WorldWideScience

Sample records for process flow diagram

  1. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    Energy Technology Data Exchange (ETDEWEB)

    KLEM, M.J.

    2000-09-08

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference.

  2. Quantifying the implicit process flow abstraction in SBGN-PD diagrams with Bio-PEPA

    CERN Document Server

    Loewe, Laurence; Hillston, Jane

    2009-01-01

    For a long time biologists have used visual representations of biochemical networks to gain a quick overview of important structural properties. Recently SBGN, the Systems Biology Graphical Notation, has been developed to standardise the way in which such graphical maps are drawn in order to facilitate the exchange of information. Its qualitative Process Diagrams (SBGN-PD) are based on an implicit Process Flow Abstraction (PFA) that can also be used to construct quantitative representations, which can be used for automated analyses of the system. Here we explicitly describe the PFA that underpins SBGN-PD and define attributes for SBGN-PD glyphs that make it possible to capture the quantitative details of a biochemical reaction network. We implemented SBGNtext2BioPEPA, a tool that demonstrates how such quantitative details can be used to automatically generate working Bio-PEPA code from a textual representation of SBGN-PD that we developed. Bio-PEPA is a process algebra that was designed for implementing quant...

  3. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience.

    Science.gov (United States)

    McDonald, Sandra A; Velasco, Elizabeth; Ilasi, Nicholas T

    2010-12-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stakeholders. Besides serving as a first step for the software development, such formalized process maps greatly assisted the identification and communication of best practices and the optimization of current procedures. The diagrams shared here could assist other biospecimen research repositories (both pharmaceutical and other settings) for comparative purposes or as a guide to successful informatics design. Therefore, it is recommended that biorepositories consider establishing formalized business process flow diagrams for their laboratories, to address these objectives of communication and strategy.

  4. Functionality Semantics of Predicate Data Flow Diagram

    Institute of Scientific and Technical Information of China (English)

    高晓雷; 缪淮扣; 刘玲

    2004-01-01

    SOZL (structured methodology + object-oriented methodology + Z language) is a language that attempts to integrate structured method, object-oriented method and formal method. The core of this language is predicate data flow diagram (PDFD). In order to eliminate the ambiguity of predicate data flow diagrams and their associated textual specifications, a formalization of the syntax and semantics of predicate data flow diagrams is necessary. In this paper we use Z notation to define an abstract syntax and the related structural constraints for the PDFD notation, and provide it with an axiomatic semantics based on the concept of data availability and functionality of predicate operation. Finally, an example is given to establish functionality consistent decomposition on hierarchical PDFD (HPDFD).

  5. Empirical Phase Diagram of Congested Traffic Flow

    OpenAIRE

    Lee, H. Y.; Lee, H. -W.; Kim, D.

    1999-01-01

    We present an empirical phase diagram of the congested traffic flow measured on a highway section with one effective on-ramp. Through the analysis of local density-flow relations and global spatial structure of the congested region, four distinct congested traffic states are identified. These states appear at different levels of the upstream flux and the on-ramp flux, thereby generating a phase digram of the congested traffic flow. Observed traffic states are discussed in connection with rece...

  6. Phase diagram for inertial granular flows

    Science.gov (United States)

    DeGiuli, E.; McElwaine, J. N.; Wyart, M.

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μp and on the inertial number I , which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10-4≲I ≲10-1 : frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μp increases from zero at constant I . The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μp, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I ≥10-2.5 that the growth of the macroscopic friction μ (I ) with I is induced by an increase of collisional dissipation. This implies in that range that μ (I ) -μ (0 ) ˜I1 -2 b , where b ≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L ˜I-b and the density of sliding contacts χ ˜Ib .

  7. Semantic Specification and Verification of Data Flow Diagrams

    Institute of Scientific and Technical Information of China (English)

    刘彤; 唐稚松

    1991-01-01

    Data Flow Diagram (DFD) has been widely used in Software Engineering as means of requirement analysis and system specification.However,one defect of DFD approach remains untackled:the lack of formal semantics has brought about a lot of problems.In this paper,we model Data Flow Diagram as networks of concurrent processes.With the use of temporal logic language XYZ/E,the formal basis of the semantic specification of DFD can be ensured,and the system properties such as safety and liveness can be easily characterized.The main part of this paper is devoted to the study of the hierarchical decomposition of semantic specification and its correctness.A verification methodology is proposed and several examples are analyzed.The implementation of the tools which can support the formal specification,verification and simulation of DFD are also briefly described.

  8. Making Data Flow Diagrams Accessible for Visually Impaired Students Using Excel Tables

    Science.gov (United States)

    Sauter, Vicki L.

    2015-01-01

    This paper addresses the use of Excel tables to convey information to blind students that would otherwise be presented using graphical tools, such as Data Flow Diagrams. These tables can supplement diagrams in the classroom when introducing their use to understand the scope of a system and its main sub-processes, on exams when answering questions…

  9. The Delunification Process and Minimal Diagrams

    OpenAIRE

    Jablan, Slavik; Kauffman, Louis; Lopes, Pedro

    2014-01-01

    A link diagram is said to be lune-free if, when viewed as a 4-regular plane graph it does not have multiple edges between any pair of nodes. We prove that any colored link diagram is equivalent to a colored lune-free diagram with the same number of colors. Thus any colored link diagram with a minimum number of colors (known as a minimal diagram) is equivalent to a colored lune-free diagram with that same number of colors. We call the passage from a link diagram to an equivalent lune-free diag...

  10. Recognition and processing of logic diagrams

    Science.gov (United States)

    Darwish, Ahmed M.; Bashandy, Ahmed R.

    1996-03-01

    In this paper we present a vision system that is capable of interpreting schematic logic diagrams, i.e. determine the output as a logic function of the inputs. The system is composed of a number of modules each designed to perform a specific subtask. Each module bears a minor contribution in the form of a new mixture of known algorithms or extensions to handle actual real life image imperfections which researchers tend to ignore when they develop their theoretical foundations. The main contribution, thus, is not in any individual module, it is rather in their integration to achieve the target job. The system is organized more or less in a classical fashion. Aside from the image acquisition and preprocessing modules, interesting modules include: the segmenter, the identifier, the connector and the grapher. A good segmentation output is one reason for the success of the presented system. Several novelties exist in the presented approach. Following segmentation the type of each logic gate is determined and its topological connectivity. The logic diagram is then transformed to a directed acyclic graph in which the final node is the output logic gate. The logic function is then determined by backtracking techniques. The system is not only aimed at recognition applications. In fact its main usage may be to target other processing applications such as storage compression and graphics modification and manipulation of the diagram as is explained.

  11. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  12. Effect of speed matching on fundamental diagram of pedestrian flow

    Science.gov (United States)

    Fu, Zhijian; Luo, Lin; Yang, Yue; Zhuang, Yifan; Zhang, Peitong; Yang, Lizhong; Yang, Hongtai; Ma, Jian; Zhu, Kongjin; Li, Yanlai

    2016-09-01

    Properties of pedestrian may change along their moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study the speed matching effect (a pedestrian adjusts his velocity constantly to the average velocity of his neighbors) and its influence on the density-velocity relationship (a pedestrian adjust his velocity to the surrounding density), known as the fundamental diagram of the pedestrian flow. By the means of the cellular automaton, the simulation results fit well with the empirical data, indicating the great advance of the discrete model for pedestrian dynamics. The results suggest that the system velocity and flow rate increase obviously under a big noise, i.e., a diverse composition of pedestrian crowd, especially in the region of middle or high density. Because of the temporary effect, the speed matching has little influence on the fundamental diagram. Along the entire density, the relationship between the step length and the average pedestrian velocity is a piecewise function combined two linear functions. The number of conflicts reaches the maximum with the pedestrian density of 2.5 m-2, while decreases by 5.1% with the speed matching.

  13. Microsoft Visio 2013 business process diagramming and validation

    CERN Document Server

    Parker, David

    2013-01-01

    Microsoft Visio 2013 Business Process Diagramming and Validation provides a comprehensive and practical tutorial including example code and demonstrations for creating validation rules, writing ShapeSheet formulae, and much more.If you are a Microsoft Visio 2013 Professional Edition power user or developer who wants to get to grips with both the essential features of Visio 2013 and the validation rules in this edition, then this book is for you. A working knowledge of Microsoft Visio and optionally .NET for the add-on code is required, though previous knowledge of business process diagramming

  14. Andreas Acrivos Dissertation Prize Lecture: Stability of inviscid flows from bifurcation diagrams exploiting a variational argument

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo

    2011-11-01

    Steady fluid solutions play a special role in the dynamics of a flow: stable states may be realized in practice, while unstable ones may act as attractors. Unfortunately, determining stability is often a process far more laborious than finding steady states; indeed, even for simple vortex or wave flows, stability properties have often been the subject of debate. We consider here a stability idea originating with Lord Kelvin (1876), which involves using the second variation of the energy, δ2 E , to establish bounds on a perturbation. However, for numerically obtained flows, computing δ2 E explicitly is often not feasible. To circumvent this issue, Saffman & Szeto (1980) proposed an argument linking changes in δ2 E to turning points in a bifurcation diagram, for families of steady flows. Later work has shown that this argument is unreliable; the two key issues are associated with the absence of a formal turning-point theory, and with the inability to detect bifurcations (Dritschel 1995, and references therein). In this work, we build on ideas from bifurcation theory, and link turning points in a velocity-impulse diagram to changes in δ2 E ; in addition, this diagram delivers the direction of the change of δ2 E , thereby providing information as to whether stability is gained or lost. To detect hidden solution branches, we introduce to these fluid problems concepts from imperfection theory. The resulting approach, involving ``imperfect velocity-impulse'' diagrams, leads us to new and surprising results for a wide range of fundamental vortex and wave flows; we mention here the calculation of the first steady vortices without any symmetry, and the uncovering of the complete solution structure for vortex pairs. In addition, we find precise agreement with available results from linear stability analysis. Doctoral work advised by C.H.K. Williamson at Cornell University.

  15. The Effect of Diagrams on Online Reading Processes and Memory

    Science.gov (United States)

    McCrudden, Matthew T.; Magliano, Joseph P.; Schraw, Gregory

    2011-01-01

    This work examined how adjunct displays influence college readers' moment-by-moment processing of text and the products of reading, using reading time (Experiments 1 & 2), and think-aloud methodologies (Experiment 3). Participants did or did not study a diagram before reading a text. Overall, the reading time data, think-aloud data, and recall…

  16. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  17. Improving The Decisional Process By Using UML Diagrams

    Directory of Open Access Journals (Sweden)

    Udrica Mioara

    2012-06-01

    Full Text Available In the last years, the world has moved from predominantly industrial society to information society, governed by a new set of rules, which allows access to digital technologies, processing, storage and transmission of information. Organizations include in their decisional process Business Intelligence components, which help the decision-makers to establish the conditions of financial equilibrium, to highlight weaknesses and strengths, to make predictions.Particularly, Unified Modelling Language (UML, as a formal and standardized language, allows the control of the system’s complexity, shows different but complementary views of the organization and ensures independence towards the implementation language and the domain of application. This article aims to show the way UML diagrams are used as support in a decisional process for a hotel company. UML diagrams designed help decisionmakers to analysis and discover the causes, to design and simulation of possible scenarios, to implement and measuring the results.

  18. QUERY PROCESSING FOR PROBABILISTIC STATE DIAGRAMS DESCRIBING MULTIPLE ROBOT NAVIGATION IN AN INDOOR ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Bogdan Czejdo

    2011-01-01

    Full Text Available This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  19. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    Energy Technology Data Exchange (ETDEWEB)

    Czejdo, Bogdan [ORNL; Bhattacharya, Sambit [North Carolina Fayetteville State University; Ferragut, Erik M [ORNL

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  20. Applying state diagrams to food processing and development

    Science.gov (United States)

    Roos, Y.; Karel, M.

    1991-01-01

    The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.

  1. Students’ Ability to Solve Process-diagram Problems in Secondary Biology Education

    NARCIS (Netherlands)

    M. Kragten; W. Admiraal; G. Rijlaarsdam

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and workin

  2. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    Science.gov (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  3. Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit

    CERN Document Server

    Visconti, Giuseppe; Puppo, Gabriella; Tosin, Andrea

    2016-01-01

    Starting from interaction rules based on two levels of stochasticity we study the influence of the microscopic dynamics on the macroscopic properties of vehicular flow. In particular, we study the qualitative structure of the resulting flux-density and speed-density diagrams for different choices of the desired speeds. We are able to recover multivalued diagrams as a result of the existence of a one-parameter family of stationary distributions, whose expression is analytically found by means of a Fokker-Planck approximation of the initial Boltzmann-type model.

  4. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    Science.gov (United States)

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  5. On the effect of stochastic transition in the fundamental diagram of traffic flow

    CERN Document Server

    Siqueira, Adriano Francisco; Wu, Chen; Qian, Wei-Liang

    2014-01-01

    In this work, we propose an alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters. Our approach is based on a mesoscopic viewpoint of the traffic system in terms of the dynamics of vehicle velocity transitions. A key feature of the present approach lies in its stochastic nature which makes it possible to describe not only the flow-concentration relation, the so-called fundamental diagram in traffic engineering, but also its variance -- an important ingredient in the observed data of traffic flow. It is shown that the model can be seen as a derivative of the Boltzmann equation when assuming a discrete velocity spectrum. The latter assumption significantly simplifies the mathematics and therefore, facilitates the study of its physical content through the analytic solutions. The model parameters are then adjusted to reproduce the observed traffic flow on the "23 de maio" highway in the Brazilian city of Sao Paulo, where both the fundamental diagram and its var...

  6. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  7. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca numbers (e.g. 0.0075 number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape. PMID:27492192

  8. Evolution of Near-surface Flows Inferred from High-resolution Ring-diagram Analysis

    CERN Document Server

    Bogart, Richard S; Baldner,; Basu, Sarbani

    2015-01-01

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ~15{\\deg} (180 Mm) or more in order to provide reasonable mode sets for inversions. HMI data analysis also provides a set of ring fit parameters on a scale three times smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from local helioseismic analysis of regions over different parts of the observable disk, not all well understood. I...

  9. Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows

    International Nuclear Information System (INIS)

    This manuscript attempted to analyze the influencing factors of coal consumption growth in China using the logarithmic mean Divisia index (LMDI) decomposition method developed based on the physical processes of coal utilization from raw coal to the end-use sectors. By mapping the energy allocation diagram of coal flows, we built a method to balance the energy allocation of coal flows and derived several technical influencing factors. These factors were used to develop an LMDI decomposition method suitable for analyzing the coal consumption growth of complex coal-use systems, such as that of China. The method is subsequently applied to analyze the influencing factors of China's coal consumption growth from 2001 to 2011. The results indicate the rapid growth of GDP (gross domestic production) per capita, which heavily relied on the expansion of heavy industry as the dominant factor driving coal consumption growth. Improvement in the energy efficiency of coal power generation and coal end-use combustion were the primary factors reducing coal consumption. - Highlights: • Energy allocation diagrams of China's coal flows from primary energy to end-use. • An LMDI method for analyzing influencing factors of coal consumption growth. • Policy implications for controlling the coal consumption growth in China

  10. Information Flow in the Launch Vehicle Design/Analysis Process

    Science.gov (United States)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  11. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    Science.gov (United States)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a

  12. A rigorous semantics for BPMN 2.0 process diagrams

    CERN Document Server

    Kossak, Felix; Geist, Verena; Kubovy, Jan; Natschläger, Christine; Ziebermayr, Thomas; Kopetzky, Theodorich; Freudenthaler, Bernhard; Schewe, Klaus-Dieter

    2015-01-01

    This book provides the most complete formal specification of the semantics of the Business Process Model and Notation 2.0 standard (BPMN) available to date, in a style that is easily understandable for a wide range of readers - not only for experts in formal methods, but e.g. also for developers of modeling tools, software architects, or graduate students specializing in business process management. BPMN - issued by the Object Management Group - is a widely used standard for business process modeling. However, major drawbacks of BPMN include its limited support for organizational modeling, i

  13. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram.

    Science.gov (United States)

    Vins, Holly; Bell, Jesse; Saha, Shubhayu; Hess, Jeremy J

    2015-10-22

    Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather). In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought.

  14. Phase diagram of the symbiotic two-species contact process

    Science.gov (United States)

    de Oliveira, Marcelo Martins; Dickman, Ronald

    2014-09-01

    We study the two-species symbiotic contact process, recently proposed by de Oliveira, Santos, and Dickman [Phys. Rev. E 86, 011121 (2012), 10.1103/PhysRevE.86.011121]. In this model, each site of a lattice may be vacant or host single individuals of species A and/or B. Individuals at sites with both species present interact in a symbiotic manner, having a reduced death rate μ effects of asymmetric creation rates and diffusion of individuals. In two dimensions, for sufficiently strong symbiosis (i.e., small μ), the absorbing-state phase transition becomes discontinuous for diffusion rates D within a certain range. We report preliminary results on the critical surface and tricritical line in the λ-μ-D space. Our results raise the possibility that strongly symbiotic associations of mobile species may be vulnerable to sudden extinction under increasingly adverse conditions.

  15. Calculating Method for Influence of Material Flow on Energy Consumption in Steel Manufacturing Process

    Institute of Scientific and Technical Information of China (English)

    YU Qing-bo; LU Zhong-wu; CAI Jiu-ju

    2007-01-01

    From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.

  16. Development of the web-based site investigation flow diagram in repository development program

    International Nuclear Information System (INIS)

    In siting a repository for high level radioactive wastes (HLW), it is essential for consensus building intelligibly and visually present why and how the area is selected as a suitable site. However 'information asymmetry' exists especially between society and an implementation body because various types of investigation, analysis and assessment are implemented in site characterization on the basis of a wide variety of advanced science and technology. Communication between experts (e.g. surveyors and modelers) is also important for efficient and reliable site investigation/ characterization. The Web-based Site Investigation Flow Diagram (SIFD) has been developed as a tool for information sharing among stake holders and society-jointed decision making. To test applicability of the SIFD, virtual site characterization ('dry run') is performed using the existing site investigation data. It is concluded that the web-based SIFD enhance traceability and transparency of the site investigation/ characterization, and therefore it would be a powerful communication tool among experts for efficient and reliable site investigation/characterization and among stake holders for consensus building

  17. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    Science.gov (United States)

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions.

  18. Influence of Material Flow in Steel Manufacturing Process on Atmosphere Environmental Load

    Institute of Scientific and Technical Information of China (English)

    DU Tao; CAI Jiu-ju; LU Zhong-wu; QI Yuan-hong; ZHANG Chun-xia

    2004-01-01

    The standard material flow diagram in steel manufacturing process was proposed to analyze the influences of various material flows on environmental load of 1 t of final product. Two influence factors and reducing measures of environmental load were pointed out. The environmental load was appraised for a typical technological process in a Chinese steel plant.

  19. UML Profile for Mining Process: Supporting Modeling and Simulation Based on Metamodels of Activity Diagram

    Directory of Open Access Journals (Sweden)

    Andrea Giubergia

    2014-01-01

    Full Text Available An UML profile describes lightweight extension mechanism to the UML by defining custom stereotypes, tagged values, and constraints. They are used to adapt UML metamodel to different platforms and domains. In this paper we present an UML profile for models supporting event driving simulation. In particular, we use the Arena simulation tool and we focus on the mining process domain. Profiles provide an easy way to obtain well-defined specifications, regulated by the Object Management Group (OMG. They can be used as a presimulation technique to obtain solid models for the mining industry. In this work we present a new profile to extend the UML metamodel; in particular we focus on the activity diagram. This extended model is applied to an industry problem involving loading and transportation of minerals in the field of mining process.

  20. FORM, Diagrams and Topologies

    CERN Document Server

    Herzog, Franz; Ueda, Takahiro; Vermaseren, J A M; Vogt, Andreas

    2016-01-01

    We discuss a number of FORM features that are essential in the automatic processing of very large numbers of diagrams as used in the Forcer program for 4-loop massless propagator diagrams. Most of these features are new.

  1. Flow Logic for Process Calculi

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2012-01-01

    Flow Logic is an approach to statically determining the behavior of programs and processes. It borrows methods and techniques from Abstract Interpretation, Data Flow Analysis and Constraint Based Analysis while presenting the analysis in a style more reminiscent of Type Systems. Traditionally dev...... considerations. The electronic supplements present an application of the analysis techniques to a version of the π-calculus incorporating distribution and code mobility; also the proofs of the main results can be found in the electronic supplements....... developed for programming languages, this article provides a tutorial development of the approach of Flow Logic for process calculi based on a decade of research. We first develop a simple analysis for the π-calculus; this consists of the specification, semantic soundness (in the form of subject reduction...

  2. Preliminary velocity flows inside NOA AR 10720 derived by temporally evolving ring diagram analysis of SOHO/MDI dopplergrams

    International Nuclear Information System (INIS)

    Between 13th and 16th January 2005, NOA active region 10720 was the site of several large flares, one of which induced a solar quake. The expanding wave front of the quake was visible across the surface, causing both horizontal and vertical plasma displacements. Using a new temporal scanning technique for ring diagram analysis of SOHO/MDI (Michelson Doppler imager on board the Solar and Heliospheric Observatory) dopplergrams, we have calculated the horizontal and vertical velocity flows within the active region and the surrounding areas to a depth of 15Mm. We have been able to prove that it is possible to determine changes to a steadily varying subsurface flow, over time scales of hours.

