WorldWideScience

Sample records for process heat workshop

  1. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  2. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  3. Workshop on high heat load x-ray optics

    International Nuclear Information System (INIS)

    1990-01-01

    A workshop on ''High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed ''finite element'' and ''finite difference'' calculations comparing experiment with theory and extending theory to optimize performance

  4. Workshop on large molten pool heat transfer summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Workshop on Large Molten Heat Transfer held at Grenoble (France) in March 1994 was organised by CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) with the cooperation of the Principal Working Group on Coolant System Behaviour (FWG2) and in collaboration with the Grenoble Nuclear Research Centre of the French Commissariat a l'Energie Atomique (CEA). Conclusions and recommendations are given for each of the five sessions of the workshops: Feasibility of in-vessel core debris cooling through external cooling of the vessel; Experiments on molten pool heat transfer; Calculational efforts on molten pool convection; Heat transfer to the surrounding water - experimental techniques; Future experiments and ex-vessel studies (open forum discussion)

  5. Proceedings of the 1993 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  7. First international workshop on fundamental aspects of post-dryout heat transfer: proceedings

    International Nuclear Information System (INIS)

    Lee, R.

    1984-12-01

    The purpose of the First International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer was to review recent developments and the state of art in the field of post-dryout heat transfer. The workshop centered on interchanging ideas, reviewing current research results, and defining future research needs. The following five sessions dealing with the fundamental aspects of post-dryout heat transfer were held. A Computer Code Modeling and Flow Phenomena session was held dealing with flow rgimes, drop size, drop formation and behavior, interfacial area, interfacial drag, and computer modeling. A Quenching Phenomena session was held dealing with nature of rewetting, maximum wetting temperature, Leidenfrost phenomenon and heat transfer in the vicinity of quench front. A Low-Void Heat Transfer session was held dealing with inverted annular-flow heat transfer, inverted slug-flow heat transfer thermal non-equilibrium and computer modeling. A Dispersed-Flow Heat Transfer session was held dealing with drop interfacial heat transfer, vapor convection, thermal non-equilibrium and correlations and models

  8. Proceedings of the 1987 coatings for advanced heat engines workshop

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  9. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  10. Proceedings of the 1997 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. U.S.-Japan workshop on 'RF heating and current drive in confinement systems tokamaks'

    International Nuclear Information System (INIS)

    1992-01-01

    The workshop was attended by 8 US scientists and 30 Japanese scientists. The agenda was divided into 2 1/2 days of presentation, 1/2 day group discussions and 1/2 day summary session. There were 10 papers on rf physics, technologies and applications; 6 papers on new concepts, helicity injection and transport; and 6 papers on heating/current drive and scrape-off-layer/divertor conditions. The wide range of topics discussed is an indication of the impressive growth, both in depth and breadth, of the US-Japan workshop in RF Heating and Current Drive. It also benefitted by being combined with the new current drive concepts workshops and the active participation of JAERI scientists. (J.P.N.)

  12. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

  13. Report of the workshop on rf heating in mirror systems

    International Nuclear Information System (INIS)

    Price, R.E.; Woo, J.T.

    1980-08-01

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  14. Ninth Thermal and Fluids Analysis Workshop Proceedings

    Science.gov (United States)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  15. 77 FR 46096 - Statistical Process Controls for Blood Establishments; Public Workshop

    Science.gov (United States)

    2012-08-02

    ...] Statistical Process Controls for Blood Establishments; Public Workshop AGENCY: Food and Drug Administration... workshop entitled: ``Statistical Process Controls for Blood Establishments.'' The purpose of this public workshop is to discuss the implementation of statistical process controls to validate and monitor...

  16. Demystifying the peer-review process - workshop

    Science.gov (United States)

    Scientific writing and peer-review are integral parts of the publishing process. This workshop aims to demystify the peer-review process for early career scientists and provide insightful tips for streamlining the submission and peer review process for all researchers. Providing ...

  17. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  18. Helping International Students Succeed Academically through Research Process and Plagiarism Workshops

    Science.gov (United States)

    Chen, Yu-Hui; Van Ullen, Mary K.

    2011-01-01

    Workshops on the research process and plagiarism were designed to meet the needs of international students at the University at Albany. The research process workshop covered formulating research questions, as well as locating and evaluating sources. The plagiarism workshop focused on acknowledging sources, quoting, paraphrasing, and summarizing…

  19. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  1. Proceedings of the workshop on elementary process in hydrogen recycling

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu.

    1982-03-01

    On September 7 and 8, 1981, a workshop was held at the Institute of Plasma Physics to review the state of the art of the study of elementary processes in hydrogen recycling in fusion reactors. The processes considered are reflection, adsorption, trapping, particle-induced emission, chemical sputtering, and diffusion in metals. The present report is the proceedings of the workshop and contains rather comprehensive reviews each on the processes considered. The workshop was held as part of the joint research program of data compilation at the Research Information Center, Institute of Plasma Physics. (author)

  2. Innovation in the district heating. Process study in February 2012; Innovasjon i fjernvarme. Prossesstudie februar 201

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, Mads Bruun

    2012-07-01

    This process study shows that, in order to create more innovation for growth in the district heating sector, it requires a new initiative, carried out by the district heating companies themselves, in the areas described in the study. This is regarded as the opportunities that the program should look for and will be more complete by the descriptions of the workshop results. (eb)

  3. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  4. Proceedings of IEEE Machine Learning for Signal Processing Workshop XVI

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the sixteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP'2006), held in Maynooth, Co. Kildare, Ireland, September 6-8, 2006. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP......). The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized by the Machine Learning for Signal Processing Technical Committee...... the same standard as the printed version and facilitates the reading and searching of the papers. The field of machine learning has matured considerably in both methodology and real-world application domains and has become particularly important for solution of problems in signal processing. As reflected...

  5. Proceedings of Japan-U.S. workshop P-196 on high heat flux components and plasma surface interactions for next devices

    International Nuclear Information System (INIS)

    Wilson, K.N.; Yamashina, T.

    1993-03-01

    The Japan-US Workshop P-196 was successfully carried out in Kyushu University, Chikushi Campus, from November 17 to 19. The major concern was on the research and development required both for international Thermonuclear Experimental Reactor (ITER) and Large Helical Device (LHD). Most of the discussion items was similar to that of the last workshop, e.g. PFC and PSI in Large Device, High Heat Flux Component, Laboratory Studies and Neutron Damage. The presentation number concerning High Heat Flux Component was largest. (J.P.N.)

  6. Proceedings of the 1996 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1996-07-01

    This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1996 Oil Technology Conference comprised: (a) fourteen technical papers, and (b) four workshops which focused on mainstream issues in oil-heating technology, namely: oilheat research agenda forum; fan atomized burner commercialization, applications, and product development; fuel quality, storage and maintenance--industry discussion; and application of oil heat venting tables, NFPA 31 standard. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Nuclear process heat

    International Nuclear Information System (INIS)

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  8. Simulation research on the process of large scale ship plane segmentation intelligent workshop

    Science.gov (United States)

    Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei

    2017-04-01

    Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.

  9. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    Science.gov (United States)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been

  10. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  11. Office of Academic Assessment provides workshops on the program assessment process

    OpenAIRE

    Williams, Meghan

    2008-01-01

    The Office of Academic Assessment is once again providing a series of workshops on the program assessment process during the spring semester. The workshops will offer a wide range of resources to assist faculty and administrators as they focus on teaching and learning in their programs.

  12. Tandem mirror theory workshop

    International Nuclear Information System (INIS)

    1981-05-01

    The workshop was divided into three sections which were constituted according to subject matter: RF Heating, MHD Equilibrium and Stability, and Transport and Microstability. An overview from Livermore's point of view was given at the beginning of each session. Each session was assigned a secretary to take notes. These notes have been used in preparing this report on the workshop. The report includes the activities, conclusions, and recommendations of the workshop

  13. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  14. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  15. Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes; Summary Discussion Sessions

    International Nuclear Information System (INIS)

    Sopori, B.; Swanson, D.; Sinton, R.; Stavola, M.; Tan, T.

    1998-01-01

    This report is a summary of the panel discussions included with the Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme of the workshop was ''Supporting the Transition to World Class Manufacturing.'' This workshop provided a forum for an informal exchange of information between researchers in the photovoltaic and nonphotovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helped establish a knowledge base that can be used for improving device-fabrication processes to enhance solar-cell performance and reduce cell costs. It also provided an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research

  16. Proceedings of the 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating

    International Nuclear Information System (INIS)

    Giruzzi, Gerardo

    2003-01-01

    The 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating was held in Aix-en-Provence (France) from 13 to 16 May 2002. The meeting was hosted by the Association Euratom-CEA sur la Fusion (CEA/Cadarache, France), with additional financial support from: - Region Provence-Alpes Cote d'Azur - The City of Aix-en-Provence - Communaute de l'Agglomeration du Pays d'Aix - Thales Electron Devices (France) - Alstom Magnets and Superconductors (France) - Spinner GmbH (Germany). The members of the local organizing committee were: G. Giruzzi, M. Lennholm, R. Magne and V. Poli, from CEA/Cadarache. The composition of the International Programme Committee was the following: M. Bornatici (Italy), A. Costley (ITER), E. de la Luna (Spain), G. Giruzzi (France), W. Kasparek (Germany), B. Lloyd (UK), J. Lohr (USA), K. Sakamoto (Japan). The subjects of the meeting were classified in four main topics: Electron Cyclotron Theory; Electron Cyclotron Emission; Electron Cyclotron Heating and Current Drive Experiments; Electron Cyclotron Technology. The results presented in these topics have been summarised in the closing session by E. Westerhof, A. Kraemer-Flecken, T. Goodman and G. Bosia, respectively. The workshop was attended by 85 participants from 18 countries, providing 10 invited talks, 30 oral presentations and 50 posters. The success of the workshop is mainly due to the amount and quality of their work and of their presentations. The generosity of the sponsors, the selection and advice work of the International Programme Committee, as well as the contribution of the chairmen and of the summary speakers should also be warmly acknowledged. The papers in this collection have been reproduced directly from the authors' manuscripts, provided either as camera-ready texts or as pdf files. The constraints on the papers lengths and formats have been kept to a minimum, on purpose. This series of workshops has now reached a good level of maturity, with well established

  17. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by

  18. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  19. Nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R [Kernforschungsanlage Juelich G.m.b.H. (F.R. Germany). Inst. fuer Reaktorentwicklung

    1976-05-01

    It is anticipated that the coupled utilization of coal and nuclear energy will achieve great importance in the future, the coal serving mainly as raw material and nuclear energy more as primary energy. Prerequisite for this development is the availability of high-temperature reactors, the state of development of which is described here. Raw materials for coupled use with nuclear process heat are petroleum, natural gas, coal, lignite, and water. Steam reformers heated by nuclear process heat, which are suitable for numerous processes, are expected to find wide application. The article describes several individual methods, all based on the transport of gas in pipelines, which could be utilized for the long distance transport of 'nuclear energy'.

  20. Proceedings of the TOUGH workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [ed.

    1990-09-01

    A workshop on applications and enhancements of the TOUGH/MULKOM family of multiphase fluid and heat flow simulation programs was held at Lawrence Berkeley Laboratory on September 13--14, 1990. The workshop was attended by 62 scientists from seven countries with interests in geothermal reservoir engineering, nuclear waste isolation, unsaturated zone hydrology, environmental problems, and laboratory and field experimentation. The meeting featured 21 technical presentations, extended abstracts of which are reproduced in the present volume in unedited form. Simulator applications included processes on a broad range of space scales, from centimeters to kilometers, with transient times from seconds to geologic time scales. A number of code enhancements were reported that increased execution speeds for large 3-D problems by factors of order 20, reduced memory requirements, and improved user-friendliness. The workshop closed with an open discussion session that focussed on future needs and means for interaction in the TOUGH user community. Input from participants was gathered by means of a questionnaire that is reproduced in the appendix. 171 refs., 91 figs., 16 tabs.

  1. Proceedings of the TOUGH workshop

    International Nuclear Information System (INIS)

    Pruess, K.

    1990-09-01

    A workshop on applications and enhancements of the TOUGH/MULKOM family of multiphase fluid and heat flow simulation programs was held at Lawrence Berkeley Laboratory on September 13--14, 1990. The workshop was attended by 62 scientists from seven countries with interests in geothermal reservoir engineering, nuclear waste isolation, unsaturated zone hydrology, environmental problems, and laboratory and field experimentation. The meeting featured 21 technical presentations, extended abstracts of which are reproduced in the present volume in unedited form. Simulator applications included processes on a broad range of space scales, from centimeters to kilometers, with transient times from seconds to geologic time scales. A number of code enhancements were reported that increased execution speeds for large 3-D problems by factors of order 20, reduced memory requirements, and improved user-friendliness. The workshop closed with an open discussion session that focussed on future needs and means for interaction in the TOUGH user community. Input from participants was gathered by means of a questionnaire that is reproduced in the appendix. 171 refs., 91 figs., 16 tabs

  2. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  3. 10th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers from the Workshop, Copper Mountain Resort; August 14-16, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Gee, J.; Kalejs, J.; Saitoh, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.

    2000-08-11

    The 10th Workshop provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions included the various aspects of impurities and defects in silicon-their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions also reviewed thin-film crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing requirements to meet the ambitious expansion goals described in the recently released US PV Industry Roadmap. The Workshop also provided an excellent opportunity for researchers in private industry and at universities to recognize a mutual need for future collaborative research. The three-day workshop consisted of presentations by invited speakers, followed by discussion sessions. In addition, there was two poster sessions presenting the latest research and development results. The subjects discussed included: solar cell processing, light-induced degradation, gettering and passivation, crystalline silicon growth, thin-film silicon solar cells, and impurities and defects. Two special sessions featured at this workshop: advanced metallization and interconnections, and characterization methods.

  4. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  5. Process heat supply requirements on HTGRs

    International Nuclear Information System (INIS)

    Schad, M.K.

    1989-01-01

    Since it has been claimed that the MHTGR is competitive with coal in producing electricity, the MHTGR must be competitive in producing process heat. There is a huge process heat market and there are quite a number of processes where the industrial MHTGR = HTRI could supply the necessary process heat and energy. However, to enhance its introduction on the market and to conquer a reasonable share of the market, the HTRI should fulfill the following major requirements: Unlimited constant and flexible heat supply, no secondary heat transport system at higher temperatures and low radioactive contamination level of the primary helium. Unlimited constant and flexible heat supply could be achieved with smaller HTRIs having heat generation capacities below 100 MW-th. The process heat generated by smaller HTRIs need not be more expensive since the installed necessary heat supply redundancy is smaller and the excess power density lower. The process heat at elevated temperatures generated by a HTRI with a secondary heat transfer system is much more expensive due to the additional investment and operating cost as well as the reduced helium temperature span available. For some processes, the HTRI is not able to cover the total process heat requirement while other processes can consume only part of the heat offered. These limitations could be reduced by using higher core outlet and inlet temperatures or both. Due to the considerably lower heat transfer rates and the resulting larger heat transfer areas in process plants, the diffusion of nuclear activity at elevated temperatures may increase so that a more efficient helium cleaning system may be required. (author). 5 figs, 3 tabs

  6. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig; Rapport du 1. workshop annuel du projet integre fundamental processes of radionuclide migration (IP Funmig)

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Buckau, G; Kienzler, B [Institut fur Nukleare Entsorgung (INE), Karlsruhe (Germany); Duro, L; Martell, M [Enviros (Spain)

    2006-07-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  7. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  8. Proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008)

    DEFF Research Database (Denmark)

    This research report constitutes the proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008) which is part of the European Summer School in Logic, Language, and Information (ESSLLI 2008), Hamburg, Germany, August 2008.......This research report constitutes the proceedings of the 5th International Workshop on Constraints and Language Processing (CSLP 2008) which is part of the European Summer School in Logic, Language, and Information (ESSLLI 2008), Hamburg, Germany, August 2008....

  9. Polybrominated diphenyl ethers in indoor air during waste TV recycling process

    International Nuclear Information System (INIS)

    Guo, Jie; Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu; Xu, Zhenming

    2015-01-01

    Graphical abstract: - Highlights: • Air in the workshops was seriously contaminated by TV recycling activities. • PBDEs profiles and levels varied with particulate matters and different workshops. • Equilibrium between gas-particle partitioning was disrupted by recycling process. • The highest occupational exposure concentrations occurred during heating process. - Abstract: Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780–2,280,000 pg/m 3 . The highest concentration in gaseous phase (291,000 pg/m 3 ) was detected in the PWB heating workshop. The ∑ 12 PBDEs concentrations in PM 2.5 and PM 10 at the 4 workshops ranged in 6.8–6670 μg/g and 32.6–6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process

  10. Heating and cooling processes in disks*

    Directory of Open Access Journals (Sweden)

    Woitke Peter

    2015-01-01

    Full Text Available This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed.

  11. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  12. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.

  13. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  14. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  15. PREFACE: 6th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS2012)

    Science.gov (United States)

    Dimian, Mihai; Rachinskii, Dmitrii

    2015-02-01

    The International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS) conference series focuses on multiple scale systems, singular perturbation problems, phase transitions and hysteresis phenomena occurring in physical, biological, chemical, economical, engineering and information systems. The 6th edition was hosted by Stefan cel Mare University in the city of Suceava located in the beautiful multicultural land of Bukovina, Romania, from May 21 to 24, 2012. This continued the series of biennial multidisciplinary conferences organized in Cork, Ireland from 2002 to 2008 and in Pécs, Hungary in 2010. The MURPHYS 2012 Workshop brought together more than 50 researchers in hysteresis and multi-scale phenomena from the United State of America, the United Kingdom, France, Germany, Italy, Ireland, Czech Republic, Hungary, Greece, Ukraine, and Romania. Participants shared and discussed new developments of analytical techniques and numerical methods along with a variety of their applications in various areas, including material sciences, electrical and electronics engineering, mechanical engineering and civil structures, biological and eco-systems, economics and finance. The Workshop was sponsored by the European Social Fund through Sectoral Operational Program Human Resources 2007-2013 (PRO-DOCT) and Stefan cel Mare University, Suceava. The Organizing Committee was co-chaired by Mihai Dimian from Stefan cel Mare University, Suceava (Romania), Amalia Ivanyi from the University of Pecs (Hungary), and Dmitrii Rachinskii from the University College Cork (Ireland). All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Guest Editors wish to place on record their sincere gratitude to Miss Sarah Toms for the assistance she provided

  16. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2007-08-01

    The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

  17. Polybrominated diphenyl ethers in indoor air during waste TV recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-02-11

    Graphical abstract: - Highlights: • Air in the workshops was seriously contaminated by TV recycling activities. • PBDEs profiles and levels varied with particulate matters and different workshops. • Equilibrium between gas-particle partitioning was disrupted by recycling process. • The highest occupational exposure concentrations occurred during heating process. - Abstract: Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780–2,280,000 pg/m{sup 3}. The highest concentration in gaseous phase (291,000 pg/m{sup 3}) was detected in the PWB heating workshop. The ∑{sub 12}PBDEs concentrations in PM{sub 2.5} and PM{sub 10} at the 4 workshops ranged in 6.8–6670 μg/g and 32.6–6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process.

  18. Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

  19. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  20. 78 FR 32010 - Pipeline Safety: Public Workshop on Integrity Verification Process

    Science.gov (United States)

    2013-05-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Hazardous Materials Safety Administration, DOT. ACTION: Notice of public meeting. SUMMARY: This notice is announcing a public workshop to be held on the concept of ``Integrity Verification Process.'' The Integrity...

  1. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  2. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  3. Workshop on using natural language processing applications for enhancing clinical decision making: an executive summary.

    Science.gov (United States)

    Pai, Vinay M; Rodgers, Mary; Conroy, Richard; Luo, James; Zhou, Ruixia; Seto, Belinda

    2014-02-01

    In April 2012, the National Institutes of Health organized a two-day workshop entitled 'Natural Language Processing: State of the Art, Future Directions and Applications for Enhancing Clinical Decision-Making' (NLP-CDS). This report is a summary of the discussions during the second day of the workshop. Collectively, the workshop presenters and participants emphasized the need for unstructured clinical notes to be included in the decision making workflow and the need for individualized longitudinal data tracking. The workshop also discussed the need to: (1) combine evidence-based literature and patient records with machine-learning and prediction models; (2) provide trusted and reproducible clinical advice; (3) prioritize evidence and test results; and (4) engage healthcare professionals, caregivers, and patients. The overall consensus of the NLP-CDS workshop was that there are promising opportunities for NLP and CDS to deliver cognitive support for healthcare professionals, caregivers, and patients.

  4. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig

    International Nuclear Information System (INIS)

    Reiller, P.; Buckau, G.; Kienzler, B.; Duro, L.; Martell, M.

    2006-01-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  5. 8. stellarator workshop

    International Nuclear Information System (INIS)

    1991-07-01

    The technical reports in this collection of papers were presented at the 8th International Workshop on Stellarators, and International Atomic Energy Agency Technical Committee Meeting. They include presentations on transport, magnetic configurations, fluctuations, equilibrium, stability, edge plasma and wall aspects, heating, diagnostics, new concepts and reactor studies. Refs, figs and tabs

  6. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  7. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    Nygren, Richard; Kureczko, Diana

    1998-10-01

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  8. 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.; Rand, J.; Saitoh, T.; Sinton, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.; Al-Jassim, M.

    2003-08-01

    The 13th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental aspects of impurities and defects in silicon: their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. A combination of oral, poster, and discussion sessions will review recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands.

  9. Tenth Workshop on Crystalline Silicon Solar Cell Materials and Processes: A Summary of Discussion Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Tan, T.; Swanson, D.; Sinton, R.; Sopori, B.

    2001-01-22

    The 10th Workshop on Silicon Solar Cell Materials and Processes was held in Copper Mountain, Colorado, on August 13-16, 2000. The workshop was attended by 85 scientists and engineers from 15 international photovoltaic (PV) companies and 24 research institutions. Review and poster presentations were augmented by discussion sessions to address the recent progress and critical issues in meeting the goals for Si in the PV Industry Roadmap. The theme of the workshop was Si Photovoltaics: 10 Years of Progress and Opportunities for the Future. Two special sessions were held: Advanced Metallization and Interconnections - covering recent advances in solar cell metallization, printed contacts and interconnections, and addressing new metallization schemes for low-cost cell interconnections; and Characterization Methods - addressing the growing need for process monitoring techniques in the PV industry. The following major issues emerged from the discussion sessions: (1) Mechanical breakage in the P V industry involves a large fraction, about 5%-10%, of the wafers. (2) The current use of Al screen-printed back-contacts appears to be incompatible with the PV Industry Roadmap requirements. (3) The PV manufacturers who use hydrogen passivation should incorporate the plasma-enhanced chemical vapor deposited (PECVD) nitride for antireflection coating and hydrogenation. (4) There is an imminent need to dissolve metallic precipitates to minimize the electrical shunt problem caused by the ''bad'' regions in wafers. (5) Industry needs equipment for automated, in-line monitoring and testing. There are simply not many tools available to industry. (6) In the Wrap-Up Session of the workshop, there was consensus to create four industry/university teams that would address critical research topics in crystalline silicon. (7) The workshop attendees unanimously agreed that the workshop has served well the PV community by promoting the fundamental understanding of industrial

  10. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  11. 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2006-08-01

    The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

  12. Risk Management Techniques and Practice Workshop Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T; Zosel, M

    2008-12-02

    At the request of the Department of Energy (DOE) Office of Science (SC), Lawrence Livermore National Laboratory (LLNL) hosted a two-day Risk Management Techniques and Practice (RMTAP) workshop held September 18-19 at the Hotel Nikko in San Francisco. The purpose of the workshop, which was sponsored by the SC/Advanced Scientific Computing Research (ASCR) program and the National Nuclear Security Administration (NNSA)/Advanced Simulation and Computing (ASC) program, was to assess current and emerging techniques, practices, and lessons learned for effectively identifying, understanding, managing, and mitigating the risks associated with acquiring leading-edge computing systems at high-performance computing centers (HPCCs). Representatives from fifteen high-performance computing (HPC) organizations, four HPC vendor partners, and three government agencies attended the workshop. The overall workshop findings were: (1) Standard risk management techniques and tools are in the aggregate applicable to projects at HPCCs and are commonly employed by the HPC community; (2) HPC projects have characteristics that necessitate a tailoring of the standard risk management practices; (3) All HPCC acquisition projects can benefit by employing risk management, but the specific choice of risk management processes and tools is less important to the success of the project; (4) The special relationship between the HPCCs and HPC vendors must be reflected in the risk management strategy; (5) Best practices findings include developing a prioritized risk register with special attention to the top risks, establishing a practice of regular meetings and status updates with the platform partner, supporting regular and open reviews that engage the interests and expertise of a wide range of staff and stakeholders, and documenting and sharing the acquisition/build/deployment experience; and (6) Top risk categories include system scaling issues, request for proposal/contract and acceptance testing, and

  13. Facilitated workshop method to involve stakeholders and public in decision making process in radiological emergencies

    International Nuclear Information System (INIS)

    Mustonen, Raimo; Sinkko, Kari; Haemaelaeinen, Raimo P.

    2006-01-01

    International organisations in radiation protection have for many years recommended that key players, e.g. authorities, expert organisations, industry, producers of foodstuffs and even the public, should be involved in the planning of protective actions in case of a nuclear accident. In this work, we have developed and tested a facilitated workshop method where representatives from various fields of the society aim to identify and evaluate systematically protective actions. Decision analysis techniques have been applied in workshops in order to find out the most feasible countermeasure strategies and to make the decision making-process transparent and auditable. The work builds on case studies where it was assumed that a hypothetical accident had led to a release of considerable amounts of radionuclides and therefore various types of countermeasures should be considered. This paper provides experiences gained in several European countries on how to facilitate this kind of workshops and how modern decision analysis techniques can be applied in the decision-making process

  14. Facilitated workshop method to involve stakeholders and public in decision making process in radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, Raimo; Sinkko, Kari [STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland). Research and Environmental Surveillance; Haemaelaeinen, Raimo P. [Helsinki Univ. of Technology, Helsinki (Finland). System Analysis Laboratory

    2006-09-15

    International organisations in radiation protection have for many years recommended that key players, e.g. authorities, expert organisations, industry, producers of foodstuffs and even the public, should be involved in the planning of protective actions in case of a nuclear accident. In this work, we have developed and tested a facilitated workshop method where representatives from various fields of the society aim to identify and evaluate systematically protective actions. Decision analysis techniques have been applied in workshops in order to find out the most feasible countermeasure strategies and to make the decision making-process transparent and auditable. The work builds on case studies where it was assumed that a hypothetical accident had led to a release of considerable amounts of radionuclides and therefore various types of countermeasures should be considered. This paper provides experiences gained in several European countries on how to facilitate this kind of workshops and how modern decision analysis techniques can be applied in the decision-making process.

  15. DOE planning workshop on rf theory and computations

    International Nuclear Information System (INIS)

    1984-01-01

    The purpose of the two-day workshop-meeting was to review the status of rf heating in magnetic fusion plasmas and to determine the outstanding problems in this area. The term rf heating was understood to encompass not only bulk plasma heating by externally applied electromagnetic power but also current generation in toroidal plasmas and generation of thermal barriers in tandem mirror plasmas

  16. Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions

    International Nuclear Information System (INIS)

    Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

    1999-01-01

    This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ''R and D Challenges and Opportunities in Si Photovoltaics''. This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring

  17. Workshop on Molecule Assisted Recombination and Other Processes in Fusion Divertor Plasmas, September 8-9, 2000

    International Nuclear Information System (INIS)

    Janev, R.K.; Schultz, D.R.

    2000-01-01

    A brief proceedings of the two-day Workshop on Molecule Assisted Recombination and Other Processes in Fusion Divertor Plasmas, organized by the ORNL Controlled Fusion Atomic Data Center on September 8-9, 2000, is presented. The conclusions and recommendations of the workshop regarding the topics discussed and the collaboration of the U.S. fusion research and atomic physics communities are also summarized

  18. Process heat. Triggering the processes

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2012-07-01

    If solar process heat is to find a market, then the decision makers in industrial companies need to be aware that it actually exists. This was one of the main goals of the So-Pro project, which officially drew to a close in April 2012. (orig.)

  19. Induction Heating Process Design Using COMSOL Multiphysics Software

    Directory of Open Access Journals (Sweden)

    Andy Triwinarko

    2011-08-01

    Full Text Available Induction heating is clean environmental heating process due to a non-contact heating process. There is lots of the induction heating type that be used in the home appliance but it is still new technology in Indonesia. The main interesting area of the induction heating design is the efficiency of the usage of energy and choice of the plate material. COMSOL Multiphysics Software can be used to simulate and estimate the induction heating process. Therefore, the software can be used to design the induction heating process that will have a optimum efficiency. The properties of the induction heating design were also simulated and analyzed such as effect of inductors width, inductors distance, and conductive plate material. The result was shown that the good design of induction heating must have a short width and distance inductor and used silicon carbide as material plate with high frequency controller.

