure modification.17–20. Acrylic acid derivatives ... mild conditions, and application in synthesizing bio- logically ... cal process for the gram-scale synthesis of streoselective ... ate yield of desired product 2 (58%, Table 1, entry. 2). .... Cross-Coupling and Atom-Economic Addition Reac-.

  2. Scaling laws in high energy electron-nuclear processes

    International Nuclear Information System (INIS)

    Chemtob, M.

    1980-11-01

    We survey the parton model description of high momentum transfer electron scattering processes with nuclei. We discuss both nucleon and quark parton models and confront the patterns of scaling laws violations, induced by binding effects, in the former, and perturbative QCD effects, in the latter

  3. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  4. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-08-01

    Full Text Available The links between neuropathies of the peripheral nervous system (PNS, including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies.

  5. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  6. Solution processed ternary blend nano-composite charge regulation layer to enhance inverted OLED performances

    Science.gov (United States)

    Kaçar, Rifat; Mucur, Selin Pıravadılı; Yıldız, Fikret; Dabak, Salih; Tekin, Emine

    2018-04-01

    Inverted bottom-emission organic light emitting diodes (IBOLEDs) have attracted increasing attention due to their exceptional air stability and applications in active-matrix displays. For gaining high IBOLED device efficiencies, it is crucial to develop an effective strategy to make the bottom electrode easy for charge injection and transport. Charge selectivity, blocking the carrier flow towards the unfavourable side, plays an important role in determining charge carrier balance and accordingly radiative recombination efficiency. It is therefore highly desirable to functionalize an interfacial layer which will perform many different tasks simultaneously. Here, we contribute to the hole-blocking ability of the zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite (NC) interlayer with the intention of increasing the OLED device efficiency. With this purpose in mind, a small amount of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) was added as a hole-blocking molecule into the binary blend of ZnO and PEI solution. The device with a ternary ZnO:PEI:TPBi NC interlayer achieved a maximum current efficiency of 38.20 cd A-1 and a power efficiency of 34.29 lm W-1 with a luminance of 123 200 cd m-2, which are high performance parameters for inverted device architecture. The direct comparisons of device performances incorporating ZnO only, ZnO/PEI bilayers, and ZnO:PEI binary NC counterparts were also performed, which shed light on the origin of device performance enhancement.

  7. Ripple scalings in geothermal facilities, a key to understand the scaling process

    Science.gov (United States)

    Köhl, Bernhard; Grundy, James; Baumann, Thomas

    2017-04-01

    Scalings are a widespread problem among geothermal plants which exploit the Malm Aquifer in the Bavarian Molasse Zone. They effect the technical and economic efficiency of geothermal plants. The majority of the scalings observed at geothermal facilities exploring the Malm aquifer in the Bavarian Molasse Basin are carbonates. They are formed due to a disruption of the lime-carbonic-acid equilibrium during production caused by degassing of CO2. These scalings are found in the production pipes, at the pumps and at filters and can nicely be described using existing hydrogeochemical models. This study proposes a second mechanism for the formation of scalings in ground-level facilities. We investigated scalings which accumulated at the inlet to the heat exchanger. Interestingly, the scalings were recovered after the ground level facilities had been cleaned. The scalings showed distinct ripple structures, which is likely a result of solid particle deposition. From the ripple features the the flow conditions during their formation were calculated based on empirical equations (Soulsby, 2012). The calculations suggest that the deposits were formed during maintenance works. Thin section images of the sediments indicate a two-step process: deposition of sediment grains, followed by stabilization with a calcite layer. The latter likely occured during maintenance. To prevent this type of scalings blocking the heat exchangers, the maintenance procedure has to be revised. References: Soulsby, R. L.; Whitehouse, R. J. S.; Marten, K. V.: Prediction of time-evolving sand ripples in shelf seas. Continental Shelf Research 2012, 38, 47-62

  8. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  9. Removal of Dibenzothiophene Using Activated Carbon/γ-Fe2O3 Nano-Composite: Kinetic and Thermodynamic Investigation of the Removal Process

    Directory of Open Access Journals (Sweden)

    Maryam Fayazi

    2015-12-01

    Full Text Available In the present study, removal of dibenzothiophene (DBT from model oil (n-hexane was investigated using magnetic activated carbon (MAC nano-composite adsorbent. The synthesized nano-composite was characterized by FT-IR, FE-SEM, BET and VSM techniques. The MAC nano-composite exhibited a nearly superparamagnetic property with a saturation magnetization (Ms of 29.2 emu g-1, which made it desirable for separation under an external magnetic field. The magnetic adsorbent afforded a maximum adsorption capacity of 38.0 mg DBT g-1 at the optimized conditions (adsorbent dose, 8 g l-1; contact time, 1 h; temperature, 25 °C. Langmuir, Freundlich and Temkin isotherm models were used to fit equilibrium data for MAC nano-composite. Adsorption process could be well described by the Langmuir model. Kinetic studies were carried out and showed the sorption kinetics of DBT was best described by a pseudo-second-order kinetic model. In addition, the MAC nano-composite exhibited good capability of recycling to adsorb DBT in gasoline deep desulfurization.