  3. Application of Windows Socket Technique to Communication Process of the Train Diagram Network System Based on Client/Server Structure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is focused on the technique for design and realization of the process communications about the computer-aided train diagram network system. The Windows Socket technique is adopted to program for the client and the server to create system applications and solve the problems of data transfer and data sharing in the system.

  4. Delta Diagrams

    OpenAIRE

    Jablan, Slavik; Kauffman, Louis H.; Lopes, Pedro

    2015-01-01

    We call a Delta Diagram any diagram of a knot or link whose regions (including the unbounded one) have 3, 4, or 5 sides. We prove that any knot or link admits a delta diagram. We define and estimate combinatorial link invariants stemming from this definition.

  5. Structured Analysis and the Data Flow Diagram: Tools for Library Analysis.

    Science.gov (United States)

    Carlson, David H.

    1986-01-01

    This article discusses tools developed to aid the systems analysis process (program evaluation and review technique, Gantt charts, organizational charts, decision tables, flowcharts, hierarchy plus input-process-output). Similarities and differences among techniques, library applications of analysis, structured systems analysis, and the data flow…

  6. Support system for process flow scheduling

    OpenAIRE

    Salomone, Enrique; Chiotti, Omar Juan Alfredo; Lerch, Juan

    2001-01-01

    Process flow scheduling is a concept that refers to the scheduling of flow shop process plants, whose scheduling calculations are guided by the process structure. In a wide variety of high-volume process industries, the process flow scheduling concept implies an integrated structure for planning and scheduling. This integrated vision of the planning function and the very particular characteristics of the process industry production environment challenge the application of the most traditio...

  7. ESPC Overview. Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    Energy Technology Data Exchange (ETDEWEB)

    Tetreault, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Regenthal, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  8. ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    Energy Technology Data Exchange (ETDEWEB)

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  9. On a generalized phase diagram of simultaneous transport processes - a two velocity universal plane of invariance

    Energy Technology Data Exchange (ETDEWEB)

    Som, A. [General Electric Company, SC (United States)

    2001-07-01

    The problem concerning void fraction as an additional degree of freedom for a discontinuous density continuum e.g., two-phase systems, is theoretically investigated. A generalized phase diagram has been found to signify the evolution of two-phase systems. With due regard to the objective property of motion, the transformation functions and its properties clearly expose the invariance of relative velocity with superficial velocities as the vector quantities. A fundamental one-to-one mapping involving Euclidean point spaces has been derived demonstrating a two-velocity universal plane of invariance as two-phase equation-of-state. The utility of the phase diagram for steady-state operations is doubtless because of the fundamental property of motion. (author)

  10. Exact and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model with bounded acceleration for a class of fundamental diagrams

    KAUST Repository

    Qiu, Shanwen

    2013-09-01

    In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.

  11. Cognitive Processes (Probably Stimulated By Using Digital Game "Dynamic Metabolic Diagram Virtual Krebs´ Cycle"

    Directory of Open Access Journals (Sweden)

    A. M. P Azevedo

    2006-07-01

    Full Text Available This work describes some of the possible cognitive operations related to the use of an educational game type activity, which  is  part  of  the  software  e-metabolismo,  developed  to  improve  biochemical  learning.  This  interactive  activity, called  DMDV   – Dynamic  Metabolic  Diagram,  allows  participants  to  drag-and-drop  components  of  the  sequence  of chemical  reactions,  which describe  the  metabolic  route  under study.  It  also offers  to the students  quizzes  and texts about  the  subject.  The  suggestion  of  cognitive  processes  possibly  triggered  by  the  software,  which  must  improve effective learning, was based on Jean Piaget’s genetic epistemological ideas to explain the cognitive activity. One of these  processes  is  the  mere  act  of  playing  the  game,  which  Piaget  relates  to  humans  needs  of  learning  rules  of socialization.  It  also  can  be  seen  as  a  first  step  in  cognition  process,  the  so  called  adaptation  function  that  include assimilation and accommodation, interactive processes between intelligent activities and elements from the reality, to became part of the individual´s mental structures. Another example: drag and drop substracts and enzymes pieces in a  virtual  board,  each  one  corresponding  to  an  specific  place  in  a  metabolic  route.  This  operation  can  be  related  to motivation,  an  affective  element  proposed  by  Piaget  to  stimulate  curiosity  and  improve  construction  of  knowledge structures.  Besides  this  issue,  the  act  of  choosing  pieces  is  assumed  to  inform  the  student  previous  knowledge (previous  cognitive  structures,  which,  according  to  Piaget,  must  be  misbalanced  (equilibration  of  new  structures  is supposed to be part of the dynamic

  12. Visualization design and verification of Ada tasking using timing diagrams

    Science.gov (United States)

    Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.

    1986-01-01

    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.

  13. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  14. Cognitive Processes (Probably) Stimulated By Using Digital Game "Dynamic Metabolic Diagram Virtual Krebs´ Cycle"

    OpenAIRE

    A.M.P. Azevedo; L.C. Fagundes; M. L Zaro; M. I. Timm

    2006-01-01

    This work describes some of the possible cognitive operations related to the use of an educational game type activity, which  is  part  of  the  software  e-metabolismo,  developed  to  improve  biochemical  learning.  This  interactive  activity, called  DMDV   – Dynamic  Metabolic  Diagram,  allows  participants  to  drag-and-drop  components  of  the  sequence  of chemical  reactions,  which describe  the  metabolic  route  under study.  It  also offers  to the students  quizzes  and texts...

  15. Linking attentional processes and conceptual problem solving: Visual cues facilitate the automaticity of extracting relevant information from diagrams

    Directory of Open Access Journals (Sweden)

    Amy eRouinfar

    2014-09-01

    Full Text Available This study investigated links between lower-level visual attention processes and higher-level problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80 individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. The study produced two major findings. First, short duration visual cues can improve problem solving performance on a variety of insight physics problems, including transfer problems not sharing the surface features of the training problems, but instead sharing the underlying solution path. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem. Instead, the cueing effects were caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, these short duration visual cues when administered repeatedly over multiple training problems resulted in participants becoming more efficient at extracting the relevant information on the transfer problem, showing that such cues can improve the automaticity with which solvers extract relevant information from a problem. Both of these results converge on the conclusion that lower-order visual processes driven by attentional cues can influence higher-order cognitive processes

  16. SCADA Diagram

    OpenAIRE

    Rose, Matthew

    2004-01-01

    Matthew Rose worked at the Naval Postgraduate School as a graphic designer from February 2002-November 2011. His work for NPS included logos, brochures, business packs, movies/presentations, posters, the CyberSiege video game and many other projects. This material was organized and provided by the artist, for inclusion in the NPS Archive, Calhoun. Includes these files: Plan_ver.ai; powerline.jpg; SCADA diagram.ai; SCADA diagram.pdf; SCADA diagramsmall.pdf; SCADA2.pdf

  17. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    Science.gov (United States)

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  18. Automation of Feynman diagram evaluations

    International Nuclear Information System (INIS)

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  19. Delimiting diagrams

    NARCIS (Netherlands)

    Oostrom, V. van

    2008-01-01

    We introduce the unifying notion of delimiting diagram. Hitherto unrelated results such as: Minimality of the internal needed strategy for orthogonal first-order term rewriting systems, maximality of the limit strategy for orthogonal higher-order pattern rewrite systems (with maximality of the strat

  20. Real time acquisition, processing, and archiving of Doublet III diagram data employing table driven software

    International Nuclear Information System (INIS)

    This paper describes the diagnostic data acquisition, processing and archiving computer system for the Doublet III fusion research device. This paper's emphasis is mainly on the software, but provides a description of the hardware configuration

  1. Process optimization diagram based on FEM simulation for extrusion of AZ31 profile

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ram speed and the billet temperature are the primary process variables that determine the quality of the extruded magnesium profile and the productivity of the extrusion operation.The optimization of the extrusion process concerns the interplay between these two variables in relation to the extrudate temperature and the peak extrusion pressure The 3D computer simulations were performed to determine the eriects of the ram speed and the billet temperature on the extrudate temperature and the peak extrusion pressure,thereby providing guidelines for the process optimization and minimizing the number of trial extrusion runs needed for the process optimization.A case study on the extrusion of an AZ31 X-shaped profile was conducted.The correlations between the process variables and the response from the deformed material,extrudate temperature and peak extrusion pressure,were established from the 3D FEM simulations and verified by the experiment.The research opens up a way to rational selection of the process variables for ensured quality and maximum productivity of the magnesium extrusion.

  2. System studies in PA: Development of process influence diagram (PID) for SFR-1 repository near-field + far-field

    International Nuclear Information System (INIS)

    Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal, the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled, representing the Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID). This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios to describe future evolution of this repository. The PIDs discussed in this report have been created using two software applications: existing commercial software (Business Modeller, Infotool AB. Stockholm, Sweden) and, more recently, a newly developed software tool SPARTA (Enviros QuantiSci, Henley, U.K.). Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project. Following a description of the different disposal sections of the SFR-1 and the various near-field barriers, the sequential development (i.e. near-field of Silo, BMA, BLA, BTF sections; far-field; integrated near-field + far-field) of the PID for SFR-1 repository system using Business Modeller is described. Owing to the complexity of the repository, in terms of number of both different disposal sections (Silo, BLA, BMA, BTF) and barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is

  3. System studies in PA: Development of process influence diagram (PID) for SFR-1 repository near-field + far-field

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, M.J. [Monitor Scientific, LLC, Denver, CO (United States); Miller, W.M.; Chapman, N.A. [QuantiSci Ltd., Melton Mowbray (United Kingdom)

    2001-05-01

    Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal, the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled, representing the Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID). This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios to describe future evolution of this repository. The PIDs discussed in this report have been created using two software applications: existing commercial software (Business Modeller, Infotool AB. Stockholm, Sweden) and, more recently, a newly developed software tool SPARTA (Enviros QuantiSci, Henley, U.K.). Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project. Following a description of the different disposal sections of the SFR-1 and the various near-field barriers, the sequential development (i.e. near-field of Silo, BMA, BLA, BTF sections; far-field; integrated near-field + far-field) of the PID for SFR-1 repository system using Business Modeller is described. Owing to the complexity of the repository, in terms of number of both different disposal sections (Silo, BLA, BMA, BTF) and barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is

  4. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    Science.gov (United States)

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative.

  5. Disjunctive Information Flow for Communicating Processes

    DEFF Research Database (Denmark)

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis;

    2016-01-01

    processes according to their tagging. We devise a security type system that enforces content-dependent information flow policies in the presence of communication and concurrency. The type system soundly guarantees a compositional noninterference property. All theoretical results have been formally proved......The security validation of practical computer systems calls for the ability to specify and verify information flow policies that are dependent on data content. Such policies play an important role in concurrent, communicating systems: consider a scenario where messages are sent to different...

  6. Program Synthesizes UML Sequence Diagrams

    Science.gov (United States)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  7. Construction Method of E-R Model of Data Flow Diagram Baes d on Dirce ted Graph%基于有向图的数据流图的 E-R 模型构建方法

    Institute of Scientific and Technical Information of China (English)

    凡高娟; 侯彦娥; 张倩

    2014-01-01

    Establishing conceptual model is one of the important steps of database design , E-R model is a conceptual model wide-ly used in database design .This paper proposes the use of business analysis process of the formation of the data flow diagram , da-ta flow diagram is a directed graph abstraction to construct methods E-R model .In large systems , database design process , using this method can quickly build E-R model topical application , greatly reduce the design process to build a database E-R model time-consuming.In addition, the paper also gives an example to verify , illustrates the practicality and effectiveness of this method in practical engineering projects .%建立概念模型是数据库设计的重要步骤之一,E-R模型是数据库设计中广泛采用的概念模型。本文提出利用业务分析过程中形成的数据流图,把数据流图抽象为有向图,从而构建E-R模型的方法。在大型系统数据库设计过程中,使用这一方法可以快速构建局部应用的E-R模型,大大缩短数据库设计过程中构建E-R模型所耗费的时间。实例验证了本方法在实际工程项目中的实用性和有效性。

  8. 抽象概念结构图到JAVA过程蓝图的平滑过渡及一致性%Smooth Transition from Abstract Concept Structure Diagram to JAVA Process Blueprint and Their Consistency

    Institute of Scientific and Technical Information of China (English)

    刘建宾; 郝克刚; 龚世生

    2001-01-01

    Abstract Concept Structure Diagram,an Abstract diagrammatized representation for program process logic ,is a concept algorithm description tool independent of program implementing language. In this paper ,a formal model of Abstract Concept Structure Diagram,its graphical notations,and a smooth transition method from Abstract Concept Structure Diagram to JAVA Process Blueprint and mapping rules are presented. The validation and consistency of concept program and logical program is defined,and related theorems and prove procedures are also presented.

  9. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    Science.gov (United States)

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative. PMID:21838557

  10. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    Science.gov (United States)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  11. From State Diagram to Class Diagram

    DEFF Research Database (Denmark)

    Borch, Ole; Madsen, Per Printz

    2009-01-01

    UML class diagram and Java source code are interrelated and Java code is a kind of interchange format. Working with UML state diagram in CASE tools, a corresponding xml file is maintained. Designing state diagrams is mostly performed manually using design patterns and coding templates - a time...

  12. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  13. Nitrocarburizing treatments using flowing afterglow processes

    Science.gov (United States)

    Jaoul, C.; Belmonte, T.; Czerwiec, T.; David, N.

    2006-09-01

    Nitrocarburizing of pure iron samples is achieved at 853 K and is easily controlled by introducing C 3H 8 in the afterglow of a flowing microwave Ar-N 2-H 2 plasma. The carbon uptake in the solid is actually possible with methane but strongly limited. The use of propane enhances the carbon flux and the ɛ/α configuration is synthesized for the first time by this kind of process. For this stack, diffusion paths in the ternary system determined from chemical analyses by secondary neutral mass spectrometry reproduce satisfactorily X-ray diffraction results which only reveal, as optical micrographs, ɛ and α phases. Propane offers an accurate control of the nitrocarburizing conditions. As an example, a modulation of N and C contents in iron could be achieved to create new carbonitride multilayers.

  14. Nitrocarburizing treatments using flowing afterglow processes

    Energy Technology Data Exchange (ETDEWEB)

    Jaoul, C. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France); Belmonte, T. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France)]. E-mail: Thierry.Belmonte@mines.inpl-nancy.fr; Czerwiec, T. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France); David, N. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare Nancy-I, Vandoeuvre-Les-Nancy (France)

    2006-09-30

    Nitrocarburizing of pure iron samples is achieved at 853 K and is easily controlled by introducing C{sub 3}H{sub 8} in the afterglow of a flowing microwave Ar-N{sub 2}-H{sub 2} plasma. The carbon uptake in the solid is actually possible with methane but strongly limited. The use of propane enhances the carbon flux and the {epsilon}/{alpha} configuration is synthesized for the first time by this kind of process. For this stack, diffusion paths in the ternary system determined from chemical analyses by secondary neutral mass spectrometry reproduce satisfactorily X-ray diffraction results which only reveal, as optical micrographs, {epsilon} and {alpha} phases. Propane offers an accurate control of the nitrocarburizing conditions. As an example, a modulation of N and C contents in iron could be achieved to create new carbonitride multilayers.

  15. Protein crystallization as a process step in a novel meso oscillatory flow reactor: study of lysozyme phase behavior

    OpenAIRE

    Castro, Filipa; Ferreira, António; Teixeira, J. A.; Rocha, Fernando

    2016-01-01

    In the present work, it is reported for the first time the study of the applicability of a novel meso oscillatory flow reactor (meso-OFR) for protein crystallization as a process step. Crystallization assays carried out in the designed device enabled to derive a two-dimensional lysozyme phase diagram (lysozyme concentration against sodium chloride concentration). Results evidence the formation of several types of crystals (different size and shape), with a strong influence of salt concentrati...

  16. Concentrated flow erosion processes under planned fire

    Science.gov (United States)

    Langhans, Christoph; Noske, Phil; Van Der Sant, Rene; Lane, Patrick; Sheridan, Gary

    2016-04-01

    The role of wildfire in accelerating erosion rates for a certain period after fire has been well documented. Much less information is available on the erosion rates and processes after planned fires that typically burn at much lower intensity. Observational evidence, and some studies in southern and southeastern Australia suggest that erosion after planned fire can be significant if rainfall intensities exceed critical intensities and durations. Understanding erosion processes and rates under these event conditions is of critical importance for planning of burn locations away from critical human assets such as water supplies and infrastructure. We conducted concentrated flow experiments with the purpose to understand what critical conditions are required for significant erosion to occur on planned burn hillslopes. Concentrated flow runon was applied on pre-wetted, unbounded plots of 10 m at rates of 0.5, 1, 1.5 and 2 L/s, with three replicates for each rates applied at 1m distance of each other. The experiments were carried out at three sites within one burn perimeter with different burn severities ranging from low to high, with two replicates at each site. Runon was applied until an apparent steady state in runoff was reached at the lower plot boundary, which was typically between 0.7 and 2.5 minutes. The experiments were filmed and erosion depth was measured by survey methods at 1m intervals. Soil surface properties, including potential sediment trapping objects were measured and surveyed near the plots. We found that fire severity increased plot scale average erosion depth significantly even as experiments were typically much shorter on the high severity plots. Unit stream power was a good predictor for average erosion depth. Uncontrolled for variations in soil surface properties explained process behaviour: finer, ash rich surface material was much less likely to be trapped by fallen, charred branches and litter than coarser, ash-depleted material. Furthermore

  17. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  18. 鱼骨图和流程图在开放性创伤手术感染管理中的应用%Application of fishbone diagram and flow chart in infection control for open trauma surgery

    Institute of Scientific and Technical Information of China (English)

    曹新平

    2013-01-01

    Objective To explore an infection control method for open trauma surgery using fishbone diagram and flow chart. Methods A fishbone diagram and a flow chart were drawn to identify the factors contributing to infection after open trauma surgery. Then 8 operating room nurses were were trained to use the fishbone diagram and the flow chart before the diagram and the chart were put into clinical practice. Results Before and after application of the fishbone diagram and the flow chart, nurses test scores in factors contributing to infection after open trauma surgery and infection control knowledge, rates of occupational exposures had significant differences(P<0. 01,P<0. 05) . The rate of accurate coping with an occupational exposure increased from 67. 31% to 100%. Conclusion Fishbone diagrams and flow charts which indentify the factors contributing to infection after open trauma surgery could effectively help nurses enhance the infection control quality of open trauma surgery, and decrease the incidence of occupational exposure.%目的 探讨鱼骨图和流程图在开放性创伤手术感染管理中的应用方法与效果.方法 制定开放性创伤手术感染因素鱼骨图和感染管理流程图,首先对手术室8名护士进行培训,然后将该图用于开放性创伤手术配合和管理中.结果 应用鱼骨图和流程图前后,护士开放性创伤手术易感因素和感染管理知识考核成绩、职业暴露率比较,差异有统计学意义(P<0.01,P<0.05);发生职业暴露后正确处理率由67.31%上升至100%.结论 应用开放性创伤手术感染因素鱼骨图和感染管理流程图,可以帮助护士有效提高开放性创伤手术的感染管理质量,降低职业暴露发生率.

  19. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  20. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  1. Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping Process of Spacer Grids of Nuclear Fuel Rod

    Science.gov (United States)

    Seo, Yunmi; Hyun, Hong Chul; Lee, Hyungyil; Kim, Naksoo

    2011-08-01

    We investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile tests were performed to obtain stress-strain curves and anisotropic coefficients, such as r-values. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following the specification of NUMISHEET 96. Theoretical FLD depends on forming limit model and yield criterion. To obtain the right hand side of FLD, we applied the forming limit models (Swift's diffuse necking, Marciniak-Kuczynski damage defect, Storen-Rice's vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left side of FLD. To consider the anisotropy of sheets, the yield criteria of Hill (1948) and Hosford (1979) were applied. Comparing the predicted curves with the experimental data, we found that the FLD for Zircaloy-4 can be described by the Swift model with the Hill 48 yield criterion, while the FLD for Zirlo can be explained by the Storen-Rice model and the Hosford yield criterion (a = 8).

  2. Flow Velocity Measurement by Image Processing of Optically Activated Tracers

    OpenAIRE

    Gharib, M.; Hernan, M. A.; Yavrouian, A. H.; Sarohia, V.

    1985-01-01

    A computerized flow visualization technique capable of quantifying the flow field automatically has been developed. This technique uses afterglowing effect of optically activated phosphorescent particles to retrieve vectorial information on each trace. By using this information, in conjunction with computer image processing, the flow field of a free surface transient vortex was investigated.