  20. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  1. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.; Rescigno, Thomas N.

    2000-09-01

    This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices and other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.

  2. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    Hanson, G.H.; Gibson, G.W.; Griess, J.C.; Pawel, R.E.; Pace, N.E.; Ryskamp, J.M.

    1989-02-01

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  3. HG2006 Workshop on High-Gradient Radio Frequency

    CERN Multimedia

    2006-01-01

    Meeting to be held at CERN on 25-27 September 2006 in Room 40/S2-B01 (Building 40). The objective of the workshop is to bring the high-gradient RF community together to present and discuss recent theoretical and experimental developments. Significant progress has recently been made in understanding the basic physics of rf breakdown and developing techniques for achieving higher gradients. This workshop should contribute to maintaining these efforts and to promoting contacts and collaboration. The scientific programme will be organized in half day sessions dedicated to: High-gradient rf experimental results Theory and computation High-gradient technology, materials and processing Specialized experiments on related high-gradient or high-power phenomenon like dc discharge and pulsed surface heating Reports from collaborations and projects. Each session will consist of selected presentations followed by a dedicated discussion. Information about the meeting and participant registration is available at http...

  4. Proceedings of the workshop of three large tokamak cooperation on energy confinement scaling under intensive auxiliary heating, May 18 ∼ 20, 1992, Naka

    International Nuclear Information System (INIS)

    1992-09-01

    The workshop of three large tokamak cooperation W22 on 'Energy confinement scaling under intensive auxiliary heating' was held 18-20 May, 1992, at Naka Fusion Research Establishment. This proceedings compiles 14 synopses of contributions (5 from JET, 4 from JT-60, 3 from TFTR, and 1 each from DIII-D JFT-2M) and the summary of the workshop. Topic sections are ; (i) L-mode confinement and scaling, (ii) Confinement at high β P regimes, Supershots, High poloidal beta enhanced confinement mode etc., (iii) Confinement at various H-mode regimes and scaling (including the VH-mode), (iv) Characteristic time scales for present tokamak regimes, and (v) Theoretical comparison with experimental data. (author)

  5. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  6. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  7. Nuclear reactor plant for production process heat

    International Nuclear Information System (INIS)

    Weber, M.

    1979-01-01

    The high temperature reactor is suitable as a heat source for carrying out endothermal chemical processes. A heat exchanger is required for separating the reactor coolant gases and the process medium. The heat of the reactor is transferred at a temperature lower than the process temperature to a secondary gas and is compressed to give the required temperature. The compression energy is obtained from the same reactor. (RW) [de

  8. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    Science.gov (United States)

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  9. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  10. 15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2005-11-01

    The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

  11. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  12. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  13. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C. [Los Alamos National Laboratory

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  14. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  15. Workshops as a Research Methodology

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Levinsen, Karin Tweddell

    2017-01-01

    , and workshops as a research methodology. Focusing primarily on the latter, this paper presents five studies on upper secondary and higher education teachers’ professional development and on teaching and learning through video conferencing. Through analysis and discussion of these studies’ findings, we argue......This paper contributes to knowledge on workshops as a research methodology, and specifically on how such workshops pertain to e-learning. A literature review illustrated that workshops are discussed according to three different perspectives: workshops as a means, workshops as practice...... that workshops provide a platform that can aid researchers in identifying and exploring relevant factors in a given domain by providing means for understanding complex work and knowledge processes that are supported by technology (for example, e-learning). The approach supports identifying factors...

  16. Proceedings of the FNCA 2006 workshop on application of electron accelerator. Radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Tamada, Masao; Kume, Tamikazu

    2007-08-01

    This workshop was co-sponsored by the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Ministry of Science, Technology and Innovation, Malaysia and jointly organized by the Japan Atomic Energy Agency and the Malaysian Nuclear Agency. The main objectives of the workshop were to discuss the commercial status of radiation processing of natural polymer in the participating countries and to prepare the work plan for the Forum for Nuclear Cooperation in Asia (FNCA) activities on radiation processing of natural polymer. The workshop was attended by experts on radiation processing from China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand and Vietnam. The radiation processing of natural polymer is divided into radiation crosslinking and degradation of polysaccharides. The radiation crosslinking of polysaccharides is mainly used to prepare hydrogel for healthcare and environment. Several hydrogels were commercialized in Korea, Japan and Malaysia, respectively. Hydrogels containing chitosan and carrageenan are currently in trial in China, Indonesia, Philippines and Vietnam. Cassava hydrogel is developing in Thailand. Radiation degraded chitosan is actually used in Vietnam and China in agriculture and aquaculture, respectively. Indonesia, Philippines and Thailand are trying in laboratory and pilot scale as plant growth promoter. All manuscripts submitted by every speaker were included in the proceedings. (author)

  17. Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop 12-14 March 1997. Volume 1

    National Research Council Canada - National Science Library

    O'Donovan, G

    1997-01-01

    ... was included in the first and third ASAP workshops, ASAP has traditionally concentrated on radar core topics include airborne radar testbed systems, space time adaptive processing, multipath jamming...

  18. Japanese contributions to IAEA INTOR workshop, phase two A, part 2, chapter IV: RF heating and current drive

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Kimura, Haruyuki; Okazaki, Takashi

    1985-07-01

    This report corresponds to Chapter IV of Japanese contribution report to IAEA INTOR Workshop, phase Two A, Part 2. Data base assessments of plasma heating and launcher system design for Ion Cyclotron Range of Frequency (ICRF) wave, for Lower Hybrid Range of Frequency (LHRF) wave, and for Electron Cyclotron Range of Frequency (ECRF) wave are made. Assessments of current drive by LHRF, and of start-up assist and profile control by ECRF are also made. R and D programmes both physics and technology for each of the waves are specified. Applications of these waves to INTOR are examined. (author)

  19. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  20. Book of presentations of the International Workshop on High Temperature Heat Pumps

    DEFF Research Database (Denmark)

    Modern society moves towards an electrifed energy system based on wind, solarand other renewable sources. Utilizing these sources effciently by heat pumps ishighly attractive and a significant potential for improving the energy system byextensive adaptation of heat pumping technology in all fields...... exists. However, challenges are present for heat pump technology. In particular for high temperature applications like industrial processes and to some extent district heating, heat pumps are not yet commercially available. In some countries the expansion already occurs, but other places the development...... is much more limited. Some obstacles relate to regulations and boundary conditions which may not be favorablefor heat pumps and electrification. But, the level of the technology willprobably also improve with regards to temperature limits, efficiency, capacity, and economy, and hence inherently become...

  1. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  2. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  3. Japanese contributions to IAEA INTOR workshop, phase IIA

    International Nuclear Information System (INIS)

    Miyamoto, Kenro; Sugihara, Masayoshi; Kimura, Haruyuki

    1982-11-01

    This report corresponds to Chapter V of Japanese contribution report to IAEA INTOR workshop, Phase IIA. Physics studies for radio frequency heating are concentrated on heating to ignition by means of ion cyclotron and lower hybrid ranges of frequencies, and discharge start-up assist and current drive by lower hybrid range. Their system design studies are also performed. (author)

  4. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  5. Processes and materials for photovoltaic applications. Workshop; Verfahren und Materialien fuer die Photovoltaik. Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Solar energy will surely continue to be the most important renewable energy source. Since 1985, solar cell production has doubled every five years while the per unit price decreased continuously. This trend is expected to continue. Germany made important contributions both in the construction of new solar cell production plants and in the development of new PV materials and material combinations, as well as in technology and PV plant construction. The states of Thuringia and Saxony were significant contributors. In Thuringia, two solar cell production plants were constructed, while Saxon vacuum coating technology was used in nearly all new German production plants. This workshop presented the activities in Thuringia in Saxony. Contacts were to be established between partners from industry and research, joint projects were to be initiated, and society and politicians were to be informed on the success and new chances achieved. The workshop was held on the occasion of the termination of construction and the starting of experimental production of the ANTEC Solar GmbH factory at Rudisleben. [German] Im Mix der erneuerbaren Energien spielt die Solarenergie kuenftig wohl die wichtigste Rolle. Seit 1985 verdoppelt sich die Solarzellenproduktion in jeweils fuenf Jahren, gleichzeitig sank der Preis pro Leistungseinheit kontinuierlich. Dieser Trend wird weiter anhalten. Deutschland leistete in den letzten Jahren wichtige Beitraege zu dieser Entwicklung, sowohl beim Aufbau neuer Fertigungskapazitaeten fuer Solarzellen, als auch bei der Entwicklung neuer Photovoltaik-Materialien bzw. -Materialkombinationen und auf den Gebieten der Technologie und des Anlagenbaus. Der Anteil Thueringens und Sachsens an dieser positiven Entwicklung ist groesser als generell vermutet. In Thueringen entstanden zwei Unternehmen fuer die Solarzellenproduktion, der saechsische Vakuumbeschichtungs-Anlagenbau war am Aufbau fast aller neuen deutschen Fertigungsstaetten beteiligt. Auf dem Workshop werden

  6. Proceedings of the FNCA 2007 workshop on application of electron accelerator. Radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Tamada, Masao; Kume, Tamikazu

    2008-12-01

    This workshop was co-sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and the Ministry of Science and Technology (MOST), Vietnam. The Vietnam Atomic Energy Commission and Japan Atomic Energy Agency (JAEA) jointly executed the workshop in cooperation with the International Atomic Energy Agency (IAEA). The main objectives of the workshop were the following: - to discuss for the promotion of the commercial applications of radiation processing of natural polymer. - to prepare the work plan for the FNCA activities for 2007-2008. The workshop was attended by experts on radiation processing from Bangladesh, China, Egypt, India, Indonesia, Japan, Korea, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand and Vietnam. The radiation processing of natural polymer is divided into crosslinking, degradation and graft polymerization. The radiation crosslinked polysaccharides are mainly used to prepare hydrogel for healthcare and environment. Hydrogels were commercialized in India, Korea, and Malaysia and are going to be commercialized in Philippines and Vietnam as wound dressings. Radiation degraded polysaccharides (alginate and chitosan) are commercialized in China and Vietnam in aquaculture and agriculture, respectively. Indonesia successfully carried out field test of radiation degraded chitosan as plant growth promoter. Also the radiation degraded chitosan was demonstrated to preserve post harvest fruit and to extend the shelf life of papaya in Pakistan and Sri Lanka, respectively. Radiation graft polymerization onto polysaccharide is applied for production of soil conditioner in Vietnam. Several applications of grafting technique were also reported. Manuscripts submitted by presenters were compiled in the proceedings. The 31 of the presented papers are indexed individually. (J.P.N.)

  7. Electromagnetic heating processes: analysis and simulations

    OpenAIRE

    Calay, Rajnish Kaur

    1994-01-01

    Electromagnetic heating (EMH) processes are being increasingly used in the industrial and domestic sectors, yet they receive relatively little attention in the thermal engineering domain. Time-temperature characteristics in EMH are qualitatively different from those in conventional heating techniques due to the additional parameters (viz dielectric properties of the material, size and shape of the product and process frequency). From a unified theory perspective, a multi-...

  8. Workshop Report on Managing Solar Radiation

    Science.gov (United States)

    Lane, Lee (Compiler); Caldeira, Ken (Compiler); Chatfield, Robert (Compiler); Langhoff, Stephanie (Compiler)

    2007-01-01

    The basic concept of managing Earth's radiation budget is to reduce the amount of incoming solar radiation absorbed by the Earth so as to counterbalance the heating of the Earth that would otherwise result from the accumulation of greenhouse gases. The workshop did not seek to decide whether or under what circumstances solar radiation management should be deployed or which strategies or technologies might be best, if it were deployed. Rather, the workshop focused on defining what kinds of information might be most valuable in allowing policy makers more knowledgeably to address the various options for solar radiation management.

  9. Irreversibility and Action of the Heat Conduction Process

    Directory of Open Access Journals (Sweden)

    Yu-Chao Hua

    2018-03-01

    Full Text Available Irreversibility (that is, the “one-sidedness” of time of a physical process can be characterized by using Lyapunov functions in the modern theory of stability. In this theoretical framework, entropy and its production rate have been generally regarded as Lyapunov functions in order to measure the irreversibility of various physical processes. In fact, the Lyapunov function is not always unique. In the represent work, a rigorous proof is given that the entransy and its dissipation rate can also serve as Lyapunov functions associated with the irreversibility of the heat conduction process without the conversion between heat and work. In addition, the variation of the entransy dissipation rate can lead to Fourier’s heat conduction law, while the entropy production rate cannot. This shows that the entransy dissipation rate, rather than the entropy production rate, is the unique action for the heat conduction process, and can be used to establish the finite element method for the approximate solution of heat conduction problems and the optimization of heat transfer processes.

  10. The Thermos process heat reactor

    International Nuclear Information System (INIS)

    Lerouge, Bernard

    1979-01-01

    The THERMOS process heat reactor was born from the following idea: the hot water energy vector is widely used for heating purposes in cities, so why not save on traditional fossil fuels by simply substituting a nuclear boiler of comparable power for the classical boiler installed in the same place. The French Atomic Energy Commission has techniques for heating in the big French cities which provide better guarantees for national independence and for the environment. This THERMOS technique would result in a saving of 40,000 to 80,000 tons of oil per year [fr

  11. Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

    International Nuclear Information System (INIS)

    Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

    2014-01-01

    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form −log ρ; they involve dissipation or mobility terms of order ρ 2 for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation

  12. 3rd Workshop on Branching Processes and their Applications

    CERN Document Server

    González, Miguel; Gutiérrez, Cristina; Martínez, Rodrigo; Minuesa, Carmen; Molina, Manuel; Mota, Manuel; Ramos, Alfonso; WBPA15

    2016-01-01

    This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offer...

  13. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2004-08-01

    The 14th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental properties of PV silicon, new solar cell designs, advanced solar cell processing techniques, and cell-related module issues. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions will review recent advances in crystal growth, new cell designs, new processes and process characterization techniques, cell fabrication approaches suitable for future manufacturing demands, and solar cell encapsulation. This year's theme, ''Crystalline Si Solar Cells: Leapfrogging the Barriers,'' reflects the continued success of crystalline Si PV in overcoming technological barriers to improve solar cell performance and lower the cost of Si PV. The workshop will consist of presentations by invited speakers, followed by discussion sessions. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV. The sessions will include: Advances in crystal growth and material issues; Impurities and defects; Dynamics during device processing; Passivation; High-efficiency Si solar cells; Advanced processing; Thin Si solar cells; and Solar cell reliability and module issues.

  14. METAL CHIP HEATING PROCESS INVESTIGATION (Part I

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2007-01-01

    Full Text Available The main calculation methods for heat- and mass transfer in porous heterogeneous medium have been considered. The paper gives an evaluation of the possibility to apply them for calculation of metal chip heating process. It has been shown that a description of transfer processes in a chip has its own specific character that is attributed to difference between thermal and physical properties of chip material and lubricant-coolant components on chip surfaces. It has been determined that the known expressions for effective heat transfer coefficients can be used as basic ones while approaching mutually penetrating continuums. A mathematical description of heat- and mass transfer in chip medium can be considered as a basis of mathematical modeling, numerical solution and parameter optimization of the mentioned processes.

  15. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  16. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  17. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  18. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  19. Introduction to the First International Workshop on Process-Oriented Information Systems in Healthcare (ProHealth 2007)

    NARCIS (Netherlands)

    Reichert, Manfred; Peleg, Mor; Lenz, Richard

    2007-01-01

    The proHealth’07 workshop is held in Brisbane in conjunction with the fifth international conference on business process management. ProHealth’07 elaborates both the potential and the limitations of IT support for healthcare processes. It further provides a forum wherein challenges, paradigms, and

  20. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  1. Coherent structures in tokamak plasmas workshop: Proceedings

    International Nuclear Information System (INIS)

    Koniges, A.E.; Craddock, G.G.

    1992-08-01

    Coherent structures have the potential to impact a variety of theoretical and experimental aspects of tokamak plasma confinement. This includes the basic processes controlling plasma transport, propagation and efficiency of external mechanisms such as wave heating and the accuracy of plasma diagnostics. While the role of coherent structures in fluid dynamics is better understood, this is a new topic for consideration by plasma physicists. This informal workshop arose out of the need to identify the magnitude of structures in tokamaks and in doing so, to bring together for the first time the surprisingly large number of plasma researchers currently involved in work relating to coherent structures. The primary purpose of the workshop, in addition to the dissemination of information, was to develop formal and informal collaborations, set the stage for future formation of a coherent structures working group or focus area under the heading of the Tokamak Transport Task Force, and to evaluate the need for future workshops on coherent structures. The workshop was concentrated in four basic areas with a keynote talk in each area as well as 10 additional presentations. The issues of discussion in each of these areas was as follows: Theory - Develop a definition of structures and coherent as it applies to plasmas. Experiment - Review current experiments looking for structures in tokamaks, discuss experimental procedures for finding structures, discuss new experiments and techniques. Fluids - Determine how best to utilize the resource of information available from the fluids community both on the theoretical and experimental issues pertaining to coherent structures in plasmas. Computation - Discuss computational aspects of studying coherent structures in plasmas as they relate to both experimental detection and theoretical modeling

  2. The 2010 AOP Workshop Summary Report

    Science.gov (United States)

    Hooker, Stanford B.; Morrow, John H.; Brown, James W.; Firestone, Elaine R.

    2011-01-01

    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT.

  3. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Heat transfer in a thermoacoustic process

    International Nuclear Information System (INIS)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)

  5. Process applications for geothermal energy resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

    1981-08-01

    The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

  6. 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2008-09-01

    The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

  7. Specialists' workshop on fast pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  8. Analytical models of Ohmic heating and conventional heating in food processing

    Science.gov (United States)

    Serventi, A.; Bozzoli, F.; Rainieri, S.

    2017-11-01

    Ohmic heating is a food processing operation in which an electric current is passed through a food and the electrical resistance of the food causes the electric power to be transformed directly into heat. The heat is not delivered through a surface as in conventional heat exchangers but it is internally generated by Joule effect. Therefore, no temperature gradient is required and it origins quicker and more uniform heating within the food. On the other hand, it is associated with high energy costs and its use is limited to a particular range of food products with an appropriate electrical conductivity. Sterilization of foods by Ohmic heating has gained growing interest in the last few years. The aim of this study is to evaluate the benefits of Ohmic heating with respect to conventional heat exchangers under uniform wall temperature, a condition that is often present in industrial plants. This comparison is carried out by means of analytical models. The two different heating conditions are simulated under typical circumstances for the food industry. Particular attention is paid to the uniformity of the heat treatment and to the heating section length required in the two different conditions.

  9. 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    DEFF Research Database (Denmark)

    Connor, J.W.; Fasoli, A.; Hidalgo, C.

    2009-01-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape-off-layer ......This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape...

  10. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  11. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  12. Special Characteristics of the Rust Workshop and Their Influence on My Facilitation Process.

    Science.gov (United States)

    Bowen, Maria Villas-Boas

    1987-01-01

    Evaluates the Carl Rogers Peace Project workshop held in Austria in 1985. Defines ways in which the workshop was unique. Elaborates on staff participation and the author's personal reactions. Concludes by discussing the distinctive role facilitators had in this workshop. (BR)

  13. Heat diffusion and magnetic field generation

    International Nuclear Information System (INIS)

    Holstein, P.A.

    1983-10-01

    In the report of CECAM workshop in 1982 some results of heat diffusion, when the spontaneous B-field is calculated, have been given. Separately, a similar code (magneto-calo-dynamic or MCD code) has been built and it was interesting to compare them. Comparisom has been made during the workshop of October 1983

  14. Nuclear Innovation Workshops Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, John Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Philip Clay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzanne Hobbs [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  15. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  16. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  17. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    NYGREN, RICHARD E.; STAVROS, DIANA T.

    2000-01-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed

  18. 2017 Marine Hydrokinetic Instrumentation Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mauer, Erik [U.S. Department of Energy; Rieks, Jeff [Allegheny Science and Technologies

    2018-03-06

    The third Marine Hydrokinetic Instrumentation Workshop was held at Florida Atlantic University's Sea Tech Campus in Dania Beach, Florida, from February 28 to March 1, 2017. The workshop brought together 37 experts in marine energy measurement, testing, and technology development to present and discuss the instrumentation and data-processing needs of the marine energy industry. The workshop was comprised of a plenary session followed by two focused breakout sessions. The half-day plenary session reviewed findings from prior instrumentation workshops, presented research activities that aim to fill previously identified gaps, and had industry experts present the state of the marine energy measurement technologies. This report provides further detail on the workshop, objectives, and findings.

  19. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  20. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  1. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  2. Opening Session - Introductory remarks for Workshop on Accident Tolerant Fuel. OECD/NEA Workshop on Accident Tolerant Fuels, Workshop Expectations

    International Nuclear Information System (INIS)

    Dujardin, Thierry; Gulliford, Jim; Massara, Simone; Pasamehmetoglu, K.

    2013-01-01

    The workshop opened with the welcome address from Th. Dujardin (OECD/NEA), NEA Deputy Director. Th. Dujardin recalled the integrated NEA response to the dramatic Fukushima-Daiichi events performed by three standing technical committees: the Committee on Nuclear Regulatory Activities (CNRA), the Committee on the Safety of Nuclear Installations (CSNI) and the Committee on Radiation Protection and Public Health (CRPPH). J. Gulliford (OECD/NEA) placed the workshop in the context of the activities of the Nuclear Science Committee within the framework of the NEA response to Fukushima- Daiichi. K. Pasamehmetoglu (INL, US) explained the main goals of the workshop oriented towards defining requirements for selection among various options during the feasibility phase of the development process, and not towards identifying and proposing design solutions

  3. Applying the chronicle workshop as a method for evaluating participatory interventions

    DEFF Research Database (Denmark)

    Poulsen, Signe; Ipsen, Christine; Gish, Liv

    2015-01-01

    Despite the growing interest for process evaluation in participatory interventions, studies examining specific methods for process evaluation are lacking. In this paper, we propose a new method for process evaluation – the chronicle workshop. The chronicle workshop has not previously been used...... productivity and well-being. In all cases, we saw that the chronicle workshop gave valuable information about the intervention process and that it initiated a joint reflection among participants from different departments. The chronicle workshop makes it possible to better understand the results...

  4. Improvements of reforming performance of a nuclear heated steam reforming process

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1996-10-01

    Performance of an energy production process by utilizing high temperature nuclear process heat was not competitive to that by utilizing non-nuclear process heat, especially fossil-fired process heat due to its less favorable chemical reaction conditions. Less favorable conditions are because a temperature of the nuclear generated heat is around 950degC and the heat transferring fluid is the helium gas pressurized at around 4 MPa. Improvements of reforming performance of nuclear heated steam reforming process were proposed in the present report. The steam reforming process, one of hydrogen production processes, has the possibility to be industrialized as a nuclear heated process as early as expected, and technical solutions to resolve issues for coupling an HTGR with the steam reforming system are applicable to other nuclear-heated hydrogen production systems. The improvements are as follows: As for the steam reformer, (1) increase in heat input to process gas by applying a bayonet type of reformer tubes and so on, (2) increase in reforming temperature by enhancing heat transfer rate by the use of combined promoters of orifice baffles, cylindrical thermal radiation pipes and other proposal, and (3) increase in conversion rate of methane to hydrogen by optimizing chemical compositions of feed process gas. Regarding system arrangement, a steam generator and superheater are set in the helium loop as downstream coolers of the steam reformer, so as to effectively utilize the residual nuclear heat for generating feed steam. The improvements are estimated to achieve the hydrogen production rate of approximately 3800 STP-m 3 /h for the heat source of 10 MW and therefore will provide the potential competitiveness to a fossil-fired steam reforming process. Those improvements also provide the compactness of reformer tubes, giving the applicability of seamless tubes. (J.P.N.)

  5. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  6. HTR's role in process heat applications

    International Nuclear Information System (INIS)

    Kuhr, Reiner

    2008-01-01

    Advanced high-temperature nuclear reactors create a number of new opportunities for nuclear process heat applications. These opportunities are based on the high-temperature heat available, smaller reactor sizes, and enhanced safety features that allow siting close to process plants. Major sources of value include the displacement of premium fuels and the elimination of CO 2 emissions from combustion of conventional fuels and their use to produce hydrogen. High value applications include steam production and cogeneration, steam methane reforming, and water splitting. Market entry by advanced high-temperature reactor technology is challenged by the evolution of nuclear licensing requirements in countries targeted for early applications, by the development of a customer base not familiar with nuclear technology and related issues, by convergence of oil industry and nuclear industry risk management, by development of public and government policy support, by resolution of nuclear waste and proliferation concerns, and by the development of new business entities and business models to support commercialization. New HTR designs may see a larger opportunity in process heat niche applications than in power given competition from larger advanced light water reactors. Technology development is required in many areas to enable these new applications, including the commercialization of new heat exchangers capable of operating at high temperatures and pressures, convective process reactors and suitable catalysts, water splitting system and component designs, and other process-side requirements. Key forces that will shape these markets include future fuel availability and pricing, implementation and monetization of CO 2 emission limits, and the formation of international energy and environmental policy that will support initiatives to provide the nuclear licensing frameworks and risk distribution needed to support private investment. This paper was developed based on a plenary

  7. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  8. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  9. Report of the workshop on particle process (first meeting). A report of the Yayoi study meeting

    International Nuclear Information System (INIS)

    1994-09-01

    In the Nuclear Engineering Research Laboratory of University of Tokyo, more than 10 short period workshops called Yayoi workshop have been held yearly as one of the activities of the joint utilization of the reactor 'Yayoi' and an electron linear accelerator by universities. In this report, the gists of the lectures given at the workshop on particle process which was held on August 8, 1994, are summarized. The development of scientific and technological computations in atomic energy field is briefly mentioned. The recent advance of numerical fluid dynamics is conspicuous, but still it includes many unsatisfactory points. This workshop was held, collecting the computation method using particles and the computation method without using grids for the application to fluids. Lectures were given on the SPH method in astrophysics, fragmentation of isothermal sheet-like clouds, lattice Bhatnagar-Gross-Krook method for fluid dynamics and compressible, thermal and multi-phase models, the analysis techniques for compressible and incompressible fluids including movable boundary by PIC method, the numerical computation of high Reynolds number flow by gridless method, the development of particle method for analyzing incompressible viscous flow accompanied by breaker, the calculation of neutron and photon transport by Monte Carlo method using vector and parallel computers and the paradigm of super-parallel computation. (K.I.)

  10. 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Extended Abstracts and Papers, 19-22 August 2001, Estes Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.

    2001-08-16

    The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PV energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.

  11. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  12. N Reactor Lessons Learned workshop

    International Nuclear Information System (INIS)

    Heaberlin, S.W.

    1993-07-01

    This report describes a workshop designed to introduce participants to a process, or model, for adapting LWR Safety Standards and Analysis Methods for use on rector designs significantly different than LWR. The focus of the workshop is on the ''Lessons Learned'' from the multi-year experience in the operation of N Reactor and the efforts to adapt the safety standards developed for commercial light water reactors to a graphite moderated, water cooled, channel type reactor. It must be recognized that the objective of the workshop is to introduce the participants to the operation of a non-LWR in a LWR regulatory world. The total scope of this topic would take weeks to provide a through overview. The objective of this workshop is to provide an introduction and hopefully establish a means to develop a longer term dialogue for technical exchange. This report provides outline of the workshop, a proposed schedule of the workshop, and a description of the tasks will be required to achieve successful completion of the project

  13. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  14. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  15. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  16. Recent trends and developments in infrared heating in food processing.

    Science.gov (United States)

    Rastogi, Navin K

    2012-01-01

    Fruit processing and preservation technologies must keep fresh-like characteristics while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Processing technologies include a wide range of methodologies to inactivate microorganisms, improve quality and stability, and preserve and minimize changes of fruit fresh-like characteristics. Infrared (IR) heating offers many advantages over conventional heating under similar conditions, which include reduced heating time, uniform heating, reduced quality losses, versatile, simple and compact equipment, and significant energy saving. The integration of IR with other matured processing operations such as blanching, dehydration, freeze-dehydration, thawing, roasting, baking, cooking has been shown to open up new processing options. Combinations of IR heating with microwave heating and other common conductive and convective modes of heating have been gaining momentum because of increased energy throughput. A number of publications and patents have demonstrated novel and diverse uses of this technology. This review aims at identifying the opportunities and challenges associated with this technology. The effect of IR on food quality attributes is also discussed. The types of equipment commonly used for IR processing have also been summarized.