  10. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  11. Processing and Development of Nano-Scale HA Coatings for Biomedical Application

    National Research Council Canada - National Science Library

    Rabiei, Afsaneh; Thomas, Brent

    2005-01-01

    .... The present study aims to increase the service-life of an orthopedic/dental implant by creating materials that form a strong, long lasting, bond with the Ti substrate as well as juxtaposed bone...

  12. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  13. Nano-structural analysis of fish collagen extracts for new process ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... of materials at the atomic, molecular and macromolecular scales. The greater ... renders nanosized particles more active biologically. (Oberdorster et al. ... safety and quality, design of high performing packaging materials ...

  14. Electro-mechanical properties of free standing micro- and nano-scale polymer-ceramic composites for energy density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paritosh; Borkar, Hitesh [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India); Singh, B.P.; Singh, V.N. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India)

    2015-11-05

    The integration of inorganic fillers in polymer matrix is useful for superior mechanical strength and functional properties of polymer-ceramic composites. We report the fabrication and characterization of polyvinylidene fluoride-CoFe{sub 2}O{sub 4} (PVDF-CFO) (wt% 80:20, respectively) and PVDF-Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–CoFe{sub 2}O{sub 4} (PVDF-PZT-CFO) (wt% 80:10:10, respectively) free standing 50 μm thick ferroelectric-polymer-ceramic composites films. X-ray diffraction (XRD) patterns and Raman spectra revealed the presence of major semi-crystalline β-PVDF along with α-phase which is responsible for ferroelectric nature in both the composite systems. Ferroelectric, dielectric and mechanical strength measurements were performed in order to evaluate the effects of CFO and PZT inorganic fillers in PVDF matrix. The inclusion of CFO and PZT micro-/nano-particles in PVDF polymer matrix improved the polarization behavior, dielectric properties and mechanical strength. The energy density was calculated by polarization-electric field hysteresis loop and found in the range of 6–8 J/cm{sup 3} may be useful for microelectronics. - Graphical abstract: Large area PVDF-PZT-CFO nano- and micro-composite films have been fabricated for high energy density storage flexible capacitor. Presence of nanocrystalline PZT and CFO particles in polymer matrix significantly enhanced their energy density capacity. - Highlights: • Physical interaction of cobalt iron oxide with polymer matrix results β-PVDF phase. • Evidence of Micro and Nano crystalline CFO and PZT fillers in polymer matrix. • The CFO and PZT fillers provide better mechanical strength to composite films. • PVDF-ceramic nanocomposites show low leakage behavior for high electric field.

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Sonnenthale, E.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  16. Study on treatment of radioactive liquid waste from uranium ore processing by the use of nano Fe_3O_4 KT particles

    International Nuclear Information System (INIS)

    Vuong Huu Anh; Nguyen Ba Tien; Doan Thi Thu Hien; Luu Cao Nguyen; Nguyen Van Chinh

    2015-01-01

    Nano Fe_3O_4 KT was produced from the Military Institute of Science and Technology were used to adsorbed heavy metal elements in liquid waste. In this report, the nano Fe_3O_4 KT particles sized 80-100 nm and specific surface area was 50-70 m"2/g was applied to study the adsorption of radioactive elements in the liquid waste of uranium ores processing. The effective parameters on adsorption process included temperature, stirring rate, stirring time, the pH value of the solution, the initial concentration of uranium in solution. The results showed the maximum adsorption capacity of the nano Fe_3O_4 KT was 53.5 mg/g with conditions such as room temperature, stirring speed 120 rounds/minute, the pH value of solution was 8, stirring time about 2 hours (Uranium/materials). From the results obtained, nano Fe_3O_4 KT tested to treatment liquid waste of uranium ore processing after preliminary precipitation removed almost heavy metals and a part of radioactive elements. The results were analyzed on the ICP-MS and α, β total counting, instrument. The solution concentration after treatment was suitable for Vietnam discharge standards into environment (QCVN 40:2011 on Industrial wastewater). (author)

  17. Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study

    Science.gov (United States)

    Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.

    2018-04-01

    We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.

  18. Microwave-assisted flow processing in heterogeneously copper nano-catalyzed reactions

    NARCIS (Netherlands)

    Benaskar, F.