  3. An active feedback flow control theory of the vortex breakdown process

    Science.gov (United States)

    Granata, Joshua

    An active feedback flow control theory of the vortex breakdown process in incompressible, axisymmetric swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions. A long-wave asymptotic analysis, which involves a re-scaling of the axial distance and time at near critical swirl ratios, results in a nonlinear model problem for the dynamics and control of both inviscid and high-Reynolds number, Re, flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. Computed examples of the flow dynamics based on the full Euler and Navier-Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level which depends on Re. Numerical stability and mesh convergence studies performed on the inviscid and high-Re flow simulations ensure the accuracy of the computations and the agreement with the theoretical approaches. In addition, an energy analysis of the nonlinear model problem sheds insight into the mechanisms of the flow dynamics which lead to vortex breakdown and suggests a feedback control law which relates the flow injection and the evolving maximum radial velocity at the inlet. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl up to 53 percent above the first critical level for the inviscid flow case and for a range of swirl up to 15 percent above the first critical level for viscous flows. The control law can be improved for a lower momentary maximum flux injection through the use of discrete injection regions along the pipe. The feedback control cuts the natural feed-forward mechanism of the breakdown

  4. Extrinsic Curvature Embedding Diagrams

    CERN Document Server

    Lu, J L

    2003-01-01

    Embedding diagrams have been used extensively to visualize the properties of curved space in Relativity. We introduce a new kind of embedding diagram based on the {\\it extrinsic} curvature (instead of the intrinsic curvature). Such an extrinsic curvature embedding diagram, when used together with the usual kind of intrinsic curvature embedding diagram, carries the information of how a surface is {\\it embedded} in the higher dimensional curved space. Simple examples are given to illustrate the idea.

  5. Similarities in basalt and rhyolite lava flow emplacement processes

    Science.gov (United States)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  6. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... analysis with operational safety management....

  7. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark; Liu, Z.; Ravn, A.P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  8. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    Pol, van de Jaco; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  9. A multi-phase flow model for electrospinning process

    OpenAIRE

    Xu Lan; Si Na; Lee Eric Wai Ming; Liu Hong-Ying

    2013-01-01

    An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  10. Progress in modeling of fluid flows in crystal growth processes

    Institute of Scientific and Technical Information of China (English)

    Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin

    2008-01-01

    Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.

  11. Selected topics on the nonrelativistic diagram technique

    International Nuclear Information System (INIS)

    The construction of the diagrams describing various processes in the four-particle systems is considered. It is shown that these diagrams, in particular the diagrams corresponding to the simple mechanisms often used in nuclear and atomic reaction theory, are readily obtained from the Faddeev-Yakubovsky equations. The covariant four-dimensional formalism of nonrelativistic Feynman graphs and its connection to the three-dimensional graph technique are briefly discussed

  12. TV Trouble-Shooting Manual. Volumes 3-4. Part 1: Block Diagram of Colour TV Receiver and Signal Flow. Student and Instructor's Manuals.

    Science.gov (United States)

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the first set of training topics in this course for television repair technicians. Both volumes contain the following two sections: (1) Functional Block Diagram of a Colour TV Receiver, including information on the video reproduction circuit,…

  13. Information flow and simulation support in the product development process

    OpenAIRE

    Johansson, Henrik; Larsson, Tobias

    1998-01-01

    This paper consists of a case study of the product development process at Indexator AB, manufacturer of rotators for heavy equipment. The process has been studied concerning the information flow and computer support in the engineering design department and its interacting departments. It is shown that the company has a clear view of how information flows and which computer tools they use in the different parts of the processes. The advantage of using computer tools for analysis and planning i...

  14. On Ladder Diagrams Compilation and Synthesis to FPGA Implemented Reconfigurable Logic Controller

    Directory of Open Access Journals (Sweden)

    Adam Milik

    2014-01-01

    Full Text Available The paper presents synthesis process of a hardware implemented reconfigurable logic controller from a ladder diagram according to IEC61131-3 requirements. It is focused on the originally developed a high-performance LD processing method. It is able to process a set of diagrams restricted to logic operations in a single clock cycle independently from the number of processed rungs. The paper considers the compilation of the ladder diagram into an intermediate form suitable for logic synthesis process according to developed processing method. The enhanced data flow graph (EDFG has been developed for the intermediate representation of an LD program. The original construction of the EDFG with attributed edges has been described. It allows for efficient representation and processing of logic and arithmetic formulas. The set of compilation algorithms that allow to preserve serial analysis order and to obtain massively parallel processing unit are presented. The overview of a hardware mapping concludes the presented considerations.

  15. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    OpenAIRE

    Lind, Morten

    1982-01-01

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and ...

  16. RILL EROSION PROCESS AND RILL FLOW HYDRAULIC PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    Fen-li ZHENG; Pei-qing XIAO; Xue-tian GAO

    2004-01-01

    In the rill erosion process,run-on water and sediment from upslope areas,and rill flow hydraulic parameters have significant effects on sediment detachment and transport.However,there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes,especially in the Loess Plateau of China.A dual-box system,consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment,and of rill flow hydraulic parameters on the rill erosion process.The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel,and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity.Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow.Upslope runoff had an important effect on rill flow hydraulic parameters,such as rill flow velocity,hydraulic radius,Reynolds number,Froude number and the Darcy-Weisbach resistance coefficient.The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity,Reynolds number and Froude number caused by upslope runoff increased.In contrast,the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff.These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.

  17. Gravity wave transmission diagram

    Science.gov (United States)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  18. Recharge and flow processes in a till aquitard

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Høgh Jensen, Karsten; Dahl, Mette

    1999-01-01

    Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide a framew......Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide...... a framework for assessing the individual flow components and forestablishing the overall water balance. Traditionally such models are calibrated against measurements of stream flow, head in the aquiferand perhaps drainage flow. The head in the near surface clay till deposits have generally not been measured...... the shallow wells and one in the valley adjacent to the stream. Precipitation and stream flow gauging along with potential evaporation estimates from a nearby weather station provide the basic data for the overall water balance assessment. The geological composition was determined from geoelectrical surveys...

  19. The perceptual flow of phonetic feature processing

    DEFF Research Database (Denmark)

    Greenberg, Steven; Christiansen, Thomas Ulrich

    2008-01-01

    How does the brain process spoken language? It is our thesis that word intelligibility and consonant identification are insufficient by themselves to model how the speech signal is decoded - a finer-grained approach is required. In this study, listeners identified 11 different Danish consonants....... This asymmetric pattern of feature decoding may provide extra-segmental information of utility for speech processing, particularly in adverse listening conditions....... spoken in a Consonant + Vowel + [l] environment. Each syllable was processed so that only a portion of the original audio spectrum was present. Three-quarter-octave bands of speech, centered at 750, 1500, and 3000 Hz, were presented individually and in combination with each other. The conditional...

  20. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  1. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005

    Science.gov (United States)

    Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.

    2007-01-01

    This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by

  2. C++ based design flow for reconfigurable image processing systems

    NARCIS (Netherlands)

    Beun, R.; Karkowski, I.; Ditzel, M.

    2007-01-01

    In this paper a new hardware-software co-design flow for FPGA based image processing systems is described. This flow is fully C++ based and allows specification, verification and semi-automatic generation of all necessary software and hardware components. It allows the involvement of algorithm devel

  3. Simulation on flow process of filtered molten metals

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 魏尊杰; 安阁英; 叶荣茂

    2002-01-01

    Filtration and flow process of molten metals was analyzed by water simulation experiments. Fluid dynamic phenomena of molten metal cells through a foam ceramic filter was described and calculated by ERGOR equation as well. The results show that the filter is most useful for stable molten metals and the filtered flow is laminar, so that inclusions can be removed more effectively.

  4. Porthole Extrusion Process Design for Magnesium-Alloy Bumper Back Beam by Using FE Analysis and Extrusion Limit Diagram

    OpenAIRE

    Lee, Sung-Yun; Ko, Dae-Cheol; Lee, Sang-Kon; Lee, In-Kyu; Joeng, Myeong-Sik; Kim, Da Hye; Cho, Yong-Jae

    2014-01-01

    In recent years, several studies with focus on developing state-of-the-art manufacturing technologies have been conducted to produce light vehicles by employing parts made of light materials such as aluminum and magnesium. Of such materials, magnesium has been found to pose numerous issues, because it cannot be deformed (plastic deformation) easily at low temperatures. Furthermore, oxidation on the surface of manganese occurs at high temperatures. This study analyzes the extrusion process for...

  5. 4D flow mri post-processing strategies for neuropathologies

    Science.gov (United States)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  6. A multi-phase flow model for electrospinning process

    Directory of Open Access Journals (Sweden)

    Xu Lan

    2013-01-01

    Full Text Available An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  7. XML Schema Modeling through UML Class Diagram

    Institute of Scientific and Technical Information of China (English)

    LUJing-ping; HEYu-lin; LIShang-ping

    2004-01-01

    A three-step XML Schema modeling method is presented, namely first establishing a diagram of conceptual modeling, then transforming it to UML class diagram and finally mapping it to XML Schema. A case study of handling furniture design data is given to illustrate the detail of conversion process.

  8. Stochastic equations, flows and measure-valued processes

    CERN Document Server

    Dawson, Donald A

    2010-01-01

    We first prove some general results on pathwise uniqueness, comparison property and existence of non-negative strong solutions of stochastic equations driven by white noises and Poisson random measures. The results are then used to prove the strong existence of two classes of stochastic flows associated with coalescents with multiple collisions, that is, generalized Fleming-Viot flows and flows of continuous-state branching processes with immigration. One of them unifies the different treatments of three kinds of flows in Bertoin and Le Gall (2005). Two scaling limit theorems for the generalized Fleming-Viot flows are proved, which lead to sub-critical branching immigration superprocesses. {From} those theorems we derive easily a generalization of the limit theorem for finite point motions of the flows in Bertoin and Le Gall (2006).

  9. Difference Decision Diagrams

    DEFF Research Database (Denmark)

    Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif;

    1999-01-01

    This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y......This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y...

  10. Logical reasoning with diagrams

    CERN Document Server

    Allwein, Gerard

    1996-01-01

    PART A: Theoretical Issues. 1. Visual Information and Valid Reasoning, Jon Barwise and John Etchemendy. 2. Operational Constraints in Diagrammatic Reasoning, Atsushi Shimojima. 3. Diagrams and the Concept of Logical System, Jon Barwise and Eric Hammer. PART B: Case Studies. 4. Situation-Theoretic Account of Valid Reasoning with Venn Diagrams, Sun-Joo Shin. 5. Towards a Model Theory of Venn Diagrams, eric Hammer and Norman Danner. 6. Peircean Graphs for Propositional Logic, Eric Hammer. 7. A Diagrammatic Subsystem of Hilbert''s Geometry, Isabel Luengo. PART C: Heterogenous Systems. 8. Heterogenous Logic, Jon Barwise and John Etchemendy. 9. Toward the Rigorous Use of Diagrams in Reasoning about Hardware, Steven D. Johnson, Jon Barwise, and Gerard Allwein. 10. Exploiting the Potential of Diagrams in Guiding Hardware Reasoning, Kathi D. Fisler

  11. Accurate, reliable control of process gases by mass flow controllers

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  12. Modeling Workflow Using UML Activity Diagram

    Institute of Scientific and Technical Information of China (English)

    Wei Yinxing(韦银星); Zhang Shensheng

    2004-01-01

    An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.

  13. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  14. Environmental Data Flow Six Sigma Process Improvement Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    Paige, Karen S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-20

    An overview of the Environmental Data Flow Six Sigma improvement project covers LANL’s environmental data processing following receipt from the analytical laboratories. The Six Sigma project identified thirty-three process improvements, many of which focused on cutting costs or reducing the time it took to deliver data to clients.

  15. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical simulat

  16. Modeling of material flow in friction stir welding process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a 3D numerical model to study the material flow in the friction stir welding process. Results indicate that the material in front of the pin moves upwards due to the extrusion of the pin, and then the upward material rotates with the pin. Behind the rotating tool, the material starts to move downwards and to deposit in the wake. This process is the real cause to make friction stir welding process continuing successfully. The tangent movement of the material takes the main contribution to the flow of the material in friction stir welding process. There exists a swirl on the advancing side and with the increase of the translational velocity the inverse flow of the material on the advancing side becomes faster. The shoulder can increase the velocity of material flow in both radial direction and tangent direction near the top surface. The variations of process parameters do have an effect on the velocity field near the pin, especially in the region in which the material flow is faster.

  17. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  18. Subsea flow assurance and process monitoring via gamma radiation

    International Nuclear Information System (INIS)

    Condition monitoring and process control with the use of gamma radiation is considered to be the most reliable detection principle for a wide range of applications throughout the oil and gas industries, from measuring mechanical integrity to dynamic process fluid monitoring. The growing numbers of advanced subsea processing projects and pipeline flow assurance studies currently adds an increasing number of subsea applications to the radiation measurement reference list (author) (ml)

  19. Engineering holographic phase diagrams

    Science.gov (United States)

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-10-01

    By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.

  20. Free-Body Diagrams: Necessary or Sufficient?

    Science.gov (United States)

    Rosengrant, David; Van Heuvelen, Alan; Etkina, Eugenia

    2005-09-01

    The Rutgers PAER group is working to help students develop various scientific abilities. One of the abilities is to create, understand and learn to use for qualitative reasoning and problem solving different representations of physical processes such as pictorial representations, motion diagrams, free-body diagrams, and energy bar charts. Physics education literature indicates that using multiple representations is beneficial for student understanding of physics ideas and for problem solving. We developed a special approach to construct and utilize free-body diagrams for representing physical phenomena and for problem solving. We will examine whether students draw free-body diagrams in solving problems when they know they will not receive credit for it; the consistency of their use in different conceptual areas; and if students who use free-body diagrams while solving problems in different areas of physics are more successful then those who do not.

  1. Square Source Type Diagram

    Science.gov (United States)

    Aso, N.; Ohta, K.; Ide, S.

    2014-12-01

    Deformation in a small volume of earth interior is expressed by a symmetric moment tensor located on a point source. The tensor contains information of characteristic directions, source amplitude, and source types such as isotropic, double-couple, or compensated-linear-vector-dipole (CLVD). Although we often assume a double couple as the source type of an earthquake, significant non-double-couple component including isotropic component is often reported for induced earthquakes and volcanic earthquakes. For discussions on source types including double-couple and non-double-couple components, it is helpful to display them using some visual diagrams. Since the information of source type has two degrees of freedom, it can be displayed onto a two-dimensional flat plane. Although the diagram developed by Hudson et al. [1989] is popular, the trace corresponding to the mechanism combined by two mechanisms is not always a smooth line. To overcome this problem, Chapman and Leaney [2012] developed a new diagram. This diagram has an advantage that a straight line passing through the center corresponds to the mechanism obtained by a combination of an arbitrary mechanism and a double-couple [Tape and Tape, 2012], but this diagram has some difficulties in use. First, it is slightly difficult to produce the diagram because of its curved shape. Second, it is also difficult to read out the ratios among isotropic, double-couple, and CLVD components, which we want to obtain from the estimated moment tensors, because they do not appear directly on the horizontal or vertical axes. In the present study, we developed another new square diagram that overcomes the difficulties of previous diagrams. This diagram is an orthogonal system of isotropic and deviatoric axes, so it is easy to get the ratios among isotropic, double-couple, and CLVD components. Our diagram has another advantage that the probability density is obtained simply from the area within the diagram if the probability density

  2. Flows of engineered nanomaterials through the recycling process in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    2015-02-15

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  3. Flows of engineered nanomaterials through the recycling process in Switzerland

    International Nuclear Information System (INIS)

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO2, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs

  4. Traffic engineering eye diagram

    OpenAIRE

    Kowalik, Karol; Collier, Martin

    2005-01-01

    It is said that a picture is worth a thousand words - this statement also applies to networking topics. Thus, to effectively monitor network performance we need tools which present the performance metrics in a graphical way which is also clear and informative. We propose a tool for this purpose which we call the traffic engineering eye diagram (TEED). Eye diagrams are used in digital communications to analyse the quality of a digital signal; the TEED can similarly he used in the traffic engin...

  5. Feynman Diagrams for Beginners

    CERN Document Server

    Kumericki, Kresimir

    2016-01-01

    We give a short introduction to Feynman diagrams, with many exercises. Text is targeted at students who had little or no prior exposure to quantum field theory. We present condensed description of single-particle Dirac equation, free quantum fields and construction of Feynman amplitude using Feynman diagrams. As an example, we give a detailed calculation of cross-section for annihilation of electron and positron into a muon pair. We also show how such calculations are done with the aid of computer.

  6. Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hulgaard, Henrik

    1997-01-01

    This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable pro...... standard BDD techniques this problem is infeasible. BEDs are useful in applications where the end-result as a reduced ordered BDD is small, for example for tautology checking...

  7. Multi-phase Flow Modeling applied to Metallurgical Processes

    Directory of Open Access Journals (Sweden)

    Stein T. Johansen

    2002-04-01

    Full Text Available Multiphase flow models have been improved significantly during the last two decades. Together with the development of more advanced numerical techniques and faster and cheaper computers we now see that computational fluid dynamics (CFD becomes a powerful tool in predicting the performance of complex industrial processes. In particular the processes faced by the metallurgical industries may serve as examples of such complexity.

  8. Process intensification using a meso-scale oscillatory flow reactor

    OpenAIRE

    Reis, N.; A.A. Vicente; Teixeira, J. A.

    2009-01-01

    Meso-technologies are currently triggering a paradigm change in the design of chemical and biochemical processes. Mass and heat transfer rates can readily be maximised in smaller, sustainable, cheaper and safer plants, whilst virtually reducing the design of (bio) process unit operations to the intrinsic kinetics of the system. A novel meso-scale reactor running with oscillatory flow mixing was recently developed in the University of Minho in collaboration with the University o...

  9. Stage line diagram: an age-conditional reference diagram for tracking development.

    NARCIS (Netherlands)

    Van Buuren, S.; Ooms, J.C.L.

    2009-01-01

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disea

  10. Stage line diagram: An age-conditional reference diagram for tracking development

    NARCIS (Netherlands)

    Buuren, S. van; Ooms, J.C.L.

    2009-01-01

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disea

  11. Impact of flow velocity on biochemical processes - a laboratory experiment

    Science.gov (United States)

    Boisson, A.; Roubinet, D.; Aquilina, L.; Bour, O.; Davy, P.

    2014-08-01

    Understanding and predicting hydraulic and chemical properties of natural environments are current crucial challenges. It requires considering hydraulic, chemical and biological processes and evaluating how hydrodynamic properties impact on biochemical reactions. In this context, an original laboratory experiment to study the impact of flow velocity on biochemical reactions along a one-dimensional flow streamline has been developed. Based on the example of nitrate reduction, nitrate-rich water passes through plastic tubes at several flow velocities (from 6.2 to 35 mm min-1), while nitrate concentration at the tube outlet is monitored for more than 500 h. This experimental setup allows assessing the biologically controlled reaction between a mobile electron acceptor (nitrate) and an electron donor (carbon) coming from an immobile phase (tube) that produces carbon during its degradation by microorganisms. It results in observing a dynamic of the nitrate transformation associated with biofilm development which is flow-velocity dependent. It is proposed that the main behaviors of the reaction rates are related to phases of biofilm development through a simple analytical model including assimilation. Experiment results and their interpretation demonstrate a significant impact of flow velocity on reaction performance and stability and highlight the relevance of dynamic experiments over static experiments for understanding biogeochemical processes.

  12. Flows of engineered nanomaterials through the recycling process in Switzerland.

    Science.gov (United States)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd

    2015-02-01

    The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO2, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  13. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  14. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  15. Numerical simulation for thermal flow filling process of casting

    Institute of Scientific and Technical Information of China (English)

    CHEN Ye; ZHAO Yu-hong; HOU Hua

    2006-01-01

    The solution algorithm (SOLA) method was used to solve the velocity and pressure field of the thermal flow filling process, and the volume of fluid (VOF) method for the free surface problem. Since the "donor-acceptor" rule often results in the free interface vague, the explicit difference method was adopted, and a method describing the free surface state at 0<F<1 was proposed to deal with this problem. In order to raise the computation efficiency, such algorithms were investigated and invalidated as: 1) internal and external area separation simplification algorithm; 2) the reducing necessary search area method. With the improved algorithms, the filling processes of the valve cover castings with gravity cast and an up cylinder block casting with low-pressure cast were simulated, the simulation results are believable and the computation efficiency is greatly improved. The SOLA-VOF model and its difference method for thermal fluid flow filling process were introduced.

  16. Numerical investigations on dynamic process of muzzle flow

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiao-hai; FAN Bao-chun; LI Hong-zhi

    2008-01-01

    The integrative process of a quiescent projectile accelerated by high-pressure gas to shoot out at a supersonic speed and beyond the range of a precursor flow field Was simulated numerically.The calculation was based on ALE equations and a second-order precision Roe method that adopted chimera grids and a dynamic mesh.From the predicted results,the coupling and interaction among the precursor flow field,propellant gas flow field and high-speed projectile were discussed in detail.The shock-vortex interaction,shockwave reflection,shock-projectile interaction with shock diffraction,and shock focus were clearly demonstrated to explain the effect on the acceleration of the projectile.

  17. Does the butterfly diagram indicate asolar flux-transport dynamo?

    OpenAIRE

    Schuessler, M.; Schmitt, D

    2004-01-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnet...

  18. A phase diagram for fluid-driven sediment trasport

    Science.gov (United States)

    Clark, Abe

    When a fluid flows laterally over a granular bed, grains may be transported with the flow. This process shapes much of the natural world. The boundary between states with and without grain motion has been studied for decades. However, this boundary is not well understood, since the process whereby grains are transported involves the coupling of several complex phenomena: turbulent fluid flow near a rough boundary, Darcy flow through the pore structure of the granular bed, the yield strength of granular beds comprised of frictional grains with irregular shape, and inertial effects of grains that become entrained in the flow. In order to clarify the essential physics that governs the onset of granular motion, we study this process computationally by including only the minimal features and then adding complexities one by one. We start with a simple numerical model that includes only gravity, grain-grain interactions that are repulsive and frictionless, and a purely horizontal viscous fluid flow. By varying the fluid flow rate and the effective viscosity, we find behavior that is qualitatively consistent with a large collection of experimental data known as the Shields curve. Thus, our results suggest that the main features of this curve result from a competition between grain inertia and viscous damping. We find this phase diagram to be qualitatively insensitive to secondary effects, such as friction, irregular grain shape, and restitution losses. Funded by U.S. Army Research Office under Grant No. W911NF-14-1-0005.