  17. Pre-Proceedings of the 1st International Workshop on Process-oriented Information Systems in Healthcare (ProHealth'07)

    NARCIS (Netherlands)

    Reichert, M.U.; Peleg, M.; Lenz, R.

    These pre-proceedings contain the presentations given at the 1st Int'l Workshop on Process-oriented Information Systems in Healthcare (ProHealth'07). Formal proceedings will be published in Springer's LNCS series. Process-oriented information systems have been demanded for more than 20 years and

  18. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  19. International workshop on site investigation and evaluation based on the siting process in Sweden

    International Nuclear Information System (INIS)

    Andersson, Johan; Stroem, A.

    2001-06-01

    SKB's goal is to commence surface based site investigations in 2002. Extensive preparations are now being made for this transition to the next phase in the siting process for the deep repository for spent nuclear fuel. The purpose of the international workshop on site characterisation held at Aespoe April 2001 was to: present the SKB site investigation and evaluation programme to a group of international experts; discuss whether the available toolbox of investigation methods for surface based site investigations is appropriate and state-of-the-art in an international perspective; and by working group sessions discuss the level of ambition in the programme for site investigation for each discipline. This report summarises the conclusions of the workshop in general terms. Many of the detailed comments and ideas obtained at the workshop have already inspired and will also directly inspire the on-going planning work for site characterisation. The core activity at the workshop was the work performed by working groups. They addressed what should be considered for a site characterisation programme, based on the generic planning made so far by SKB. The working groups also outlined site specific characterisation programmes for the sites suggested by SKB. The tasks were strictly confined to technical and scientific modelling issues. The working group chairmen presented the working group results at the workshop and have also submitted short memos to SKB. The present document is a compilation of these memos. The SKB generic programme as presented in the existing top level documents, 'Requirements and Criteria and Overall Programme', received general endorsement and was appreciated for being comprehensive and systematic. For example, it contains comprehensive lists of parameters to be measured. However, there is need for prioritisation and sequencing. This is actually included in the current planning process at SKB where the generic programme later this year will be adapted to

  20. Proceedings of the Workshop on Methods & Tools for Computer Supported Collaborative Creativity Process: Linking creativity & informal learning

    NARCIS (Netherlands)

    Retalis, Symeon; Sloep, Peter

    2009-01-01

    Retalis, S., & Sloep, P. B. (Eds.) (2009). Collection of 4 symposium papers at EC-TEL 2009. Proceedings of the Workshop on Methods & Tools for Computer Supported Collaborative Creativity Process: Linking creativity & informal learning. September, 30, 2009, Nice,

  1. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  2. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  3. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; McKellar, Michael; Anderson, Nolan

    2011-01-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  5. HTR process heat applications, status of technology and economical potential

    International Nuclear Information System (INIS)

    Barnet, H.

    1997-01-01

    The technical and industrial feasibility of the production of high temperature heat from nuclear fuel is presented. The technical feasibility of high temperature heat consuming processes is reviewed and assessed. The conclusion is drawn that the next technological step for pilot plant scale demonstration is the nuclear heated steam reforming process. The economical potential of HTR process heat applications is reviewed: It is directly coupled to the economical competitiveness of HTR electricity production. Recently made statements and pre-conditions on the economic competitiveness in comparison to world market coal are reported. (author). 8 figs

  6. Iterative Prototyping of Strategy Implementation Workshop Design

    DEFF Research Database (Denmark)

    Kryger, Anders

    2018-01-01

    Purpose: The purpose of this paper is to demonstrate how a strategy implementation workshop design can be developed and tested while minimizing the time spent on developing the design. Design/methodology/approach: This multiple case study at a diesel engine company shows how iterative prototyping...... can be used to structure the design process of a strategy implementation workshop. Findings: Strategy implementation workshop design can be developed in resource-constrained environments through iterative prototyping of the workshop design. Each workshop iteration can generate value in its own right...... draw on his/her experience as well as add to his/her knowledge base. Originality/value: Introducing iterative prototyping in an organizational context can facilitate fast yet structured development of a rigorous workshop design. Strategy consultants are provided with empirical examples of how...

  7. PREFACE: PASREG 2003: International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials

    Science.gov (United States)

    Murakami, Masato; Cardwell, David; Salama, Kamel; Krabbes, Gernot; Habisreuther, Tobias; Gawalek, Wolfgang

    2005-02-01

    Superconducting melt-textured bulk (RE)BCO large grain materials are one of the most promising materials for power applications of high temperature superconductivity at the liquid nitrogen temperature range. Industrial applications are expected in high-speed low-loss magnetic bearings for flywheel energy storage devices, high-dynamic high-torque electric reluctance motors, and MAGLEV transportation systems. The material has high magnetic field trapping capability and therefore a new class of high-field superconducting permanent magnets will soon appear. However, there is still the need to improve the magnetic and mechanical material properties, as well as to increase the single domain size. This special issue contains papers concerning these topics presented at the International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials. The workshop was held on the 30 June-2 July 2003 in Jena, Germany, and was organized by the Institut fuer Physikalische Hochtechnologie, Jena. It was the fourth in the series of PASREG workshops after Cambridge, UK (1997), Morioka, Japan (1999), and Seattle, USA (2001). Sixty two contributions were presented at the workshop, 38 oral presentations and 24 poster presentations. This special issue contains 42 papers. The editors are grateful for the support of many colleagues who reviewed the manuscripts to guarantee their high technical quality. The editors also wish to thank Doris Litzkendorf and Tobias Habisreuther from Institut fuer Physikalische Hochtechnologie, Jena, for their assistance with the organization and handling of the manuscripts. Many thanks to the workshop co-chairman Gernot Krabbes from Leibniz-Institut fuer Festkoerper und Werkstoffforschung, Dresden, for hosting the workshop participants in Dresden. Finally, all attendees wish to acknowledge the efforts of Wolfgang Gawalek, Tobias Habisreuther, Doris Litzkendorf and the Team of Department Magnetics from the Institut fuer

  8. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    Science.gov (United States)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  9. 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers, August 11-14, 2002, Breckenridge, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2002-08-01

    The 12th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. Discussions will include various aspects of impurities and defects in silicon-their properties, the dynamics during processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PV energy costs and meet the production demands of the future. It will also provide an excellent opportunity for researchers, in private industry and at universities, to prioritize mutual needs for future collaborative research. Sessions and panel discussions will review recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and manufacturing approaches suitable for future manufacturing demands . Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. In addition, there will be two poster sessions presenting the latest research and development results.

  10. MURPHYS-HSFS-2014: 7th International Workshop on MUlti-Rate Processes and HYSteresis (MURPHYS) and the 2nd International Workshop on Hysteresis and Slow-Fast Systems (HSFS)

    International Nuclear Information System (INIS)

    2016-01-01

    Foreword MURPHYS-HSFS-2014 was the 7th International Workshop on MUlti-Rate Processes and HYSteresis (MURPHYS) in conjunction with the 2nd International Workshop on Hysteresis and Slow-Fast Systems (HSFS) . It took place at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany, from April 7 to April 11 in 2014. The international workshop on “Multi-Rate Processes and Hysteresis” continued a series of biennial conferences (Cork, Ireland, 2002-2008; Pecs, Hungary, 2010; Suceava, Romania, 2012) and the international workshop on “Hysteresis and Slow-Fast Systems” was the follow-up of the HSFS-workshop that had taken place in Lutherstadt Wittenberg, Germany, in 2011. More then 60 scientists from nine European countries and from the USA participated in MURPHYS-HSFS-2014. The program of the workshop featured 49 talks, including 15 main lectures and 15 invited talks. Recent mathematical results for systems with hysteresis operators, multiple scale systems, rate-independent systems, systems with energetic solutions, singularly perturbed systems, and systems with stochastic effects were presented. The considered applications included magnetization dynamics, biological systems, smart materials, networks, ferroelectric and ferroelastic hysteresis, fatigue in materials, market models with hysteresis, biomedical applications, chemical reactions, noise-induced phenomena, partially saturated soils, colloidal films and evaporation of automotive fuel droplets. Statement of Peer Review: All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. International steering committee: E. Benoit (France), M. Brokate (Germany), R. Cross (UK), K. Dahmen (USA), M. Dimian (Romania), M. Eleuteri (Italy), G. Friedman (USA

  11. Japanese contributions to the Japan-US workshop on FER/ETR design

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Sugihara, Masayoshi; Kasahara, Tatsuo; Nishikawa, Masana; Kitamura, Kazunori; Kuroda, Toshimasa.

    1984-06-01

    This reports describes Japanese presentations at the Japan-US Workshop on FER/ETR Design which was held at Fusion Engineering Design Center, Oak Ridge National Laboratory, March 26-30, 1984. The presentations cover the overview of Fusion Experimental Reactor (FER) design and major outcomes obtained from the FER design work in FY1983 on the three topics for the Workshop which are (1) RF heating and current drive, (2) impurity control and divertor/pumped limiter design, and (3) design integration and maintenance. (author)

  12. Study of selective heating at ion cyclotron resonance for the plasma separation process

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Pashkovsky, V.G.

    1995-01-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number k z is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the k z spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field B 0 , and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44 Ca heating measurements, made with an energy analyzer. copyright 1995 American Institute of Physics

  13. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  14. Industrial process heat market assessment

    International Nuclear Information System (INIS)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve

  15. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  16. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  17. Workshop on processing of nuclear data for use in power reactor pressure vessel lifetime assessment. Summary report

    International Nuclear Information System (INIS)

    Paviotti Corcuera, R.; Greenwood, L.R.; Muir, D.W.

    1999-02-01

    This document summarizes the contents of the workshop on processing of nuclear data for use in power reactor pressure vessel lifetime assessment. A short description of the main topics of the agenda, the list of participants and comments and recommendations are given. (author)

  18. Cognitive aspects in games workshops for learning a foreign language

    Directory of Open Access Journals (Sweden)

    Claudia Ferrareto Lopes

    2014-08-01

    Full Text Available The goal of the study was to analyze the cognitive aspects related to learning English as a foreign language, by means of games workshops with students of the 6th grade of elementary school from a state school in Londrina. The paper is grounded on Piagetian theory and is descriptive-interpretative study with a qualitative perspective. Two guiding questions motivate the study: what is the role of games workshops for learning English as a foreign language? In what way the cognitive processes are held in the games workshops for learning English? To meet the proposed goals, workshops were implemented with games containing the linguistic contents studied in English classes. The games workshops enabled the observation and analysis of the cognitive aspects involved in learning a foreign language. Results show that the games workshops promote the participation of the students motivating action and output, evidencing gaps on the knowledge and providing equilibration processes. Subjects are asked to produce outputs via games demands, thus evoking knowhow, as well as the thinking about their own products, suggesting a conscious-awareness process.

  19. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  20. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  1. Solid waste processing and compaction in the AD2 workshop of the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Singer, B.M.; Vigreux, B.

    1987-01-01

    The AD2 workshop of the new spent nuclear fuel reprocessing plant at La Hague in France will process and package dry solid wastes. The waste packages will be segregated according to their activity levels and stored at temporary on-site facilities. Full commissioning is scheduled for end-1988. However, operation of the TO dry spent field unloading and receiving unit at La Hague required early availability of some waste processing functions and part of the AD2 workshop was commissioned towards the end of 1986. The new La Hague plant is organized into four main zones: - zone 1 is an uncontrolled area with no permanent contamination and zero risk of accidental contamination, - zone 2 is a controlled are with no permanent contamination and low risk of accidental minor contamination, - zone 3 is a controlled area with no permanent contamination but a risk of minor contamination due to various incidents, - zone 4 is a controlled area with permanent contamination. The AD2 workshop will handle all dry solid wastes from zones 2, 3 and 4. It will also: characterize the resulting waste packages (contents, mass, alpha, beta and gamma activity, dose equivalent rate) and check for absence of surface contamination; transfer the packages to temporary on-site storage facilities; store and administer mobile handling tasks and transporters

  2. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  3. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  4. AIED 2009 Workshops Proceeedings Volume 10: Natural Language Processing in Support of Learning: Metrics, Feedback and Connectivity

    NARCIS (Netherlands)

    Dessus, Philippe; Trausan-Matu, Stefan; Van Rosmalen, Peter; Wild, Fridolin

    2009-01-01

    Dessus, P., Trausan-Matu, S., Van Rosmalen, P., & Wild, F. (Eds.) (2009). AIED 2009 Workshops Proceedings Volume 10 Natural Language Processing in Support of Learning: Metrics, Feedback and Connectivity. In S. D. Craig & D. Dicheva (Eds.), AIED 2009: 14th International Conference in Artificial

  5. Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine.

    Science.gov (United States)

    Friedman, Carol; Rindflesch, Thomas C; Corn, Milton

    2013-10-01

    Natural language processing (NLP) is crucial for advancing healthcare because it is needed to transform relevant information locked in text into structured data that can be used by computer processes aimed at improving patient care and advancing medicine. In light of the importance of NLP to health, the National Library of Medicine (NLM) recently sponsored a workshop to review the state of the art in NLP focusing on text in English, both in biomedicine and in the general language domain. Specific goals of the NLM-sponsored workshop were to identify the current state of the art, grand challenges and specific roadblocks, and to identify effective use and best practices. This paper reports on the main outcomes of the workshop, including an overview of the state of the art, strategies for advancing the field, and obstacles that need to be addressed, resulting in recommendations for a research agenda intended to advance the field. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  7. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  8. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  9. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  10. Gasification of coal making use of nuclear processing heat

    International Nuclear Information System (INIS)

    Schilling, H.D.; Bonn, B.; Krauss, U.

    1981-01-01

    In the chapter 'Gasification of coal making use of nuclear processing heat', the steam gasification of brown coal and bituminous coal, the hydrogenating gasification of brown coal including nuclear process heat either by steam cracking methane in the steam reformer or by preheating the gasifying agent, as well as the hydrogenating gasification of bituminous coal are described. (HS) [de

  11. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.

    2007-01-01

    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  13. Factors enhancing learning possibilities in digital workshops

    Directory of Open Access Journals (Sweden)

    Christian Kobbernagel

    2014-05-01

    Full Text Available This article presents a study of processes supporting student learning possibilities in digital workshops planned and held at art museums in Denmark. The investigation aims to provide insights into factors enhancing learning possibilities, including the educator’s dialogic performance, experiences of art, and perceived qualities of digital content creation processes in art museum education workshops. To address the research question of what conditional and processual factors can be said to support learning possibilities, a model was developed on the basis of fieldwork and theories of media education, art pedagogy and motivation. The model was then analyzed using structural equation modelling (SEM on data collected (N= 502 after workshops in two museums. The results suggest that the dialogic performance of museum educators, a positive art experience and positive perceptions of working with digital media are factors that strongly support student participation and reflection – although to various degrees. The findings also show that, in cases in which students are disinterested and see little value in participating during the workshop, this amotivation is likely to be lower when their art experiences and their perceptions of the media production process are positive. 

  14. Factors enhancing learning possibilities in digital workshops

    Directory of Open Access Journals (Sweden)

    Christian Kobbernagel

    2014-06-01

    Full Text Available This article presents a study of processes supporting student learning possibilities in digital workshops planned and held at art museums in Denmark. The investigation aims to provide insights into factors enhancing learning possibilities, including the educator’s dialogic performance, experiences of art, and perceived qualities of digital content creation processes in art museum education workshops. To address the research question of what conditional and processual factors can be said to support learning possibilities, a model was developed on the basis of fieldwork and theories of media education, art pedagogy and motivation. The model was then analyzed using structural equation modelling (SEM on data collected (N= 502 after workshops in two museums. The results suggest that the dialogic performance of museum educators, a positive art experience and positive perceptions of working with digital media are factors that strongly support student participation and reflection – although to various degrees. The findings also show that, in cases in which students are disinterested and see little value in participating during the workshop, this amotivation is likely to be lower when their art experiences and their perceptions of the media production process are positive.

  15. Investigation heat stress in small enterprise in Qom city

    Directory of Open Access Journals (Sweden)

    R. hajizadeh

    2014-02-01

    .Conclusion: Heat stress in almost all of the studied workplaces are higher than the recommended limits, and the outdoor workshops had the highest thermal stress, although heat stress did not show a significant correlation with the studied strains.

  16. Mini-channel heat exchangers for industrial distillation processes

    NARCIS (Netherlands)

    Van de Bor, D.M.

    2014-01-01

    In this thesis the technical and economic performance of compression-resorption heat pumps has been investigated. The main objective of this thesis was to improve the performance and reduce the investment costs of compression-resorption heat pumps applied in process industry. A model that is able to

  17. 77 FR 31371 - Public Workshop: Privacy Compliance Workshop

    Science.gov (United States)

    2012-05-25

    ... presentations, including the privacy compliance fundamentals, privacy and data security, and the privacy... DEPARTMENT OF HOMELAND SECURITY Office of the Secretary Public Workshop: Privacy Compliance... Homeland Security Privacy Office will host a public workshop, ``Privacy Compliance Workshop.'' DATES: The...

  18. Multipurpose nuclear process heat for energy supply in Brazil

    International Nuclear Information System (INIS)

    Hansen, U.; Inden, P.; Oesterwind, D.; Hukai, R.Y.; Pessine, R.T.; Pieroni, R.R.; Visoni, E.

    1978-11-01

    The industrialized nations require 75% of the energy as heat and it is likely that developing countries in the course of industrialization will show a comparable energy consumption structure. The High Temperature Reactor (HTR) allows the utilization of nuclear energy at high temperatures as process heat. In the Federal Republic of Germany (FRG) the development in the relevant technical areas is well advanced and warrants investigation as a matter for transfer to Brazil. In Brazil nuclear process heat finds possible applications in steel making, shale oil extraction, petroleum refining, and in the more distant future coal gasification with distribution networks. Based on growth forecasts for these industries a theoretical potential market of 38-53 GW (th) can be identified. At present nuclear process heat is marginally more expensive than conventional fossil technologies but the anticipated development is expected to add an economic incentive to the emerging necessity of providing a sound energy base in the developing countries. (author)

  19. Il workshop in architettura. Un processo di apprendimento in progress / The Workshop in Architecture. A learning process in progress

    Directory of Open Access Journals (Sweden)

    João Barros Matos

    2014-03-01

    Full Text Available Si riconosce che il workshop costituisce un modello dinamico di apprendimento, in continua evoluzione e sperimentazione, e in grado di essere costantemente riformulato per giungere a nuove e stimolanti situazioni per insegnare la pratica dell'architettura. Si tratta infatti di un modello particolarmente adatto alla ricerca di un approccio globale e coerente al progetto architettonico, dato che evita di separare gli argomenti in frammenti isolati nel processo progettuale. Riunire i gruppi di lavoro nello stesso spazio e nel tempo limitato a disposizione richiede un pensiero intenso e un ritmo di produzione che aiuta a migliorare il rapporto tra i riferimenti teorici riportabili al soggetto trattato e gli aspetti relativi all'elaborazione e alla comunicazione del progetto architettonico. / We recognize the workshop as a dynamic model of learning, which is continuously changing and experimenting, and is able to be constantly redesigned to achieve new and stimulating situations for teaching the practice of architecture. In fact it is a particularly suitable model for seeking a global and coherent approach to the architectural project, while avoiding separating the topics into isolated fragments, throughout the project’s process. Bringing work teams together in the same space and within a reduced time limit requires intensive thought and a rhythm of production which helps improve the relation between the theoretical references of the subject’s production and the aspects related to producing work and communication elements for the architectural project.

  20. Final workshop proceedings of the collaborative project ''Crystalline ROCK retention processes''

    Energy Technology Data Exchange (ETDEWEB)

    Rabung, Thomas; Garcia, David; Montoya Vanessa; Molinero, Jorge (eds.)

    2014-07-01

    The present document is the proceedings of the Final Workshop of the EURATOM FP7 Collaborative Project CROCK (Crystalline Rock Retention Processes). The key driver for initiation the CP CROCK, identified by national Waste Management Organizations, is the undesired high uncertainty and the associated conservatism with respect to the radionuclide transport in the crystalline host-rock far-field around geological disposal of high-level radioactive wastes.

  1. High temperature reactor and application to nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  2. WESTPAC Workshop on Coastal Transport of Pollutants (Tokyo, Japan, March 27-31, 1980). Summary Report. Workshop Report No. 24.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.

    Provided is a 4-page summary of the WESTPAC (Western Pacific) Workshop On Coastal Transport of Pollutants and five appendices. Workshop objectives were to review present knowledge of the physical dispersion, accumulation, and transportation of pollutants, and analytical methods and data processing in the Western Pacific Region; identify major…

  3. Heat and work integration: Fundamental insights and applications to carbon dioxide capture processes

    International Nuclear Information System (INIS)

    Fu, Chao; Gundersen, Truls

    2016-01-01

    Highlights: • The problem definition of heat and work integration is introduced. • The fundamental insights of heat and work integration are presented. • The design methodology is illustrated with two small test examples. • Applications of to three carbon dioxide capture processes are presented. - Abstract: The integration of heat has achieved a notable success in the past decades. Pinch Analysis is a well-established methodology for heat integration. Work is an equally important thermodynamic parameter. The enthalpy of a process stream can be changed by the transfer of heat and/or work. Heat and work are actually interchangeable and can thus be integrated. For example, compression processes consume more work at higher temperatures, however, the compression heat may be upgraded and utilized; expansion processes produce more work at higher temperatures, however, more heat may be required. The classical heat integration problem is thus extended to a new research topic about the integration of both heat and work. The aim of this paper is to present the problem definition, fundamental thermodynamic insights and industrial applications of heat and work integration. The results from studies on the three carbon dioxide capture processes show that significant energy savings can be achieved by proper heat and work integration. In the oxy-combustion process, the work consumption for cryogenic air separation is reduced by 10.1%. In the post-combustion membrane separation process, the specific work consumption for carbon dioxide separation is reduced by 12.9%. In the membrane air separation process, the net work consumption (excluding heat consumption) is reduced by 90%.

  4. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  5. Proceedings of the Toronto TEAM/ACES workshop

    International Nuclear Information System (INIS)

    Turner, L.R.

    1991-03-01

    The third TEAM Workshop of the third round was held at Ontario Hydro in Toronto 25--26 October 1990, immediately following the Conference on Electromagnetic Field Computation. This was the first Joint Workshop with ACES (Applied Computational Electromagnetics Society), whose goals are similar to TEAM, but who tend to work at higher frequencies (Antennas, Propagation, and Scattering). A fusion problem, the eddy current heating of the case of the Euratom Large Coil Project Coil, was adapted as Problem 14 at the Oxford Workshop, and a solution to that problem was presented at Toronto by Oskar Biro of the Graz (Austria) University of Technology. Individual solutions were also presented for Problems 8 (Flaw in a Plate) and 9 (Moving Coil inside a Pipe). Five new solutions were presented to Problem 13 (DC Coil in a Ferromagnetic Yoke), and Koji Fujiwara of Okayama University summarized these solutions along with the similar number presented at Oxford. The solutions agreed well in the air but disagreed in the steel. Codes with a formulation in magnetic field strength or scalar potential underestimated the flux density in the steel, and codes based on flux density or vector potential overestimated it. Codes with edge elements appeared to do better than codes with nodal elements. These results stimulated considerable discussions; in my view that was the most valuable result of the workshop

  6. Solar process heat is becoming sexy

    Energy Technology Data Exchange (ETDEWEB)

    Morhart, Alexander

    2011-07-01

    Linear concentrating solar collectors for solar medium-temperature process heat: an exotic niche market has turned into a wide range of offers for commercial and private customers - and there is no end in sight to the technical developments. (orig.)

  7. Workshops som forskningsmetode

    OpenAIRE

    Ørngreen, Rikke; Levinsen, Karin Tweddell

    2017-01-01

    This paper contributes to knowledge on workshops as a research methodology, and specifically on how such workshops pertain to e-learning. A literature review illustrated that workshops are discussed according to three different perspectives: workshops as a means, workshops as practice, and workshops as a research methodology. Focusing primarily on the latter, this paper presents five studies on upper secondary and higher education teachers’ professional development and on teaching and learnin...

  8. Workshop on thermal modeling: at the crossroads of several subjects of physics; La modelisation thermique: point de rencontre de plusieurs disciplines de la physique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The modeling of thermal phenomena is of prime importance for the dimensioning of industrial facilities. However, the understanding of thermal processes requires to refer to other subjects of physics like electromagnetism, matter transformation, fluid mechanics, chemistry etc.. The aim of this workshop organized by the industrial electro-thermal engineering section of the French society of thermal engineers is to take stock of current or forthcoming advances in the coupling of thermal engineering codes with electromagnetic, fluid mechanics, chemical and mechanical engineering codes. The modeling of phenomena remains the essential link between the laboratory research of new processes and their industrial developments. From the 9 talks given during this workshop, 2 of them deal with thermal processes in nuclear reactors and fall into the INIS scope and the others concern the modeling of industrial heating or electrical processes and were selected for ETDE. (J.S.)

  9. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  10. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  11. PREFACE PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010) PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010)

    Science.gov (United States)

    Freyhardt, Herbert; Cardwell, David; Strasik, Mike

    2010-12-01

    Large grain, (RE)BCO bulk superconductors fabricated by top seeded melt growth (TSMG) are able to generate large magnetic fields compared to conventional, iron-based permanent magnets. Following 20 years of development, these materials are now beginning to realize their considerable potential for a variety of engineering applications such as magnetic separators, flywheel energy storage and magnetic bearings. MgB2 has also continued to emerge as a potentially important bulk superconducting material for engineering applications below 20 K due to its lack of granularity and the ease with which complex shapes of this material can be fabricated. This issue of Superconductor Science and Technology contains a selection of papers presented at the 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials, including MgB2, held 29th-31sy July 2010 at the Omni Shoreham Hotel, Washington DC, USA, to report progress made in this field in the previous three year period. The workshop followed those held previously in Cambridge, UK (1997), Morioka, Japan (1999), Seattle, USA (2001), Jena, Germany (2003), Tokyo, Japan (2005) and again in Cambridge, UK (2007). The scope of the seventh PASREG workshop was extended to include processing and characterization aspects of the broader spectrum of bulk high temperature superconducting (HTS) materials, including melt-cast Bi-HTS and bulk MgB2, recent developments in the field and innovative applications of bulk HTS. A total of 38 papers were presented at this workshop, of which 30 were presented in oral form and 8 were presented as posters. The organizers wish to acknowledge the efforts of Sue Butler of the University of Houston for her local organization of the workshop. The eighth PASREG workshop will be held in Taiwan in the summer of 2012.

  12. National Forum on the Future of Automated Materials Processing in US Industry: The Role of Sensors. Report of a workshop (1st) held at Santa Barbara, California on December 16-17, 1985

    Science.gov (United States)

    Yolken, H. T.; Mehrabian, R.

    1985-12-01

    These are the proceedings of the workshop A National Forum on the Future of Automated Materials Processing in U.S. Industry - The Role of Sensors. This is the first of two workshops to be sponsored by the Industrial Research Institute and the White House Office of Science and Technology Policy, Committee on Materials Working Group on Automation of Materials Processing. The second workshop will address the other two key components required for automated materials processing, process models and artificial intelligence coupled with computer integration of the system. The objective of these workshops is to identify and assess important issues afecting the competitive position of U.S. industry related to its ability to automate production processes for basic and advanced materials and to develop approaches for improved capability through cooperative R&D and associated efforts.

  13. Proceedings: 2001 ASME/EPRI Radwaste Workshop

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear utilities continually evaluate methods to improve operations and reduce costs associated with radioactive waste management. The continuing deregulation process has increased the emphasis on this activity. The Annual ASME/EPRI Workshop facilitates this effort by communicating technology and management improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail

  14. Workshop on CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Isgur, N.; Stoler, P. [eds.

    1994-04-01

    Since the current parameters of CEBAF were defined almost a decade ago, there has been a remarkably fruitful evolution of our picture of the behavior of strongly interacting matter that apparently could be addressed by CEBAF at higher energies. Favorable technical developments coupled with foresight in initial laboratory planning have now made it feasible to consider approximately doubling CEBAF`s current design energy of 4 GeV to approach 10 GeV at rather modest cost. The purpose of the workshop, sponsored by the CEBAF User Group, was to begin to develop the next phase of CEBAF`s program by giving the entire community the opportunity to participate in defining the future of our field, and in particular the physics accessible with an upgraded CEBAF energy. It is intended that this report mark the first step toward an ultimate goal of defining a physics program that will form the basis for an upgrade of CEBAF. The report begins with a brief overview of the workshop`s conclusions. Its body consists of sections corresponding to the workshop`s Working Groups on Hadron Spectroscopy and Production, High Q{sup 2} Form Factors and Exclusive Reactions, Inclusive and Semi-Inclusive Processes, and Hadrons in the Nuclear Medium. Each section begins with the working group summaries and is followed by associated plenary talks summarizing the outstanding physics issues addressable by an upgrade, which are in turn followed by individual contributions presenting specific physics programs. An appendix describes capabilities of CEBAF`s current experimental equipment at higher energies; another appendix lists workshop participants. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Financial barriers to the use of solar-industrial-process heat

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

  16. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  17. Facilitating design and innovation workshops using the Value Design Canvas

    NARCIS (Netherlands)

    Atasoy, P.; Bekker, M.M.; Lu, Y.; Brombacher, A.C.; Eggen, J.H.; Melkas, H.; Buur, J.