    2012-01-01

    In the last decades, micro-processing and microwave technology have been established as mature technologies, however, mainly instigated by academia. Many advances in micro-process technology have led to novel routes and/or process windows to replace batch operations by more efficient continuous

  19. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  20. Modeling of the topology of energy deposits created by ionizing radiation on a nano-metric scale in cell nuclei in relation to radiation-induced early events

    International Nuclear Information System (INIS)

    Dos Santos, Morgane

    2013-01-01

    Ionizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionizing radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nano-metric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity. In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell

  1. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    Science.gov (United States)

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  2. Development of a Scale-up Tool for Pervaporation Processes

    Directory of Open Access Journals (Sweden)

    Holger Thiess

    2018-01-01

    Full Text Available In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature, axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model.

  3. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  4. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process

    International Nuclear Information System (INIS)

    Karwa, Amogh N; Davis, Virginia A; Tatarchuk, Bruce J; Barron, Troy J

    2012-01-01

    This study demonstrates, for the first time, the manufacturing of novel nano-nonwovens that are comprised of three-dimensionally distributed carbon nanofibers within the matrices of traditional wet-laid nonwovens. The preparation of these nano-nonwovens involves dispersing and flocking carbon nanofibers, and optimizing colloidal chemistry during wet-lay formation. The distribution of nanofibers within the nano-nonwoven was verified using polydispersed aerosol filtration testing, air permeability, low surface tension liquid capillary porometry, SEM and cyclic voltammetry. All these characterization techniques indicated that nanofiber flocks did not behave as large solid clumps, but retained the ‘nanoporous’ structure expected from nanofibers. These nano-nonwovens showed significant enhancements in aerosol filtration performance. The reduction–oxidation reactions of the functional groups on nanofibers and the linear variation of electric double-layer capacitance with nanofiber loading were measured using cyclic voltammetry. More than 65 m 2 (700 ft 2 ) of the composite were made during the demonstration of process scalability using a Fourdrinier-type continuous pilot papermaking machine. The scalability of the process with the control over pore size distribution makes these composites very promising for filtration and other nonwoven applications. (paper)

  5. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    Science.gov (United States)

    Smietana, M.; Koba, M.; Mikulic, P.; Bock, W. J.

    2014-11-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs.

  6. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    International Nuclear Information System (INIS)

    Smietana, M; Koba, M; Mikulic, P; Bock, W J

    2014-01-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs. (paper)

  7. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  8. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  9. Pilot-scale tests of HEME and HEPA dissolution process

    International Nuclear Information System (INIS)

    Qureshi, Z.H.; Strege, D.K.

    1996-01-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (BEME's) and High Efficiency Particulate Airfilters (BEPA) were performed on a 1/5th linear scale. These filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these radioactively contaminated filters will be dissolved using caustic solutions. As a result of these tests, a simple dissolution process was developed. In this process, the contaminated filter is first immersed in boiling 5% caustic solution for 24 hours and then water is sprayed on the filter. These steps break down the filter first chemically and then mechanically. The metal cage is rinsed and considered low level waste. The dissolved filter is pumpable and mixed with high level waste. Compared to earlier dissolution studies using caustic-acid-caustic solutions, the proposed method represents a 66% savings in cycle time and amount of liquid waste generated. This paper provides the details of filter mockups and results of the dissolution tests

  10. Pinning in high performance MgB{sub 2} thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Prikhna, Tatiana, E-mail: prikhna@mail.ru [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Shapovalov, Andrey [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Eisterer, Michael [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Shaternik, Vladimir [G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Academician Vernadsky blvd., Kiev, 03680 (Ukraine); Goldacker, Wilfried [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein (Germany); Weber, Harald W. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Boutko, Viktor [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Grechnev, Gennadiy [B. Verkin Institute for Low Temperature Physics of the National Academy of Sciences of Ukraine, 47, Prospekt Nauky, Kharkiv 61103 (Ukraine); Gusev, Alexandr [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Kovylaev, Valeriy; Shaternik, Anton [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine)