  19. Phase diagram distortion from traffic parameter averaging.

    NARCIS (Netherlands)

    Stipdonk, H. Toorenburg, J. van & Postema, M.

    2010-01-01

    Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and theori

  20. Limits of Voronoi Diagrams

    NARCIS (Netherlands)

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in Chapter

  1. Impulse-Momentum Diagrams

    Science.gov (United States)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…

  2. Equational binary decision diagrams

    NARCIS (Netherlands)

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  3. Diagram Study Based on Design Process: Design of Xiaotianchi Hotel in Wuhan%基于设计过程的图解研究——武汉小天池旅馆设计

    Institute of Scientific and Technical Information of China (English)

    翟炳博; 杜小辉

    2011-01-01

    This paper describes the design which overall process focus on diagram study, with the diagram to promote development of design process. Result of the design itself is relegated to the margins.and the occurrence and development of the design process, are chosen by diagram to guide. Design has a clear direction. it becomes a process which is more rational.and the design result is often unpredictable but logical.%该文介绍的设计其整体过程注重图解研究,用图解推动设计过程发展.设计的结果本身被置于次要地位,而设计过程的发生、发展,皆由图解来指导.设计有了明确的方向,其本身成为了一个过程,更加具有理性,而设计结果往往是不可预知但又顺理成章.

  4. Processes of Turbulent Liquid Flows in Pipelines and Channels

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  5. FORTES: Forensic Information Flow Analysis of Business Processes

    OpenAIRE

    Accorsi, Rafael; Müller, Günter

    2010-01-01

    Nearly 70% of all business processes in use today rely on automated workflow systems for their execution. Despite the growing expenses in the design of advanced tools for secure and compliant deployment of workflows, an exponential growth of dependability incidents persists. Concepts beyond access control focusing on information flow control offer new paradigms to design security mechanisms for reliable and secure IT-based workflows. This talk presents FORTES, an approach for the forensic...

  6. Sulfur Flow Analysis for New Generation Steel Manufacturing Process

    Institute of Scientific and Technical Information of China (English)

    HU Chang-qing; ZHANG Chun-xia; HAN Xiao-wei; YIN Rui-yu

    2008-01-01

    Sulfur flow for new generation steel manufacturing process is analyzed by the method of material flow analysis,and measures for SO2 emission reduction are put forward as assessment and target intervention of the results.The results of sulfur flow analysis indicate that 90% of sulfur comes from fuels.Sulfur finally discharges from the steel manufacturing route in various steps,and the main point is BF and BOF slag desulfurization.In sintering process,the sulfur is removed by gasification,and sintering process is the main source of SO2 emission.The sulfur content of coke oven gas (COG) is an important factor affecting SO2 emission.Therefore,SO2 emission reduction should be started from the optimization and integration of steel manufacturing route,sulfur burden should be reduced through energy saving and consumption reduction,and the sulfur content of fuel should be controlled.At the same time,BF and BOF slag desulfurization should be optimized further and coke oven gas and sintering exhausted gas desulfurization should be adopted for SO2 emission reduction and reuse of resource,to achieve harmonic coordination of economic,social,and environmental effects for sustainable development.

  7. Investigation of flow and microstructure in rheometric and processing flow conditions for liquid crystalline pitch

    Science.gov (United States)

    Kundu, Santanu

    The microstructure development within mesophase pitch-based carbon materials depends on the flow history that the pitch is subjected to. Therefore, a fundamental understanding of flow and its influence on the microstructure is required to obtain carbon materials with desired properties. The objective of this research was to investigate the flow and microstructural behavior of a synthetic mesophase pitch (AR-HP) in rheometric and processing flow conditions. In addition, simulation studies were performed to establish a frame work for modeling the flow behavior of this complex material in different flow situations. The steady-shear viscosities obtained from a cone-plate rheometer during increasing rate-sweep experiments exhibited shear-thinning (Region I) and plateau (Region II) responses. However, the slope of the shear-thinning region was only about -0.2, much lower than -0.5 observed in some pitches and liquid-crystalline polymers. This difference could arise from the different molecular constituents of pitches. At higher shear rates, as measured from capillary rheometers, the viscosity values remained almost constant. The transient shear stress responses, as measured from cone-plate rheometer, exhibited nonmonotonic behavior as a function of applied strain at all shear rates and temperatures tested. After rheological experiments, the samples were collected by developing a new experimental protocol for preservation of the sample for microstructural analysis. Microstructural observations obtained from three orthogonal sections, reported for the first time in the literature, indicate that the local maximum in shear stress was due to yielding of initial microstructure. The microstructure became flow oriented with further shearing, and the structure size decreased with increasing shear rates. In addition to high-strain experiments, dynamic experiments were also performed in the linear viscoelastic region where no significant deformation of fluid takes place. The

  8. Prediction of hygiene in food processing equipment using flow modelling

    DEFF Research Database (Denmark)

    Friis, Alan; Jensen, Bo Boye Busk

    2002-01-01

    Computational fluid dynamics (CFD) has been applied to investigate the design of closed process equipment with respect to cleanability. The CFD simulations were validated using the standardized cleaning test proposed by the European Hygienic Engineering and Design Group. CFD has been proven...... as a tool which can be used by manufacturers to facilitate their equipment design for high hygienic standards before constructing any prototypes. The study of hydrodynamic cleanability of closed processing equipment was discussed based on modelling the flow in a valve house, an up-stand and various...

  9. The Formal Semantics of an UML Activity Diagram

    Institute of Scientific and Technical Information of China (English)

    梁义芝; 王延章; 刘云飞

    2004-01-01

    Due to lack of strictly defined formal semantics, an UML activity diagram is unsuitable for the tasks of formal analysis, verification and assertion on the system it describes. In this paper, Petri net is used to define the formal semantics of an UML activity diagram containing object flow states, laying a foundation for the precise description and analysis of a workflow system.

  10. Flow effects on benthic stream invertebrates and ecological processes

    Science.gov (United States)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  11. Dissipation process of binary gas mixtures in thermally relativistic flow

    Science.gov (United States)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  12. Peircean diagrams of time

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter

    2011-01-01

    Some very good arguments can be given in favor of the Augustinean wisdom, according to which it is impossible to provide a satisfactory definition of the concept of time. However, even in the absence of a proper definition, it is possible to deal with conceptual problems regarding time. It can...... be done in terms of analogies and metaphors. In particular, it is attractive to make use of Peirce's diagrams by means of which various kinds of conceptual experimentation can be carried out. This paper investigates how Peircean diagrams can be used within the study of time. In particular, we discuss 1......) the topological properties of time, 2) the implicative structure in tense logic, 3) the notions of open future and branching time models, and finally 4) tenselogical alternatives to branching time models....

  13. Low resource processing algorithms for laser Doppler blood flow imaging.

    Science.gov (United States)

    Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; He, Diwei; Morgan, Stephen P

    2011-07-01

    The emergence of full field laser Doppler blood flow imaging systems based on CMOS camera technology means that a large amount of data from each pixel in the image needs to be processed rapidly and system resources need to be used efficiently. Conventional processing algorithms that are utilized in single point or scanning systems are therefore not an ideal solution as they will consume too much system resource. Two processing algorithms that address this problem are described and efficiently implemented in a field programmable gate array. The algorithms are simple enough to use low system resource but effective enough to produce accurate flow measurements. This enables the processing unit to be integrated entirely in an embedded system, such as in an application-specific integrated circuit. The first algorithm uses a short Fourier transformation length (typically 8) but averages the output multiple times (typically 128). The second method utilizes an infinite impulse response filter with a low number of filter coefficients that operates in the time domain and has a frequency-weighted response. The algorithms compare favorably with the reference standard 1024 point fast Fourier transform in terms of both resource usage and accuracy. The number of data words per pixel that need to be stored for the algorithms is 1024 for the reference standard, 8 for the short length Fourier transform algorithm and 5 for the algorithm based on the infinite impulse response filter. Compared to the reference standard the error in the flow calculation is 1.3% for the short length Fourier transform algorithm and 0.7% for the algorithm based on the infinite impulse response filter. PMID:21316289

  14. Phase diagram of a single lane roundabout

    Science.gov (United States)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-03-01

    Using the cellular automata model, we numerically study the traffic dynamic in a single lane roundabout system of four entry/exit points. The boundaries are controlled by the injecting rates α1, α2 and the extracting rate β. Both the system with and without Splitter Islands of width Lsp are considered. The phase diagram in the (α1 , β) space and its variation with the roundabout size, Pagg (i.e. the probability of aggressive entry), and Pexit (i.e. the probability of preferential exit) are constructed. The results show that the phase diagram in both cases consists of three phases: free flow, congested and jammed. However, as Lsp increases the free flow phase enlarges while the congested and jammed ones shrink. On the other hand, the short sized roundabout shows better performance in the free flow phase while the large one is more optimal in the congested phase. The density profiles are also investigated.

  15. Analysis of stochastic characteristics of the Benue River flow process

    Institute of Scientific and Technical Information of China (English)

    Martins Y.OTACHE; Mohammad BAKIR; LI Zhijia

    2008-01-01

    Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity.The streamflow process is investigated for trend,non-stationarity and seasonality for a time period of 26 years.Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges.Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months,especially the months of August,January,and February.For the stationarity test,daily and monthly flow series appear to be stationary whereas at 1%,5%,and 10% significant levels,the stationarity alternative hypothesis is rejected for the annual flow series.Though monthly flow appears to be stationary going by this test,because of high seasonality,it could be said to exhibit periodic stationarity based on the seasonality analysis.The following conclusions are drawn:(1) There is seasonality in both the mean and variance with unimodal distribution.(2) Days with high mean also have high variance.(3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period,and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season.Precisely,they are significantly different for most of the months.(4) The autocorrelation functions estimated "over time" are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only,while autocorrelation functions for i=1,2,…,365 estimated "over realisations" have their coefficients significantly different from other coefficients.

  16. Design and Realization of Numerical Control Ladder Diagram Edition Software

    Institute of Scientific and Technical Information of China (English)

    ZHAO Haixin; MO Yimin; PAN Yunping

    2006-01-01

    The thesis is directed by the idea of oriented- object. Considering the basic functions that NC system Ladder Diagram editor should provide, and through theoretical research and practice, the thesis developed a set of NC system Ladder Diagram editor which can form a Ladder Diagram editor based on vector plotting, intelligently compiling, simulation. This system uses the ladder diagram symbol to express operational order and use the chart symbol series-parallel connection and the position order to express the logical relations between the operational orders, divide the ladder diagram into four parts: the stave, the line, the row and the part, uses the standard order vessel list vessel of the standard template stack (STL) to save the data which involved in the design process. This system can write PLC program by ladder diagram language and is easy to use. The compilation and simulation for PLC diagram have been achieved. It greatly improves the work-efficiency.

  17. Wilson Loop diagrams and Positroids

    OpenAIRE

    Agarwala, Susama; Amat, Eloi Marin

    2015-01-01

    In this paper, we study a new application of the positive Grassmanian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N=4 Super Yang-Mill theory ($N=4$ SYM). There has been much interest in studying this theory via the positive Grassmanians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This...

  18. The Massive Thermal Basketball Diagram

    CERN Document Server

    Andersen, J O; Strickland, Michael T; Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-01-01

    The "basketball diagram" is a three-loop vacuum diagram for a scalar fieldtheory that cannot be expressed in terms of one-loop diagrams. We calculatethis diagram for a massive scalar field at nonzero temperature, reducing it toexpressions involving three-dimensional integrals that can be easily evaluatednumerically. We use this result to calculate the free energy for a massivescalar field with a phi^4 interaction to three-loop order.

  19. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram

    Science.gov (United States)

    Knoop, Victor L.; van Lint, Hans; Hoogendoorn, Serge P.

    2015-11-01

    Literature shows that-under specific conditions-the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading. This article proposes a two dimensional generalization of the MFD, the so-called Generalized Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a continuous function, of which the MFD is a projection. Using the GMFD, we can describe the mentioned hysteresis patterns in the MFD. The underlying traffic phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates (and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation effect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the MFD, but decreases due to local queueing and spill back processes around the congestion "nuclei". During this build up of congestion, the production hence decreases, which gives the hysteresis effects.

  20. Hyperbolic diagram groups are free

    OpenAIRE

    Genevois, Anthony

    2015-01-01

    In this paper, we study the so-called diagram groups. Our main result is that diagram groups are free if and only if they do not contain any subgroup isomorphic to $\\mathbb{Z}^2$. As an immediate corollary, we get that hyperbolic diagram groups are necessarily free, answering a question of Guba and Sapir.

  1. Photogrammetric and image processing aspects in quantitative flow visualization.

    Science.gov (United States)

    Machacek, Matthias; Rosgen, Thomas

    2002-10-01

    The development of a measurement system for the visualization, topological classification, and quantitative analysis of complex flows in large-scale wind tunnel experiments is described. A new approach was sought in which the topological features of the flow (e.g., stream lines, separation and reattachment regions, stagnation points, and vortex lines) were extracted directly and preferably visualized in real-time in a virtual wind tunnel environment. The system was based on a stereo arrangement of two CCD cameras. A frame rate of 120 fps allowed measurements at high flow velocities. The paper focuses on the problem of fast and accurate reconstruction of path lines of helium filled soap bubbles in three dimensions (3D). A series of simple algorithmic steps was employed to ensure fast data processing. These included fast image segmentation, a spline approximation of the path lines, a camera model, point correspondence building, calculation of path line points in 3D and creation of a three-dimensional spline representation. The path lines, which contained both velocity and topological information, were analyzed to extract the relevant information. PMID:12495995

  2. Probing the QCD phase diagram with the measurements of $\\phi$-meson production and elliptic flow in the heavy-ion collision at STAR

    CERN Document Server

    ,

    2013-01-01

    We present the measurements of the $\\phi$-meson production and elliptic flow ($v_{2}$) at mid-rapidity in Au + Au collisions at $\\sqrt{s_{NN}}$ = 7.7 - 200 GeV. The data are collected using the STAR detector in the years 2010 and 2011. The energy dependence of nuclear modification factor ($R_{\\rm{CP}}$) of $\\phi$ meson is presented. The $\\phi$-meson $R_{\\rm{CP}}$ has a value $\\geq$ 1.0 for $\\sqrt{s_{NN}}$ $\\leq$ 39 GeV. The $\\Omega/\\phi$ ratios are also presented and show a different trend at the intermediate transverse momentum ($p_{T}$) for $\\sqrt{s_{NN}}$ = 11.5 GeV compared to higher beam energies. The number-of-constituent quark (NCQ) scaling of $v_{2}$ has been studied at various beam energies. The NCQ scaling holds for particles and anti-particles separately including the $\\phi$ meson for $\\sqrt{s_{NN}}$ $\\geq$ 19.6 GeV, which can be considered as an evidence of partonic collectivity. We observe at $\\sqrt{s_{NN}}$ = 7.7 and 11.5 GeV, the $\\phi$-meson $v_{2}$ falls off the trend from the other hadrons a...

  3. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  4. Does the butterfly diagram indicate asolar flux-transport dynamo?

    CERN Document Server

    Schüssler, M

    2004-01-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnetic flux by a flow. These properties seem to be generic for an oscillatory and migratory field of dipole parity and thus do not permit an observational distinction between different dynamo approaches.

  5. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  6. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  7. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  8. The process flow and structure of an integrated stroke strategy

    Directory of Open Access Journals (Sweden)

    Emma F. van Bussel

    2013-06-01

    Full Text Available Introduction: In the Canadian province of Alberta access and quality of stroke care were suboptimal, especially in remote areas. The government introduced the Alberta Provincial Stroke Strategy (APSS in 2005, an integrated strategy to improve access to stroke care, quality and efficiency which utilizes telehealth. Research question: What is the process flow and the structure of the care pathways of the APSS?Methodology: Information for this article was obtained using documentation, archival APSS records, interviews with experts, direct observation and participant observation.Results: The process flow is described. The APSS integrated evidence-based practice, multidisciplinary communication, and telestroke services. It includes regular quality evaluation and improvement.Conclusion: Access, efficiency and quality of care improved since the start of the APSS across many domains, through improvement of expertise and equipment in small hospitals, accessible consultation of stroke specialists using telestroke, enhancing preventive care, enhancing multidisciplinary collaboration, introducing uniform best practice protocols and bypass-protocols for the emergency medical services.Discussion: The APSS overcame substantial obstacles to decrease discrepancies and to deliver integrated higher quality care. Telestroke has proven itself to be safe and feasible. The APSS works efficiently, which is in line to other projects worldwide, and is, based on limited results, cost effective. Further research on cost-effectiveness is necessary.

  9. The process flow and structure of an integrated stroke strategy

    Directory of Open Access Journals (Sweden)

    Emma F. van Bussel

    2013-06-01

    Full Text Available Introduction: In the Canadian province of Alberta access and quality of stroke care were suboptimal, especially in remote areas. The government introduced the Alberta Provincial Stroke Strategy (APSS in 2005, an integrated strategy to improve access to stroke care, quality and efficiency which utilizes telehealth. Research question: What is the process flow and the structure of the care pathways of the APSS? Methodology: Information for this article was obtained using documentation, archival APSS records, interviews with experts, direct observation and participant observation. Results: The process flow is described. The APSS integrated evidence-based practice, multidisciplinary communication, and telestroke services. It includes regular quality evaluation and improvement. Conclusion: Access, efficiency and quality of care improved since the start of the APSS across many domains, through improvement of expertise and equipment in small hospitals, accessible consultation of stroke specialists using telestroke, enhancing preventive care, enhancing multidisciplinary collaboration, introducing uniform best practice protocols and bypass-protocols for the emergency medical services. Discussion: The APSS overcame substantial obstacles to decrease discrepancies and to deliver integrated higher quality care. Telestroke has proven itself to be safe and feasible. The APSS works efficiently, which is in line to other projects worldwide, and is, based on limited results, cost effective. Further research on cost-effectiveness is necessary.

  10. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R

    Directory of Open Access Journals (Sweden)

    Boutros Paul C

    2011-01-01

    Full Text Available Abstract Background Visualization of orthogonal (disjoint or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. Results The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. Conclusions The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  11. Wilson Loop Diagrams and Positroids

    Science.gov (United States)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  12. Knot probabilities in random diagrams

    Science.gov (United States)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  15. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  16. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  17. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  18. Dissipation process of binary mixture gas in thermally relativistic flow

    CERN Document Server

    Yano, Ryosuke

    2016-01-01

    In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...

  19. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  20. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  1. Energy Tracking Diagrams

    Science.gov (United States)

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-02-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.

  2. Handling geophysical flows: Numerical modelling using Graphical Processing Units

    Science.gov (United States)

    Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario

    2016-04-01

    Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta

  3. Energies of knot diagrams

    CERN Document Server

    Karpenkov, Oleg

    2011-01-01

    We introduce and begin the study of new knot energies defined on knot diagrams. Physically, they model the internal energy of thin metallic solid tori squeezed between two parallel planes. Thus the knots considered can perform the second and third Reidemeister moves, but not the first one. The energy functionals considered are the sum of two terms, the uniformization term (which tends to make the curvature of the knot uniform) and the resistance term (which, in particular, forbids crossing changes). We define an infinite family of uniformization functionals, depending on an arbitrary smooth function $f$ and study the simplest nontrivial case $f(x)=x^2$, obtaining neat normal forms (corresponding to minima of the functional) by making use of the Gauss representation of immersed curves, of the phase space of the pendulum, and of elliptic functions.

  4. Feynman Diagrams and Rooted Maps

    CERN Document Server

    Prunotto, A; Czerski, P

    2013-01-01

    The {\\em Rooted Maps Theory}, a branch of the Theory of Homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the {\\em genus of a Feynman diagram}, which totally differs from the usual one, is given.

  5. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams During Text-Diagram Integration

    Science.gov (United States)

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-02-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.

  6. Evaluation of biomass gasification in a ternary diagram

    International Nuclear Information System (INIS)

    The present paper addresses the development of an alternative approach to illustrate biomass gasification in a ternary diagram which is constructed using data from thermodynamic equilibrium modeling of air-blown atmospheric wood gasification. It allows the location of operation domains of slagging entrained-flow, fluidized-bed/dry-ash entrained-flow and fixed/moving-bed gasification systems depending on technical limitations mainly due to ash melting behavior. Performance parameters, e.g. cold gas efficiency or specific syngas production, and process parameters such as temperature and carbon conversion are displayed in the diagram depending on the three independent mass flows representing (1) the gasifying agent, (2) the dry biomass and (3) the moisture content of the biomass. The graphical approach indicates the existence of maxima for cold gas efficiency (84.9%), syngas yield (1.35 m3 (H2 + CO STP)/kg (waf)) and conversion of carbon to CO (81.1%) under dry air-blown conditions. The fluidized-bed/dry-ash entrained-flow processes have the potential to reach these global maxima since they can operate in the identified temperature range from 700 to 950 °C. Although using air as a gasifying agent, the same temperature range posses a potential of H2/CO ratios up to 2.0 at specific syngas productions of 1.15 m3 (H2 + CO STP)/kg (waf). Fixed/moving-bed and fluidized-bed systems can approach a dry product gas LHV from 3.0 to 5.5 MJ/m3 (dry STP). The ternary diagram was also used to study the increase of gasifying agent oxygen fraction from 21 to 99 vol.%. While the dry gas LHV can be increased significantly, the maxima of cold gas efficiency (+6.5%) and syngas yield (+7.4%) are elevated only slightly. - Highlights: • Novel graphical approach for comprehensive assessment of biomass gasification. • Parameters fields for temperature, conversion, cold gas efficiency, syngas yield etc. • Identification of operation ranges for entrained, fluid and moving

  7. Averaging processes in granular flows driven by gravity

    Science.gov (United States)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental

  8. A pseudo-haptic knot diagram interface

    Science.gov (United States)

    Zhang, Hui; Weng, Jianguang; Hanson, Andrew J.