    2013-01-01

    Design and innovation workshops are common practices to match diverse stakeholders to initiate collaboration for innovation. Due to the complex and multi-faceted processes in such a collaboration workshop, not only the toolkits but also the facilitation of the process needs to be taken into account.

  18. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  19. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    International Nuclear Information System (INIS)

    Taylor, J'Tia Patrice; Shropshire, David E.

    2009-01-01

    This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system

  20. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  1. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  2. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  3. The ROS Workshop

    CERN Multimedia

    Francis, D.

    The first week of February saw the taking place of the ReadOut Subsystem (ROS) workshop. The ROS is the subsystem of the Trigger, DAQ & DCS project which receives and buffers data from the detector ReadOut Drivers (RODs). On request it then provides a subset of this buffered data, the so-called Regions of Interest (RoI), to the Level 2 trigger. Using the subsequent Level 2 trigger decision, the ROS either removes the buffered event data from its buffers or sends the full event data to the Event Filter for further processing. The workshop took place over a four-day period at a location in the Jura. The average daily attendance was twenty people, which mainly represented the five main ATLAS institutes currently engaged in this Trigger, DAQ & DCS activity. The aim of the workshop was to bring to an end the current prototyping activities in this area and launch the next, final, phase of prototyping. This new phase of prototyping will build on the successful activities of the previous phase and will focus...

  4. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  5. 75 FR 4062 - Peer Review Best Practices Workshop

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF ENERGY Peer Review Best Practices Workshop AGENCY: Department of Energy, Office of..., demonstration and deployment programs and has used a variety of peer review approaches to select the best...'' for reviewing and selecting project proposals. The workshop will explore classic peer review processes...

  6. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

    2012-08-01

    The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat

  7. Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Patterson, Mike

    2012-01-01

    This study describes how the major alternatives and criteria being developed for the heat exchangers for next generation nuclear reactors are evaluated using the analytical hierarchy process (AHP). This evaluation was conducted as an aid in developing and selecting heat exchangers for integrating power production and process heat applications with next generation nuclear reactors. The basic setup for selecting the most appropriate heat exchanger option was established with evaluation goals, alternatives, and criteria. The two potential candidates explored in this study were shell-and-tube (helical coiled) and printed circuit heat exchangers. Based on study results, the shell-and-tube (helical coiled) heat exchanger is recommended for a demonstration reactor in the near term, mainly because of its reliability.

  8. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  9. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  10. Proceedings of the Adaptive Sensor Array Processing Workshop (12th) Held in Lexington, MA on 16-18 March 2004 (CD-ROM)

    National Research Council Canada - National Science Library

    James, F

    2004-01-01

    ...: The twelfth annual workshop on Adaptive Sensor Array Processing presented a diverse agenda featuring new work on adaptive methods for communications, radar and sonar, algorithmic challenges posed...

  11. Workshop on Accelerator Operation (WAO 2001)

    International Nuclear Information System (INIS)

    Bailey, R.

    2001-01-01

    The 3rd Workshop on Accelerator Operation (WAO 2001) followed earlier workshops in 1996 and 1998. Most topics relevant for the efficient and effective operation of accelerators were covered. These included the tools and utilities necessary in the control rooms; the organization of accelerator operation (process monitoring, shift work, stress); the monitoring of beam quality; safety issues and standards; and questions particularly relevant for superconducting accelerators, in particular cryogenics. (author)

  12. Proceedings: 2000 ASME/EPRI Radwaste Workshop

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear utilities are continually evaluating methods to improve operations and reduce costs associated with radioactive waste management. The continuing deregulation process has added increased emphasis to this activity. The Annual ASME/EPRI Workshop facilitates this effort by communicating technological and managerial improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail

  13. GKSS-workshop: contaminated sludges. Treatment and utilization fine graned residues; GKSS-Workshop: Kontaminierte Schlaemme. Behandlung und Nutzungsmoeglichkeiten feinkoerniger Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Alvermann, G.; Luther, G.; Niemeyer, B. [eds.] [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Zentralabteilung Technikum

    2000-07-01

    New regulations, such as the materials recycling act, soil protection act and unsolved problems related to the treatment of contaminated sludges, the utilisation of the gained products demand the development of innovative techniques for industrial, dredged or drilling sludges. The workshop offered a platform for intensive discussions between representatives of industry, research institutions, associations, and authorities. The main aim of the workshop was the presentation of fundamental background of sludge processing and advanced technical solutions. The available proceedings contain 21 lectures held on the workshop with the following ranges of topics of the sludge treatment: legislation, R and D-funding, technological bases, decontamination processes, dewatering and drying processes, recycling and immobilization. (orig.) [German] Neue Gesetze wie das Kreislaufwirtschafts- oder das Bundes-Bodenschutzgesetz und anstehende Probleme bei der Beseitigung belasteter Schlaemme - zum Beispiel Industrie-, Bohr- und Baggergutschlaemme - erfordern die Entwicklung innovativer Techniken zu ihrer Aufbereitung, Reinigung bzw. Verwertung. Der Workshop bot ein Formung zur intensiven Diskussion zwischen Industrie, Forschung, Verbaenden und Behoerden. Ziel war es, unterschiedliche Methoden der Schlammbehandlung zu eroertern, Loesungswege aufzuzeigen und Moeglichkeiten fuer Kooperationen zu erarbeiten. Der vorliegende Band enthaelt Beitraege der Referenten, die sich auf folgende Themenbereiche der Schlammbehandlung konzentrieren: juristische Aspekte, Foerdermoeglichkeiten, Grundlagen, Aufbereitung von Schlaemmen, Entwaesserung und Trocknung von Schlaemmen, Verwertung und Immobilisierung. (orig.)

  14. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  15. t4 Workshop Report*

    Science.gov (United States)

    Kleensang, Andre; Maertens, Alexandra; Rosenberg, Michael; Fitzpatrick, Suzanne; Lamb, Justin; Auerbach, Scott; Brennan, Richard; Crofton, Kevin M.; Gordon, Ben; Fornace, Albert J.; Gaido, Kevin; Gerhold, David; Haw, Robin; Henney, Adriano; Ma’ayan, Avi; McBride, Mary; Monti, Stefano; Ochs, Michael F.; Pandey, Akhilesh; Sharan, Roded; Stierum, Rob; Tugendreich, Stuart; Willett, Catherine; Wittwehr, Clemens; Xia, Jianguo; Patton, Geoffrey W.; Arvidson, Kirk; Bouhifd, Mounir; Hogberg, Helena T.; Luechtefeld, Thomas; Smirnova, Lena; Zhao, Liang; Adeleye, Yeyejide; Kanehisa, Minoru; Carmichael, Paul; Andersen, Melvin E.; Hartung, Thomas

    2014-01-01

    Summary Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. A workshop was organized to explore one key aspect of this transformation – the development of Pathways of Toxicity (PoT) as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a PoT as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as “A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants”. It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities. PMID:24127042

  16. The fourth international energy agency international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-01-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts

  17. The fourth international energy agency international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-05-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts.

  18. The fishbone workshop: How to transform

    DEFF Research Database (Denmark)

    Ipsen, Christine; Sørensen, Ole H.; Poulsen, Signe

    of this study is to create central intervention initiatives that relate to core health and organizational processes based on manager and employee involvement in a systematic process. This paper presents a method designed for that purpose: The Fishbone workshop. Procedures The purpose of the Fishbone workshop...... their written statements on a new FishBone chart labeled “Strain”. In cases where the answers are related, the post-it notes are clustered on one “side-bone” of the Fishbone. In the managers workshop they answer the same two question and fill two similar charts. The charts illustrate the employees’ and managers......”, “Challenging tasks”, “Meaning in the work”, “Solving the problem”, “Making the customers/users happy”. Examples of themes related to strain in the work are “Lack of recognition from management”, “Bad planning”, “Bottleneck in the work process“, “Lack of feedback”, “Lack of cooperation”, “Badly managed meetings...

  19. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  20. MEASUREMENT OF QUENCHING INTENSITY, CALCULATION OF HEAT TRANSFER COEFFICIENT AND GLOBAL DATABASE OF LIQUID QUENCHANTS

    Directory of Open Access Journals (Sweden)

    Božidar Liščić

    2012-02-01

    Full Text Available This paper explains the need for a database of cooling intensities for liquid quenchants, in order to predict the quench hardness, microstructure, stresses and distortion, when real engineering components of complex geometry are quenched. The existing laboratory procedures for cooling intensity evaluation, using small test specimens, and Lumped-Heat-Capacity Method for calculation of heat transfer coefficient, are presented. Temperature Gradient Method for heat transfer calculation in workshop conditions, when using the Liscic/Petrofer probe, has been elaborated. Critical heat flux densities and their relation to the initial heat flux density, is explained. Specific facilities for testing quenching intensity in workshop conditions, are shown. The two phase project of the International Federation for Heat Treatment and Surface Engineering (IFHTSE, as recently approved, is mentioned.

  1. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  2. Assessment of very high-temperature reactors in process applications. Appendix II. VHTR process heat application studies

    International Nuclear Information System (INIS)

    Jones, J.E.; Gambill, W.R.; Cooper, R.H.; Fox, E.C.; Fuller, L.C.; Littlefield, C.C.; Silverman, M.D.

    1977-06-01

    A critical review is presented of the technology and economics for coupling a very high-temperature gas-cooled reactor to a variety of process applications. It is concluded that nuclear steam reforming of light hydrocarbons for coal conversion could be a near-term alternative and that direct nuclear coal gasification could be a future consideration. Thermochemical water splitting appears to be more costly and its availability farther in the future than the coal-conversion systems. Nuclear steelmaking is competitive with the direct reduction of iron ore from conventional coal-conversion processes but not competitive with the reforming of natural gas at present gas prices. Nuclear process heat for petroleum refining, even with the necessary backup systems, is competitive with fossil energy sources. The processing with nuclear heat of oil shale and tar sands is of marginal economic importance. An analysis of peaking power applications using nuclear heat was also made. It is concluded that steam reforming methane for energy storage and production of peaking power is not a viable economic alternative, but that energy storage with a high-temperature heat transfer salt (HTS) is competitive with conventional peaking systems. An examination of the materials required in process heat exchangers is made

  3. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    Energy Technology Data Exchange (ETDEWEB)

    J' Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  4. Waste Separations and Pretreatment Workshop report

    International Nuclear Information System (INIS)

    Cruse, J.M.; Harrington, R.A.; Quadrel, M.J.

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities

  5. The community development workshop, appendix B.

    Science.gov (United States)

    Brill, R.; Gastro, E.; Pennington, A. J.

    1973-01-01

    The Community Development Workshop is the name given to a collection of techniques designed to implement participation in the planning process. It is an electric approach, making use of current work in the psychology of groups, mathematical modeling and systems analysis, simulation gaming, and other techniques. An outline is presented for a session of the workshop which indicates some of the psychological techniques employed, i.e. confrontation, synectics, and encounter micro-labs.

  6. The Future Workshop: Democratic problem solving

    Directory of Open Access Journals (Sweden)

    Rene Victor Valqui Vidal

    2006-03-01

    Full Text Available The origins, principles and practice of a very popular method known as The Future Workshop are presented. The fundamental theory and principles of this method are presented in an introductory way. In addition, practical guidelines to carry out such a workshop are outlined and several types of applications are shortly described. The crucial importance of both the facilitation process and the use of creative tools in team work are enhanced.

  7. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  8. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  9. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation

    International Nuclear Information System (INIS)

    Wang Fei-Long; Dai Bin; Liu Xue-Feng; Sun Yi-Ning; Sun Zhi-Bin; Yu Qiang; Zhai Guang-Jie

    2015-01-01

    We present the containerless heating process of a deeply undercooled metal droplet by electrostatic levitation. The problem of surface charge loss in the heating process is discussed and specific formulas are given to describe the basic process of charge supplement by the photoelectric and thermoelectric effects. The pure metal zirconium is used to be melted and solidified to analyze the heating process. The temperature-time curve clearly shows the features including melting, undercooling, recalescence and solid-state phase transformation. (paper)

  10. Induction heating in in-line strip production process

    International Nuclear Information System (INIS)

    Costa, P.; Santinelli, M.

    1995-05-01

    ISP (In-line Strip Production), a continuous process for steel strip production, has recently been set in an italian innovative plant, where ecological impact and power requirements are lighter than usual. This report describes the studies performed by ENEA (Italian Agency for New Technologies, Energy and the Environment), while a prototype reheating facility was arranged by Acciaieria ISP in Cremona (Italy). The authors, after a study of the prototype electromagnetic field, calculate the heating rate, with the thermal network method. Then they detect, with a 1-D-FEM, the heat diffusion through the strip cross section. Afterward, since the heat distribution depends on the eddy current density one, which is given by the magnetic field distribution, the authors, with a 3-D-FEM, carry out a coupled, electromagnetic and thermal, analysis in time domain. The strip temperature map is established by the balance between skin depth heating and surface cooling: a thermal analysis, performed with a moving 2-D-FEM, take into account the effects of the different heating and cooling situations, originated by the strip moving at a speed of 6m/min through four consecutive reheating facilities. The temperatures of a strip sample heated by the prototype have been monitored, acquired by a computer and related with the simulation results. The little difference between experiment and simulation assessed the qualitative and quantitative validity of this analysis, that has come out to be a tool, useful to evaluate the effects of possible improvements to the ISP process

  11. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    Science.gov (United States)

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  12. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G; Eckert, S [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  13. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  14. Workshop on Processing Physic-Chemistry Advanced – WPPCA

    International Nuclear Information System (INIS)

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “2nd Workshop on Processing Physic-Chemistry advanced (WPPCA)”, that was held from, April 4-8, 2016, at the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 17 contributions that were presented as plenary talks at the event. The abstracts of all participants contributions were published in the Abstract Book with ISSN 2500-8420. The scientific program of the 2nd WPPCA consisted of 12 Magisterial Conferences, 28 Poster Presentations and 2 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Unite States of America, Mexico and Chile. Moreover, the 2nd WPPCA allowed to establish a shared culture of the research and innovation that enriches the area of the processing physical-chemistry of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: Semiconductors, Superconductivity, Nanostructure Materials and Modelling, Simulation and Diagnostics. The editor hopes that those interested in the area of the science of materials can to enjoy this reading, that reflects a wide variety of current issues. On behalf of the organizing committee of the 2nd WPPCA, we are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. Besides, especially we appreciate the great support provided by the Sponsors and Partners. (paper)

  15. Opportunities for low-grade heat recovery in the UK food processing industry

    International Nuclear Information System (INIS)

    Law, Richard; Harvey, Adam; Reay, David

    2013-01-01

    Energy efficiency in the process industry is becoming an increasingly important issue due to the rising costs of both electricity and fossil fuel resources, as well as the tough targets for the reduction in greenhouse gas emissions outlined in the Climate Change Act 2008. Utilisation of waste heat sources is key to improving industrial energy efficiency, with an estimated 11.4 TWh of recoverable heat being wasted each year, a quarter of which is from the food and drinks processing sector. This paper examines the low-grade waste heat sources common to the food and drinks processing sector and the various opportunities for the use of this heat. A review of the best available technologies for recovery of waste heat is provided, ranging from heat transfer between source and sink, to novel technologies for the generation of electricity and refrigeration. Generally, the most economic option for waste heat recovery is heat exchange between nearby/same process source and sink, with a number of well-developed heat exchangers widely available for purchase. More novel options, such as the use of organic Rankine cycles for electricity generation prove to be less economical due to high capital outlays. However, with additional funding provision for demonstration of such projects and development of modular units, such technologies would become more common

  16. OECD/CSNI Workshop on In-Vessel Core Debris Retention and Coolability - Summary and Conclusions

    International Nuclear Information System (INIS)

    Behbahani, Ali-Reza; Drozd, Andrzej; Kim, Sang-Baik; Micaelli, Jean-Claude; Okkonen, Timo; Sugimoto, Jun; Trambauer, Klaus; Tuomisto, Harri

    1999-01-01

    In the spring of 1994 an OECD Workshop on Large Pool Heat transfer was held in Grenoble. The scope of this workshop was the investigation of (1) molten pool heat transfer, (2) heat transfer to the surrounding water, and (3) the feasibility of in-vessel core debris cooling through external cooling of the vessel. Since this time, experimental test series have been completed (e.g., COPO, ULPU, CORVIS) and new experimental programs (e.g., BALI, SONATA, RASPLAV, debris and gap heat transfer) have been established to consolidate and expand the data base for further model development and to improve the understanding of in-vessel debris retention and coolability in a nuclear power plant. Discussions within the CSNI's PWG-2 and the Task Group on Degraded Core Cooling (TG-DCC) have led to the conclusion that the time was ripe for organizing a new international Workshop with the objectives: - to review the results of experimental research that has been conducted in this area; - to exchange information on the results of member countries experiments and model development on in-vessel core debris retention and coolability; - to discuss areas where additional experimental research is needed in order to provide an adequate data base for analytical model development for core debris retention and coolability. The scope of this workshop was limited to the phenomena connected to in-vessel core debris retention and coolability and did not include steam explosion and fission product issues. The workshop was structured into the following sessions: Key note papers; Experiments and model development; Debris bed heat transfer; Corium properties, molten pool convection and crust formation; Gap formation and gap cooling; Creep behaviour of reactor pressure vessel lower head; Ex-vessel boiling and critical heat flux phenomena; Scaling to reactor severe accident conditions and reactor applications. Compared to the previous workshop held in Grenoble in 1994, large progress has been made in the

  17. Fundamentals of electroheat electrical technologies for process heating

    CERN Document Server

    Lupi, Sergio

    2017-01-01

    This book provides a comprehensive overview of the main electrical technologies for process heating, which tend to be treated separately in specialized books. Individual chapters focus on heat transfer, electromagnetic fields in electro-technologies, arc furnaces, resistance furnaces, direct resistance heating, induction heating, and high-frequency and microwave heating. The authors highlight those topics of greatest relevance to a wide-ranging teaching program, and at the same time offer a detailed review of the main applications of the various technologies. The content represents a synthesis of the extensive knowledge and experience that the authors have accumulated while researching and teaching at the University of Padua’s Engineering Faculty. This text on industrial electroheating technologies is a valuable resource not only for students of industrial, electrical, chemical, and material science engineering, but also for engineers, technicians and others involved in the application of electroheating and...

  18. Reversible heat pump and heat recovery; Pac reversible et recuperation de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, M.

    1998-10-01

    The development of a tights making up workshop with controlled atmosphere in the Bresson and Rande factory (Vigan, Gard, France) has led to a revision and to an upgrading of the power installation of the factory. The 198 knitting machines require an ambient air with a 23 {+-} 2 deg. C temperature and a 65% {+-} 3% humidity level. Cold and hot water production for the supply of the air treatment plant is ensured by a reversible heat pump with a heat recovery system for the limitation of power needs. (J.S.)

  19. Report on the Aseismic Slip, Tremor, and Earthquakes Workshop

    Science.gov (United States)

    Gomberg, Joan; Roeloffs, Evelyn; Trehu, Anne; Dragert, Herb; Meertens, Charles

    2008-01-01

    This report summarizes the discussions and information presented during the workshop on Aseismic Slip, Tremor, and Earthquakes. Workshop goals included improving coordination among those involved in conducting research related to these phenomena, assessing the implications for earthquake hazard assessment, and identifying ways to capitalize on the education and outreach opportunities presented by these phenomena. Research activities of focus included making, disseminating, and analyzing relevant measurements; the relationships among tremor, aseismic or 'slow-slip', and earthquakes; and discovering the underlying causative physical processes. More than 52 participants contributed to the workshop, held February 25-28, 2008 in Sidney, British Columbia. The workshop was sponsored by the U.S. Geological Survey, the National Science Foundation?s Earthscope Program and UNAVCO Consortium, and the Geological Survey of Canada. This report has five parts. In the first part, we integrate the information exchanged at the workshop as it relates to advancing our understanding of earthquake generation and hazard. In the second part, we summarize the ideas and concerns discussed in workshop working groups on Opportunities for Education and Outreach, Data and Instrumentation, User and Public Needs, and Research Coordination. The third part presents summaries of the oral presentations. The oral presentations are grouped as they were at the workshop in the categories of phenomenology, underlying physical processes, and implications for earthquake hazards. The fourth part contains the meeting program and the fifth part lists the workshop participants. References noted in parentheses refer to the authors of presentations made at the workshop, and published references are noted in square brackets and listed in the Reference section. Appendix A contains abstracts of all participant presentations and posters, which also have been posted online, along with presentations and author contact

  20. Potential applications of helium-cooled high-temperature reactors to process heat use

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1981-01-01

    High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes

  1. Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers of the Workshop, 9-11 August 1999, Breckenridge, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Gee, J.; Kalejs, J.; Saitoh, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.

    2000-08-04

    Since 1997, the PV sales have exceeded 100 MW/yr with > 85% of the production coming from silicon photovoltaics (Si-PV). As the PV demands increase in the new millennium, there will be a host of challenges to Si-PV. The challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and introduction of new manufacturing processes for cell fabrication. At the same time, newer thin-film technologies, based on CdTe and CIS, will come on board posing new competition. With these challenges come new opportunities for the Si-PV-to detach itself from the microelectronics industry, to embark on an aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring. The 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes addressed these issues in a number of sessions. In addition to covering the usual topics of impurity gettering, defects, passivation, and solar cell processing, there were sessions on poly feedstock, mechanical properties of Si, metallization, and process monitoring.

  2. Proceedings from Workshop on System Studies of Integrated Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov (ed.) [Swedish Environmental Research Institute, Stockholm (Sweden); Finnveden, Goeran (ed.) [Stockholm Univ. and Swedish Defence Research Agency, Stockholm (Sweden). Environmental Strategies Research Group; Sundberg, Johan (ed.) [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Energy Systems Technology

    2002-12-01

    This international workshop was held to discuss results and experience from system studies of waste management system and methodological questions and issues based on case studies. The workshop gathered more than 40 participants. These proceedings document more than 20 presentations as well as six discussion sessions. An overall aim of the workshop was to draw some general conclusions from the presented studies concerning - waste strategies that generally seem to be favourable or not favourable - methodological approaches and assumptions that can govern the results - lack of knowledge. Considering the environmental aspects, the presented studies indicated that the waste hierarchy seems to be valid: - Paper and plastic: Material recycling < Incineration < Landfilling - Biodegradable waste: Incineration {approx} Anaerobic digestion < Composting < Landfilling. A number of key aspects that can influence the results were identified: - Avoided products (heat, electricity, material, fertiliser produced from waste). - Efficiency in power plants, heating plants etc. and also recycling plants. - Emissions and impacts from recycling plants - Landfilling models, e.g. time frames. - Final sinks: there should be a distinction between temporary sinks (landfills) and final sinks - Local conditions and local impacts are often neglected. - Electricity production - Choice of alternatives to compare can have an influence on the conclusions drawn. - Stakeholders influence. - Linear modelling. - Data gaps. Especially data on toxic substances where identified as an important data gap.

  3. Significant Problems in Geothermal Development in California, Final Report on Four Workshops, December 1978 - March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-15

    From November 1978 through March 1979 the California Geothermal Resources Board held four workshops on the following aspects of geothermal development in California: County Planning for Geothermal Development; Federal Leasing and Environmental Review Procedures; Transmission Corridor Planning; and Direct Heat Utilization. One of the objectives of the workshops was to increase the number of people aware of geothermal resources and their uses. This report is divided into two parts. Part 1 provides summaries of all the key information discussed in the workshops. For those people who were not able to attend, this part of the report provides you with a capsule version of the workshop sessions. Part 2 focuses on the key issues raised at the workshops which need to be acted upon to expedite geothermal resource development that is acceptable to local government and environmentally prudent. For the purpose of continuity, similar Geothermal Resources Task Force recommendations are identified.

  4. Seventh workshop on the role of impurities and defects in silicon device processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.

  5. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  6. REVIEW OF THE 11TH INTERNATIONAL WORKSHOP ON ECR ION SOURCES

    NARCIS (Netherlands)

    DRENTJE, AG

    At the Workshop, the operation of various new and existing ECR ion sources was reported, with most of the emphasis on new methods to improve the performance and extend the variety of species. Much attention was paid to theoretical aspects, in particular to the basic question of electron heating; a

  7. Performance assessment, participative processes and value judgements. Report from the first RISCOM II workshop

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Lilja, Christina [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2001-12-01

    This workshop was the first one in a series of three workshops within the RISCOM-II project. The aim was to gather the status of the project as a starting point to enhance discussions between project participants and with a number of invited participants. The seminar also included two presentations from the OECD/NEA on NEA work related to stake holder participation, as well as the EC Concerted Action COWAM. Discussions were held in direct connection to the talks and in special sessions. The first day of the workshop entitled Value judgements,risk communication and performance assessment was moderated by Magnus Westerlind (SKI), the RISCOM-II coordinator. The second day was entitled Case studies exploring implications for the practical development of risk communication and was moderated by Anna Littleboy, UK Nirex Ltd. The workshop was opened by Thierry Devries, EDF. He welcomed the participants to Paris and gave some remarks about the French nuclear waste management situation and highlighted the significant French and EDF participation in RISCOM-II. He meant that the project should have possibilities to enhance transparency in nuclear waste programmes and noted that the new concept of stretching, introduced by RISCOM, is already is use. In the following the talks given at the workshop and the discussion that took place are summarized. Appendix 3 gives a brief overview of the RISCOM-II project.

  8. Performance assessment, participative processes and value judgements. Report from the first RISCOM II workshop

    International Nuclear Information System (INIS)

    Andersson, Kjell; Lilja, Christina

    2001-12-01

    This workshop was the first one in a series of three workshops within the RISCOM-II project. The aim was to gather the status of the project as a starting point to enhance discussions between project participants and with a number of invited participants. The seminar also included two presentations from the OECD/NEA on NEA work related to stake holder participation, as well as the EC Concerted Action COWAM. Discussions were held in direct connection to the talks and in special sessions. The first day of the workshop entitled Value judgements,risk communication and performance assessment was moderated by Magnus Westerlind (SKI), the RISCOM-II coordinator. The second day was entitled Case studies exploring implications for the practical development of risk communication and was moderated by Anna Littleboy, UK Nirex Ltd. The workshop was opened by Thierry Devries, EDF. He welcomed the participants to Paris and gave some remarks about the French nuclear waste management situation and highlighted the significant French and EDF participation in RISCOM-II. He meant that the project should have possibilities to enhance transparency in nuclear waste programmes and noted that the new concept of stretching, introduced by RISCOM, is already is use. In the following the talks given at the workshop and the discussion that took place are summarized. Appendix 3 gives a brief overview of the RISCOM-II project

  9. Student Feedback of Career Development Workshops for Program Improvement

    Science.gov (United States)

    LeBeau, J. E.; Pressley, S. N.

    2016-12-01

    A number of techniques are employed each year to evaluate the effectiveness of and to identify opportunities for improvement in the Laboratory for Atmospheric Research (LAR) REU program at Washington State University. For example, information gathered from pre-/post-surveys and pre-/post-interviews provides information regarding students' perceptions and levels of experience with the scientific process, career and academic goals, and motivation for joining the REU program. Poster session rubrics assess students' abilities to summarize their experiences in a professional setting. Alumni surveys gauge former participants' perceptions of the REU experience. One seemingly simple and highly useful, but often less documented, component of the evaluation process for program improvement is the use of workshop feedback forms. Weekly workshops are designed to provide students with enhanced knowledge and skills in the area of atmospheric chemistry as well as research design skills, academic and career guidance, and presentation skills. According to previous years' evaluation reports, workshops are largely beneficial to students for learning new skills. Yet, students suggest a number of recommendations that may benefit any REU program, such as: providing slides beforehand to provide a framework for the upcoming workshop, having instructors speak in more student-friendly language, covering higher-level topics, and including more hands-on, instructor-guided practice during the workshops. Thus, workshop feedback forms provide meaningful feedback to increase learning outcomes and enhance the REU student experience. This presentation will offer ideas gathered from over five years of workshop feedback forms that, while somewhat specific to workshops offered for the LAR REU, can offer faculty and PIs insight into the student experience, enhancing their ability to improve programming and achieve greater learning outcomes.