    2017-02-15

    Highlights: • Pinning in MgB{sub 2} depends on the Mg-B-O nano-scaled inhomogeneities. • Finer oxygen-enriched inhomogeneities is the reason of the higher J{sub c} in MgB{sub 2} thin films as compared to bulk. • The results of DOS calculations for MgB{sub 2-x}O{sub x} compounds demonstrate that they have metal-like behavior. • Ordered oxygen distribution in MgB{sub 2} (in pairs or zigzags) reduces binding energy. - Abstract: The comparison of nano-crystalline MgB{sub 2} oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, J{sub c}, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB{sub 2} bulks with high J{sub c} in low (∼10{sup 6} A/cm{sup 2} in 0-1 T at 10 K) and medium magnetic fields contain MgB{sub 0.6-0.8}O{sub 0.8-0.9} nano-inclusions, where δT{sub c} or a combined δT{sub c} (dominant) / δ{sub l} pinning mechanism prevails, while in bulk MgB{sub 2} with high J{sub c} in high magnetic fields (B{sub irr}(18.5 K) = 15 T, B{sub c2}(0 K) = 42.1 T) MgB{sub 1.2-2.7}O{sub 1.8-2.5} nano-layers are present and δ{sub l} pinning prevails. The structure of oxygen-containing films with high J{sub c} in low and high magnetic fields (J{sub c} (0 T) = 1.8 × 10{sup 7} A/cm{sup 2} and J{sub c} (5 T) = 2 × 10{sup 6} A/cm{sup 2} at 10 K) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δ{sub l} pinning is realized. The results of DOS calculations in MgB{sub 2-x}O{sub x} cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, E{sub b}, does not increase sufficiently as compared with that for MgB{sub 2}, while when oxygen atoms form zigzag chains the calculated E{sub b} is even lower (E{sub b} = −1.15712 Ry).

  11. Thermoluminescence property of nano scale Al{sub 2}O{sub 3}: C by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bharthasaradhi, R.; Nehru, L. C. [Department of Medical Physics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu (India)

    2016-05-23

    In this study, thermoluminescence dosimetry material of carbon doped aluminium oxide by combustion method using Aluminium nitrate and Glycine. The Structure of the prepared Sample was carried out by XRD. The sample was nano crystalline in nature. Having hexagonal structure with unit cell parameters a=4.75Å, C=12.99Å. The surface morphology of the prepared nanopowder was carried out through (SEM). The morphology of the prepared sample is platelet structure and functional group analysis carried out through FT-IR Spectrum. The prepared sample was irradiated through γ-ray CO{sup 60} (100 Gy) was used as γ-ray source. The thermoluminescence glow curve of the irradiated sample showed an isolated peak at around 200°C. The result suggest the prepared nanopowder is suitable for medical radiation dosimetry.

  12. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  13. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  14. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    Science.gov (United States)

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  15. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H.

    2002-01-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H 2 O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction

  16. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H. [The University of Illinois, Urbana (United States)

    2002-05-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H{sub 2}O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction.

  17. Capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator

    International Nuclear Information System (INIS)

    Kim, Tae-Hyun; Park, Jea-Gun

    2013-01-01

    We investigated the combined effect of the strained Si channel and hole confinement on the memory margin enhancement for a capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator (ε-Si SGOI). The memory margin for the ε-Si SGOI capacitor-less memory cell was higher than that of the memory cell fabricated on an unstrained Si-on-insulator (SOI) and increased with increasing Ge concentration of the relaxed SiGe layer; i.e. the memory margin for the ε-Si SGOI capacitor-less memory cell (138.6 µA) at a 32 at% Ge concentration was 3.3 times higher than the SOI capacitor-less memory cell (43 µA). (paper)

  18. Photoinduced molecular migration process in polymer matrices: application to the realization of optically organized nano-structures

    International Nuclear Information System (INIS)

    Hubert, Ch.

    2003-06-01

    This work deals with the study of a new all optical structuration process of azo-polymer films. We show that the irradiation with normal incidence of an azo-polymer film by a uniform laser beam which wavelength is in the absorption band of the azo-molecules, can lead to the formation of a quasi hexagonal surface relief grating at the surface of a polymer film. After a brief review of different methods of micro and nano-structuration as well as the properties of azo-polymer films in the case of the surface relief gratings formation, we study in the first part of this manuscript the influence of several experimental parameters on the spontaneous optically controlled formation of these photoinduced structures, among them the light polarization direction and the irradiation power. The different results obtained in our case are then compared with different photo-assisted structuration processes already proposed and whose physical origins are clearly established, in order to determine the key parameters governing the formation of these hexagonal structures as well as their origins. In the second part, a synthesis of the different experiments performed in order to evaluate the validity of effects so called 'optical feedback effect' observed in liquid crystal light valve systems is performed. The interpretation of the photoinduced hexagonal structuration process appears to be difficult: it is not excluded that an optical feedback phenomenon could be at the origin of the structuration process, but at the present, according to the different experiments performed, a new and original phenomenon of structuration adapted to azo-polymers films cannot be excluded in order to fully explain the different results obtained. (author)

  19. Nano grained AZ31 alloy achieved by equal channel angular rolling process

    International Nuclear Information System (INIS)

    Hassani, F.Z.; Ketabchi, M.

    2011-01-01

    Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.

  20. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data