    2011-01-01

    To make progress in understanding knot theory, we will need to interact with the projected representations of mathematical knots which are of course continuous in 3D but significantly interrupted in the projective images. One way to achieve such a goal would be to design an interactive system that allows us to sketch 2D knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress to be made in this direction. Pseudo-haptics that simulates haptic effects using pure visual feedback can be used to develop such an interactive system. This paper outlines one such pseudo-haptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a "physically" reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudo-haptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of whom the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudo-haptic 4D visualization system that simulates the continuous navigation on 4D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2D knot diagrams of 3D knots and 3D projective images of 4D mathematical objects.

  9. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams

    Science.gov (United States)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-09-01

    According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.

  10. Diagrams and Proofs in Analysis

    DEFF Research Database (Denmark)

    Carter, Jessica M H Grund

    2010-01-01

    The article discusses the role of diagrams in mathematical reasoning based on a case study in analysis.   In the presented example certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures are replaced by reasoning about permutation groups. This...

  11. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  12. Advanced Information Processing System (AIPS) proof-of-concept system functional design I/O network system services

    Science.gov (United States)

    1985-01-01

    The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.

  13. Analysis by Fish Bone Diagram on Human Resources Flow in Community Health Service Institutions in China%我国社区卫生人力流动影响因素鱼骨图分析

    Institute of Scientific and Technical Information of China (English)

    张强; 吴少玮; 方鹏骞

    2012-01-01

    Objective: Analyzing and classifying the factors which affect the human resources' flow, then provide some suggestions to steady the human resources. Methods: By literature analysis, collecting the literature about human resources flow and analyzing the factor of human resources' flow in community health service institutions by fish bone diagram. Results: The factors which affect the stability of human resources in community health service institution could be divided into social factors, organizational factors and personal factors. Conclusion: Effects of the human resources's flow in community health service institutions:social factors, government investment for community health service institutions was not full, security system was not perfect; organizational factors, such as incentive management system, promotion system are not perfect; personal factors such as age, gender, profession, education, job title and so on. Suggestions: In order to steady the human resources in community health service institution, increase the reasonable input to community health service; give the right to community health service institutions for choosing the right person to work; raise the income level; establish a reasonable system of personnel training and a rational system for health staffs title promotion; implement the flexible management to the staff in community health service institutions.%目的:通过对影响社区卫生人力流动的影响因素进行分析,提出稳定社区卫生人力的建议.方法:通过个人访谈和文献查阅收集资料,运用鱼骨图分析法,对于我国社区卫生人力资源流动的影响因素进行分析.结果:影响社区卫生人力资源流动的影响因素可以分为社会因素、组织因素和个人因素3部分.结论:影响我国社区人力资源流动的影响因素有以下几个方面:社会因素方面,政府投入不足,保障制度不健全;机构层面,管理制度如激励机制、晋升制度不健全;

  14. Evolution of Plastic Strain During a Flow Forming Process

    CERN Document Server

    Roy, M J; Wood, J T; 10.1016/j.jmatprotec.2008.03.030

    2011-01-01

    The distribution of equivalent plastic strain through the thickness of several AISI 1020 steel plates formed under different conditions over a smooth cylindrical mandrel using a single-roller forward flow forming operation was studied by measuring the local micro-indentation hardness of the deformed material. The equivalent plastic strain was higher at the inner and outer surfaces and lowest at the center of the workpiece. Empirical expressions are presented which describe the contribution of the roller and mandrel to the total local equivalent plastic strain within the flow formed part. The dependence of these expressions upon the thickness reduction during flow forming is discussed.

  15. Pedagogical and curricular thinking of professional astronomers teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors

    Science.gov (United States)

    Brogt, Erik

    2009-06-01

    This qualitative study explores the pedagogical and curricular thinking of five professional astronomers, faculty at a university, about teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors. Data sources for this study included two semi-structured interviews per participant, in which they were asked about teaching the Hertzsprung-Russell diagram, as well as about the introductory course in general. In addition, participants were asked to complete four cognitive tasks; the creation of a lesson plan, a concept map on how they would like their students to think about the Hertzsprung-Russell diagram at the end of the course, a Pathfinder network rating task, and responding to stereotypical student statements regarding the Hertzsprung-Russell diagram. The data was analyzed using a case study approach, followed by a discussion of themes that emerged from the data. Results indicate that participants had primarily affect and process goals for the course, rather than content goals. In addition, they wanted students to view the HR diagram as a part of a flow chart, where input physics (both observed and inferred properties of stars) leads to the construction of the HR diagram, which in turn is used to make inferences about stellar evolution. Participants identified several student difficulties with the HR diagram, among which interpreting a graph was the most pertinent. In several stereotypical student statements, participants responded using the exact same analogies to explain the concepts to the students. This may be indicative of some underlying pedagogical content knowledge.

  16. Simulation of fluid flow system in process industries

    OpenAIRE

    Khamkham, Nasser E

    2000-01-01

    A comprehensive and integrated suite of computer software has been developed to simulate the steady, one-dimensional, incompressible fluid flow in pipeline networks. The computer program accommodates Newtonian liquids, but does not generally apply to gas flow unless the assumption of constant density is acceptable. The computer program is written in C language, to solve the basic pipe system equations using the linear theory method. This computer program is written to analyse steady state...

  17. Recent results in Ring Diagram analysis

    CERN Document Server

    Rabello-Soares, M Cristina

    2013-01-01

    The ring-diagram technique was developed by Frank Hill 25 years ago and developed quickly during the late 1990s. It is nowadays one of the most commonly used techniques in local helioseismology. The method consists in the power spectral analysis of solar acoustic oscillations on small regions (2 to 30 degrees) of the solar surface. The power spectrum resembles a set of trumpets nested inside each other and, for a given frequency, it looks like a ring, hence the technique's name. It provides information on the horizontal flow field and thermodynamic structure in the layers immediately below the photosphere. With data regularly provided by MDI (on board SOHO), GONG+ network and more recently HMI (on SDO), many important results have been achieved. In recently years, these results include estimations of the meridional circulation and its evolution with solar cycle; flows associated with active regions, as well as, flow divergence and vorticity; and thermal structure beneath and around active regions. Much progre...

  18. Particles, Feynman Diagrams and All That

    Science.gov (United States)

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  19. Engineering Holographic Superconductor Phase Diagrams

    CERN Document Server

    Chen, Jiunn-Wei; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two order parameter fields. We also explore whether the pseudo gap phase can be described without adding another order parameter field and discuss the potential scaling symmetry associated with a quantum critical point hidden under the superconducting dome in this phase diagram.

  20. Stochastic Modelling of Shiroro River Stream flow Process

    Directory of Open Access Journals (Sweden)

    Musa, J. J

    2013-01-01

    Full Text Available Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA. The development and use of a stochastic stream flow model involves some basic steps such as obtain stream flow record and other information, Selecting models that best describes the marginal probability distribution of flows. The flow discharge of about 22 years (1990-2011 was gotten from the Meteorological Station at Shiroro and analyzed with three different models namely; Autoregressive (AR model, Autoregressive Moving Average (ARMA model and Autoregressive Integrated Moving Average (ARIMA model. The initial model identification is done by using the autocorrelation function (ACF and partial autocorrelation function (PACF. Based on the model analysis and evaluations, proper predictions for the effective usage of the flow from the river for farming activities and generation of power for both industrial and domestic us were made. It also highlights some recommendations to be made to utilize the possible potentials of the river effectively

  1. Improvement of image processing algorithms for annular flow

    International Nuclear Information System (INIS)

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  2. The Hopf algebra approach to Feynman diagram calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, Kurusch [Universitaet Bonn, Physikalisches Institut, Nussallee 12, D-53115 Bonn (Germany); Kreimer, Dirk [CNRS-IHES, Le Bois-Marie, 35, Route de Chartres, F-91440 Bures-sur-Yvette (France); Center for Math. Phys., Boston University, MA (United States)

    2005-12-16

    The Hopf algebra structure underlying Feynman diagrams which governs the process of renormalization in perturbative quantum field theory is reviewed. Recent progress is briefly summarized with an emphasis on further directions of research. (topical review)

  3. Aeolian processes across transverse dunes. I: Modelling the air flow

    NARCIS (Netherlands)

    J.H. van Boxel; S.M. Arens; P.M. van Dijk

    1999-01-01

    This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the f

  4. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The technique of Flow-injection Analysis (FIA), now aged 25 years, offers unique analytical methods that are fast, reliable and consuming an absolute minimum of chemicals. These advantages together with its inherent feasibility for automation warrant the future applications of FIA as an attractiv...

  5. Laminar Flow Processes of Fluid Energy Carries in Pipe Lines

    Directory of Open Access Journals (Sweden)

    R. Еsman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flows in pipes and channels.  Various regimes of fluid motion in pipelines of heat-power units and equipment are considered in the paper.The presented dependencies can be used for practical calculations while transporting energy carriers for various application.

  6. Flow Field Post Processing via Partial Differential Equations

    NARCIS (Netherlands)

    Preusser, T.; Rumpf, M.; Telea, A.

    2006-01-01

    The visualization of stationary and time-dependent flow is an important and challenging topic in scientific visualization. Its aim is to represent transport phenomena governed by vector fields in an intuitively understandable way. In this paper, we review the use of methods based on partial differen

  7. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann;

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband co...

  8. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, F.; Udesen, J.; Jensen, J.A.;

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded sign...

  9. Hierarchical Communication Diagrams

    OpenAIRE

    Marcin Szpyrka; Piotr Matyasik; Jerzy Biernacki; Agnieszka Biernacka; Michał Wypych; Leszek Kotulski

    2016-01-01

    Formal modelling languages range from strictly textual ones like process algebra scripts to visual modelling languages based on hierarchical graphs like coloured Petri nets. Approaches equipped with visual modelling capabilities make developing process easier and help users to cope with more complex systems. Alvis is a modelling language that combines possibilities of formal models verification with flexibility and simplicity of practical programming languages. The paper deals with hierarchic...

  10. The diagram development for Computer Added Control and Monitoring system of drilling

    Science.gov (United States)

    Epikhin, A. V.; Mikhalev, R. S.; Anisimov, A. V.; Ulyanova, O. S.

    2015-11-01

    The paper is concerned with the first stage of the extensive research aimed at developing design-automation system and well drilling process control. The proposed system is going to have some advantages over modern analogues, such as economic analysis at all levels, active engineering staff feedback, precedent-related principle for recommendations, etc. It will essentially reduce the risk of human errors and also optimize the well construction process from design to commissioning. The paper considers the results of the first design stage in a form of flow diagrams.

  11. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  12. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    CERN Document Server

    Seibold, Benjamin; Kasimov, Aslan R; Rosales, Rodolfo Ruben

    2012-01-01

    Fundamental diagrams of vehicular traffic flow are generally multi-valued in the congested flow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traffic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally as intrinsic properties of well-known second order models.

  13. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  14. EFFECTS OF MESON-DECAY DIAGRAMS IN PROTON-PROTON BREMSSTRAHLUNG

    NARCIS (Netherlands)

    DEJONG, F; NAKAYAMA, K

    1995-01-01

    We investigate the effect of meson-decay diagrams on the proton-proton bremsstrahlung process. We explicitly include short-range correlations by calculating single- and double-scattering diagrams using an NN T-matrix interaction. We find that in general these diagrams interfere destructively with th

  15. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    Science.gov (United States)

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  16. Transformation of Debris Flows Into Turbidity Currents: a key Process for Hazard Prediction

    Science.gov (United States)

    Felix, M.; Peakall, J.

    2002-12-01

    Although landslides start as a dense mass of sediment, flow transformation into more dilute flows can alter flow properties and thus associated hazards. A good understanding of the transformation process is therefore critical for accurately predicting hazard potential. To improve understanding of flow transformations in gravity currents, three series of lock exchange laboratory experiments were undertaken, for cohesive flows, non-cohesive flows and mixed flows containing both cohesive and non-cohesive material. These experiments had a flow volume of 120 litres and initial volumetric concentrations ranging from 4 % to 40 %. Flows travelled along a 5.5 m long, 0.2 m wide channel, within a larger (6 m by 0.5 m by 1.5 m) glass-walled flume. Velocity was measured using a vertical array of ten 2 MHz Ultrasonic Velocity Probes and concentration was measured using an Ultrasonic High Concentration Meter in conjunction with siphon sampling. Video cameras were used at several positions along the flume to track flow behaviour. A full suite of flows was observed, from flows that underwent rapid transformation to flows that underwent almost no dilution and transformation. These experiments enable the effects of sediment type (e.g., cohesive, non-cohesive), velocity and concentration on flow transformation to be quantified for the first time.

  17. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  18. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    J. J. Musa

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  19. A NUMERICAL SIMULATION OF CONVECTIVE FLOW IN THE SOLIDIFICATION PROCESS

    OpenAIRE

    Korti, Abdel Illah Nabil

    2011-01-01

    There has been a growing research interest in the melting and solidification technology among mathematicians and engineers. The topic has obvious practical importance in a wide range of applications. Natural convection may play a significant role in heat transfer and hence affect the progress of the solidification. A fixed-grid finite volume numerical approach is developed and used to simulate physical details of convection flow in the solidification problems. This approach is based on the en...

  20. Microfluidic-SANS: flow processing of complex fluids

    OpenAIRE

    Lopez, Carlos G; Takaichi Watanabe; Anne Martel; Lionel Porcar; João T. Cabral

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background ( ), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchann...

  1. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    Rotational augmentation of horizontal axis wind turbine blade aerodynamics currently remains incompletely characterized and understood. To address this, the present study concurrently analysed experimental measurements and computational predictions, both of which were unique and of high quality...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  2. Tense and aspect in word problems about motion: diagram, gesture, and the felt experience of time

    Science.gov (United States)

    de Freitas, Elizabeth; Zolkower, Betina

    2015-09-01

    Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and diagram to make sense of complex verb forms in such word problems. We focus on the grammatical category of "aspect" for how it broadens the concept of verb tense. Aspect conveys duration and completion or frequency of an event. The aspect of a verb defines its temporal flow (or lack thereof) and the location of a vantage point for making sense of this durational process.

  3. Novel process windows for enabling, accelerating, and uplifting flow chemistry.

    Science.gov (United States)

    Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi

    2013-05-01

    Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification.

  4. Formation of a Methodological Approach to Evaluating the State of Management of Enterprise Flow Processes

    Directory of Open Access Journals (Sweden)

    Dzobko Iryna P.

    2016-02-01

    Full Text Available The formation of a methodological approach to evaluating management of the state of enterprise flow processes has been considered. Proceeding from the developed and presented in literary sources theoretical propositions on organization of management of enterprise flow processes, the hypothesis of the study is correlation of quantitative and qualitative evaluations of management effectiveness and formation of the integral index on their basis. The article presents stages of implementation of a methodological approach to evaluating the state of management of enterprise flow processes, which implies indicating the components, their characteristics and methods of research. The composition of indicators, on the basis of which it is possible to evaluate effectiveness of management of enterprise flow processes, has been determined. Grouping of such indicators based on the flow nature of enterprise processes has been performed. The grouping of indicators is justified by a pairwise determination of canonical correlations between the selected groups (the obtained high correlation coefficients confirmed the author’s systematization of indicators. It is shown that a specificity of the formation of a methodological approach to evaluating the state of management of enterprise flow processes requires expansion in the direction of aggregation of the results and determination of factors that influence effectiveness of flow processes management. The article carries out such aggregation using the factor analysis. Distribution of a set of objects into different classes according to the results of the cluster analysis has been presented. To obtain an integral estimation of effectiveness of flow processes management, the taxonomic index of a multidimensional object has been built. A peculiarity of the formed methodological approach to evaluating the state of management of enterprise flow processes is in the matrix correlation of integral indicators calculated on

  5. Improving modeling with layered UML diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Layered diagrams are diagrams whose elements are organized into sets of layers. Layered diagrams are routinely used in many branches of engineering, except Software Engineering. In this paper, we propose to add layered diagrams to UML modeling tools, and elaborate the concept by exploring usage...

  6. Fluid flow and solute segregation in EFG crystal growth process

    Science.gov (United States)

    Bunoiu, O.; Nicoara, I.; Santailler, J. L.; Duffar, T.

    2005-02-01

    The influence of the die geometry and various growth conditions on the fluid flow and on the solute distribution in EFG method has been studied using numerical simulation. The commercial FIDAP software has been used in order to solve the momentum and mass transfer equations in the capillary channel and in the melt meniscus. Two types of shaper design are studied and the results are in good agreement with the void distribution observed in rod-shaped sapphire crystals grown by the EFG method in the various configurations.

  7. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  8. Nonabelian cut diagrams and their applications

    CERN Document Server

    Lam, C S

    1996-01-01

    A new kind of cut diagram is introduced to sum Feynman diagrams with nonabelian vertices. Unlike the Cutkosky diagrams which compute the discontinuity of single Feynman diagrams, the nonabelian cut diagrams represent a resummation of both the real and the imaginary parts of Feynman diagrams related by permutations. Several applications of the technique are reported, including a resolution of the apparent inconsistency of the baryon problem in large-N_c QCD, a simplified calculation of high-energy low-order QCD diagrams, and progress made with this technique on the unitarization of the BFKL equation.

  9. Synthesis of a parallel data stream processor from data flow process networks

    NARCIS (Netherlands)

    Zissulescu-Ianculescu, Claudiu

    2008-01-01

    In this talk, we address the problem of synthesizing Process Network specifications to FPGA execution platforms. The process networks we consider are special cases of Kahn Process Networks. We call them COMPAAN Data Flow Process Networks (CDFPN) because they are provided by a translator called the C

  10. The Eh-pH Diagram and Its Advances

    Directory of Open Access Journals (Sweden)

    Hsin-Hsiung Huang

    2016-01-01

    Full Text Available Since Pourbaix presented Eh versus pH diagrams in his “Atlas of Electrochemical Equilibria in Aqueous Solution”, diagrams have become extremely popular and are now used in almost every scientific area related to aqueous chemistry. Due to advances in personal computers, such diagrams can now show effects not only of Eh and pH, but also of variables, including ligand(s, temperature and pressure. Examples from various fields are illustrated in this paper. Examples include geochemical formation, corrosion and passivation, precipitation and adsorption for water treatment and leaching and metal recovery for hydrometallurgy. Two basic methods were developed to construct an Eh-pH diagram concerning the ligand component(s. The first method calculates and draws a line between two adjacent species based on their given activities. The second method performs equilibrium calculations over an array of points (500 × 800 or higher are preferred, each representing one Eh and one pH value for the whole system, then combines areas of each dominant species for the diagram. These two methods may produce different diagrams. The fundamental theories, illustrated results, comparison and required conditions behind these two methods are presented and discussed in this paper. The Gibbs phase rule equation for an Eh-pH diagram was derived and verified from actual plots. Besides indicating the stability area of water, an Eh-pH diagram normally shows only half of an overall reaction. However, merging two or more related diagrams together reveals more clearly the possibility of the reactions involved. For instance, leaching of Au with cyanide followed by cementing Au with Zn (Merrill-Crowe process can be illustrated by combining Au-CN and Zn-CN diagrams together. A second example of the galvanic conversion of chalcopyrite can be explained by merging S, Fe–S and Cu–Fe–S diagrams. The calculation of an Eh-pH diagram can be extended easily into another dimension, such

  11. Elektrokemiske Processer

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    Electrochemical processes in: Power sources, Electrosynthesis, Corrosion.Pourbaix-diagrams.Decontamination of industrial waste water for heavy metals.......Electrochemical processes in: Power sources, Electrosynthesis, Corrosion.Pourbaix-diagrams.Decontamination of industrial waste water for heavy metals....

  12. Pulsed pumping process optimization using a potential flow model.

    Science.gov (United States)

    Tenney, C M; Lastoskie, C M

    2007-08-15

    A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough. PMID:17350717

  13. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  14. Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process

    OpenAIRE

    Cheng-Chi Wang; Po-Jen Cheng; Kuo-Chi Liu; Ming-Yi Tsai

    2014-01-01

    Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on t...