  10. The GRIP method for collaborative roadmapping workshops

    DEFF Research Database (Denmark)

    Piirainen, Kalle

    2015-01-01

    Technology roadmapping is a well-known tool for technology management, but practical advice for facilitating collaborative roadmapping workshops is relatively scarce. To cater for this need, we have designed a method for collaborative roadmapping, dubbed the GRIP method, for facilitating group work...... in TRM workshops. The design is based on establish best practices in facilitation and our experiences with the method suggest it is a feasible tool for technology managers. The benefits of the method are that it enables engaging a diverse group of individuals to the roadmapping process effectively even...... during a short workshop session and facilitates shared understanding on the technology management issues....

  11. Developing maintenance technologies for FBR's heat exchanger units by advanced laser processing

    International Nuclear Information System (INIS)

    Nishimura, Akihiko; Shimada, Yukihiro

    2011-01-01

    Laser processing technologies were developed for the purpose of maintenance of FBR's heat exchanger units. Ultrashort laser processing fabricated fiber Bragg grating sensor for seismic monitoring. Fiber laser welding with a newly developed robot system repair cracks on inner wall of heat exchanger tubes. Safety operation of the heat exchanger units will be improved by the advanced laser processing technologies. These technologies are expected to be applied to the maintenance for the next generation FBRs. (author)

  12. Awakening Brilliance in the Writer's Workshop: Using Notebooks, Mentor Texts, and the Writing Process

    Science.gov (United States)

    Morris, Lisa

    2012-01-01

    Master teacher Lisa Morris invites you to share her secrets of success with writer's workshops. After years of experimenting with the workshop model, she has developed the most effective ways to apply it in the classroom, yielding higher test scores and increased student engagement. Through practical, step-by-step instruction, Morris demonstrates…

  13. Nuclear process heat at high temperature: Application, realization and development programme

    International Nuclear Information System (INIS)

    Sammeck, K.H.; Fischer, R.

    1976-01-01

    Studies in the Federal Republic of Germany (FRG), the USA and the United Kingdom have shown that high-temperature helium energy from an HTR can advantageously be utilized for coal gasification and other fossil fuel conversion processes, and that a substantial demand for substitute natural gas (SNG) can be expected in the future. These results are based on plant design studies, economic assessments and basic development efforts in the field of coal gasification with nuclear heat, which in the FRG were carried out by Arbeitsgemeinschaft Nukleare Prozesswaerme (ANP)-members, HRB and KFA Juelich. Nuclear process plants are based on different gasification processes, resulting in different concepts of the nuclear heat system. In the case of hydro-gasification it is expected that steam reformers, arranged within the primary circuit of the reactor, will be heated directly by the primary helium. In the case of steam gasification, the high-temperature energy must be transferred to the gasification process via an intermediate circuit which is coupled to a gasifier outside the containment. In both cases the design of the nuclear reactor resembles an HTR for electricity generation. The main objectives of the development of nuclear process heat are to increase the helium outlet temperature of the reactor up to 950 0 C, to develop metallic alloys for high-temperature components such as heat exchangers, to design and construct a hot-gas duct, a steam reformer and a helium-helium heat exchanger and to develop the gasification processes. The nuclear safety regulations and the interface problems between the reactor, the process plant and the electricity generating plant have to be considered thoroughly. The Arbeitsgemeinschaft Nukleare Prozesswaerme and HRB started a development programme, in close collaboration with KFA Juelich, which will lead to the construction of a prototype plant for coal gasification with nuclear heat within 5 to 5 1/2 years. A survey of the main objectives

  14. Developing workshop module of realistic mathematics education: Follow-up workshop

    Science.gov (United States)

    Palupi, E. L. W.; Khabibah, S.

    2018-01-01

    Realistic Mathematics Education (RME) is a learning approach which fits the aim of the curriculum. The success of RME in teaching mathematics concepts, triggering students’ interest in mathematics and teaching high order thinking skills to the students will make teachers start to learn RME. Hence, RME workshop is often offered and done. This study applied development model proposed by Plomp. Based on the study by RME team, there are three kinds of RME workshop: start-up workshop, follow-up workshop, and quality boost. However, there is no standardized or validated module which is used in that workshops. This study aims to develop a module of RME follow-up workshop which is valid and can be used. Plopm’s developmental model includes materials analysis, design, realization, implementation, and evaluation. Based on the validation, the developed module is valid. While field test shows that the module can be used effectively.

  15. Heat and mass transfer enhancement in absorbing processes

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Lee, S.K.

    1993-01-01

    The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)

  16. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  17. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  18. Creating Fantastic PI Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colbert, Rachel S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gupta, Vipin P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hibbs, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perkins, David Nikolaus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Roger Derek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The goal of this SAND report is to provide guidance for other groups hosting workshops and peerto-peer learning events at Sandia. Thus this SAND report provides detail about our team structure, how we brainstormed workshop topics and developed the workshop structure. A Workshop “Nuts and Bolts” section provides our timeline and check-list for workshop activities. The survey section provides examples of the questions we asked and how we adapted the workshop in response to the feedback.

  19. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  20. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  1. Process heat utilization from HTGR type reactors

    International Nuclear Information System (INIS)

    1985-01-01

    Work performed by the Special Research Unit 163 to supplement industrial development projects in the subject field was devoted to specific problems. The major goal was to analyse available industrial developments for potential improvements in terms of process design and engineering in line with the latest know-how, in order to enhance the economic efficiency of available techniques and methods. So research into coal gasification by nuclear processes concentrated on the potentials of a method allowing significantly higher gasification temperatures due to the use of a so-called high-temperature heat pump operating on the basis of the gas turbine principle. Exergetic analyses were made for the processes using nuclear heat in order to optimise their energy consumption. Major steps in these processes are gas purification and gas separation. Especially for the latter step, novel techniques were studied and tested on lab scale, results being used for development towards technical scale application. One novel technique is a method for separating hydrogen from methane and carbon monoxide by means of a gas turbine process step, another research task resulted in a novel absorption technique in the liquid phase. Further, alternative solutions were studied which, other than the conventional gasification processes, comprise electrochemical and other chemical process steps. The important research topic concerned with the kinetics of coal gasification was made part of a special research program on the level of fundamental research. (orig./GL) [de

  2. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2018-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  3. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2017-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  4. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  5. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)

    2008-06-15

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  6. VALOIR 2012 2nd Workshop on Managing the Client Value Creation Process in Agile Projects: Message from the Chairs

    NARCIS (Netherlands)

    Pérez, Jennifer; Buglione, Luigi; Daneva, Maia; Dieste, Oscar; Jedlitschka, Andreas; Juristo, Natalia

    2012-01-01

    Welcome to the 2nd Workshop on Managing the Client Value Creation Process in Agile Projects (VALOIR) at the PROFES 2012 conference! The overall goal of VALOIR is to make the knowledge on value creation and management explicit, encouraging the discussion on the use of measurement and estimation

  7. Influence of microwave heating on the stability of processed samn

    OpenAIRE

    Farag, Radwan S.; Taha, Soad H.

    1991-01-01

    Butter was converted to samn by microwave and conventional heating. The quality of the processed samn by the two methods was followed by determining the acid, peroxide and TBA values over a period of six weeks at 60°C. The fatty acid composition of samn samples was determined by gas-liquid chromatographic technique. The data show that butter conversion to samn by microwave heating was accomplished in about one half of the time that conventional heating requires. Microwave heating obviously in...

  8. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  9. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  10. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  11. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  12. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes

    Science.gov (United States)

    Guo, Jian-long; Bao, Yan-ping; Wang, Min

    2017-12-01

    During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.

  13. Implementation and Outcomes of a Faculty-Based, Peer Review Manuscript Writing Workshop.

    Science.gov (United States)

    Kulage, Kristine M; Larson, Elaine L

    2016-01-01

    The publication of scholarly work and research findings is an important expectation for nursing faculty; however, academic writing is often neglected, leaving dissemination through manuscript writing an area of concern for the nursing profession. Writing initiatives have been utilized to promote scholarly dissemination in schools of nursing, but those described in the literature have been primarily non-United States based and student focused. This article describes a faculty-based manuscript writing workshop, assesses participants' impressions, and describes its impact on scholarly output. The workshop is a collaborative learning process utilizing peer review to improve manuscript quality and model behaviors for improving writing and peer-reviewing skills. Seventeen workshop participants including three predoctoral students, 6 postdoctoral fellows, and 8 faculty members completed an anonymous workshop survey (81% response rate). All but 1 of 17 manuscripts reviewed in the workshop are published, accepted, or in the review process. All participants indicated that the workshop was a valuable use of time and would recommend it to colleagues. The greatest reported workshop benefit was its function as an impetus to complete and submit manuscripts. We recommend the manuscript writing workshop model for other schools of nursing seeking ways to expand their scholarly output and create accountability for dissemination through manuscript writing. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Proceedings of the Eighteenth Annual Software Engineering Workshop

    Science.gov (United States)

    1993-01-01

    The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.

  15. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  16. MR-2016 US-Japan Workshop on Magentic Reconnection Travel Support

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary [Univ. of Wisconsin, Madison, WI (United States)

    2017-06-12

    The US-Japan workshop on Magnetic Reconnection (MR2016), was held in Napa California from March 7th through 11th, 2016. Details about the program, including invited speakers can be found here: (http://www.magneticreconnection.org/mr2016). Background: The MR Workshop is an international meeting that began in 2000 with its original focus on magnetic reconnection serving as a link between the research groups in US and Japan. Since then, the meeting has grown and is now recognized as one of the primary international workshops on magnetic reconnection. In its format, researchers from both the laboratory community and from the space research community have held 12 workshops bringing together the diverse researchers from the space and laboratory experimental fields. Plasma physics is the common language that ties together all scientists who study the waves, particle acceleration and heating, magnetic reconnection, dynamos, global and micro-stability of plasmas, magnetic turbulence and plasma’s transport problems. The meeting received $9,575 from the U.S. Dept. of Energy funding. This support was used to cover the registration fees ($575 per person) and accommodations for ten junior colleagues (graduate students and postdocs). Applications were solicited and then reviewed by the program committee based on recommendations from the applicants’ advisers.

  17. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  18. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  19. MATHEON Workshop 2013

    CERN Document Server

    Calderbank, Robert; Kutyniok, Gitta; Vybíral, Jan

    2015-01-01

    Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications” in December 2013. It was the first workshop specifically focusing on the applications of compressed sensing. This book featur...

  20. Computerized property prediction and process planning in heat treatment of steels

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, M. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Somogyi, S. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Kohlheb, R. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary))

    1994-01-01

    Recent years have seen widespread interest in the establishment of prediction methods, based on phenomenological description and computer simulation of transformation processes during heat treatment, and in the introduction of software for technological planning. The steady development of this approach is aimed at meeting the requirement of metallurgists, design engineers dealing with material selection and dimensioning, and technologists planning heat treatment processes. Research in this field of computer simulation has been concentrated so far on two main areas of interest: . Modelling of transformation processes and the prediction of microstructures and/or properties, . Developing program packages to help solve concrete tasks such as material selection, on-line process control and monitoring, and the design of heat-treating operations. During the last two decades in the field of heat treatment, various mathematical models with different accuracy and complexity have been developed. In this paper, an attempt is made to outline some important results in computer simulation and computerized property prediction without aiming at completeness. The topic is restricted to quenched and tempered, and case-hardened steels. (orig.)

  1. Energy conservation via heat transfer enhancement. Quarterly progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Junkhan, G.H.; Webb, R.L.

    1979-06-01

    This report for the first quarter of 1979 summarizes visits and contacts relative to the theory and practice of heat transfer enhancement. The Technical Literature File and Manufacturers' File were expanded, and the initial Patent Technology Information File was completed. Application studies on enhancement of waste heat recuperators and laminar internal flow heat transfer are described. A comprehensive bibliography on laminar flow enhancement is included. The Technology study on performance of internally finned tubes is complete. New data for the heat transfer and friction characteristics of internally finned tubes will be analyzed to develop rationally based correlations. An assessment of natural convection from rough surfaces was performed. Major effort was directed toward planning of the Research Workshop on Energy Conservation Through Enhanced Heat Transfer. The Workshop, scheduled for May 24 and May 25, 1979 in Chicago, will be co-sponsored by NSF.

  2. Hands-On Surgical Training Workshop: an Active Role-Playing Patient Education for Adolescents.

    Science.gov (United States)

    Wongkietkachorn, Apinut; Boonyawong, Pangpoom; Rhunsiri, Peera; Tantiphlachiva, Kasaya

    2017-09-01

    Most patient education involves passive learning. To improve patient education regarding surgery, an active learning workshop-based teaching method is proposed. The objective of this study was to assess level of patient surgical knowledge, achievement of workshop learning objectives, patient apprehension about future surgery, and participant workshop satisfaction after completing a surgical training workshop. A four-station workshop (surgical scrub, surgical suture, laparoscopic surgery, and robotic surgery) was developed to teach four important components of the surgical process. Healthy, surgery-naive adolescents were enrolled to attend this 1-h workshop-based training program. Training received by participants was technically and procedurally identical to training received by actual surgeons. Pre- and post-workshop questionnaires were used to assess learning outcomes. There were 1312 participants, with a mean age 15.9 ± 1.1 years and a gender breakdown of 303 males and 1009 females. For surgical knowledge, mean pre-workshop and post-workshop scores were 6.1 ± 1.5 and 7.5 ± 1.5 (out of 10 points), respectively (p education is an effective way to improve understanding of surgery-related processes. This teaching method may also decrease apprehension that patients or potential patients harbor regarding a future surgical procedure.

  3. Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process

    International Nuclear Information System (INIS)

    Quijera, José Antonio; García, Araceli; Alriols, María González; Labidi, Jalel

    2013-01-01

    Thermosolar technology is being inserted gradually in industrial activities. In order to reach high energy efficiency, thermosolar can be linked to heat pump technology, combining more efficient conventional and renewable energy support for processes. Their integration in complex processes can be improved systematically through well established analytical tools, like pinch and exergy analyses. This work presents a methodological procedure for the analysis of different options of heat integration of a solar thermal and heat pump technologies in a tuna fish tinning process. The plant is located in a climatic zone where diffuse irradiation contributes more energy to the process than beam irradiation does. Pinch and exergy analyses are applied in the context of a low and middle temperatures, where the process demands big amounts of hot water and middle pressure steam. In order to recover internal heat, pinch analysis allows to understand the complexity of the heat exchange network of the process and to define thermal tendency objectives for energy optimization. Exergy analysis quantifies the variation that the quality of energy undergoes while it is used in the process according to the different way of integration. Both analytical tools, in combination with economical variables, provide a powerful methodological procedure finding the most favourable heat integration and, by this, they help in the technological decision making and in the design phase. - Highlights: ► Integration of solar thermal energy in batch canning process was assessed. ► Pinch and exergy analyses were used to determine the optimal energy supply configuration. ► Combination of heat pump and solar thermal energy improves the energy efficiency and reduces fossil fuel consumption

  4. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Science.gov (United States)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  5. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  6. Mechanical design and fabrication of a heat exchanger. Report of the design and construction of a heat exchanger which will be used in 'Experimental analysis of heat transfer in the boiling in forced convection

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-08-01

    To continue with the equipment of the thermal hydraulics laboratory, it was designed thermal and mechanically an heat exchanger, to satisfy the requirements to have circuit that allows to carry out heat transfer experiments. The heat exchanger was manufactured and proven in the workshops of the Prototypes and Models Management, and it is expected that to obtain the foreseen results once completely installed the circuit, in the laboratory of thermal hydraulics of the Management of Nuclear Systems. (Author)

  7. 1996 DOE technical standards program workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop theme is `The Strategic Standardization Initiative - A Technology Exchange and Global Competitiveness Challenge for DOE.` The workshop goal is to inform the DOE technical standards community of strategic standardization activities taking place in the Department, other Government agencies, standards developing organizations, and industry. Individuals working on technical standards will be challenged to improve cooperation and communications with the involved organizations in response to the initiative. Workshop sessions include presentations by representatives from various Government agencies that focus on coordination among and participation of Government personnel in the voluntary standards process; reports by standards organizations, industry, and DOE representatives on current technology exchange programs; and how the road ahead appears for `information superhighway` standardization. Another session highlights successful standardization case studies selected from several sites across the DOE complex. The workshop concludes with a panel discussion on the goals and objectives of the DOE Technical Standards Program as envisioned by senior DOE management. The annual workshop on technical standards has proven to be an effective medium for communicating information related to standards throughout the DOE community. Technical standards are used to transfer technology and standardize work processes to produce consistent, acceptable results. They provide a practical solution to the Department`s challenge to protect the environment and the health and safety of the public and workers during all facility operations. Through standards, the technologies of industries and governments worldwide are available to DOE. The DOE Technical Standards Program, a Department-wide effort that crosscuts all organizations and disciplines, links the Department to those technologies.

  8. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  9. Integrated design and optimization of technologies for utilizing low grade heat in process industries

    International Nuclear Information System (INIS)

    Kwak, Dong-Hun; Binns, Michael; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Implementation of a modeling and design framework for the utilization of low grade heat. • Application of process simulator and optimization techniques for the design of technologies for heat recovery. • Systematic and holistic exploitation for the recovery of industrial low grade heat. • Demonstration of the applicability and benefit of integrated design and optimization framework through a case study. - Abstract: The utilization of low grade heat in process industries has significant potential for improving site-wide energy efficiency. This paper focuses on the techno-economic analysis of key technologies for energy recovery and re-use, namely: Organic Rankine Cycles (ORC), boiler feed water heating, heat pumping and absorption refrigeration in the context of process integration. Process modeling and optimization in a holistic manner identifies the optimal integrated configuration of these technologies, with rigorous assessment of costs and technical feasibility of these technologies. For the systematic screening and evaluation of design options, detailed process simulator models are evaluated and optimization proceeds subject to design constraints for the particular economic scenarios where technology using low grade heat is introduced into the process site. Case studies are presented to illustrate how the proposed modeling and optimization framework can be useful and effective in practice, in terms of providing design guidelines and conceptual insights for the application of technologies using low grade heat. From the case study, the best options during winter are the ORC giving a 6.4% cost reduction for the ideal case with low grade heat available at a fixed temperature and boiler feed water heating giving a 2.5% cost reduction for the realistic case with low grade heat available at a range of temperatures. Similarly during summer boiler feed water heating was found to be the best option giving a 3.1% reduction of costs considering a

  10. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  11. Report of the workshop on Climate Sensitivity

    International Nuclear Information System (INIS)

    2004-01-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO 2 doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and transient

  12. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  13. Workshops as a Research Methodology

    Science.gov (United States)

    Ørngreen, Rikke; Levinsen, Karin

    2017-01-01

    This paper contributes to knowledge on workshops as a research methodology, and specifically on how such workshops pertain to e-learning. A literature review illustrated that workshops are discussed according to three different perspectives: workshops as a means, workshops as practice, and workshops as a research methodology. Focusing primarily on…

  14. Proceedings of the 5th US/German Workshop on Salt Repository Research Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leigh, Christi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Walter [Karlsruhe Inst. of Technology (KIT) (Germany); Bollingerfehr, Wilhelm [DBE Technology, Peine (Germany); Von Berlepsche, Thilo [DBE Technology, Peine (Germany)

    2015-01-01

    The 5th US/German Workshop on Salt Repository Research, Design, and Operation was held in Santa Fe New Mexico September 8-10, 2014. The forty seven registered participants were equally divided between the United States (US) and Germany, with one participant from The Netherlands. The agenda for the 2014 workshop was under development immediately upon finishing the 4th Workshop. Ongoing, fundamental topics such as thermomechanical behavior of salt, plugging and sealing, the safety case, and performance assessment continue to advance the basis for disposal of heat-generating nuclear waste in salt formations. The utility of a salt underground research laboratory (URL) remains an intriguing concept engendering discussion of testing protocol. By far the most interest in this years’ workshop pertained to operational safety. Given events at the Waste Isolation Pilot Plant (WIPP), this discussion took on a new sense of relevance and urgency.

  15. Utilization of process heat from the HTR in the chemical and related industries

    International Nuclear Information System (INIS)

    Schad, M.; Didas, U.; Ebeling, F.; Kreutzkamp, G.; Renner, H.

    1988-12-01

    The wide introduction of the HTRI as heat and energy sources would be beneficial when the HTRI operating parameters were more suitable for flexible adaptation to the wide possible field of applications and requirements of the potential customer. Here of importance are: Guaranteed reliable, easily adaptable as well as effective process heat provision; a small HTRI size, under 100 MW if possible, for economic process plant operation never negatively influenced by the operational behaviour of the individual HTRI; avoidance of a secondary heat transfer circulation system for economic reasons by an extremely clean primary helium at all times and under all circumstances; greater flexibility in the HTRI helium inlet and outlet temperatures. Initially at least a helium inlet temperature of 300deg C or better 350deg C. At 250deg C too much heat is often offered in the low-temperature range which can in the main be used for domestic heating and power export only. The processes technically and economically interesting which could be provided with heat from the HTRI cover the field of mineral oil technology. Their process temperatures are below 600deg C, a temperature range demanding conventional technology. Thus, for this purpose it is only necessary to: Test the heat exchangers to be designed new; find the most effective combined plant concept in each case; carry out the necessary safety examinations into the combined operation of the two plant sections - HTRI and process plant. In addition, the market for the process heat supply in mineral oil technology has a considerable potential. (orig./GL)

  16. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  17. 10th Workshop on Self-Organizing Maps

    CERN Document Server

    Schleif, Frank-Michael; Kaden, Marika; Lange, Mandy

    2014-01-01

    The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2–4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.   This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks.   Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, ...

  18. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  19. DAE-BRNS workshop on applications of image processing in plant sciences and agriculture: lecture notes

    International Nuclear Information System (INIS)

    1998-10-01

    Images form important data and information in biological sciences. Until recently photography was the only method to reproduce and report such data. It is difficult to quantify or treat the photographic data mathematically. Digital image processing and image analysis technology based on recent advances in microelectronics and computers circumvents these problems associated with traditional photography. WIPSA (Workshop on Applications of Image Processing in Plant Sciences and Agriculture) will feature topics on the basic aspects of computers, imaging hardware and software as well advanced aspects such as colour image processing, high performance computing, neural networks, 3-D imaging and virtual reality. Imaging done using ultrasound, thermal, x-rays and γ rays, neutron radiography and the film-less phosphor-imager technology will also be discussed. Additionally application of image processing/analysis in plant sciences, medicine and satellite imagery are discussed. Papers relevant to INIS are indexed separately

  20. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  1. Proceedings of the workshops on the utilization of electron beams

    International Nuclear Information System (INIS)

    Sato, Shoichi

    1993-09-01

    Workshops organized by JAERI in cooperation with OAEP, BATAN and JAIF on the utilization of electron beam (EB) were held in Bangkok and Jakarta on 9 and 13 July 1992, respectively. The proceedings contain 13 papers presented at the Workshops. Welcome remarks, opening address and closing remarks are also recorded. At the first part of the Workshops, general view on the application of electron accelerators and introduction of electron accelerators were made. Potential applications of electron accelerators to polymer processing, sterilization of medical products, flue gas purification, treatment of wastewater and sewage sludge and bioresources were introduced from Japanese participants. Potential application of electron accelerators to polymer processing and food irradiation in Thailand and Indonesia were also discussed. (author)

  2. 1st report from the LHC performance workshop

    CERN Multimedia

    Bulletin's correspondent from Chamonix

    2012-01-01

    Yesterday, 6 February, the LHC Performance workshop 2012 kicked off in a very chilly Chamonix (-12 degrees C in town at midday, nearer -30 on the top of Les Grand Montets). The first day was devoted to a critical review of 2011.   2011 was a very good year for the machine and its experiments but the first day of the Workshop focused on examining the performance and identifying possible improvements to critical systems such as beam instrumentation and machine protection. The high-intensity beams that LHC managed to collide last year have sparked a number of issues around the ring including beam-induced heating of some hardware, and problematic vacuum spikes. Present understanding of these problems was presented and possible solutions discussed. The immediate aim is to maximize the performance of the 2012 run with one eye on the more distant future. 

  3. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  4. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  5. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  6. Workshop on electroweak symmetry breaking: proceedings

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented

  7. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  8. MOOC Design Workshop

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Mor, Yishay; Warburton, Steven

    2016-01-01

    For the last two years we have been running a series of successful MOOC design workshops. These workshops build on previous work in learning design and MOOC design patterns. The aim of these workshops is to aid practitioners in defining and conceptualising educational innovations (predominantly......, but not exclusively MOOCs) which are based on an empathic user-centered view of the target learners and teachers. In this paper, we share the main principles, patterns and resources of our workshops and present some initial results for their effectiveness...

  9. Experimental data processing technique for nonstationary heat transfer on fuel rod simulators

    International Nuclear Information System (INIS)

    Nikonov, S.P.; Nikonov, A.P.; Belyukin, V.A.

    1982-01-01

    Non-stationary heat-transfer data processing is considered in connection with experimental studies of the emergency cooling whereat fuel rod imitators both with direct and indirect shell heating were used. The objective of data processing was obtaining the temperature distribution within the imitator, the heat flux removed by the coolant and the shell-coolant heat-transfer coefficient. The special attention was paid to the temperature distribution calculation at the data processing during the reflooding experiments. In this case two factors are assumed to be known: the time dependency of temperature variation at a certain point within the imitator cross-section and the heat flux at some point of the same cross-section. The initial data preparation for calculations, employing the procedure of smoothing by cubic spline functions, is considered as well, with application of an algorithm reported in the literature, which is efficient for the given functional dependency wherein the deviation in each point is known [ru

  10. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  11. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  12. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  13. The socializing workshop and the scientific appraisal in pedagogical sciences

    Directory of Open Access Journals (Sweden)

    Matos, Eneida Catalina

    2012-01-01

    Full Text Available The systematization of the authors' experiences as agents of the process of Ph. D. formative process in Pedagogical Sciences leads them to propose The Socialization Workshop, as a valid alternative for scientific valuation of pedagogical investigations, supported in the epistemic nature of this science, as well as the author’s previous contributions about epistemic communication. The definition of The Socialization Workshop, its rationale and corresponding methodological stages are presented.

  14. 77 FR 12313 - Food Labeling Workshop; Public Workshop

    Science.gov (United States)

    2012-02-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Food Labeling Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of... District Office (DALDO), in collaboration with Oklahoma State University (OSU), Robert M. Kerr Food...

  15. 75 FR 29775 - Food Labeling Workshop; Public Workshop

    Science.gov (United States)

    2010-05-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES [Docket No. FDA-2010-N-0001] Food and Drug Administration Food Labeling Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of...: Institute of Food Science & Engineering, University of Arkansas, 2650 North Young Ave., Fayetteville, AR...

  16. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    Science.gov (United States)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  17. Building Strong Geoscience Departments Through the Visiting Workshop Program

    Science.gov (United States)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  18. Systems Engineering Workshops | Wind | NREL

    Science.gov (United States)

    Workshops Systems Engineering Workshops The Wind Energy Systems Engineering Workshop is a biennial topics relevant to systems engineering and the wind industry. The presentations and agendas are available for all of the Systems Engineering Workshops: The 1st NREL Wind Energy Systems Engineering Workshop

  19. Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1979-01-01

    The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given

  20. Economic and environmental benefits of converting industrial processes to district heating

    International Nuclear Information System (INIS)

    Djuric Ilic, Danica; Trygg, Louise

    2014-01-01

    Highlights: • The potential for converting industrial processes to district heating is analyzed. • The study includes 83 manufacturing companies in three Swedish counties. • The energy costs for the companies decrease after the conversions. • The conversion opens up for a reduction of global greenhouse gas emissions. • CHP plants in the local district heating system are better utilized. - Abstract: The aim of this study was to analyse the possibilities of converting industrial processes from electricity and fossil fuels to district heating in 83 companies in three Swedish counties. Effects on the local district heating systems were explored, as well as economic effects and impacts on global emissions of greenhouse gases. The study was conducted considering two different energy market conditions for the year 2030. The results show that there is a potential for increasing industrial district heating use in all analysed counties. The greatest potential regarding percentage is found in Jönköping, where the annual district heating use in the manufacturing companies could increase from 5 GW h to 45 GW h. The annual industrial district heating use could increase from 84 GW h to 168 GW h in Östergötland and from 14 GW h to 58 GW h in Västra Götaland. The conversion of the industrial production processes to district heating would lead to district heating demand curves which are less dependent on outdoor temperature. As a result, the utilization period of the base load plants (above all of the combined heat and power plants) would be prolonged; this would decrease district heating production costs due to the increased income from the electricity production. The energy costs for the industrial companies decrease after the conversions as well. Furthermore, the increased electricity production in the combined heat and power plants, and the decreased electricity and fossil fuel use in the industrial sector opens up a possibility for a reduction of global

  1. Process Design of Aluminum Tailor Heat Treated Blanks

    Directory of Open Access Journals (Sweden)

    Alexander Kahrimanidis

    2015-12-01

    Full Text Available In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO2 and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation.

  2. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  3. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    Crambes, M.

    1980-01-01

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  4. Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes

    Science.gov (United States)

    Taranto, Philip; Modi, Kavan; Pollock, Felix A.

    2018-05-01

    In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.

  5. Process for preparing a normal lighting and heating gas etc

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J

    1910-12-11

    A process for preparing a normal lighting and heating gas from Australian bituminous shale by distillation and decomposition in the presence of water vapor is characterized by the fact that the gasification is suitably undertaken with gradual filling of a retort and with simultaneous introduction of water vapor at a temperature not exceeding 1,000/sup 0/ C. The resulting amount of gas is heated in the same or a second heated retort with freshly supplied vapor.

  6. Influence of inductive heating on microstructure and material properties in roll forming processes

    Science.gov (United States)

    Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk

    2017-10-01

    The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

  7. PECULIARITIES OF GENERALIZATION OF SIMILAR PHENOMENA IN THE PROCESS OF FISH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Pokhol’chenko

    2015-01-01

    Full Text Available The theoretical presuppositions for the possibility of generalizing and similarity founding in dehydration and wet materials heating processes are studieded in this article. It is offered to carry out the given processes generalization by using dimensionless numbers of similarity. At the detailed analyzing of regularities of heat treatment processes of fish in different modes a significant amount of experienced material was successfully generalized on the basis of dimensionless simplex (similarity numbers. Using the dimensionless simplex allowed to detect a number of simple mathematical models for the studied phenomena. The generalized kinetic models of fish dehydration, the generalized dynamic models (changing moisture diffusion coefficients, the generalized kinetic models of fish heating (the temperature field changing in the products thickness, average volume and center were founded. These generalized mathematical models showed also relationship of dehydration and heating at the processes of fish semi-hot, hot smoking (drying and frying. The relationship of the results from the physical nature of the dehydration process, including a change in the binding energy of the moisture with the material to the extent of the process and the shrinkage impact on the rate of the product moisture removal is given in the article. The factors influencing the internal structure and properties of the raw material changing and retarding the dehydration processes are described there. There was a heating rate dependence of fish products on the chemical composition the geometric dimensions of the object of heating and on the coolant regime parameters. A unique opportunity is opened by using the generalized models, combined with empirically derived equations and the technique of engineering calculation of these processes, to design a rational modes of heat treatment of raw materials and to optimize the performance of thermal equipment.

  8. Workshop on advances in smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wingate, C.A.; Miller, W.A.

    1993-12-31

    This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.

  9. Applied antineutrino physics workshop

    International Nuclear Information System (INIS)

    Lund, James C.

    2008-01-01

    This workshop is the fourth one of a series that includes the Neutrino Geophysics Conference at Honolulu, Hawaii, which I attended in 2005. This workshop was organized by the Astro-Particle and Cosmology laboratory in the recently opened Condoret building of the University of Paris. More information, including copies of the presentations, on the workshop is available on the website: www.apc.univ-paris7.fr/AAP2007/. The workshop aims at opening neutrino physics to various fields such that it can be applied in geosciences, nuclear industry (reactor and spent fuel monitoring) and non-proliferation. The workshop was attended by over 60 people from Europe, USA, Asia and Brazil. The meeting was also attended by representatives of the Comprehensive nuclear-Test Ban Treaty (CTBT) and the International Atomic Energy Agency (IAEA). The workshop also included a workshop dinner on board of a river boat sailing the Seine river

  10. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  11. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  12. Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu

    The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...

  13. An Innovative VHTR Waste Heat Integration with Forward Osmosis Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    The integration concept implies the coupling of the waste heat from VHTR with the draw solute recovery system of FO process. By integrating these two novel technologies, advantages, such as improvement of total energy utilization, and production of fresh water using waste heat, can be achieved. In order to thermodynamically analyze the integrated system, the FO process and power conversion system of VHTR are simulated using chemical process software UNISIM together with OLI property package. In this study, the thermodynamic analysis on the VHTR and FO integrated system has been carried out to assess the feasibility of the concept. The FO process including draw solute recovery system is calculated to have a higher GOR compared to the MSF and MED when reasonable FO performance can be promised. Furthermore, when FO process is integrated with the VHTR to produce potable water from waste heat, it still shows a comparable GOR to typical GOR values of MSF and MED. And the waste heat utilization is significantly higher in FO than in MED and MSF. This results in much higher water production when integrated to the same VHTR plant. Therefore, it can be concluded that the suggested integrated system of VHTR and FO is a very promising and strong system concept which has a number of advantages over conventional technologies.

  14. Absorbing Aerosols Workshop, January 20-21, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Shaima [Brookhaven National Lab. (BNL), Upton, NY (United States); Williamson, Ashley [Brookhaven National Lab. (BNL), Upton, NY (United States); Cappa, Christopher D. [Univ. of California, Berkeley, CA (United States); Kotamarthi, Davis Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Flynn, Conner [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Ernie [Brookhaven National Lab. (BNL), Upton, NY (United States); McComiskey, Allison [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Riemer, Nicole [Univ. of Illinois, Chicago, IL (United States)

    2016-07-01

    A workshop was held at DOE Headquarters on January 20-21, 2016 during which experts within and outside DOE were brought together to identify knowledge gaps in modeling and measurement of the contribution of absorbing aerosols (AA) to radiative forcing. Absorbing aerosols refer to those aerosols that absorb light, whereby they both reduce the amount of sunlight reaching the surface (direct effect) and heat their surroundings. By doing so, they modify the vertical distribution of heat in the atmosphere and affect atmospheric thermodynamics and stability, possibly hastening cloud drop evaporation, and thereby affecting cloud amount, formation, dissipation and, ultimately, precipitation. Deposition of AA on snow and ice reduces surface albedo leading to accelerated melt. The most abundant AA type is black carbon (BC), which results from combustion of fossil fuel and biofuel. The other key AA types are brown carbon (BrC), which also results from combustion of fossil fuel and biofuel, and dust (crustal material). Each of these sources may result from, and be strongly influenced by, anthropogenic activities. The properties and amounts of AA depend upon various factors, primarily fuel source and burn conditions (e.g., internal combustion engine, flaming or smoldering wildfire), vegetation type (in the case of BC and BrC), and in the case of dust, soil type and ground cover (i.e., vegetation, snow, etc.). After emission, AA undergo chemical processing in the atmosphere that affects their physical and chemical properties. Thus, attribution of sources of AA, and understanding processes AA undergo during their atmospheric lifetimes, are necessary to understand how they will behave in a changing climate.

  15. Peer-Review Writing Workshops in College Courses: Students’ Perspectives about Online and Classroom Based Workshops

    Directory of Open Access Journals (Sweden)

    Erin B. Jensen

    2016-11-01

    Full Text Available Peer-review workshops are commonly used in writing courses as a way for students to give their peers feedback as well as help their own writing. Most of the research on peer-review workshops focuses on workshops held in traditional in-person courses, with less research on peer-review workshops held online. Students in a freshman writing course experienced both a classroom based writing workshop and an online workshop and then took a survey about their experiences. The majority of the students preferred the online writing workshop because of the convenience of the workshop and being able to post anonymous reviews. Students whom preferred the traditional in-person writing workshop liked being able to talk with their peers about their papers. This research article focuses on the students’ responses and experiences with traditional and online peer-reviews.

  16. A novel NGL (natural gas liquid) recovery process based on self-heat recuperation

    International Nuclear Information System (INIS)

    Van Duc Long, Nguyen; Lee, Moonyong

    2013-01-01

    This study examined an innovative self-heat-recuperation technology that circulates latent and sensible heat in the thermal process and applied it to the NGL (natural gas liquid) recovery process. A CGCC (column grand composite curve) was used to assess the thermodynamic feasibility of implementing the heat pump system and self-heat-recuperation technology into a conventional distillation column. The proposed distillation based on self-heat recuperation reduced the energy consumption dramatically by compressing the effluent stream, whose temperature was increased to provide the minimum temperature difference for the heat exchanger, and circulating the stream heat in the process. According to a simulation of the proposed sequence, up to 73.43 and 83.48% of the condenser and reboiler energy, respectively, were saved compared to a conventional column. This study also proposes heat integration to improve the performance of self-heat recuperation. The results showed that the modified sequence saves up 64.35, 100.00 and 31.60% of the condenser energy requirements, reboiler energy requirements and OP (operating cost), respectively, compared to a classical heat pump system, and 90.24, 100.00, and 67.19%, respectively, compared to a conventional column. The use of these sequences to retrofit a distillation column to save energy was also considered. - Highlights: • Innovative self-heat-recuperation technology that circulates latent and sensible heat. • A CGCC (column grand composite curve) is used to assess the thermodynamic feasibility. • The proposed sequence saves up 67.19% of the OP (operating cost). • The proposed sequences can be used to retrofit a distillation column to save energy

  17. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  18. NASA/FAA helicopter simulator workshop

    Science.gov (United States)

    Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)

    1992-01-01

    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.

  19. Second Workshop on Mechatronic Systems

    CERN Document Server

    Choley, Jean-Yves; Chaari, Fakher; Jarraya, Abdessalem; Haddar, Mohamed

    2014-01-01

    The book offers a snapshot of the state-of-art in the field of model-based mechatronic system design. It covers topics including machine design and optimization, predictive systems in manufacturing networks, and the development of software for modeling and simulation of processes, which are supplemented by practical case studies. The book is a collection of fifteen selected contributions presented during the Workshop on Mechatronic Systems, held on March 17-19, 2014, in Mahdia, Tunisia. The workshop was jointly organized by the Laboratory of Mechanics Modeling and Production (LA2MP) of the National School of Engineers Sfax, Tunisia, and the Laboratory for Mechanical Systems and Materials Engineering (LISMMA) of Higher Institute of Mechanics (SUPMECA), Paris, France.

  20. ICP-MS Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Carman, April J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eiden, Gregory C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  1. Heat and work distributions for mixed Gauss–Cauchy process

    International Nuclear Information System (INIS)

    Kuśmierz, Łukasz; Gudowska-Nowak, Ewa; Rubi, J Miguel

    2014-01-01

    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two statistically independent Lévy white noises with stability indices α = 2 and α = 1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations (α = 1) to either bath or external force acting on the system. (paper)

  2. Signal sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  3. Signal sciences workshop. Proceedings

    International Nuclear Information System (INIS)

    Candy, J.V.

    1997-01-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing

  4. 78 FR 33849 - Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request...

    Science.gov (United States)

    2013-06-05

    ... after the public workshop on the Internet at http://www.fda.gov/MedicalDevices/NewsEvents/Workshops..., compact, and mobile, the number of battery-powered medical devices will continue to increase. While many...] Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request for...

  5. Summary Report of the Workshop on the Experimental Nuclear Reaction Data Database

    International Nuclear Information System (INIS)

    Semkova, V.; Pritychenko, B.

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here. (author)

  6. Summary Report of the Workshop on The Experimental Nuclear Reaction Data Database

    Energy Technology Data Exchange (ETDEWEB)

    Semkova, V. [IAEA Nuclear Data Section, Vienna (Austria); Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here.

  7. Development of a revolving drum reactor for open-sorption heat storage processes

    International Nuclear Information System (INIS)

    Zettl, Bernhard; Englmair, Gerald; Steinmaurer, Gerald

    2014-01-01

    To evaluate the potential of an open sorption storage process using molecular sieves to provide thermal energy for space heating and hot water, an experimental study of adsorption heat generation in a rotating reactor is presented. Dehydrated zeolite of the type 4A and MSX were used in form of spherical grains and humidified room air was blown through the rotating bed. Zeolite batches of about 50 kg were able to generate an adsorption heat up to 12 kWh and temperature shifts of the process air up to 36 K depending on the inlet air water content and the state of dehydration of the storage materials. A detailed study of the heat transfer effects, the generated adsorption heat, and the evolving temperatures show the applicability of the reactor and storage concept. - Highlights: • Use of an open adsorption concept for domestic heat supply was proved. • A rotating heat drum reactor concept was successfully applied. • Zeolite batches of 50 kg generated up to 12 kWh adsorption heat (580 kJ/kg). • Temperature shift in the rotating material bed was up to 60 K during adsorption

  8. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  9. [Health education at the health workshops of Cahors: challenges].

    Science.gov (United States)

    Théry, Céline

    2013-01-01

    There have been significant developments in health education over recent years. Focusing on France, the purpose of this paper is to examine the role of health education in reducing social inequalities based on the example of the Atelier santé ville de Cahors (Cahors Health Workshop). The paper addresses the following questions: What are the results and outcomes of the workshop? What kind of health education issues are at stake in the territorial approach to policy-making in an urban context? We examined the methods underlying the health education measures taken in the Cahors Health Workshop, which involve project-based approaches and the promotion of community health. Health education aimed at improving health is central to issues such as listening and speaking, the development of autonomy and the responsibilization of urban actors. Based on a rigorous methodology and the underlying values, health education in the Cahors Health Workshop places local residents, elected representatives and health professionals at the heart of the health care process (from the diagnostic process to the assessment process) and contributes to the reduction of social inequalities in health while facilitating access to information and health care. The goal of health education is to encourage individuals to be responsible for their own health in order to empower them to make informed choices adapted to the demands of their environment.

  10. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  11. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    Science.gov (United States)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  12. Workshop Proceedings

    DEFF Research Database (Denmark)

    2012-01-01

    , the main focus there is on spoken languages in their written and spoken forms. This series of workshops, however, offers a forum for researchers focussing on sign languages. For the third time, the workshop had sign language corpora as its main topic. This time, the focus was on the interaction between...... corpus and lexicon. More than half of the papers presented contribute to this topic. Once again, the papers at this workshop clearly identify the potentials of even closer cooperation between sign linguists and sign language engineers, and we think it is events like this that contribute a lot to a better...

  13. Role and importance of workshops in the development of heritage protection

    Directory of Open Access Journals (Sweden)

    Živa Deu

    2013-07-01

    Full Text Available This contribution presents a detailed account of the role and importance of urbanist-architecture and architecture workshops. The analysis of the chosen sample of twenty-five workshops tied to the developmental protection of the heritage of built structures and the preservation of immobile cultural heritage as a whole illuminates the pedagogic importance and examines the transmission of workshop products into practice. It has been established that in addition to raising new architects the workshops posses a wider educational importance. Apart from the client the workshop process includes the local inhabitants who, through the process, familiarize themselves with less well known expert and practical knowledge. Without it any expectation of a quality settlement of vital building heritage would not be merited. An overview of the results stemming from the workshops demonstrates that practical applications do not achieve desired results. Many products remained locked in the clients’ desk drawers with less than half ever put into practice. All the workshops, including the ones not, or not yet realised in their intended form, produced material of lasting value, specifically in the work of the regional Institutes for the Protection of Cultural Heritage. The materials handed over to institutes playing an important role in the productive efforts of the high grade of protection and development of heritage include multi-layered analyses of valuable built structures and architectural recordings. From the point of view of developmental protection of Slovenian cultural heritage and due to the demonstrated use of important analytic material and especially due to their proven educational value the exercise of workshops in various settlements of Slovenian space is indispensable.

  14. Report of the workshop on polarized target materials

    International Nuclear Information System (INIS)

    Court, G.R.; Crabb, D.G.; Fernow, R.C.; Fitzgerald, D.H.; Gray, S.W.; Hill, D.A.; Jarmer, J.J.; Krisch, A.D.; Krumpolic, M.; Niinikoski, T.O.

    1978-01-01

    The workshop concentrated on an examination of: radiation damage in polarized target materials, a survey of clean target materials, and dynamic polarization results with the new stable Cr(V) complexes. In addition to the normal polarized target experts with backgrounds in high energy physics, low temperature physics and solid state physics, scientists with strong backgrounds in various areas of chemistry and radiation damage physics were included, as these areas were quite crucial to the workshop goals. However, it is clear that much closer collaboration with experts in these areas will be necessary to find polarized target materials that allow more precise experiments on high P 2 perpendicular processes and inclusive processes

  15. Proceedings of US-Japan heliotron-stellarator workshop: Volume 2

    International Nuclear Information System (INIS)

    1987-01-01

    This paper is the second of four volumes on the US-Japan Heliotron-Stellarator workshop. It contains talks on the following: Ripple Transport at Arbitrary Collision Frequency, Transport Scaling in the Collisionless-Detrapping Regime, Transport Analysis for Heliotron E, Transport Analysis for ATF, Simulation Analysis of Heating and Transport, Analysis of W VII-A Data, Numerical Study of Fast Ion Confinement, Benchmarks of NBI Codes for Stellarators, ECH Commissioning and Plans for ATF, and ECH and ICH Startup Analysis

  16. An AHP-based evaluation method for teacher training workshop on information and communication technology.

    Science.gov (United States)

    Lucas, Rochelle Irene; Promentilla, Michael Angelo; Ubando, Aristotle; Tan, Raymond Girard; Aviso, Kathleen; Yu, Krista Danielle

    2017-08-01

    The emergence of information and communication technology (ICT) has created opportunities for enhancing the learning process at different educational levels. However, its potential benefits can only be fully realized if teachers are properly trained to utilize such tools. The rapid evolution of ICT also necessitates rigorous assessment of training programs by participants. Thus, this study proposes an evaluation framework based on the Analytic Hierarchy Process (AHP) to systematically evaluate such workshops designed for teachers. The evaluation model is decomposed hierarchically into four main criteria namely: (1) workshop design, (2) quality of content of the workshop, (3) quality of delivery of the content of the workshop, and the (4) relevance of the workshop. These criteria are further disaggregated into 24 sub-indicators to measure the effectiveness of the workshop as perceived by the participants based on their own expectations. This framework is applied to a case study of ICT workshops done in the Philippines. In this case, relevance of the workshop is found to be the most important main criterion identified by the participants, particularly on the new ICT knowledge that promotes teachers' professional growth and development. The workshop evaluation index (WEI) is also proposed as a metric to support decision-making by providing a mechanism for benchmarking performance, tracking improvement over time, and developing strategies for the design and improvement of training programs or workshops on ICT for teachers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  18. Cognition in Space Workshop. 1; Metrics and Models

    Science.gov (United States)

    Woolford, Barbara; Fielder, Edna

    2005-01-01

    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.

  19. 1994 DOE Technical Standards Program Workshop: Proceedings

    International Nuclear Information System (INIS)

    Spellman, D.J.

    1994-01-01

    The DOE Technical Standards Program has been structured to provide guidance and assistance for the development, adoption, and use of voluntary standards within the Department. OMB Circular A-119, ''Federal Participation in the Development and Use of Voluntary Standards'' establishes the policy to be followed in working with voluntary standards bodies, and in adopting and using voluntary standards whenever feasible. The DOE Technical Standards Program is consistent with this policy and is dedicated to the task of promoting its implementation. The theme of this year's workshop is ''Standards Initiatives in Environmental Management fostering the development and use of industry standards for safe, environmentally responsible operations.'' The objective of the workshop is to increase the participant's awareness of the standardization activities taking place nationally and internationally and the impact of these activities on their efforts, and to facilitate the exchange of experiences, processes, and tools for implementing the program. Workshop sessions will include presentations by industry and Government notables in the environment, safety, and health arena with ample opportunity for everyone to ask questions and share experiences. There will be a breakout session which will concentrate on resolution of issues arising from the implementation of the DOE Technical Standards Program and a plenary session to discuss the plans developed by the breakout groups. Many organizations provide services and products which support the development, processing, distribution, and retrieval of standards. Those organizations listed at the end of the agenda will have exhibits available for your perusal throughout the workshop. Last year's workshop was very successful in stimulating an understanding of an interest in the standards program. This year, we hope to build on that success and provide an environment for the synergism of ideas to enhance the program and advance its implementation

  20. Workshop report

    African Journals Online (AJOL)

    abp

    2017-09-14

    Sep 14, 2017 ... health: report of first EQUIST training workshop in Nigeria .... The difference between the before and after measurements was ... After the administration of the pre-workshop questionnaire the ... represent Likert rating scale of 1-5 points, where 1point = grossly .... Procedures Manual for the "Evaluating.

  1. Comedy workshop: an enjoyable way to develop multiple-choice questions.

    Science.gov (United States)

    Droegemueller, William; Gant, Norman; Brekken, Alvin; Webb, Lynn

    2005-01-01

    To describe an innovative method of developing multiple-choice items for a board certification examination. The development of appropriate multiple-choice items is definitely more of an art, rather than a science. The comedy workshop format for developing questions for a certification examination is similar to the process used by comedy writers composing scripts for television shows. This group format dramatically diminishes the frustrations faced by an individual question writer attempting to create items. The vast majority of our comedy workshop participants enjoy and prefer the comedy workshop format. It provides an ideal environment in which to teach and blend the talents of inexperienced and experienced question writers. This is a descriptive article, in which we suggest an innovative process in the art of creating multiple-choice items for a high-stakes examination.

  2. Report on the value engineering workshop on APS beamline front ends

    International Nuclear Information System (INIS)

    Kuzay, T.

    1993-01-01

    A formal value engineering evaluation process was developed to address the front end components of the beamlines for the Advanced Photon Source (APS). This process (described in Section 2) involved an information phase, a creative phase, a judgment phase, a development phase, and a recommendation phase. Technical experts from other national laboratories and industry were invited to a two-day Value Engineering Workshop on November 5-6, 1992. The results of this Workshop are described in Section 4. Following the Workshop, various actions by the APS staff led to the redesign of the front end components, which are presented in Sections 5 and 6. The cost benefit analysis is presented in Section 7. It is important of realize that an added benefit of the Workshop was to obtain numerous design evaluations and enhancements of the front end components by experts in the field. As the design work proceeds to Title II completion, the APS staff is including many of these suggestions

  3. Situated modelling in the drawing workshop for bobbin lace.

    Science.gov (United States)

    Saldanhar, Maria Christine Werba; de Almeida, Juliana Donato

    2012-01-01

    The current article presents the process of situated modeling in the drawing workshop for bobbin lace developed and implemented in the Núcleo de Produção Artesanal Rendeiras da Vila, in Ponta Negra, Natal-Brasil. The workshop aimed to rescue the domain over the product in the production of bobbin lace through capacitation of both experienced and novice craftswomen. The modeling of the drawing workshop was grounded on the sociotechnical construction and in the concepts of anthropotechnology and also social technology. The modelling required an intense process of social construction involving the members of GREPE-UFRN (Group of extension and Research in Ergonomics) and the lacemakers od the community. The domain of drawing the lace has enabled the expression of the craftswomen creativity, increasing the amount of works and the sustainable development,thus reducing the risks of extinction of such art in the Village of Ponta Negra.

  4. Report of the second Human Genome Diversity workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  5. Development of shelf stable, processed, low acid food products using heat-irradiation combination treatments

    International Nuclear Information System (INIS)

    Minnaar, A.

    1998-01-01

    The amount of ionizing irradiation needed to sterilize low acid vegetable and starch products (with and without sauces) commercially impairs their sensorial and nutritive qualities, and use of thermal processes for the same purpose may also have an adverse effect on the product quality. A systematic approach to the establishment of optimized combination parameters was developed for heat-irradiation processing to produce high quality, shelf stable, low acid food products. The effects of selected heat, heat-irradiation combination and irradiation treatments on the quality of shelf stable mushrooms in brine and rice, stored at ambient temperature, were studied. From a quality viewpoint, use of heat-irradiation combination treatments favouring low irradiation dose levels offered a feasible alternative to thermally processed or radappertized mushrooms in brine. However, shelf stable rice produced by heat-irradiation combination treatments offered a feasible alternative only to radappertized rice from the standpoint of quality. The technical requirements for the heat and irradiation processing of a long grain rice cultivar from the United States of America oppose each other directly, thereby reducing the feasibility of using heat-irradiation combination processing to produce shelf stable rice. The stability of starch thickened white sauces was found to be affected severely during high dose irradiation and subsequent storage at ambient temperature. However, use of pea protein isolate as a thickener in white sauces was found to have the potential to maintain the viscosity of sauces for irradiated meat and sauce products throughout processing and storage. (author)

  6. Soundscape actions: A tool for noise treatment based on three workshops in landscape architecture

    Institute of Scientific and Technical Information of China (English)

    Gunnar Cerwén; Jacob Kreutzfeldt; Carola Wingren

    2017-01-01

    This paper reports experiences from three workshops dealing with soundscape as a noise treatment approach in landscape architecture.The workshops were conducted between 2012 and 2016 in different contexts,for different purposes and with different participants.The paper describes the workshop approach employed and analyzes the proposals made by workshop participants to employ "soundscape action" as an operational tool in landscape architecture projects.Through a process of 'keywording' and clustering proposals from the workshops,22 pragmatic soundscape actions emerged and are described on a general level.The paper then discusses the outcomes and experiences from the workshops and relates this to landscape architecture practice.

  7. Bioproducts to Enable Biofuels Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Andrea [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Leong, G. Jeremy [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Fitzgerald, Nichole [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2015-12-01

    This report summarizes the results of a public workshop sponsored by DOE/EERE in Westminster, Colorado, on July 16, 2015. The views and opinions of the workshop attendees, as summarized in this document, do not necessarily reflect those of the United States government or any agency thereof, nor do their employees make any warranty, expressed or implied, or assume any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe upon privately owned rights.

  8. Proceedings of the NOAMI workshop : a workshop to explore perspectives on risk assessment for orphaned and abandoned mines

    International Nuclear Information System (INIS)

    2009-03-01

    This workshop hosted by the National Orphaned/Abandoned Mines Initiative (NOAMI) discussed risk assessment strategies and perspectives for orphaned and abandoned mines in Canada. Different perspectives related to the risk assessment process were considered by participants from local, provincial, federal, and territorial agencies as well as non-governmental, academic, and mining industry organizations. Strategies for effectively communicating with local communities were discussed. New methods of assessing risk related to bioavailability and bioaccessibility were reviewed along with approaches to risk assessment and risk management in relation to the Environmental Management Act. Case studies of risk assessment and remediation projects were presented. The workshop presentations were divided into the following 6 sessions: (1) keynote, (2) opening panel, (3) human health panel, (4) ecological panel, (5) geotechnical-safety risk assessment panel, and (6) case studies and perspectives. The workshop featured 22 presentations, of which 2 have been catalogued separately for inclusion in this database. A report on detailed ecological risk assessment (DERA) in British Columbia prepared by the Science Advisory Board for Contaminated Sites in British Columbia (BC) was included, as well as a final report that summarized presentations given at the workshop. refs., tabs., figs

  9. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  10. Enhancing teamwork among allied health students: evaluation of an interprofessional workshop.

    Science.gov (United States)

    Rodger, Sylvia; Mickan, Sharon; Marinac, Julie; Woodyatt, Gail

    2005-01-01

    This report outlines the teamwork learning outcomes of an interprofessional workshop conducted with a cohort of 81 graduate-entry students of occupational therapy, physiotherapy, speech pathology, and audiology. This four-hour workshop was based around a case scenario of a child with developmental coordination disorder. This report describes and evaluates the development of knowledge and skills of teamwork that were facilitated through this workshop. Students completed questionnaires before and after the workshop about their knowledge of teamwork, requisites for working together, the utility of the workshop, and learning outcomes. The evaluation indicated that the workshop was successful from the students' perspectives in confirming the importance of teamwork and the processes of communication and collaborative goal setting. Students refined their own professional roles and developed an appreciation of the contribution of other professions and parents. This recognition of the comparative value of different professional contributions in providing holistic patient care is one of the starting points for education about interprofessional teamwork.

  11. Application of induction heating in food processing and cooking: A Review

    Science.gov (United States)

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  12. Workshop on CEBAF at higher energies

    International Nuclear Information System (INIS)

    Isgur, N.; Stoler, P.