  15. Electrical elementary diagrams and operators

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.K. [Human Factors Practical Inc., Dipper Harbour, New Brunswick (Canada)]. E-mail: HumanFactors@netscape.ca

    2005-07-01

    After 40 years of reading and interrupting electrical elementary logic drawings, I have concluded that we need to make a change. We need to write and express our nuclear power plant logic in some other language than relay ladder logic, solid state logic or computer mnemonics. The language should be English, or your native language, and the format should be Descriptive Block Diagrams. (author)

  16. Grid diagrams and Khovanov homology

    DEFF Research Database (Denmark)

    Droz, Jean-Marie; Wagner, Emmanuel

    2009-01-01

    We explain how to compute the Jones polynomial of a link from one of its grid diagrams and we observe a connection between Bigelow’s homological definition of the Jones polynomial and Kauffman’s definition of the Jones polynomial. Consequently, we prove that the Maslov grading on the Seidel–Smith...

  17. The diagram for phyllotactic series

    Directory of Open Access Journals (Sweden)

    Joanna Szymanowska-Pułka

    2014-02-01

    Full Text Available Many authors studying phyllotaxis in various plant species have reported the occurrence of many different numbers of contact parastichy pairs that are members of different Fibonacci-like series. On the basis of these reports a diagram was constructed in which any theoretically possible series was represented by the two first members of a given series.

  18. Multi-currency Influence Diagrams

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn V.

    2007-01-01

    When using the influence diagrams framework for solving a decision problem with several different quantitative utilities, the traditional approach has been to convert the utilities into one common currency. This conversion is carried out using a tacit transformation, under the assumption that the...

  19. Improvement of subsurface process in land surface modeling including lateral flow under unsaturated zone

    Science.gov (United States)

    Kim, J.; Mohanty, B.

    2013-12-01

    Lateral subsurface flow is an important component in local water budgets through its direct impact on soil moisture. However, most of the land surface models are one-dimensional considering only vertical interactions and neglecting the horizontal flow of water at the grid or sub-grid scales. Subsurface flow can be affected by surface topography and non-homogenous soil properties controlling the lateral flow of water. In this study, we improved the subsurface flow process in land surface model (Community Land Model, CLM) by considering the lateral flow based on topography and heterogeneous soil hydraulic properties in unsaturated zone. The changes in flow direction derived from topographic factor are used to consider the lateral movement of water at the near surface. Furthermore, vertical and horizontal hydraulic conductivities for each layer in unsaturated zone are estimated using different averaging methods and anisotropic factors. Based on the hydraulic conductivities of each layer for heterogeneous soil profiles we considered lateral flow of soil water between soil columns. These approaches were tested at several different sites (e.g. field and watershed scales). The results showed the appropriate vertical and horizontal hydraulic conductivities with depth for each site and the improved subsurface flow process by considering the lateral flow in land surface models.

  20. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in t

  1. Two-phase flow in membrane processes: A technology with a future

    NARCIS (Netherlands)

    Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; Meer, van der W.G.J.; Nijmeijer, K.

    2014-01-01

    Worldwide, the application of a (gas/liquid) two-phase flow in membrane processes has received ample scientific deliberation because of its potential to reduce concentration polarization and membrane fouling, and therefore enhance membrane flux. Gas/liquid flows are now used to promote turbulence an

  2. Fractional Flow Theory Applicable to Non-Newtonian Behavior in EOR Processes

    NARCIS (Netherlands)

    Rossen, W.R.; Venkatraman, A.; Johns, R.T.; Kibodeaux, K.R.; Lai, H.; Moradi Tehrani, N.

    2011-01-01

    The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with non-Newtoni

  3. The Construction of a Class of Measure-valued Processes of Stochastic Flows

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-wei; WANG Jian-ping

    2012-01-01

    In this article,we give a description of measure-valued processes with interactive stochastic flows.It is a unified construction for superprocesses with dependent spatial motion constructed by Dawson,LI,Wang and superprocesses of stochastic flows constructed by Ma and Xiang.

  4. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    Science.gov (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.

    2012-01-01

    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in

  5. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    Science.gov (United States)

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  6. Numerical calculation of flow and heat transfer process in the new-type external combustion swirl-flowing hot stove

    Institute of Scientific and Technical Information of China (English)

    Shuchen Zhang; Hongzhi Guo; Xiangjun Liu; Zhangping Cai; Xiancheng Gao; Sidong Xu

    2003-01-01

    It is clarified that the important method to improve the blast temperature of the small and the middle blast furnaces whose production is about two-thirds of total sum of China from 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The air temperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gas if high speed burner is applied to blast furnaces and new-type external combustion swirl-flowing hot stove is used to preheat their combustion-supporting air. The computational results of the flow and heat transfer processions in the bot stove prove that the surface of the bed of the thernal storage balls there have not eccentric flow and the flow field and temperature field distribution is even. The computational results of the blast temperature distribution are similar to those determination experiment data. The numerical results also provide references for developing and designing the new-type external combustion swirl-flowing hot stoves.

  7. Effect of shrouding CH4 flow rate on flow field and stirring ability of coherent jet in steelmaking process.

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Su, Rongfang; Wang, Xueyi

    2016-01-01

    Characteristics of flow field and stirring ability of coherent jet with various shrouding CH4 flow rates on the molten bath were studied by combustion experiment and numerical simulation. The axial velocity and total temperature distributions of coherent jet under hot (1700 K) and cold (298 K) ambient condition were analyzed. The Eddy Dissipation Concept model was used in simulation with detail chemical kinetic mechanisms, and the numerical simulation results were agreed well with the combustion experiment in this research. Based on the simulation and experiment results, when the CH4 rate was 230, 207 and 184 Nm(3)/h, their disparity rate of average velocity and total temperature was small than 5 and 6 %, respectively, at high ambient temperature. Hence, the same stirring effect might be achieved by those three kinds of CH4 flow rates in EAF steelmaking process. According to the industrial application research, the best CH4 flow rate is 184 Nm(3)/h, which could stir molten bath well and reduce energy consumption in steelmaking process. PMID:27652186

  8. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  9. Identification of vortices in a transonic compressor flow and the stall process

    Institute of Scientific and Technical Information of China (English)

    HUANGXu-dong; CHENHai-xin; FUSong; DavidWisler; AspiWadia; G.ScottMcNulty

    2007-01-01

    A novel vortex identification method for the visualization of the flow field is used for the study of the stall process of a transonic compressor. The parameter η4, which is one of the five invariants formed by the stain rate and vorticity tensors from the theory of modern rational mechanics, is found to have good ability to identify vortex stretching and vortex relaxation/breakdown processes, is introduced here to identify the tip leakage vortices. Compare with former generally used DPH(dynamic pressure head) contour, the new method reveals much more flow details which may advance our understanding of the compressor behaviors. The Vortices details are revealed in both peak efficiency and near stall condition. A possible stall process is also suggested based on the vortices analysis. The tip leakage flow from mid-chord, besides leading edge leakage flow, is also considered to play an important role in the stall process.

  10. Continuous flow PSA system carbon dioxide gas sep aration Process. Renzoku ryu PSA hoshiki tansan gas bunri process

    Energy Technology Data Exchange (ETDEWEB)

    Kanamaru, T.; Urano, S.; Kinoshita, N.; Ota, K. (Seibu Gas Kabushiki Kaisha, Fukuoka (Japan)); Nishino, K. (Mitsubishi Petrochemical Engineering Co. Ltd., Tokyo (Japan))

    1990-10-10

    During the production process of substitute natural gas (SNG), CO {sub 2} and moisture is removed which is contained in the wet mixed gas consisting of H {sub 2}, CH {sub 4} and CO {sub 2}, etc. generated in the gas generator. As the methods to separate and remove the CO {sub 2} above, there are the liquid absorption system as the wet decarbonation technique and the pressure swing adsorption (PSA) system as the dry decarbonation technique, but either of them has various problems. The process introduced in this article is the technique which has been developed in order to solve the various problems above and separates the contunuous wet mixed gas flow (generated gas before the treatment) consisting of H {sub 2}, CH {sub 4} and CO {sub 2}, etc. generated in the gas generator into the combustible component gas flow with purity of 99% or more and the CO {sub 2} gas flow with purity of 99%, both flows being the continuous flows without fluctuation of flow rate, pressure and component, and recovers 99% of the conbustible component and CO {sub 2} both. The above process was developed by Seibu Gas Co.. Starting, stopping and load change of the plant using this system is done quickly, accurately and easily with a high degree of safety, and the one touch operation is also possible. 6 figs., 3 tabs.

  11. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in $\\phi^4$-Theory

    CERN Document Server

    Finster, Felix

    2012-01-01

    Solutions of the classical $\\phi^4$-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  13. Heterogeneous physical and chemical processes in a rarefied-gas flow in channels

    Science.gov (United States)

    Rebrov, A. K.; Yudin, I. B.

    2016-05-01

    A flow with physical and chemical reactions on hot surfaces is investigated. On the basis of physical experiments, determining the hydrogen-dissociation degree in rarefied gas and calculation of the flow by the method of direct simulation Monte Carlo (DSMC), it is possible to specify certain unknown constants of interaction of molecules and atoms with a tungsten surface. By the example of the hydrogen flow in a hightemperature tungsten cylindrical channel, the role of dissociation, sorption, and recombination processes is shown in a wide range of flow regimes from free-molecular to continuum.

  14. Analysis of Burning Processes in Turbulent Mixing Axial and Tangential Flows

    Directory of Open Access Journals (Sweden)

    R. I. Essmann

    2009-01-01

    Full Text Available The paper demonstrates that in the case of turbulent diffusion flame tongues the burning process of combined multiphase fuel is determined by flow structure and conditions for mixing various types of fuel and distributed oxidizer flows. It has been determined that the ratio of air  supplied for burning through axial and tangential channels governs a shape of the flame tongue, its size and process intensity that allows efficiently to optimize technological parameters.

  15. Kinematical Diagrams for Conical Relativistic Jets

    Indian Academy of Sciences (India)

    Gopal-Krishna; Pronoy Sircar; Samir Dhurde

    2007-03-01

    We present diagrams depicting the expected inter-dependences of two key kinematical parameters of radio knots in the parsec-scale jets of blazars, deduced from VLBI observations. The two parameters are the apparent speed (app = capp) and the effective Doppler boosting factor (eff) of the relativistically moving radio knot. A novel aspect of these analytical computations of – diagrams is that they are made for parsecscale jets having a conical shape, with modest opening angles ( up to 10°), in accord with the VLBI observations of the nuclei of the nearest radio galaxies. Another motivating factor is the recent finding that consideration of a conical geometry can have important implications for the interpretation of a variety of radio observations of blazar jets. In addition to uniform jet flows (i.e., those having a uniform bulk Lorentz factor, ), computational results are also presented for stratified jets where an ultra-relativistic central spine along the jet axis is surrounded by a slower moving sheath, possibly arising from a velocity shear.

  16. Generalized Fleming-Viot processes with immigration via stochastic flows of partitions

    CERN Document Server

    Foucart, Clément

    2011-01-01

    The generalized Fleming-Viot processes were defined in 1999 by Donnelly and Kurtz using a particle model and by Bertoin and Le Gall in 2003 using stochastic flows of bridges. In both methods, the key argument used to characterize these processes is the duality between these processes and exchangeable coalescents. A larger class of coalescent processes, called distinguished coalescents, was set up recently to incorporate an immigration phenomenon in the underlying population. The purpose of this article is to define and characterize a class of probability-measure valued processes called the generalized Fleming-Viot processes with immigration. We consider some stochastic flows of partitions of Z_{+}, in the same spirit as Bertoin and Le Gall's flows, replacing roughly speaking, composition of bridges by coagulation of partitions. Identifying at any time a population with the integers $\\mathbb{N}:=\\{1,2,...\\}$, the formalism of partitions is effective in the past as well as in the future especially when there ar...

  17. The impact of glaciations and glacial processes on groundwater flow dynamics: a numerical investigation

    Science.gov (United States)

    Sterckx, A.; Lemieux, J. M.; Vaikmae, R.

    2015-12-01

    Numerical models are widely used to investigate the impact of glaciations on groundwater flow systems because they can simulate complex glacial processes. However, it isn't clear which of these processes are relevant to adequately capture groundwater flow dynamics. Given the complexity of representing these processes in a numerical model and the paucity of field data available for their validation, it is of prime interest to assess how they impact groundwater flow and if any of these processes could be neglected. In order to assess the specific impact of glacial processes on groundwater flow dynamics, those processes were included in the numerical model FEFLOW and simulations were conducted in a simple conceptual model representing a 21 ky glacial cycle in a sedimentary basin. The following processes have been simulated: subglacial recharge, linear and non-linear compaction of the porous medium under the weight of the ice, isostasy, proglacial lakes, as well as permafrost. Solute transport was simulated along with groundwater flow to track groundwater originating from the ice-sheet. To interpret the results, a base case scenario considering only subglacial recharge was selected and compared with the other scenarios, where individual glacial processes were simulated. When comparing the results at the end of the simulations, it appears that most of the aforementioned glacial processes don't lead to a significant difference in meltwater distribution with respect to the base case. Only hydromechanical coupling brings some noticeable change. Conversely, the type and the value of the boundary condition applied at the base of the ice-sheet play a major role in groundwater flow dynamics. The presence of confining hydrogeological units also seems to be a key to understand the long-term effect of glaciations. These results suggest that some of the glacial processes may be neglected for the simulation of groundwater flow dynamics during a glacial period.

  18. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and Ruahine ranges are accompanied by elevated nitrate concentrations, indicating quick transfer of nitrate from land use activities into the groundwater system. Extremely high recharge rates of >1 m/y for some wells indicate recharge from the river as the main source. Elevated mean rates of oxygen reduction, as deduced from groundwater MRT, may indicate the presence of electron donors in the groundwater system to facilitate microbial reactions and

  19. Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Rivers, M.L.;

    2005-01-01

    Pore-scale multiphase flow experiments were developed to nondestructively visualize water flow in a sample of porous material using X-ray microtomography. The samples were exposed to similar boundary conditions as in a previous investigation, which examined the effect of initial flow rate on...... observed dynamic effects in the measured pressure-saturation curves; a significantly higher residual and higher capillary pressures were found when the sample was drained fast using a high air-phase pressure. Prior work applying the X-ray microtomography technique to pore-scale multiphase flow problems has...... been of a mostly qualitative nature and no experiments have been presented in the existing literature where a truly quantitative approach to investigating the multiphase flow process has been taken, including a thorough image-processing scheme. The tomographic images presented here show, both by...

  20. GATE REGULATION SPEED AND TRANSITION PROCESS OF UNSTEADY FLOW IN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-ming; DING Zhi-liang; WANG Chang-de; YAO Xiong

    2008-01-01

    The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model for gate regulation was established in this study. The process of water flow was simulated under different boundary conditions. The influence of gate regulation speed and channel operation methods on flow transition process was analyzed. The numerical results show that under the same conditions, with increasing regulation speed of the gate, the change rates of discharge and water level increase, while the response time of channel becomes shorter, and ultimately the discharge and water level will transit to the same equilibrium states. Moreover, the flow is easier to reach stable state, if the water level in front of the sluice is kept constant, instead of behind the sluice. This study will be important to the scheme design of automatic operation control in water conveyance channels.

  1. Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Hernando; P. Leton; M.P. Matia; J.L. Novella; J. Alvarez-Builla [Universidad de Alcala, Madrid (Spain). Planta Piloto de Quimica Fina

    2007-07-15

    Fatty acids methyl esters (FAME) have been prepared under microwave irradiation, using homogeneous catalysis, either in batch or in a flow system. The quality of the biodiesel obtained has been confirmed by GC analysis of the isolated product. While the initial experiments have been performed in a small scale laboratory batch reactor, the best experiment has been straightforward converted into a stop-flow process, by the use of a microwave flow system. Compared with conventional heating methods, the process using microwaves irradiation proved to be a faster method for alcoholysis of triglycerides with methanol, leading to high yields of FAME. Short communication. 19 refs., 2 tabs.

  2. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  3. Hero's journey in bifurcation diagram

    Science.gov (United States)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  4. Scaling and Hierarchy of Models for Flow Processes in Unsaturated Fractured Rock

    Science.gov (United States)

    Faybishenko, B.; Bodvarsson, G. S.; Witherspoon, P. A.; Hinds, J.

    2002-12-01

    A key question facing soil scientists and hydrogeologists is whether, in analyzing flow processes within unsaturated fractured rock with geological discontinuities, the same measurements and models can be used regardless of scale. The goal of this presentation is to illustrate scaling concepts and suggest using a hierarchy of scales in describing the spatial-temporal behavior of unsaturated flow and transport in fractured rock. A conventional scaling approach is valid for liquid permeability of saturated media or air permeability of unsaturated fractured media. We will illustrate that multiscale spatial and temporal variations of flow and transport processes in unsaturated fractured rock are caused by a variety of processes (such as preferential and fast flow, funneling and divergence of flow paths, transient flow behavior, nonlinearity, unstable and chaotic flow, and fracture-matrix interaction). Small-scale intrafracture flow processes are neither physically nor geometrically analogous to large-scale fracture-network processes. As a consequence, scaling laws developed for unsaturated flow through porous media may fail for fractured rocks. To study unsaturated fractured rock, we utilize the concept of a hierarchy of scales: elemental, small, intermediate, and large scales. For each scale, the triadic hierarchical approach requires investigations one level above this scale to determine boundary conditions, and one level below to determine parameters of the equations. Thus, different conceptual approaches are needed for characterization and modeling at different scales. These theoretical concepts are illustrated using the results from field investigations of fractured basalt at the Snake River Plain, Idaho, and fractured tuff at Yucca Mountain, Nevada.

  5. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  6. Online traffic flow model applying dynamic flow-density relation

    CERN Document Server

    Kim, Y

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...

  7. Hubble's diagram and cosmic expansion

    OpenAIRE

    Kirshner, Robert P.

    2003-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velo...

  8. Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid-liquid extraction processes

    NARCIS (Netherlands)

    Vural Gürsel, Iris; Kurt, Safa Kutup; Aalders, Jasper; Wang, Qi; Noël, Timothy; Nigam, Krishna D P; Kockmann, Norbert; Hessel, Volker

    2016-01-01

    Process-design intensification situated under the umbrella of Novel Process Windows heads for process integration and here most development is needed for flow separators. The vision is to achieve multi-step synthesis in flow on pilot scale. This calls for scale-up of separation units. This study is

  9. Looking inside the butterfly diagram

    Science.gov (United States)

    Ternullo, M.

    2007-12-01

    The suitability of Maunder's butterfly diagram to give a realistic picture of the photospheric magnetic flux large scale distribution is discussed. The evolution of the sunspot zone in cycle 20 through 23 is described. To reduce the noise which covers any structure in the diagram, a smoothing algorithm has been applied to the sunspot data. This operation has eliminated any short period fluctuation, and given visibility to long duration phenomena. One of these phenomena is the fact that the equatorward drift of the spot zone center of mass results from the alternation of several prograde (namely, equatorward) segments with other stationary or poleward segments. The long duration of the stationary/retrograde phases as well as the similarities among the spot zone alternating paths in the cycles under examination prevent us from considering these features as meaningless fluctuations, randomly superimposed on the continuous equatorward migration. On the contrary, these features should be considered physically meaningful phenomena, requiring adequate explanations. Moreover, even the smoothed spotted area markedly oscillates. The compared examination of area and spot zone evolution allows us to infer details about the spotted area distribution inside the butterfly diagram. Links between the changing structure of the spot zone and the tachocline rotation rate oscillations are proposed.

  10. Twistor Diagrams and Quantum Field Theory.

    Science.gov (United States)

    O'Donald, Lewis

    Available from UMI in association with The British Library. Requires signed TDF. This thesis uses twistor diagram theory, as developed by Penrose (1975) and Hodges (1990c), to try to approach some of the difficulties inherent in the standard quantum field theoretic description of particle interactions. The resolution of these issues is the eventual goal of the twistor diagram program. First twistor diagram theory is introduced from a physical view-point, with the aim of studying larger diagrams than have been typically explored. Methods are evolved to tackle the double box and triple box diagrams. These lead to three methods of constructing an amplitude for the double box, and two ways for the triple box. Next this theory is applied to translate the channels of a Yukawa Feynman diagram, which has more than four external states, into various twistor diagrams. This provides a test of the skeleton hypothesis (of Hodges, 1990c) in these cases, and also shows that conformal breaking must enter into twistor diagrams before the translation of loop level Feynman diagrams. The issue of divergent Feynman diagrams is then considered. By using a twistor equivalent of the sum-over -states idea of quantum field theory, twistor translations of loop diagrams are conjectured. The various massless propagator corrections and vacuum diagrams calculated give results consistent with Feynman theory. Two diagrams are also found that give agreement with the finite parts of the Feynman "fish" diagrams of phi^4 -theory. However it is found that a more rigorous translation for the time-like fish requires new boundaries to be added to the twistor sum-over-states. The twistor diagram obtained is found to give the finite part of the relevant Feynman diagram.

  11. Structural complexity metrics for UML class diagrams

    Institute of Scientific and Technical Information of China (English)

    KONG Qing-yan; LUN Li-jun; WANG Yi-he; DING Xue-mei

    2008-01-01

    In order to evaluate the structural complexity of class diagrams systematically and deeply, a new guiding framework of structural complexity is presented. An index system of structural complexity for class dia-grams is given. This article discusses the formal description of class diagrams, and presents the method of for-mally structural complexity metrics for class diagrams from associations, dependencies, aggregations, generali-zations and so on. An applicable example proves the feasibility of the presented method.