    1994-04-01

    Since the current parameters of CEBAF were defined almost a decade ago, there has been a remarkably fruitful evolution of our picture of the behavior of strongly interacting matter that apparently could be addressed by CEBAF at higher energies. Favorable technical developments coupled with foresight in initial laboratory planning have now made it feasible to consider approximately doubling CEBAF's current design energy of 4 GeV to approach 10 GeV at rather modest cost. The purpose of the workshop, sponsored by the CEBAF User Group, was to begin to develop the next phase of CEBAF's program by giving the entire community the opportunity to participate in defining the future of our field, and in particular the physics accessible with an upgraded CEBAF energy. It is intended that this report mark the first step toward an ultimate goal of defining a physics program that will form the basis for an upgrade of CEBAF. The report begins with a brief overview of the workshop's conclusions. Its body consists of sections corresponding to the workshop's Working Groups on Hadron Spectroscopy and Production, High Q 2 Form Factors and Exclusive Reactions, Inclusive and Semi-Inclusive Processes, and Hadrons in the Nuclear Medium. Each section begins with the working group summaries and is followed by associated plenary talks summarizing the outstanding physics issues addressable by an upgrade, which are in turn followed by individual contributions presenting specific physics programs. An appendix describes capabilities of CEBAF's current experimental equipment at higher energies; another appendix lists workshop participants. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database

  13. Association EURATOM-CEA contributions on workshops 1995

    International Nuclear Information System (INIS)

    1995-01-01

    Two communications were presented at the 4th IAEA Technical Committee Meeting and Joint US-Japan Workshop on Alpha Particles in Fusion Research. The first one more precisely deal with a new method to compute charged fusion products trajectories and with its application to the detection of 3 MeV protons. As far as the second one is concerned, it focuses on the energy measurement of fast ions trapped in the toroidal field ripple of Tore Supra during ICRF heating. Five communications were presented at the workshop on transport, chaos and plasma physics that took place in Marseilles in July 1995. They include experiments such as the stochastic boundary ones, which showed that an external magnetic perturbation does provide a control of the edge plasma. It is also shown that in a static stochastic magnetic field, magnetic lines experience exponential separation and magnetic diffusion. The radial correlation length of an electrostatic drift wave turbulence is determined analytically in various regimes. It is finally investigated how internal magnetic turbulence reacts to variation of plasma current, density, and radio frequency heating power. Two communications were presented at the 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas which took place in Meudon in August 1995. It describes more precisely the use of X-ray spectroscopy on the Tore Supra Tokamak for plasma diagnostics and atomic physics, as well as the influence of charge exchange reactions on ionization balance and power losses for the same device. (TEC). 74 refs., 55 figs., 2 tabs

  14. Association EURATOM-CEA contributions on workshops 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Two communications were presented at the 4th IAEA Technical Committee Meeting and Joint US-Japan Workshop on Alpha Particles in Fusion Research. The first one more precisely deal with a new method to compute charged fusion products trajectories and with its application to the detection of 3 MeV protons. As far as the second one is concerned, it focuses on the energy measurement of fast ions trapped in the toroidal field ripple of Tore Supra during ICRF heating. Five communications were presented at the workshop on transport, chaos and plasma physics that took place in Marseilles in July 1995. They include experiments such as the stochastic boundary ones, which showed that an external magnetic perturbation does provide a control of the edge plasma. It is also shown that in a static stochastic magnetic field, magnetic lines experience exponential separation and magnetic diffusion. The radial correlation length of an electrostatic drift wave turbulence is determined analytically in various regimes. It is finally investigated how internal magnetic turbulence reacts to variation of plasma current, density, and radio frequency heating power. Two communications were presented at the 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas which took place in Meudon in August 1995. It describes more precisely the use of X-ray spectroscopy on the Tore Supra Tokamak for plasma diagnostics and atomic physics, as well as the influence of charge exchange reactions on ionization balance and power losses for the same device. (TEC). 74 refs., 55 figs., 2 tabs.

  15. Proceedings of IEEE Workshop on Machine Learning for Signal Processing XIV

    DEFF Research Database (Denmark)

    Larsen, Jan

    of machine learning. We would like to express our appreciation and gratitude to UFMA, EMAP, ELETROBRÁS, ELETRONORTE, ALUMAR and BASA, who contributed to the workshop by providing technical and financial support in various forms. Our warmest, special thanks go to our plenary speakers: Prof. Petar M. Djuric...

  16. Gasification of coal using nuclear process heat. Chapter D

    International Nuclear Information System (INIS)

    Schilling, H.-D.; Bonn, B.; Krauss, U.

    1979-01-01

    In the light of the high price of coal and the enormous advances made recently in nuclear engineering, the possibility of using heat from high-temperature nuclear reactors for gasification processes was discussed as early as the 1960s. The advantages of this technology are summarized. A joint programme of development work is described, in which the Nuclear Research Centre at Juelich is aiming to develop a high-temperature reactor which will supply process heat at as high a temperature as possible, while other organizations are working on the hydrogasification of lignites and hard coals, and steam gasification. Experiments are at present being carried out on a semi-technical scale, and no operational data for large-scale plants are available as yet. (author)

  17. 1993 DOE technical standards managers workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This workshop is focused on the benefits of the DOE technical standards program, which is focused toward the preferred use of non-Government standards for DOE activities and the development of DOE technical standards when non-Government standards are not available or are inappropriate. One goal of the program is to replace redundant site-specific standards with more universally accepted documents that have been scrutinized by experts. This replacement is discussed at the workshop along with the problems encountered and solutions found. The workshop provided an opportunity for geographically dispersed people to meet and advance their standards knowledge and efforts to support the program. Safety issues have been the driving force behind the program to date. Several companies offer products and services that support the development, processing, and retrieval of standards. This document mostly comprise vugraphs.

  18. Workshop on rules for exemption from regulatory control: Proceedings

    International Nuclear Information System (INIS)

    1989-04-01

    This conference report documents the proceedings of an International Workshop on the subject of exempting radiation sources and practices from regulatory control. The purpose of the workshop was to provide national regulatory authorities an opportunity to exchange information on their respective approaches and practices involving exemptions and to enhance international understanding and cooperation on the derivation and practical application of the underlying principles. In addition, input from the workshop was intended to assist the NRC in the development of a policy statement on this issue. The workshop was divided into five sessions. During the first four sessions, papers were presented which defined the relative terms and concepts, outlined the national situations and approaches to the establishment and development of exemption rules, identified and discussed the existing issues, and gave the status of the international guidelines on exemption rules. The fifth session was devoted to summarizing the workshop and identifying the areas of consensus, the outstanding issues and the areas for future work. Individual papers were processed separately for the data base

  19. Cement factory kilns. Clinker baking workshops; Fours de cimenterie. Ateliers de cuisson du clinker

    Energy Technology Data Exchange (ETDEWEB)

    Bastier, R. [Direction Centrale Technologie (France); Bocan, A.; Gerbert, B.; Regnault, A.

    2000-07-01

    Clinker baking is the intermediate of the three main steps of the cement fabrication process. The aim of the baking workshop is the thermal transformation of the crude material into a semi-product (clinker). The problem of clinker baking is to find the optimum process taking into account: the investment and operation costs,the diversity of raw materials and fuels, the socio-economical constraints, the performances required, the environmental constraints and the increase of production capacity. This paper gives a presentation of the different types of clinker baking workshops: 1 - Rotative kiln and baking workshop; 2 - Different types of baking workshops: general considerations, humid way process (long kiln - WL), half-dry way process (short kiln - DG-N), dry-way process (short kiln - DS-X), comparison of standard energy consumptions and production ratios; 3 - Pre-calcination (DS-X-SF and DS-X-PC kilns): general considerations, industrial realizations, operation of pre-calcination, characteristics, advantages and drawbacks, standard operation data; 4 - Dimensioning of dry-way kilns: theoretical and empirical methods. (J.S.)

  20. Heating Processes Of The Axle-Boxes Of Rolling-Stock On Railway Track Curves

    Directory of Open Access Journals (Sweden)

    Olegas Lunys

    2013-12-01

    Full Text Available The article deals with the heating process of the axle-boxes ofrolling stock when the train is in motion and discusses the forcesacting on the wheel-set when rolling stock moves along the trackcurves. The paper analyses scientific publications relevant tothe forces acting on the wheel-set of rolling stock and focuseson the axle-box heating process. The article also discusses theresults of theoretical studies on wheel-set forces that affect theheat exchange process of axle-boxes for a railway vehicle. Theresearch has determined a change in heating temperatures ofdifferent axle-boxes of rolling stock and reasons for their variationsand tendencies. The paper has estimated an effect of thetrain running along the track curves on the heating intensity ofthe axle-box. Finally, valid conclusions and recommendationshave been provided.

  1. Heat supply analysis of steam reforming hydrogen production process in conventional and nuclear

    International Nuclear Information System (INIS)

    Siti Alimah; Djati Hoesen Salimy

    2015-01-01

    Tile analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900 °C and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m"2) and provide high thermal efficiency of about 85 %. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850 °C and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (1020 kW/m"2) and it provides a low thermal efficiency of about 50 %. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m"2 so that the thermal efficiency can reach 78 %. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. (author)

  2. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  3. Workshop meeting

    International Nuclear Information System (INIS)

    Veland, Oeystein

    2004-04-01

    1-2 September 2003 the Halden Project arranged a workshop on 'Innovative Human-System Interfaces and their Evaluation'. This topic is new in the HRP 2003-2005 programme, and it is important to get feedback from member organizations to the work that is being performed in Halden. It is also essential that relevant activities and experiences in this area from the member organizations are shared with the Halden staff and other HRP members. Altogether 25 persons attended the workshop. The workshop had a mixture of presentations and discussions, and was chaired by Dominique Pirus of EDF, France. Day one focused on the HRP/IFE activities on Human-System Interface design, including Function-oriented displays, Ecological Interface Design, Task-oriented displays, as well as work on innovative display solutions for the oil and gas domain. There were also presentations of relevant work in France, Japan and the Czech Republic. The main focus of day two was the verification and validation of human-system interfaces, with presentations of work at HRP on Human-Centered Validation, Criteria-Based System Validation, and Control Room Verification and Validation. The chairman concluded that it was a successful workshop, although one could have had more time for discussions. The Halden Project got valuable feedback and viewpoints on this new topic during the workshop, and will consider all recommendations related to the future work in this area. (Author)

  4. Snow and Ice Applications of AVHRR in Polar Regions: Report of a Workshop

    Science.gov (United States)

    Steffen, K.; Bindschadler, R.; Casassa, G.; Comiso, J.; Eppler, D.; Fetterer, F.; Hawkins, J.; Key, J.; Rothrock, D.; Thomas, R.; hide

    1993-01-01

    The third symposium on Remote Sensing of Snow and Ice, organized by the International Glaciological Society, took place in Boulder, Colorado, 17-22 May 1992. As part of this meeting a total of 21 papers was presented on snow and ice applications of Advanced Very High Resolution Radiometer (AVHRR) satellite data in polar regions. Also during this meeting a NASA sponsored Workshop was held to review the status of polar surface measurements from AVHRR. In the following we have summarized the ideas and recommendations from the workshop, and the conclusions of relevant papers given during the regular symposium sessions. The seven topics discussed include cloud masking, ice surface temperature, narrow-band albedo, ice concentration, lead statistics, sea-ice motion and ice-sheet studies with specifics on applications, algorithms and accuracy, following recommendations for future improvements. In general, we can affirm the strong potential of AVHRR for studying sea ice and snow covered surfaces, and we highly recommend this satellite data set for long-term monitoring of polar process studies. However, progress is needed to reduce the uncertainty of the retrieved parameters for all of the above mentioned topics to make this data set useful for direct climate applications such as heat balance studies and others. Further, the acquisition and processing of polar AVHRR data must become better coordinated between receiving stations, data centers and funding agencies to guarantee a long-term commitment to the collection and distribution of high quality data.

  5. Fractional-Order Identification and Control of Heating Processes with Non-Continuous Materials

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2016-11-01

    Full Text Available The paper presents a fractional order model of a heating process and a comparison of fractional and standard PI controllers in its closed loop system. Preliminarily, an enhanced fractional order model for the heating process on non-continuous materials has been identified through a fitting algorithm on experimental data. Experimentation has been carried out on a finite length beam filled with three non-continuous materials (air, styrofoam, metal buckshots in order to identify a model in the frequency domain and to obtain a relationship between the fractional order of the heating process and the different materials’ properties. A comparison between the experimental model and the theoretical one has been performed, proving a significant enhancement of the fitting performances. Moreover the obtained modelling results confirm the fractional nature of the heating processes when diffusion occurs in non-continuous composite materials, and they show how the model’s fractional order can be used as a characteristic parameter for non-continuous materials with different composition and structure. Finally, three different kinds of controllers have been applied and compared in order to keep constant the beam temperature constant at a fixed length.

  6. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  7. [A workshop to improve written communication skills of medical students].

    Science.gov (United States)

    Bitran, Marcela; Zúñiga, Denisse; Flotts, Paulina; Padilla, Oslando; Moreno, Rodrigo

    2009-05-01

    Despite being among the best academically prepared of the country, many medical students have difficulties to communicate in writing. In 2005, the School of Medicine at the Pontificia Universidad Católica de Chile introduced a writing workshop in the undergraduate curriculum, to enhance the students' writing skills. To describe the workshop and its impact on the writing skills of 3 cohorts of students. This 30-h workshop used a participative methodology with emphasis on deliberate practice and feedback. Students worked in small groups with a faculty member specially trained in writing. The qualities of the essays written before and after the workshop were compared. Essays were rated by a professional team that used an analytic rubric to measure formal aspects of text writing as well as more complex thinking processes. There was a significant improvement in the quality of the texts written after the workshop; the main changes occurred in argumentation, and in paragraph and text structure. This improvement was inversely proportional to the initial level of performance, and independent of gender. A writing workshop based on deliberate practice and personalized feedback is effective to enhance the writing proficiency of medical students. Due to its design, this workshop could be useful for students of other careers and universities.

  8. [Modeling of processes of heat transfer in whole-body hyperthermia].

    Science.gov (United States)

    Kinsht, D N

    2006-01-01

    The method of whole-body hyperthermia in which the body temperature for a short time reaches values up to 43-44 degrees C holds currently much promise. However, at body temperatures above 42 degrees C, the risks associated with the hemodynamic instability and the appearance of arrhythmia in the patient increase. A model of heat transfer has been created to increase the efficiency and safety of the immersion-convectional method of whole-body hyperthermia. This model takes into account changes in the skin blood flow and the dynamics of pulse rate depending on body temperature. The model of heat transfer adequately reflects processes of heating of the organism and can form a basis for the calculation of distribution of heat inside the organism.

  9. PREFACE: Collapse Calderas Workshop

    Science.gov (United States)

    Gottsmann, Jo; Aguirre-Diaz, Gerardo

    2008-10-01

    Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior

  10. Session summaries for workshop meeting on virtual reality applications in process industry maintenance training, outage planning, control room retrofits and design, 17th - 18th September 1998

    International Nuclear Information System (INIS)

    Louka, Michael N.

    1998-09-01

    A well-attended workshop was held in Halden 17th - 18th September 1998 to discuss VR applications in the process industry. In particular, maintenance training, outage planning, decommissioning, control room retrofits, and design were discussed. It is clear that there is a great deal of interest in both current and potential use of VR technology. The workshop participants represented a diverse range of research disciplines, as well as utilities, vendors and regulators (author) (ml)

  11. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  12. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  13. Proceedings: 2001 Nuclear Asset Management Workshop

    International Nuclear Information System (INIS)

    2002-01-01

    The fourth annual EPRI Nuclear Asset Management Workshop helped decision makers at all levels of nuclear enterprises to keep informed about developing nuclear asset management (NAM) processes, methods, and tools. The goal is to operate nuclear plants with enhanced profitability, while maintaining safety

  14. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  15. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    approach that fosters systems thinking. Workshop participants heard presentations from top climate scientists about topics such as the role of carbon dioxide in regulating Earth's climate, the silicate-weathering thermostat hypothesis, effects of water vapor in the climate system, and albedo effects from the loss of Artic sea ice. Demonstrations of classroom techniques allowed participants to use a jigsaw approach to understand poleward heat transport, plot atmospheric carbon dioxide concentrations, and use a mass balance model to explore the role of carbon dioxide in Earth's atmosphere. A hallmark of the CLEAN workshops is that participants are actively engaged in team projects to create new teaching materials. In the Communicating Climate workshop, John Cook led a demonstration of techniques featured in his Debunking Handbook and workshop participants created examples of how to respond to common climate myths in the classroom. In the Climate Complexities workshop, participants used existing elements within the CLEAN reviewed collection to create a comprehensive sequence of activities that can be used to teach elements of Earth's climate system. Activities from the workshop are archived on the CLEAN website, including screen cast recordings of all the presentations and materials created at each workshop. For more information, visit the workshop website at the URL below.

  16. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and

  17. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions

  18. Using the AHP in a Workshop Setting to Elicit and Prioritize Fire Research Needs

    Science.gov (United States)

    Daniel L. Schmoldt; David L. Peterson

    1997-01-01

    The benefits of convening a group of knowledgeable specialists together in a workshop setting to tackle a difficult problem can often be offset by an over-abundance of unfocused and rambling discussion and by counterproductive group dynamics. In light of this workshop paradox, we have created a generic workshop framework based on the analytic hierarchy process, that...

  19. IAEA workshop on 'Atomic and molecular data for fusion energy research'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2004-05-01

    On September 8-12 a workshop on Atomic and Molecular (A+M) Data for Fusion Energy Research was hosted by the International Centre for Theoretical Physics in Trieste Italy. The workshop was attended by twelve students representing eleven Member States. A total of five lecturers, including four external to the Agency, made presentations to the workshop. All lecturers provided advance copies of the lecture materials and all provided written assignments for the students, to provide practical examples of applications of data issues to actual problems related to fusion energy research. All materials were collected on CDs, which were distributed to the students by the conclusion of the workshop. During the course of the workshop the students were given the opportunity to describe their backgrounds and research interests. The workshop did arouse interest in A+M processes related to fusion. The workshop was viewed as successful by the students. (author)

  20. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  1. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.; (UNC)

    2010-09-30

    The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the {approx} 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 {angstrom} resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.

  2. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  3. End-use matching for solar industrial process heat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  4. 1995 building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  5. International Workshop on Best Practices in Material Hold-Up Monitoring

    International Nuclear Information System (INIS)

    Pickett, Chris A; Coates, Cameron W.

    2008-01-01

    In the fall of 2006, the Oak Ridge National Laboratory (ORNL) hosted an INMM-sponsored International Workshop on Best Practices in Material Hold-Up Monitoring. This workshop represented the first time in over 20 years that the international community had gathered to discuss pertinent hold-up topics and needs. More than one hundred people attended the workshop. Their expertise in the field ranged from novice to expert, and they shared their experiences and expertise throughout the week of the workshop. Presenters discussed techniques that have been used worldwide to detect and characterize nuclear materials held up in processes and equipment and the policies used to report quantities detected. The primary goal of the workshop was to compile information on the best practices and lessons learned and to make this information available for sharing throughout the international community. This paper discusses the information that was produced from four separate working groups (each composed of workshop attendees). Each group was tasked to determine what it felt to be the best practices in the field today and what issues needed to be addressed to move the field forward in the 21st century

  6. Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2017-02-01

    Full Text Available Various energy sources can be used for room heating, among which waste heat utilization has significantly improved in recent years. However, the majority of applicable waste heat resources are high-grade or stable thermal energy, while the low-grade or unstable waste heat resources, especially low-temperature industrial residual water (IRW, are insufficiently used. A thermal energy storage (TES unit with paraffin wax as a phase change material (PCM is designed to solve this problem in a pharmaceutical plant. The mathematical models are developed to simulate the heat storage and release processes of the TES unit. The crucial parameters in the recurrence formulae are determined: the phase change temperature range of the paraffin wax used is 47 to 56 °C, and the latent heat is 171.4 kJ/kg. Several thermal behaviors, such as the changes of melting radius, solidification radius, and fluid temperature, are simulated. In addition, the amount of heat transferred, the heat transfer rate, and the heat storage efficiency are discussed. It is presented that the medicine production unit could save 10.25% of energy consumption in the investigated application.

  7. Workshop on ROVs and deep submergence

    Science.gov (United States)

    The deep-submergence community has an opportunity on March 6 to participate in a unique teleconferencing demonstration of a state-of-the-art, remotely operated underwater research vehicle known as the Jason-Medea System. Jason-Medea has been developed over the past decade by scientists, engineers, and technicians at the Deep Submergence Laboratory at Woods Hole Oceanographic Institution. The U.S. Navy, the Office of the Chief of Naval Research, and the National Science Foundation are sponsoring the workshop to explore the roles that modern computational, communications, and robotics technologies can play in deep-sea oceanographic research.Through the cooperation of Electronic Data Systems, Inc., the Jason Foundation, and Turner Broadcasting System, Inc., 2-1/2 hours of air time will be available from 3:00 to 5:30 PM EST on March 6. Twenty-seven satellite downlink sites will link one operating research vessel and the land-based operation with workshop participants in the United States, Canada, the United Kingdom, and Bermuda. The research ship Laney Chouest will be in the midst of a 3-week educational/research program in the Sea of Cortez, between Baja California and mainland Mexico. This effort is focused on active hydrothermal vents driven by heat flow from the volcanically active East Pacific Rise, which underlies the sediment-covered Guaymas Basin. The project combines into a single-operation, newly-developed robotic systems, state-of-the-art mapping and sampling tools, fiber-optic data transmission from the seafloor, instantaneous satellite communication from ship to shore, and a sophisticated array of computational and telecommunications networks. During the workshop, land-based scientists will observe and participate directly with their seagoing colleagues as they conduct seafloor research.

  8. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Hartnett, S.; Seguin, N.; Burns, M.

    1995-01-01

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned

  9. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, S.; Seguin, N. [Benchmark Environmental Corp., Albuquerque, NM (United States); Burns, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

  10. NSUF Ion Beam Investment Options Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The workshop that generated this data was convened to develop a set of recommendations (a priority list) for possible funding in the area of US domestic ion beam irradiation capabilities for nuclear energy-focused RD&D. The results of this workshop were intended for use by the Department of Energy - Office of Nuclear Energy (DOE-NE) for consideration of support for these facilities. The workshop considered, as part of the initial potential future support discussions, input submitted through the Office of Nuclear Energy Request for Information (RFI) (DE-SOL-0008318, April 13, 2015), but welcomed discussion (and presentation) of other options, whether specific or general in scope. Input from users, including DOE-NE program interests and needs for ion irradiation RD&D were also included. Participants were selected from various sources: RFI respondents, NEUP/NEET infrastructure applicants, universities with known expertise in nuclear engineering and materials science and other developed sources. During the three days from March 22-24, 2016, the workshop was held at the Idaho National Laboratory Meeting Center in the Energy Innovation Laboratory at 775 University Drive, Idaho Falls, ID 83401. Thirty-one members of the ion beam community attended the workshop, including 15 ion beam facilities, six representatives of Office of Nuclear Energy R&D programs, an industry representative from EPRI and the chairs of the NSUF User’s Organization and the NSUF Scientific Review Board. Another four ion beam users were in attendance acting as advisors to the process, but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4) also attended the workshop.

  11. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    Energy Technology Data Exchange (ETDEWEB)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Rosyidah, Nurul, E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Darminto, E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Campus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  12. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    International Nuclear Information System (INIS)

    Wachid, Frischa M.; Perkasa, Adhi Y.; Prasetya, Fandi A.; Rosyidah, Nurul; Darminto

    2014-01-01

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX

  13. Development program for the high-temperature nuclear process heat system

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  14. Organising stakeholder workshops in research and innovation

    DEFF Research Database (Denmark)

    Nielsen, Morten Velsing; Bryndum, Nina; Bedsted, Bjørn

    2017-01-01

    This article addresses the theory and practice of creating responsiveness among actors through deliberative dialogue processes with stakeholders from diverse institutional settings. The EU’s decision to mainstream stakeholder deliberation in research and innovation, as part of its focus......, the article illustrates the challenges of applying theory to five European stakeholder workshops co-organised by the authors. The illustration highlights the difficult interaction between theory and practice. The article concludes that while theoretical perspectives can provide general guidance, practical...... experience is essential when dealing with the trade-offs that are an intrinsic part of organising stakeholder workshops....

  15. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  16. 76 FR 45271 - Review and Qualification of Clinical Outcome Assessments; Public Workshop

    Science.gov (United States)

    2011-07-28

    ... announcing a public workshop to discuss measurement principles for clinical outcome assessments (COAs) for... appropriate drug development program. Because the qualification process is separate from the drug marketing... other DDTs. This workshop will focus on FDA review principles specific to all type of COAs, i.e., PRO...

  17. Heat-processing method and facility for helium-containing metal material

    International Nuclear Information System (INIS)

    Kato, Takahiko; Kodama, Hideyo; Matsumoto, Toshimi; Aono, Yasuhisa; Nagata, Tetsuya; Hattori, Shigeo; Kaneda, Jun-ya; Ono, Shigeki.

    1996-01-01

    Electric current is supplied to an objective portion of a He-containing metal material to be applied with heat processing without causing melting, to decrease the He content of the portion. Subsequently, the defect portion of the tissues of the He-containing metal is modified by heating the portion with melting. Since electric current can be supplied to the metal material in a state where the metal material is heated and the temperature thereof is elevated, an effect of further reducing the He content can be obtained. Further, if the current supply and/or the heating relative to the metal material is performed in a vacuum or inert gas atmosphere, an effect of reducing the degradation of the surface of the objective portion to be supplied with electric current can be obtained. (T.M.)

  18. Improved process for the treatment of bituminous materials. [two heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    1947-04-30

    A continuous process for recovering valuable hydrocarbon oils from solid minerals adapted to produce such oils upon application of heat, consists of reducing the raw minerals to a powder, suspending the powdered minerals in a gaseous medium and subjecting the suspension thus formed to heat treatment in a primary reaction zone, followed by heat treatment in a secondary reaction zone separate from the primary reaction zone. The temperature during the second of said treatments being substantially higher than that of the first.

  19. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  20. Using Industry Workshops to Create Idea Networks for Business Model Evolution

    DEFF Research Database (Denmark)

    Evers, Winie; Marroun, Sana; Young, Louise

    globalization and emergence of new technologies. Thus it has facilitated a discussion of opportunities and challenges by inviting others from their network to participate in business model workshops. The workshop process is analysed to explore: (a) how business ideas originate and change over time (b......At the center of IMP thinking is the need for connected relationships to enable the survival and growth of firms (Hakanson and Snehota, 1995). Effective relational participation involves understanding of one’s own and relational partners’ business models including the value they seek from......) the effectiveness of relational interaction in articulating challenges and opportunities and (c) its effectiveness in generating ideas. The data collected includes the filming of two business model workshops as well as participant interviews before and after. To gain an overview of the process of change...

  1. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  2. Distribution of tritium in a nuclear process heat plant with HTR

    International Nuclear Information System (INIS)

    Steinwarz, W.; Stoever, D.; Hecker, R.; Thiele, W.

    1984-01-01

    The application of HTR-process heat in chemical processes involves low contamination of the product by tritium permeation through the heat exchanger walls. According to conservative assumptions for the tritium release rate and based on experimental permeation data of the German R und D-program a tritium concentration in the PNP-product gas of about 10 pCi/g was calculated. The domestic use of the product gas in unvented kitchen ranges as the most important direct radiation exposure pathway then leads to an effective equivalent radiation dose of only 20 μrem/a. (orig.)

  3. 2014 Penn State Bioinorganic Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, John [Pennsylvania State Univ., State College, PA (United States)

    2015-10-01

    The 3rd Penn State Bioinorganic Workshop took place in early June 2014 and was combined with the 3rd Penn State Frontiers in Metallobiochemistry Symposium. The workshop was even larger than the 2nd Penn State Bioinorganic Workshop we offered in 2012. It had even more participants (162 rather than 123 in 2012). Like the 2012 workshop, the 2014 workshop had three parts. The first part consisted of 16 90-minute lectures presented by faculty experts on the topic of their expertise (see below). Based on the suggestions from the 2012 workshop, we have recorded all 16 lectures professionally and make them available to the entire bioinorganic community via online streaming. In addition, hard copies of the recordings are available as backup.

  4. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  5. 75 FR 33613 - Notice of Interviews, Teleconferences, Regional Workshops and Multi-Stakeholder Technical...

    Science.gov (United States)

    2010-06-14

    ..., Regional Workshops and Multi-Stakeholder Technical Conference on the Integrated Licensing Process June 7... conducting interviews and teleconferences with a cross-section of stakeholders, four regional workshops, and a multi- stakeholder effectiveness technical conference in Washington, DC. To facilitate this review...

  6. INDICO Workshop

    CERN Multimedia

    CERN. Geneva; Fabbrichesi, Marco

    2004-01-01

    The INtegrated DIgital COnferencing EU project has finished building a complete software solution to facilitate the MANAGEMENT OF CONFERENCES, workshops, schools or simple meetings from their announcement to their archival. Everybody involved in the organization of events is welcome to join this workshop, in order to understand the scope of the project and to see demonstrations of the various features.