  12. Process intensification of biodiesel production using a continuous oscillatory flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, A.P.; Mackley, M.R.; Seliger, T. [University of Cambridge (United Kingdom). Department of Chemical Engineering

    2003-07-01

    Oscillatory flow reactors (OFRs) are a novel type of continuous reactor, consisting of tubes containing equally spaced orifice plate baffles. An oscillatory motion is superimposed upon the net flow of the process fluid, creating flow patterns conducive to efficient heat and mass transfer, whilst maintaining plug flow. Unlike conventional plug flow reactors, where a minimum Reynolds number must be maintained, the degree of mixing is independent of the net flow, allowing long residence times to be achieved in a reactor of greatly reduced length-to-diameter ratio. Many long residence time processes are currently performed in batch, as conventional designs of plug flow reactor prove to be impractical due to their high length-to-diameter ratios, which lead to problems such as high capital cost, large 'footprint', high pumping costs and, also control is difficult. The OFR allows these processes to be converted to continuous, thereby intensifying the process. The transesterification of various natural oils to form 'biodiesel' is a 'long' reaction, usually performed in batch. Conversion to continuous processing should improve the economics of the process, as the improved mixing should generate a better product (rendering the downstream separation processes easier), at lower residence time (reduction in reactor volume). These improvements can decrease the price of 'biodiesel', making it a more realistic competitor to 'petrodiesel'. This paper shows that it is feasible to perform this reaction in an OFR at a lower residence time. The reaction was performed in a pilot-scale plant, using rapeseed oil and methanol as the feedstocks, and NaOH as the catalyst. (author)

  13. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates...

  14. Differential Effectiveness of Two Science Diagram Types.

    Science.gov (United States)

    Holliday, William G.

    Reported is an Aptitude Treatment Instruction (ATI) Study designed to evaluate the aptitude of verbal comprehension in terms of two unitary complex science diagram types: a single complex block word diagram and a single complex picture word diagram.. ATI theory and research indicate that different effective instructional treatments tend to help…

  15. Preliminary Master Logic Diagram for ITER operation

    International Nuclear Information System (INIS)

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER's major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram

  16. Similarity between the Spiral Arms of Galaxy M51 Image and the Interface Curve of Yin-Yang Balance in the Ancient Tai-Chi Diagram

    Institute of Scientific and Technical Information of China (English)

    Sui Lin

    2009-01-01

    The particle paths of the Lagrangian flow field between two cylinders simulate well the spiral arms of Galaxy M51 image [1] and the interface curve of the Yin-Yang balance in the ancient Tai-Chi diagram [2]. The particle paths of the Lagrangian flow field involve four parameters. The normalization of the system of equations signifi-cantly simplifies the formulation of the flow process and reduces the original four parameters to only one pa-rameter. Furthermore it provides the similarity between the formulation of the spiral arms of Galaxy M51 and that of the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram.

  17. Overview of the Dissertation Process within the Framework of Flow Theory: A Qualitative Study

    Science.gov (United States)

    Cakmak, Esra; Oztekin, Ozge; Isci, Sabiha; Danisman, Sahin; Uslu, Fatma; Karadag, Engin

    2015-01-01

    The purpose of this study is to examine the flow of doctoral students who are also research assistants and in the dissertation process. The study was designed using the case study method. The case undertaken in the study was the dissertation process. Eleven participants were selected into the study using maximum variation sampling. Face-to-face,…

  18. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    OpenAIRE

    Thomas M. Kohl; Christian H. Hornung; John Tsanaktsidis

    2015-01-01

    Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID) and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  19. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    Science.gov (United States)

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  20. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  1. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  2. The Physical Flow of Materials and the Associated Costs in the Production Process of a Rolling Mill

    Directory of Open Access Journals (Sweden)

    Holisz-Burzyńska, J.

    2007-01-01

    Full Text Available Efficiency of resources use is, in a large extent, determined by the organization of production flow and the way of their control. The optimization of materials flow in the production process requires the identification of physical flows of goods and it cost. In the article the physical flow process of materials stream in the production process in one of Polish rolling mill and also its logistics analysis and cost analysis are presented.

  3. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  4. Micro-particle image velocimetry measurement of blood flow: validation and analysis of data pre-processing and processing methods

    International Nuclear Information System (INIS)

    The intent of this paper is to investigate the application of a pre-processing method previously validated on glycerol to blood flows in microchannels and to compare the accuracy of results obtained when applied to a non-homogeneous fluid such as blood with results from previously applied processing methods for blood data. Comparisons of common processing methods are desired for a clear measure of accuracy in order to make recommendations for various flows. It is hypothesized that increasing the correlation window overlap improves the profile prediction. The amount of correlation window overlap and window shape in the processing of data have a significant effect on the results. Image pre-processing is explored to improve the correlation using the ‘image overlapping’ which is extended to the case of blood and the blood-specific pre-processing ‘base-clipping’ or ‘thresholding’ technique currently applied to blood. Both pre-processing methods are tested with multiple processing methods for two channel geometries: a straight rectangular channel and a Y-channel resulting in a controlled shear flow. The resulting profiles and calculations demonstrate that ‘image-overlapping’ is found to achieve a profile closer to the predicted theoretical profile than current blood pre-processing methods when both are applied to the same set of data and both are superior to conventional cross-correlation on its own. In all cases, pre-processing decreases the smoothness of the predicted profile. The use of ‘image-overlapping’ is shown to have greater accuracy when calculating the shear rate at the wall of the channel as well. (paper)

  5. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  6. 3D visualization of the material flow in friction stir welding process

    Institute of Scientific and Technical Information of China (English)

    Zhao Yanhua; Lin Sanbao; Shen Jiajie; Wu Lin

    2005-01-01

    The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding(FSW)process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material traasport forward due to the action of the rotating tool shoulder.Combining the data from all the markers, a three-dimensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.

  7. Does the butterfly diagram indicate a solar flux-transport dynamo?

    Science.gov (United States)

    Schüssler, M.; Schmitt, D.

    2004-07-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurrence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnetic flux by a flow. These properties seem to be generic for an oscillatory and migratory field of dipole parity and thus do not permit an observational distinction between different dynamo approaches.

  8. A finite element modeling on the fluid flow and solidification in a continuous casting process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Kim, D.S. [Hanyang University Graduate School, Seoul (Korea); Choi, H.C. [Agency for Defence Development, Taejon (Korea); Kim, S.W. [Hanyang University, Seoul (Korea); Lee, S.K. [Chung Buk National University, Chungju (Korea)

    1999-07-01

    The coupled turbulent flow and solidification is considered in a typical slab continuous casting process using commercial program FIDAP. Standard {kappa}-{epsilon} turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement. (author). 27 refs., 11 figs., 2 tabs.

  9. A New Method to Track Resin Flow Fronts in Mold Filling Simulation of RTM Process

    Institute of Scientific and Technical Information of China (English)

    Fuhong DAI; Shanyi DU; Boming ZHANG; Dianfu WAN

    2004-01-01

    A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based on filling states and topological relations of adjacent nodes was proposed. An experiment on the mould filling process was conducted. It was compared with exact solutions and the experimental results, and good agreements were observed. Numerical and experimental comparisons with the conventional contour method were also carried out, and it showed that TIM could enhance the local accuracy of flow front solutions with respect to the contour method when merging flow fronts and resin approaching the mold wall were involved.

  10. Confined gravity flow sedimentary process and its impact on the lower continental slope,Niger Delta

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    There is active gravity flow sedimentation on the lower continental slope of Niger Delta. High-resolution 3-D seismic data enable a detailed study on the gravity flow deposition process and its impact. The lower continental slope of Niger Delta is characterized by a stepped complex topography, which resulted from gravity sliding and spreading during Miocene and Pliocene. Two types of accommodations are identified on the slope: ponded accommodation as isolated sub-basins and healed slope accommodation as connected tortuous corridors, where multi-scale submarine fans and submarine channels developed. Gravity flow deposition process is affected by the characteristics of gravity flows and the receiving basin. At the early stage, gravity flow deposition process was dominated by "fill and spill" pattern in the ponded accommodation, whereas it was confined to the healed slope accommodation during the late stage. On the lower continental slope of Niger Delta, complex slope topography controlled the distribution and evolution of the gravity flow, producing complicated gravity depositional patterns.

  11. Special Issue: Design and Engineering of Microreactor and Smart-Scaled Flow Processes

    OpenAIRE

    Volker Hessel

    2014-01-01

    Reaction-oriented research in flow chemistry and microreactor has been extensively focused upon in special journal issues and books. On a process level, this resembled the “drop-in” (retrofit) concept with the microreactor replacing a conventional (batch) reactor. Meanwhile, with the introduction of the mobile, compact, modular container technology, the focus is more on the process side, including also providing an end-to-end vision of intensified process design. Exactly this is the focus of ...

  12. Study on the air flow field of the drawing conduit in the spunbonding process

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2015-01-01

    Full Text Available The air flow field of the drawing conduit in the spunbonding process has a great effect on the polymer drawing, the filament diameter and orientation. A numerical simulation of the process is carried out, and the results are compared with the experimental data, showing good accuracy of the numerical prediction. This research lays an important foundation for the optimal design of the drawing conduit in the spunbonding process.

  13. Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    CERN Document Server

    Nielsen, Frank; Nock, Richard

    2007-01-01

    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce ex...

  14. Database design using entity-relationship diagrams

    CERN Document Server

    Bagui, Sikha

    2011-01-01

    Data, Databases, and the Software Engineering ProcessDataBuilding a DatabaseWhat is the Software Engineering Process?Entity Relationship Diagrams and the Software Engineering Life Cycle          Phase 1: Get the Requirements for the Database          Phase 2: Specify the Database          Phase 3: Design the DatabaseData and Data ModelsFiles, Records, and Data ItemsMoving from 3 × 5 Cards to ComputersDatabase Models     The Hierarchical ModelThe Network ModelThe Relational ModelThe Relational Model and Functional DependenciesFundamental Relational DatabaseRelational Database and SetsFunctional

  15. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  16. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C.; Hayes-Gill, Barrie R.; Zhu, Yiqun; Crowe, John A.; Gill, Cally; Clough, Geraldine F.; Morgan, Stephen P.

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  17. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  18. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  19. Penguin-like Diagrams from the Standard Model

    CERN Document Server

    Chia, Swee-Ping

    2015-01-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagra...

  20. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    Science.gov (United States)

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible

  1. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    Science.gov (United States)

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  2. Phase Diagrams of Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  3. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  4. Bridging sustainability and intensified flow processing within process design for sustainable future factories

    OpenAIRE

    Kralisch, Dana; Ott, Denise; Kressirer, Sabine; Staffel, Christin; Sell, Ina; Krtschil, Ulrich; Loeb, Patrick

    2013-01-01

    A holistic, life cycle based evaluation approach was followed within the European collaborative project CoPIRIDE, in order to provide multi-criteria decision support for environmentally benign and cost efficient process design strategies in front of a scale-up of newly developed concepts. The approach is presented by means of three case studies, dealing on the one hand with different catalyst plate reuse options, and on the other hand with two process concepts for intensified processing of na...

  5. Towards an optimized flow-sheet for a SANEX demonstration process using centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D. [European Commission, Joint Research Center, Karlsruhe (Germany). Inst. for Transuranium Elements; Chalmers Univ. of Technology, Gothenburg (Sweden). Nuclear Chemistry, Dept. of Chemical and Biological Engineering; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [European Commission, Joint Research Center, Karlsruhe (Germany). Inst. for Transuranium Elements; Modolo, G. [Forschungszentrum Juelich GmbH (Germany). Inst. for Energy Research, Safety Research and Reactor Technology; Sorel, C. [Commissariat a l' Energie Atomique Valrho (CEA), DRCP/SCPS, Bagnols-sur-Ceze (France)

    2009-07-01

    The design of an efficient process flow-sheet requires accurate extraction data for the experimental set-up used. Often this data is provided as equilibrium data. Due to the small hold-up volume compared to the flow rate in centrifugal contactors the time for extraction is often too short to reach equilibrium D-ratios. In this work single stage kinetics experiments have been carried out to investigate the D-ratio dependence of the flow rate and to compare this with equilibrium batch experiments for a SANEX system based on CyMe{sub 4}-BTBP. The first centrifuge experiment was run with spiked solutions while in the second a genuine actinide/lanthanide fraction from a TODGA process was used. Three different flow rates were tested with each set-up. The results show that even with low flow rates, only around 9% of the equilibrium D-ratio (Am) was reached for the extraction in the spiked test and around 16% in the hot test (the difference is due to the size of the centrifuges). In the hot test the lanthanide scrubbing was inefficient whereas in the stripping both the actinides and the lanthanides showed good results. Based on these results improvements of the suggested flow-sheet is discussed. (orig.)

  6. Study of an ammonia-based wet scrubbing process in a continuous flow system

    Energy Technology Data Exchange (ETDEWEB)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  7. ABOUT THE DIAGRAMS OF LINEAR TRANSFORMER AND HIS CHART OF SUBSTITUTION VECTORIAL AND TOPOGRAPHICAL

    OpenAIRE

    Prydubkov, P.; Khomenko, I.

    2011-01-01

    It is shown, that diagrams vectorial and topographical provide the highquality control of calculation of linear transformer at his planning, accordance of diagrams of transformer vectorial and topographical is set to similar diagrams of the developed chart of substitution of transformer, not containing inductive communications, it is proved, what only the given chart of substitution of transformer corresponds to the electromagnetic processes of linear transformer.

  8. Macroscopic travel time reliability diagrams for freeway networks

    OpenAIRE

    Tu, H. (Hongmin); Li, H.; Van Lint, J.W.C.; Knoop, V.L.; Sun, L

    2013-01-01

    Travel time reliability is considered to be one of the key indicators of transport system performance. Knowledge of the mechanisms of travel time unreliability enables the derivation of explanatory models with which travel time reliability can be predicted and utilized in traffic management. Inspired by the macroscopic fundamental diagram (MFD), describing the relationship between production (average flow completing the trips) and vehicle accumulation (average density) in a traffic network, t...

  9. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  10. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  11. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  12. Study of the condensation and flow of a simulated uranium-iron alloy in the liquid-solid domain of the phase diagram; Etude de la condensation et de l'ecoulement d'un alliage de simulation de l'uranium fer dans domaine biphase liquide-solide du diagramme de phase

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, S.; Gueneau, Ch.; Le Ny, J. [CEA/Saclay, Dept. de Protection de l' environnement (DPE), 91 - Gif-sur-Yvette (France); Camel, D.; Drevet, B.; Granier, J. [CEA/Grenoble, Dept. d' Etudes des Materiaux (DEM), 38 (France)

    1999-07-01

    Silver-copper alloys with a composition entering a liquid-solid domain of the phase diagram are condensed on a titled molybdenum substrate, regulated in temperature. Droplets containing nodular crystals, for the most part in contact with the substrate, condense and coalesce to form a film. The film forms more quickly in the solid-liquid than in the fully liquid areas. It indicates that the crystals constitute pinning points for the droplets. A correlation between the condensate thickness and the local solid fraction at the transition between film and droplets is given. In the film areas, the gravity-dependent effect plays an important role. In case of the silver-rich condensate, the solid-phase is expected to be more easily driven by the liquid flow. (authors)

  13. A Community Based Systems Diagram of Obesity Causes.

    Directory of Open Access Journals (Sweden)

    Steven Allender

    Full Text Available Application of system thinking to the development, implementation and evaluation of childhood obesity prevention efforts represents the cutting edge of community-based prevention. We report on an approach to developing a system oriented community perspective on the causes of obesity.Group model building sessions were conducted in a rural Australian community to address increasing childhood obesity. Stakeholders (n = 12 built a community model that progressed from connection circles to causal loop diagrams using scripts from the system dynamics literature. Participants began this work in identifying change over time in causes and effects of childhood obesity within their community. The initial causal loop diagram was then reviewed and elaborated by 50 community leaders over a full day session.The process created a causal loop diagram representing community perceptions of determinants and causes of obesity. The causal loop diagram can be broken down into four separate domains; social influences; fast food and junk food; participation in sport; and general physical activity.This causal loop diagram can provide the basis for community led planning of a prevention response that engages with multiple levels of existing settings and systems.

  14. Intelligent Drug Delivery System Using UML Diagrams Analysis

    Institute of Scientific and Technical Information of China (English)

    CUI Qi-feng; LIU Cheng-liang; ZHA Xuan F

    2008-01-01

    A novel intelligent drug delivery system potential for the more effective therapy of the diabeticswas proposed, and the composition of system was analyzed. Based on the design of micro-electro-mechanicalsystems (MEMS), an iterative modeling process was introduced. Unified modeling language (UML) was em-ployed to describe the function requirement, and different diagrams were built up to explore the static model,the dynamic model and the employment model. The mapping analysis of different diagrams can simply verifythe consistency and completeness of the system model.

  15. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    , and exercises are included for the reader to check his/her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...... primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples...

  16. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented on model construction and verification, modeling techniques and tricks, learning......Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...... sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning...

  17. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per;

    1997-01-01

    We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... of the heat of segregation from the bulk and the sign of the excess interactions between the atoms in the surface (the surface mixing energy). We also consider the more complicated cases a with ordered surface phases, nonpseudomorphic overlayers, second layer segregation, and multilayers. The discussion...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  18. VORONOI DIAGRAMS WITHOUT BOUNDING BOXES

    Directory of Open Access Journals (Sweden)

    E. T. K. Sang

    2015-10-01

    Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.

  19. Hubble's diagram and cosmic expansion

    Science.gov (United States)

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168-173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology.

  20. Phase diagram of ammonium nitrate

    Science.gov (United States)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  1. Phase diagram of ammonium nitrate

    International Nuclear Information System (INIS)

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  2. Toward a Unified Modeling of Learner's Growth Process and Flow Theory

    Science.gov (United States)

    Challco, Geiser C.; Andrade, Fernando R. H.; Borges, Simone S.; Bittencourt, Ig I.; Isotani, Seiji

    2016-01-01

    Flow is the affective state in which a learner is so engaged and involved in an activity that nothing else seems to matter. In this sense, to help students in the skill development and knowledge acquisition (referred to as learners' growth process) under optimal conditions, the instructional designers should create learning scenarios that favor…

  3. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    DEFF Research Database (Denmark)

    Hovad, Emil; Larsen, P.; Walther, Jens Honore;

    2015-01-01

    The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC...

  4. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    Science.gov (United States)

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  5. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes 

    OpenAIRE

    Silva, Teresa Lopes da; Roseiro, J. Carlos; Reis, Alberto

    2012-01-01

    Conventional microbiology methods used to monitor microbial biofuels production are based on off-line analyses. The analyses are, unfortunately, insufficient for bioprocess optimization. Real time process control strategies, such as flow cytometry (FC), can be used to monitor bioprocess development (at-line) by providing single cell information that improves process model formulation and validation. This paper reviews the current uses and potential applications of FC in biodiesel, bioethanol,...

  6. Mathematical review on source-type diagrams

    Science.gov (United States)

    Aso, Naofumi; Ohta, Kazuaki; Ide, Satoshi

    2016-03-01

    A source-type diagram is a visualization tool used to display earthquake sources, including double-couples, compensated linear vector dipoles, and isotropic deformation. Together with recent observations of non-double-couple events in a variety of tectonic settings, it is important to be able to recognize the source type intuitively from a representative diagram. Since previous works have proposed diagrams created using a range of projections, we review these diagrams in the framework of the moment tensor eigenvalue space. For further applications, we also provide complete formulas for conversion between moment tensor representation and the coordinate system of each diagram style. Using both a global catalog and synthetic data, we discuss differences between types of diagrams and the relative effectiveness of each.

  7. Retrospect and Prospect of the Influence Diagram

    Institute of Scientific and Technical Information of China (English)

    LiuYanqiong; ShenYongping; ChenYingwu

    2005-01-01

    The evaluation algorithm and the application of the influence diagram were surveyed, which argues that to construct an explicit,compact and objective influence diagram is of the most importance. There are two suggested ways for realization of the influence diagram: introducing the achievements of the modern psychology, cognitive science, behavior science, and so on to represent and solve uncertainty to build a well-constructed influence diagram; based on the observed data to build an influence diagram. Also, the limitations of the influence diagram were analyzed, such as that it cannot deal with asynunetric problems efficiently, cannot picture dynamic problems,cannot model the problems with a limitless horizon, and ther is no highly efficient algorithm. And some potential methods to overcome these limitations were pointed out.

  8. UML activity diagrams in requirements specification of logic controllers

    Science.gov (United States)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  9. Sequential Voronoi diagram calculations using simple chemical reactions

    CERN Document Server

    Costello, Ben de Lacy; Adamatzky, Andy

    2012-01-01

    In our recent paper [de Lacy Costello et al. 2010] we described the formation of complex tessellations of the plane arising from the various reactions of metal salts with potassium ferricyanide and ferrocyanide loaded gels. In addition to producing colourful tessellations these reactions are naturally computing generalised Voronoi diagrams of the plane. The reactions reported previously were capable of the calculation of three distinct Voronoi diagrams of the plane. As diffusion coupled with a chemical reaction is responsible for the calculation then this is achieved in parallel. Thus an increase in the complexity of the data input does not utilise additional computational resource. Additional benefits of these chemical reactions is that a permanent record of the Voronoi diagram calculation (in the form of precipitate free bisectors) is achieved, so there is no requirement for further processing to extract the calculation results. Previously it was assumed that the permanence of the results was also a potenti...