  7. Process heat recovery: hot prospects

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    By updating established technologies to recover heat at higher temperatures and under more corrosive conditions, British industry could recover six to eight million tons of coal equivalent that it currently wastes. Organic liquids in organic Rankine cycle (ORC) engines and simpler designs than steam turbines can increase efficiency. They also eliminate the need for vacuum pumps and permit the use of air cooling. Cooperative government-private industry research programs are exploring the use of ORC engines. Other heat-recovery projects include a Scottish paper mill, a metal decorating and printing plant, a falling-cloud heat exchanger, and heat-pipe development. 4 figures, 1 table. (DCK)

  8. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  9. The QED Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W.

    1994-07-01

    On May 18--20, 1994, Argonne National Laboratory hosted the QED Workshop. The workshop was supported by special funding from the Office of Naval Research. The purpose of the workshop was to assemble of a group of researchers to consider whether it is desirable and feasible to build a proof-checked encyclopedia of mathematics, with an associated facility for theorem proving and proof checking. Among the projects represented were Coq, Eves, HOL, ILF, Imps, MathPert, Mizar, NQTHM, NuPrl, OTTER, Proof Pad, Qu-Prolog, and RRL. Although the content of the QED project is highly technical rigorously proof-checked mathematics of all sorts the discussions at the workshop were rarely technical. No prepared talks or papers were given. Instead, the discussions focused primarily on such political, sociological, practical, and aesthetic questions, such as Why do it? Who are the customers? How can one get mathematicians interested? What sort of interfaces are desirable? The most important conclusion of the workshop was that QED is an idea worthy pursuing, a statement with which virtually all the participants agreed. In this document, the authors capture some of the discussions and outline suggestions for the start of a QED scientific community.

  10. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  11. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  12. 76 FR 29195 - National Strategy for Trusted Identities in Cyberspace (NSTIC) Governance Workshop

    Science.gov (United States)

    2011-05-20

    ... Trusted Identities in Cyberspace (NSTIC) Governance Workshop AGENCY: National Institute of Standards... for Trusted Identities in Cyberspace (NSTIC) Governance Workshop to be held on Thursday, June 9, 2011... discuss various governance models to administer the process for policy and standards adoption for the...

  13. Preparation of silicon carbide nanowires via a rapid heating process

    International Nuclear Information System (INIS)

    Li Xintong; Chen Xiaohong; Song Huaihe

    2011-01-01

    Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO 2 hybrid aerogel in this study. SiC nanowires were grown at 1500 deg. C for 2 h in an argon atmosphere without any catalyst via vapor-solid (V-S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20-80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO 2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed.

  14. Design of the steam reformer for the HTR-10 high temperature process heat application

    International Nuclear Information System (INIS)

    Ju Huaiming; Xu Yuanhui; Jia Haijun

    2000-01-01

    The 10 MW High Temperature Reactor Test Module (HTR-10) is being constructed now and planned to be operational in 2000. One of the objectives is to develop the high temperature process heat application. The methane steam reformer is one of the key-facilities for the nuclear process heat application system. The paper describes the conceptual design of the HTR-10 Steam Reformer with He heating, and the design optimization computer code. It can be used to perform sensitivity analysis for parameters, and to improve the design. Principal parameters and construction features of the HTR-10 reformer heated by He are introduced. (author)

  15. Proceedings of the 13. International Workshop on Inspection Practices. 13. International Nuclear Regulatory Inspection Workshop - Appendix of Responses, 17-21 April 2016, Bruges, Belgium

    International Nuclear Information System (INIS)

    2017-01-01

    This appendix provides the complete compilation of responses received to the questionnaire issued in conjunction with the workshop announcements. The responses are provided as received, with changes made only to the formatting. The OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) Working Group on Inspection Practices (WGIP) sponsored the 13. International Workshop on Nuclear Regulatory Inspection Activities. The workshop was hosted by the Bel V and FANC, in Bruges, Belgium on 17 -21 April 2016. The three workshop topics that were addressed were as follows: - Inspection Activities During the Transition from an Operating Reactor to a De-fueled Status with a Commitment to Cease Power Operation; - Inspection of Modifications; - The Inspectors' Role in the Enforcement Process. Each of the respondents was given the following instructions in relation to their response: - Only one response per country is required. If more than one person from your country is participating, please co-ordinate the responses accordingly. - Responses must be provided on separate sheet with clear identification of the questionnaire part and topic. For preparation of the workshop, participants were invited to supply their national inspection approaches used in inspection of events and incidents according to the surveys. Actual issues that were discussed during the workshop were generated by the topic leaders based on the responses submitted by participants with their registration forms. This formats helped to ensure that issues considered most important by the workshop participants were covered during the group discussions

  16. 6th International Workshop on Computer-Aided Scheduling of Public Transport

    CERN Document Server

    Branco, Isabel; Paixão, José

    1995-01-01

    This proceedings volume consists of papers presented at the Sixth International Workshop on Computer-Aided Scheduling of Public Transpon, which was held at the Fund~lio Calouste Gulbenkian in Lisbon from July 6th to 9th, 1993. In the tradition of alternating Workshops between North America and Europe - Chicago (1975), Leeds (1980), Montreal (1983), Hamburg (1987) and again Montreal (1990), the European city of Lisbon was selected as the venue for the Workshop in 1993. As in earlier Workshops, the central theme dealt with vehicle and duty scheduling problems and the employment of operations-research-based software systems for operational planning in public transport. However, as was initiated in Hamburg in 1987, the scope of this Workshop was broadened to include topics in related fields. This fundamental alteration was an inevitable consequence of the growing demand over the last decade for solutions to the complete planning process in public transport through integrated systems. Therefore, the program of thi...

  17. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  18. Proceedings of the 2010 renewable energy infrastructure workshop

    International Nuclear Information System (INIS)

    2010-01-01

    This workshop provided a forum for electric power industry leaders and key stakeholders to discuss Canada's renewable energy infrastructure needs. The workshop was held to provide practical solutions for meeting the increased demand for renewable energy as well as to offer a range of marketplace options and funding opportunities. Participants in the workshop examined the regulatory framework of the Green Energy Act and its potential impact on organizations. Approval process procedures for renewable energy projects were reviewed, and methods of ensuring the integration of renewable energy projects with current business strategies were discussed. Communications strategies for managing the public perception of energy project were presented. Policy barriers to infrastructure development were outlined. Methods of developing partnerships with Aboriginal communities were also discussed. The conference featured 16 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs.

  19. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  20. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  1. Alternate fusion fuels workshop

    International Nuclear Information System (INIS)

    1981-06-01

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached

  2. 17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER

    Science.gov (United States)

    Buttery, Richard

    2013-08-01

    This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state

  3. The Third ATLAS ROD Workshop

    CERN Multimedia

    Poggioli, L.

    A new-style Workshop After two successful ATLAS ROD Workshops dedicated to the ROD hardware and held at the Geneva University in 1998 and in 2000, a new style Workshop took place at LAPP in Annecy on November 14-15, 2002. This time the Workshop was fully dedicated to the ROD-TDAQ integration and software in view of the near future integration activities of the final RODs for the detector assembly and commissioning. More precisely, the aim of this workshop was to get from the sub-detectors the parameters needed for T-DAQ, as well as status and plans from ROD builders. On the other hand, what was decided and assumed had to be stated (like EB decisions and URDs), and also support plans. The Workshop gathered about 70 participants from all ATLAS sub-detectors and the T-DAQ community. The quite dense agenda allowed nevertheless for many lively discussions, and for a dinner in the old town of Annecy. The Sessions The Workshop was organized in five main sessions: Assumptions and recommendations Sub-de...

  4. Emergency response workers workshop

    International Nuclear Information System (INIS)

    Agapeev, S.A.; Glukhikh, E.N.; Tyurin, R.L.

    2012-01-01

    A training workshop entitled Current issues and potential improvements in Rosatom Corporation emergency prevention and response system was held in May-June, 2012. The workshop combined theoretical training with full-scale practical exercise that demonstrated the existing innovative capabilities for radiation reconnaissance, diving equipment and robotics, aircraft, emergency response and rescue hardware and machinery. This paper describes the activities carried out during the workshop [ru

  5. 2015 Inverter Workshop | Photovoltaic Research | NREL

    Science.gov (United States)

    Inverter Workshop 2015 Inverter Workshop Wednesday, February 25, 2015 Chair: Jack Flicker In about inverters. This workshop represented a follow-on to the inverter workshops that Sandia National conversations between module and inverter experts. Agenda For a detailed schedule of the day's events, access

  6. First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains: Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Link, H.; McDade, M.; Mander, A.; Fox, J. C.; Rigas, N.

    2013-11-01

    This report summarizes the proceedings of the First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains, held from June 13 to 14, 2013, at the National Renewable Energy Laboratory's National Wind Technology Center, located south of Boulder, Colorado. The workshop was sponsored by the U.S. Department of Energy and cohosted by the National Renewable Energy Laboratory and Clemson University under ongoing collaboration via a cooperative research and development agreement. The purpose of the workshop was to provide a forum to discuss the research, testing needs, and state-of-the-art apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both dynamometer testing of wind turbine drivetrains ('ground testing') and field testing grid-connected wind turbines. Four sessions followed by discussions in which all attendees of the workshop were encouraged to participate comprised the workshop.

  7. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  9. Sixth national stakeholder workshop summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    On June 17--18, 1998, the Department of Energy`s (DOE) Office of Worker and Community Transition convened its sixth National Stakeholder Workshop at the Ramada Plaza Hotel Old Town in Alexandria, Virginia. Approximately 325 stakeholders attended representing DOE headquarters and field offices, contractors, labor organizations, state and local government, education and community interest groups. The meeting addressed the progress made on the issues and challenges identified at the last stakeholder`s meeting in Oakland, California on April 9--11, 1997. Also discussed were the full range of the Department`s work force issues and creative solutions to the inherent challenges of simultaneously implementing the Department`s post Cold-War mission, work force restructuring guidance, contract reform objectives, asset disposition, performance-based management requirements, and business process improvement policies. The format of the Workshop included several plenary sessions and a number of small group discussion sessions. The small group sessions focused on topics related to labor issues, work force restructuring, work force planning, community transition, and employee concerns. The sessions provided a wide range of views on worker and community transition issues. The plenary sessions of the Workshop included presentations on the following topics: welcome and introductions; opening remarks; building a better labor-management relationship; keynote speech from Secretary of Energy Federico Pena; meeting tomorrow`s challenges (early site closures); harnessing the contracting process to encourage local growth; and, the British experience in economic conversion.

  10. Content and Process in a Teaching Workshop for Faculty and Doctoral Students

    Science.gov (United States)

    Rinfrette, Elaine S.; Maccio, Elaine M.; Coyle, James P.; Jackson, Kelly F.; Hartinger-Saunders, Robin M.; Rine, Christine M.; Shulman, Lawrence

    2015-01-01

    Teaching in higher education is often not addressed in doctoral education, even though many doctoral graduates will eventually teach. This article describes a biweekly teaching workshop, presents pitfalls and challenges that beginning instructors face, and advocates pedagogical training for doctoral students. Led by a well-known social work…

  11. Fifth workshop on the role of impurities and defects in silicon device processing. Extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Luque, A.; Sopori, B.; Swanson, D.; Gee, J.; Kalejs, J.; Jastrzebski, L.; Tan, T.

    1995-08-01

    This workshop dealt with engineering aspects and material properties of silicon electronic devices. Crystalline silicon growth, modeling, and properties are discussed in general and as applied to solar cells. Topics considered in discussions of silicon growth include: casting, string ribbons, Al backside contacts, ion implantation, gettering, passivation, and ultrasound treatments. Properties studies include: Electronic properties of defects and impurities, dopant and carrier concentrations, structure and bonding, nitrogen effects, degradation of bulk diffusion length, and recombination parameters. Individual papers from the workshop are indexed separately on the Energy Data Bases.

  12. Processing of light and heat-resistant alloys. Obrabotka legkikh i zharoprochnykh splavov

    Energy Technology Data Exchange (ETDEWEB)

    Belova, A F

    1976-01-01

    Results are given on the latest studies undertaken by Academician A.F. Belov. An examination is made of general problems in the processing (pressure, welding, thermal treatment, and others) of light and heat-resistant metals, problems in the technology and metal science studies of aluminum alloys, and problems of metallurgy and the processing of titanium and heat-resistant alloys. The publication is designed for researchers, designers, metallurgists, metal science specialists, machine building specialists, and students at corresponding institutions of higher learning.

  13. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  14. International cooperation workshop. Regional workshop for CTBTO international cooperation: Africa

    International Nuclear Information System (INIS)

    1999-08-01

    Pursuant to the 1999 programme of work, and following the International Cooperation Workshop held in Vienna, Austria, in 1998, the Provisional Technical Secretariat (PTS) of the Preparatory Commission for the CTBTO (Prep Com) held a regional Workshop for CTBTO International Cooperation in Cairo. The purpose of the workshop was to identify how and by what means the Africa region can promote international cooperation in CTBT verification related technologies, and how the region can benefit from and contribute to Prep Com activity. PTS staff briefed the 40 participants from 22 African States who attended the Workshop on general aspects, including costs, of the establishment and operation of the CTBT verification system, including its four monitoring technologies. Participants were informed on opportunities for local institutions in the establishment of monitoring stations and on possible support for national and regional data centres. National experts presented their research and development activities and reviewed existing experiences on bi/multi-lateral cooperation. The main points of the discussion focused on the need to engage governments to advance signature/ratification, and further training opportunities for African states

  15. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  16. 75 FR 58411 - Center for Veterinary Medicine eSubmitter Workshop; Public Workshop; Request for Comments

    Science.gov (United States)

    2010-09-24

    ...] Center for Veterinary Medicine eSubmitter Workshop; Public Workshop; Request for Comments AGENCY: Food... Drug Administration (FDA) is announcing a public workshop entitled: ``Center for Veterinary Medicine... be emailed to all registrants. Contact Person: Charles Andres, Center for Veterinary Medicine (HFV...

  17. SPEAR3 Workshop: Making the Scientific Case: Report from Workshop held at Stanford Synchrotron Radiation Laboratory, May 29-30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, S.

    1998-08-13

    As part of the planning process for the proposed upgrade to the SPEAR electron storage ring, SSRL, the SSRL Users Organization and the SSRL faculty sponsored a 1 1/2 day workshop on May 29-30 1997. The goal was to assess and document the impact of SPEAR3 on current and future science and technology research programs of the users of SSRL. The hard and soft x-ray beams produced at SSRL are used in a number of different scientific and technological disciplines. The workshop was organized by defining a set of areas of science and technology covering the basic activities at SSRL and inviting key people from outside Stanford to work with the SSRL faculty and staff in a set of topical groups on estimating the impact of SPEAR3 on their respective fields and developing a vision of the future opportunities. This report documents those scientific and technological opportunities and provides written summaries of the discussions. The report is organized with a brief technical description of SPEAR3 and planned beam line upgrades (which summarizes material presented to the workshop participants prior to the breakout sessions) following this executive summary. More detailed information from the topical working groups then follows. Finally, an appendix provides a list of workshop participants and a copy of the workshop agenda as well as some more detailed information on the SPEAR3 lattice and machine.

  18. Weldability of general purpose heat source new-process iridium

    International Nuclear Information System (INIS)

    Kanne, W.R.

    1987-01-01

    Weldability tests on General Purpose Heat Source (GPHS) iridium capsules showed that a new iridium fabrication process reduced susceptibility to underbead cracking. Seventeen capsules were welded (a total of 255 welds) in four categories and the number of cracks in each weld was measured

  19. Network workshop

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry

    2014-01-01

    This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data....... These include student relations and interactions and epistemic and linguistic networks of words, concepts and actions. Network methodology has already found use in science education research. However, while networks hold the potential for new insights, they have not yet found wide use in the science education...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...

  20. Workshop report: US-China workshop on smart structures and smart systems

    Science.gov (United States)

    Tomizuka, Masayoshi

    2006-03-01

    A Joint U.S.-China workshop on the topic of Integrated Sensing Systems, Mechatronics and Smart Structures Technologies was held in Jinan, China in October 2005 to evaluate the current status of research and education in the topic areas in the United States and China, to identify critical and strategic research and educational issues of mutual interest, and to identify joint research projects and potential research teams for collaborative research activities. The workshop included a series of presentations by leading researchers and educators from the United States and China and group discussions on the workshop objectives.

  1. Modification of heating system on HeaTiNG-02 test section of beta test loop

    International Nuclear Information System (INIS)

    Sagino; Dedy Haryanto; Riswan Djambiar; Edy Sumarno

    2013-01-01

    Modifications have been carried out on the heating test section heating-02 on the integration strand Beta Test (UUB). The activities carried out to overcome the obstacles that arise in the test section when used. Constraint that often arises is the fall of the heating source super chantal when it reaches a certain temperature. To mitigate the super chantal is initially converted into a horizontal vertical position. Change from vertical to horizontal position on super chantal aims to stabilize the position of super chantal, so it needs to be modified in the heating system. Modification activities include manufacturing, installation and testing of super chantal and refractory stone as super chantal support. Manufacturing refractory stone formation and assembly into the heater in accordance with design modifications that have been done in electromechanical workshop obtained using some machine tools. Testing results of fabrication has been done by providing voltage 110 volts until it reaches operating temperature 400°C. Test results obtained super chantal stable position when it reaches operating temperature, and heater of heating-02 test section feasible to be used for experiments. (author)

  2. Protective clothing and hot particle control: EPRI workshop gives the issues an airing

    International Nuclear Information System (INIS)

    Owen, D.E.

    1990-01-01

    A recent workshop organized by the Electric Power Research Institute on Protective Clothing Topics and Hot Particle Control brought together working-level engineers, industry experts and vendors. Ideas arising from the accident recovery efforts at Three Mile Island were exchanged. Among the topics discussed were the role of fabric colour in the retention of radionuclides, modesty garments, laundering of protective clothing and worker heat stress. (author)

  3. Streaming Visual Analytics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, Edwin R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kritzstein, Brian P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brisbois, Brooke R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitson, Anna E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis and understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.

  4. Prototype plant for nuclear process heat (PNP), reference phase

    International Nuclear Information System (INIS)

    Fladerer, R.; Schrader, L.

    1982-07-01

    The coal gasification processes using nuclear process heat being developed within the framwork of the PNP project, have the advantages of saving feed coal, improving efficiency, reducing emissions, and stabilizing energy costs. One major gasification process is the hydrogasification of coal for producing SNG or gas mixture of carbon monoxide and hydrogen; this process can also be applied in a conventional route. The first steps to develop this process were planning, construction and operation of a semi-technical pilot plant for hydrogasification of coal in a fluidized bed having an input of 100 kg C/h. Before the completion of the development phase (reference phase) describing here, several components were tested on part of which no operational experience had so far been gained; these were the newly developed devices, e.g. the inclined tube for feeding coal into the fluidized bed, and the raw gas/hydrogenation gas heat exchanger for utilizing the waste heat of the raw gas leaving the gasifier. Concept optimizing of the thoroughly tested equipment parts led to an improved operational behaviour. Between 1976 and 1980, the semi-technical pilot plant was operated for about 19,400 hours under test conditions, more than 7,400 hours of which it has worked under gasification conditions. During this time approx. 1,100 metric tons of dry brown coal and more than 13 metric tons of hard coal were gasified. The longest coherent operational phase under gasification conditions was 748 hours in which 85.4 metric tons of dry brown coal were gasified. Carbon gasification rates up to 82% and methane contents in the dry raw gas (free of N 2 ) up to 48 vol.% were obtained. A detailed evaluation of the test results provided information of the results obtained previously. For the completion of the test - primarily of long-term tests - the operation of the semi-technical pilot plant for hydrogasification of coal is to be continued up to September 1982. (orig.) [de

  5. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  6. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  7. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, D. P.; Asbury, M. L.; Proctor, A.

    2001-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed, and maintained at the University of Maryland, for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 91 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of the explosion, crater size, magnitude of the planetquake generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Planetary and Satellite Data Calculators: These tools allow the user to easily calculate physical data for all of the planets or satellites simultaneously, making comparison very easy. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by the National Science Foundation.

  8. Innovative confinement concepts workshop

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-01-01

    The Innovative Confinement Concepts Workshop occurred in California during the week preceding the Second Symposium on Current Trends in International Fusion Research. An informal report was made to the Second Symposium. A summary of the Workshop concluded that some very promising ideas were presented, that innovative concept development is a central element of the restructured US DOE. Fusion Energy Sciences program, and that the Workshop should promote real scientific progress in fusion

  9. Ecotoxicological test systems proceedings of a series of workshops

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, A.S. (ed.)

    1981-06-01

    A series of six workshops was conducted by the Environmental Sciences Division, Oak Ridge National Laboratory, to identify laboratory methods and data evaluation techniques for predicting the environmental effects of chemical substances. Methods were evaluated for their potential for standardization and for use in the ecological hazard and risk assessment processes under the Toxic Substances Control Act. The workshops addressed assessment and policy requirements of multispecies toxicology test procedures, mathematical models useful in hazard and risk assessments, and methods for measuring effects of chemicals on terrestrial and aquatic population interactions and ecosystem properties. The workshops were primarily used as a mechanism to gather information about research in progress. This information was part of the data base used to prepare a critical review of laboratory methods for ecological toxicology.

  10. Ecotoxicological test systems proceedings of a series of workshops

    International Nuclear Information System (INIS)

    Hammons, A.S.

    1981-06-01

    A series of six workshops was conducted by the Environmental Sciences Division, Oak Ridge National Laboratory, to identify laboratory methods and data evaluation techniques for predicting the environmental effects of chemical substances. Methods were evaluated for their potential for standardization and for use in the ecological hazard and risk assessment processes under the Toxic Substances Control Act. The workshops addressed assessment and policy requirements of multispecies toxicology test procedures, mathematical models useful in hazard and risk assessments, and methods for measuring effects of chemicals on terrestrial and aquatic population interactions and ecosystem properties. The workshops were primarily used as a mechanism to gather information about research in progress. This information was part of the data base used to prepare a critical review of laboratory methods for ecological toxicology

  11. FASTBUS software workshop

    International Nuclear Information System (INIS)

    1985-01-01

    FASTBUS is a standard for modular high-speed data acquisition, data-processing and control, development for use in high-energy physics experiments incorporating different types of computers and microprocessors. This Workshop brought together users from different laboratories for a review of current software activities, using the standard both in experiments and for test equipment. There are also papers on interfacing and the present state of systems being developed for use in future LEP experiments. Also included is a discussion on the proposed revision of FASTBUS Standard Routines. (orig.)

  12. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  13. Japanese contributions to IAEA INTOR workshop, phase two A, part 2, chapter IX: engineering

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Seki, Masahiro; Sawada, Yoshio

    1985-07-01

    This report corresponds to Chapter IX of Japanese contribution report to IAEA INTOR Workshop, Phase Two A, Part 2. Data base assessment are made for systems engineering, magnet systems, torus systems, and NBI heating systems. R and D programme and impact on INTOR design are also specified. In addition to the data base assessment, studies have been made for several new tasks. (author)

  14. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  15. Workshop on Subcritical Neutron Production

    International Nuclear Information System (INIS)

    Walter Sadowski; Roald Sagdeev

    2006-01-01

    Executive Summary of the Workshop on Subcritical Neutron Production A workshop on Subcritical Neutron Production was sponsored by the East-West Center of the University of Maryland on October 11-13, 2004. The subject of the workshop was the application of subcritical neutrons to transmutation of actinides. The workshop was attended by members of the fission, accelerator and fusion communities. Papers on the state of development of neutron production by accelerators, fusion devices, and fission reactors were presented. Discussions were held on the potential of these technologies to solve the problems of spent nuclear waste storage and nuclear non-proliferation presented by current and future nuclear power reactors. A list of participants including their affiliation and their E-Mail addresses is attached. The workshop concluded that the technologies, presently available or under development, hold out the exciting possibility of improving the environmental quality and long term energy resources of nuclear power while strengthening proliferation resistance. The workshop participants agreed on the following statements. The workshop considered a number of technologies to deal with spent nuclear fuels and current actinide inventories. The conclusion was reached that substantial increase in nuclear power production will require that the issue of spent nuclear fuel be resolved. The Workshop concluded that 14 MeV fusion neutrons can be used to destroy nuclear reactor by-products, some of which would otherwise have to be stored for geologic periods of time. The production of 14 MeV neutrons is based on existing fusion technologies at different research institutions in several countries around the world. At the present time this technology is used to produce 14 MeV neutrons in JET. More development work will be required, however, to bring fusion technology to the level where it can be used for actinide burning on an industrial scale. The workshop concluded that the potential

  16. District heating for increased biogas production. Technical and economical evaluation of district heating as heating source in biogas processes; Fjaerrvaerme foer utoekad biogasproduktion. Teknisk och ekonomisk utvaerdering av fjaerrvaerme foer uppvaermning av biogasprocesser

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Per (AaF-Consult AB, Stockholm (Sweden))

    2009-11-15

    This report presents a technical evaluation, the potential and an economical evaluation of the increased net biogas production by using district heating as energy supply for different types of biogas production units. The study presents generalized results for different plant sizes. The district heating is considered as replacement of the heat produced by burning biogas in a hot-water boiler. Hence more biogas could be available for upgrading to fuel-gas quality to be used in vehicles as a renewable fuel. The study is aimed at biogas producers, district heating and combined heat and power (CHP) companies. Biogas has a composition of mostly methane (about 65 %) and carbon dioxide (about 35 %) and small amounts of other gases e.g. sulphur dioxide (H{sub 2}S). Biogas up-grading is a process where the methane content is increased to about 97 % by removing most of the other gases in e.g. an absorption unit. The Swedish biogas is mainly produced in several sewage treatment plants and some co-digestion units but is also collected from dumps. Biogas is produced by anaerobic microorganisms at temperatures of about 36 and 55 deg C which correspond to the thermal optimum for mesophile and thermophile bacteria respectively. Co-digestion of animal material which e.g. is contained in collected organic household waste has to be pasteurized at 70 deg C for 1h according to EU-regulations. Such regulations may also be introduced to the sludge from municipal sewage treatment plants. Due to the fact that the process temperature is higher than the temperature of the substrate (sludge or organic waste material) as well as the outdoor temperature, both heating of the incoming substrate and compensation of heat losses are required. Traditionally most of the biogas has been burnt to generate the necessary heat for the process and premises at the plant. The excess gas has been burnt in a torch. In recent years the biogas produced in Sweden has found increased use as a renewable vehicle fuel

  17. Circumpolar biodiversity monitoring program (CBMP): Coastal expert workshop meeting report

    Science.gov (United States)

    Anderson, Rebecca D.; McLennan, Donald; Thomson, Laura; Wegeberg, Susse; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, Stacey; Christensen, Thomas K.; Price, Courtney

    2016-01-01

    The Coastal Expert Workshop, which took place in Ottawa, Canada from March 1 to 3, 2016, initiated the development of the Arctic Coastal Biodiversity Monitoring Plan (Coastal Plan). Meeting participants, including northern residents, representatives from industry, non-governmental organisations (NGOs), academia, and government regulators and agencies from across the circumpolar Arctic, discussed current biodiversity monitoring efforts, key issues facing biodiversity in Arctic coastal areas, and collectively identified monitoring indicators, or Focal Ecosystem Components (FECs). On February 29, the day before the workshop, a full day was allocated to Traditional Knowledge (TK) holders to meet and elucidate how this important knowledge can be included in the process of building the Coastal Plan and monitoring biodiversity in Arctic coastal areas, along with scientific data and variables. This document provides 1) background information about the Circumpolar Biodiversity Monitoring Programme and the Coastal Expert Monitoring Group, 2) overviews on workshop presentations and breakout sessions, and 3) details regarding outcomes of the workshop that will inform the drafting of the Coastal Plan.

  18. Model and Reduction of Inactive Times in a Maintenance Workshop Following a Diagnostic Error

    Directory of Open Access Journals (Sweden)

    T. Beda

    2011-04-01

    Full Text Available The majority of maintenance workshops in manufacturing factories are hierarchical. This arrangement permits quick response in advent of a breakdown. Reaction of the maintenance workshop is done by evaluating the characteristics of the breakdown. In effect, a diagnostic error at a given level of the process of decision making delays the restoration of normal operating state. The consequences are not just financial loses, but loss in customers’ satisfaction as well. The goal of this paper is to model the inactive time of a maintenance workshop in case that an unpredicted catalectic breakdown has occurred and a diagnostic error has also occurred at a certain level of decision-making, during the treatment process of the breakdown. We show that the expression for the inactive times obtained, is depended only on the characteristics of the workshop. Next, we propose a method to reduce the inactive times.

  19. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  20. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.