  10. Recleaning of HEPA filters by reverse flow - evaluation of the underlying processes and the cleaning technique

    International Nuclear Information System (INIS)

    HEPA filter operation at high concentrations of fine dusts requires the periodic recleaning of the filter units in their service locations. Due to the low mechanical stress induced during the recleaning process the regenration via low pressure reverse flow is a very suitable technique. Recleanability of HEPA filter had been attained for particle diameter >0,4 μm at air velocities up to 1 m/s, but filter clogging occurred in case of smaller particles. The recleaning forces are too weak for particles <0,4 μm. With respect to the low tensile strength of HEPA filter media higher flow velocities are excluded. The analysis of reverse flow recleaning in a single pleat device showed extremly non uniform flow pattern in conventional deep-pleat pack geometries. More uniform flow conditions are attained by changing the pleat geometry. The realisation of high flow velocities at the glas fiber medium inside the filter pack requires shortening of the pleates to some 150 mm and the adaptation of the distance between filter pack and the recleaning device with respect to the nozzle diameter and the width of the filter pleats. (orig.). 44 figs., 36 refs

  11. Integrating turbulent flow, biogeochemical, and poromechanical processes in rippled coastal sediment (Invited)

    Science.gov (United States)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2010-12-01

    Coastal sediments are the locus of multiple coupled processes. Turbulent flow associated with waves and currents induces porewater flow through sediment leading to fluid exchange with the water column. This porewater flow is determined by the hydraulic and elastic properties of the sediment. Porewater flow also ultimately controls biogeochemical reactions in the sediment whose rates depend on delivery of reactants and export of products. We present results from numerical modeling studies directed at integrating these processes with the goal of shedding light on these complex environments. We show how denitrification rates inside ripples are largest at intermediate permeability which represents the optimal balance of reactant delivery and anoxic conditions. It is clear that nutrient cycling and distribution within the sediment is strongly dependent on the character of the multidimensional flow field inside of sediment. More recent studies illustrate the importance of the elastic properties of the saturated sediment on modulating fluid exchange between the water column and the sediment when pressure fluctuations along the sediment-water interface occur at the millisecond scale. Pressure fluctuations occur at this temporal scale due to turbulence and associated shedding of vortices due to the ripple geometry. This suggests that biogeochemical cycling may also be affected by these high-frequency elastic effects. Future studies should be directed towards this and should take advantage of modeling tools such as those we present.

  12. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity.

    Science.gov (United States)

    Wang, Cuicui; Vieito, João Paulo; Ma, Qingguo

    2015-01-01

    This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing "to buy" or "not to buy," participants were presented with feedback. At the same time, event-related potentials (ERPs) were used to record investor's brain activity and capture the event-related negativity (ERN) and feedback-related negativity (FRN) components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the "not to buy" stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process. PMID:26557139

  13. Impact of flow velocity on biochemical processes – a laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. Boisson

    2014-08-01

    Full Text Available Understanding and predicting hydraulic and chemical properties of natural environments are current crucial challenges. It requires considering hydraulic, chemical and biological processes and evaluating how hydrodynamic properties impact on biochemical reactions. In this context, an original laboratory experiment to study the impact of flow velocity on biochemical reactions along a one-dimensional flow streamline has been developed. Based on the example of nitrate reduction, nitrate-rich water passes through plastic tubes at several flow velocities (from 6.2 to 35 mm min−1, while nitrate concentration at the tube outlet is monitored for more than 500 h. This experimental setup allows assessing the biologically controlled reaction between a mobile electron acceptor (nitrate and an electron donor (carbon coming from an immobile phase (tube that produces carbon during its degradation by microorganisms. It results in observing a dynamic of the nitrate transformation associated with biofilm development which is flow-velocity dependent. It is proposed that the main behaviors of the reaction rates are related to phases of biofilm development through a simple analytical model including assimilation. Experiment results and their interpretation demonstrate a significant impact of flow velocity on reaction performance and stability and highlight the relevance of dynamic experiments over static experiments for understanding biogeochemical processes.

  14. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2015-01-01

    Full Text Available This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing “to buy” or “not to buy,” participants were presented with feedback. At the same time, event-related potentials (ERPs were used to record investor’s brain activity and capture the event-related negativity (ERN and feedback-related negativity (FRN components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the “not to buy” stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process.

  15. Developing the technique of image processing for the study of bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    This study presents the development of an image processing technique for studying the dynamic behavior of vapor bubbles in a two-phase bubbly flow. It focuses on the quantitative assessment of some basic parameters such as a local bubble size and size distribution in the range of void fraction between 0.03 < a < 0.07. The image processing methodology is based upon the computer evaluation of high speed motion pictures obtained from the flow field in the region of underdeveloped subcooled flow boiling for a variety of experimental conditions. This technique has the advantage of providing computer measurements and extracting the bubbles of the two-phase bubbly flow. This method appears to be promising for determining the governing mechanisms in subcooled flow boiling, particularly near the point of net vapor generation. The data collected by the image analysis software can be incorporated into the new models and computer codes currently under development which are aimed at incorporating the effect of vapor generation and condensation separately. (author)

  16. Sequential maneuvering decisions based on multi-stage influence diagram in air combat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.

  17. The spectroscopic Hertzsprung-Russell diagram

    CERN Document Server

    Langer, N

    2014-01-01

    The Hertzsprung-Russell diagram is an essential diagnostic diagram for stellar structure and evolution, which has now been in use for more than 100 years. Our spectroscopic Hertzsprung-Russell (sHR) diagram shows the inverse of the flux-mean gravity versus the effective temperature. Observed stars whose spectra have been quantitatively analyzed can be entered in this diagram without the knowledge of the stellar distance or absolute brightness. Observed stars can be as conveniently compared to stellar evolution calculations in the sHR diagram as in the Hertzsprung-Russell diagram. However, at the same time, our ordinate is proportional to the stellar mass-to-luminosity ratio, which can thus be directly determined. For intermediate- and low-mass star evolution at constant mass, we show that the shape of an evolutionary track in the sHR diagram is identical to that in the Hertzsprung-Russell diagram. We also demonstrate that for hot stars, their stellar Eddington factor can be directly read off the sHR diagram. ...

  18. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  19. An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides.

    Science.gov (United States)

    Zambelli, Paolo; Tamborini, Lucia; Cazzamalli, Samuele; Pinto, Andrea; Arioli, Stefania; Balzaretti, Silvia; Plou, Francisco J; Fernandez-Arrojo, Lucia; Molinari, Francesco; Conti, Paola; Romano, Diego

    2016-01-01

    A sustainable and scalable process for the production of a new mixture of fructooligosaccharides (FOS) was developed using a continuous-flow approach based on an immobilized whole cells-packed bed reactor. The technological transfer from a classical batch system to an innovative flow environment allowed a significant improvement of the productivity. Moreover, the stability of this production system was ascertained by up to 7 days of continuous working. These results suggest the suitability of the proposed method for a large-scale production of the desired FOS mixture, in view of a foreseeable use as a novel prebiotic preparation. PMID:26213017

  20. Simulation of the physicochemical processes of erosion-corrosion of metals in two-phase flows

    International Nuclear Information System (INIS)

    One elaborated calculation model of erosion-corrosion (RAMEK-2) of power equipment metals in two-phase flows. Paper presents in three-dimensional representation the calculation results of dependence of intensity of structural steel erosion-corrosion on thermodynamic, hydrodynamic and water-chemistry parameters of those flows in process channels of TEPPs and NPPs. On the basis of mathematical model one elaborated software enabling to predict erosion-corrosion life and to optimize regulations for diagnostics and preventive measures of erosion-corrosion of power plant moist steam channel elements

  1. Energy flows, material cycles and global development. A process engineering approach to the Earth system

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Georg [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Engler-Bunte-Institut; Turek, Thomas [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Chemische Verfahrenstechnik

    2011-07-01

    The book deals with the global flows of energy and materials, and changes caused by human activities. Based on these facts, the limitations of anthropogenic energy and material flows and the resulting consequences for the development of human societies are discussed. Different scenarios for lifestyle patterns are correlated with the world's future development of energy supply and climate. The book provides a process engineering approach to the Earth system and global development. It requires basic understanding of mathematics, physics, chemistry and biology, and provides an insight into the complex matter for readers ranging from undergraduate students to experts. (orig.)

  2. A Thermodynamic Hypothesis to Reconcile Optimality Principles for Flow Processes in Geosystems

    CERN Document Server

    Liu, Hui-Hai

    2013-01-01

    This letter proposes a new thermodynamic hypothesis that states that an open and nonlinear natural system, involving positive feedbacks, tends to minimize its resistance to the flow process through it that is imposed by its environment. It allows for a straightforward reconciliation of the two well-known and seemingly inconsistent optimality principles: the minimization of the energy expenditure rate for a river basin, and the maximization of entropy production in the Earth-atmosphere system. We also demonstrate that the hypothesis is consistent with water flow behavior in saturated and unsaturated porous media.

  3. Evaluation of alternative flow sheets for upgrade of the Process Waste Treatment Plant

    International Nuclear Information System (INIS)

    Improved chemical precipitation and/or ion-exchange (IX) methods are being developed at the Oak Ridge National Laboratory (ORNL) in an effort to reduce waste generation at the Process Waste Treatment Plant (PWTP). A wide variety of screening tests were performed on potential precipitation techniques and IX materials on a laboratory scale. Two of the more promising flow sheets have been tested on pilot and full scales. The data were modeled to determine the operating conditions and waste generation at plant-scale and used to develop potential flow sheets for use at the PWTP. Each flow sheet was evaluated using future-valve economic analysis and performance ratings (where numerical values were assigned to costs, process flexibility and simplicity, stage of development, waste reduction, environmental and occupational safety, post-processing requirements, and final waste form). The results of this study indicated that several potential flow sheets should be considered for further development, and more detailed cost estimates should be made before a final selection is made for upgrade of the PWTP. 19 refs., 52 figs., 22 tabs

  4. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing.

    Science.gov (United States)

    Gu, Quan; Hayes-Gill, Barrie R; Morgan, Stephen P

    2008-04-20

    A 4 x 4 pixel array with analog on-chip processing has been fabricated within a 0.35 mum complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate omega(0.5) filter at the pixel level, this has been approximated using the "roll off" of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  5. Patterns and Processes in Southwestern shrublands and grasslands: role of vegetation, soil- geomorphology, and overland flow

    Science.gov (United States)

    Bedford, D. R.; Small, E. E.; E, T. G.

    2007-12-01

    Pattern of variable soil properties have been linked to vegetation as well as soil-landform characteristics and processes. It has been long hypothesized that patterns of infiltration and overland flow play key roles in arid and semi-arid region ecohydrology. Specifically, the process of redistribution of water and sediments have been linked to vegetation related feedbacks that enable persistence of vegetation in water limited environments. Yet, the processes of redistribution, such as through runoff and surface ponding, have been poorly described or documented. We have documented that the spatial pattern of soil properties is dependant on the vegetation pattern as well as the type of, and in some cases location within a, landform. These patterns are likely due to feedbacks between vegetation and the surface processes that affect soil properties and therefore water availability. In this paper, we present observations and numerical simulation that show how patterns of overland flow and infiltration are affected by vegetation-topography related patterns of soil properties. We have developed a numerical model that works on 10 cm grid cells that can inform on the processes of infiltration and overland flow over continuously varying soil properties. We use this model to show how the patterns of soil properties affect runoff, as well as the conditions under which redistribution via runon and ponding can occur. Furthermore, we show using data from a central New Mexico grassland and shrubland, and an eastern Mojave Desert shrubland how climatic differences can affect the patterns of infiltration and runoff.

  6. Selected Remarks about Computer Processing in Terms of Flow Control and Statistical Mechanics

    Directory of Open Access Journals (Sweden)

    Dominik Strzałka

    2016-03-01

    Full Text Available Despite the fact that much has been said about processing in computer science, it seems that there is still much to do. A classical approach assumes that the computations done by computers are a kind of mathematical operation (calculations of functions values and have no special relations to energy transformation and flow. However, there is a possibility to get a new view on selected topics, and as a special case, the sorting problem is presented; we know many different sorting algorithms, including those that have complexity equal to O(n lg(n , which means that this problem is algorithmically closed, but it is also possible to focus on the problem of sorting in terms of flow control, entropy and statistical mechanics. This is done in relation to the existing definitions of sorting, connections between sorting and ordering and some important aspects of computer processing understood as a flow that are not taken into account in many theoretical considerations in computer science. The proposed new view is an attempt to change the paradigm in the description of algorithms’ performance by computational complexity and processing, taking into account the existing references between the idea of Turing machines and their physical implementations. This proposal can be expressed as a physics of computer processing; a reference point to further analysis of algorithmic and interactive processing in computer systems.

  7. Special Issue: Design and Engineering of Microreactor and Smart-Scaled Flow Processes

    Directory of Open Access Journals (Sweden)

    Volker Hessel

    2014-12-01

    Full Text Available Reaction-oriented research in flow chemistry and microreactor has been extensively focused upon in special journal issues and books. On a process level, this resembled the “drop-in” (retrofit concept with the microreactor replacing a conventional (batch reactor. Meanwhile, with the introduction of the mobile, compact, modular container technology, the focus is more on the process side, including also providing an end-to-end vision of intensified process design. Exactly this is the focus of the current special issue “Design and Engineering of Microreactor and Smart-Scaled Flow Processes” of the journal “Processes”. This special issue comprises three review papers, five research articles and two communications. [...

  8. A Signal Pre-processing Algorithm Applied for Ultrasonic Flow-Meter

    Directory of Open Access Journals (Sweden)

    Rang-ding Wang

    2013-09-01

    Full Text Available In order to solve the problem of time difference ultrasonic flow meter’s low accuracy, against the basic characteristics of the sample data, a data-processing algorithm is proposed. First, we use shell sort do a data pre-processing to the samples, then remove the error of the sample space by complex digital filter, and use the error compensation algorithm to get the final sample results. Among them, the complex digital filter is mainly composed by median filtering algorithm, sliding window, Peters algorithm and the weighted average algorithm. This kind of data processing algorithm can effectively filter out the error of the sample space. It can also make a large improvement to the accuracy of ultrasonic flow meter while ensure the stability and real-time.

  9. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  10. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  11. Laser Doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing

    OpenAIRE

    Cally Gill; Clough, Geraldine F.; Morgan, Stephen P; Hayes-Gill, Barrie R.; Crowe, John A.; Yiqun Zhu; Hoang C. Nguyen; Diwei He

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offer...

  12. Application of the radiotracer method of molten glass flow process identification for optimization of tank furnaces

    International Nuclear Information System (INIS)

    Examples of application of the mathematical flow model proposed by Wolf and Resnick for the glass melting process optimization have been presented. The model description of the process was verified experimentally. The tracer selection criteria have been discussed. The method of radiotracer injection and the tracer detection have been described. Parameters for the tank furnace operation have been calculated for different layouts of the furnace. From the results obtained general conclusions have been drawn and recommendations for optimizing the glass production process are presented. (author)

  13. Materials And Carbon Flow In A Waste Refinery Process Using Enzymes

    DEFF Research Database (Denmark)

    Tonini, Davide; Woods, M.; Astrup, Thomas

    2011-01-01

    Recovery of resources from mixed Municipal Solid Waste (MSW) is a crucial aspect of waste management practices. In this paper the materials and carbon flows of an innovative waste refinery process using enzymes are presented. Through enzymatic treatment the process produces two main streams from...... the initial mixed MSW: a bioslurry (liquefied paper and organics) and a solid fraction (non-degradable materials). The discussion is based on the performance of the process in separating recyclables and recovery Cbiogenic as well as nutrients from the input MSW. The results of MFA and SFA illustrate...

  14. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    International Nuclear Information System (INIS)

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions

  15. On the Different Ways That Mathematicians Use Diagrams in Proof Construction

    Science.gov (United States)

    Samkoff, Aron; Lai, Yvonne; Weber, Keith

    2012-01-01

    The processes by which individuals can construct proofs based on visual arguments are poorly understood. We investigated this issue by presenting eight mathematicians with a task that invited the construction of a diagram, and examined how they used this diagram to produce a formal proof. The main findings were that participants varied in the…

  16. Aeolian process-induced hyper-concentrated flow in a desert watershed

    Science.gov (United States)

    Ta, Wanquan; Wang, Haibin; Jia, Xiaopeng

    2014-04-01

    Ephemeral desert channels are characterized by very high rates of sediment transport during infrequent flood events. Here we show that aeolian process-induced hyper-concentrated (AHC) flows occur in the Sudalaer desert watershed in the Ordos Plateau of China, which primarily transport 0.08-0.25 mm non-cohesive aeolian sand and have a peak suspended sediment concentration of 1.1-1.4 × 106 mg l-3. Aeolian sand supply and storage in the channel play a crucial role in causing hyper-concentrated flow. Our results indicate that non-cohesive aeolian sand can be entrained from the bed and suspended in the turbulent flow when the channel bed slope exceeds a critical threshold (0.0003). We also show that if the frequency ratio of wind-blown sandstorms to rainstorms Tw/Tp exceeds β(γ - γ0)/α (P/V3) (A/L) (where α is the wind-blown sand transport coefficient, β is the runoff coefficient, γ - γ0 is the increase in suspension concentration caused by addition of aeolian sands, P is the density of rainstorms, V is the wind speed of sandstorms, A is the runoff-generating area, L is the aeolian sand-filled channel length), an AHC flow occurs during the passage of a flood in a desert channel. Since high-frequency aeolian processes provide an adequate quantity of transportable sediment and promote AHC flow, most of the infrequent rainfall-induced floods occurring in arid zones can develop as AHC flows.

  17. Expression of Superparamagnetic Particles on FORC Diagrams

    Science.gov (United States)

    Hirt, A. M.; Kumari, M.; Crippa, F.; Petri-Fink, A.

    2015-12-01

    Identification of superparamagnetic (SP) particles in natural materials provides information on processes that lead to the new formation or dissolution of iron oxides. SP particles express themselves on first-order reversal curve (FORC) diagrams as a distribution centered near the origin of the diagram. Pike et al. (2001, GJI, 145, 721) demonstrated that thermal relaxation produces an upward shift in the FORC distribution, and attributed this to a pause encountered at each reversal field. In this study we examine the relationship between this upward shift and particles size on two sets of synthetic iron oxide nanoparticles. One set of coated magnetite particles have well-constrained particles size with 9, 16 and 20 nm as their diameter. A second set from the FeraSpin™ Series, consisting of FeraSpinXS, M and XL, were evaluated. Rock magnetic experiments indicate that the first set of samples is exclusively magnetite, whereas the FeraSpin samples contain predominantly magnetite with some degree of oxidation. Samples from both sets show that the upward shift of the FORC distribution at the origin increases with decreasing particle size. The amount of shift in the FeraSpin series is less when compared to the samples from the first set. This is attributed to the effect of interaction that counteracts the effect of thermal relaxation behavior of the SP particles. The FeraSpin series also shows a broader FORC distribution on the vertical axis that appears to be related to non-saturation of the hysteresis curve at maximum applied field. This non-saturation behavior can be due to spins of very fine particles or oxidation to hematite. AC susceptibility at low temperature indicates that particle interaction may affect the effective magnetic particle size. Our results suggest that the FORC distribution in pure SP particle systems provides information on the particle size distribution or oxidation, which can be further evaluated with low temperature techniques.

  18. Experimental investigation of the dissolution of fractures. From early stage instability to phase diagram

    Science.gov (United States)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Kondratiuk, Pawel; Garstecki, Piotr; Szymczak, Piotr

    2016-04-01

    Dissolution of natural rocks is a fundamental geological process and a key part of landscape formation and weathering processes. Moreover, in current hot topics like Carbon Capture and Storage or Enhanced Oil Recovery, mastering dissolution of the host rock is fundamental for the efficiency and the security of the operation. The basic principles of dissolution are well-known and the theory of the reactive infiltration instability has been extensively studied. However, the experimental aspect has proved very challenging because of the strong dependence of the outcome with pore network, chemical composition, flow rate... In this study we are trying to tackle this issue by using a very simple and efficient device consisting of a chip of pure gypsum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. Thanks to this device, we are able to control all parameters such as flow rate, fracture aperture, roughness of the walls... but also to observe in situ the progression of the dissolution thanks to the transparency of the polycarbonate which is impossible with 3D rocks. We have been using this experimental set-up to explore and investigate all aspects of the dissolution in a fracture, such as initial instability and phase diagram of different dissolution patterns, and to compare it with theory and simulations, yielding very good agreement and interesting feedbacks on the coupling between flow and chemistry in geological media

  19. Natural convection flows and associated heat transfer processes in room fires

    Science.gov (United States)

    Sargent, William Stapf

    This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A

  20. Compensation Method for Die Shift Caused by Flow Drag Force in Wafer-Level Molding Process

    Directory of Open Access Journals (Sweden)

    Simo Yeon

    2016-05-01

    Full Text Available Wafer-level packaging (WLP is a next-generation semiconductor packaging technology that is important for realizing high-performance and ultra-thin semiconductor devices. However, the molding process, which is a part of the WLP process, has various problems such as a high defect rate and low predictability. Among the various defect factors, the die shift primarily determines the quality of the final product; therefore, predicting the die shift is necessary to achieve high-yield production in WLP. In this study, the die shift caused by the flow drag force of the epoxy molding compound (EMC is evaluated from the die shift of a debonded molding wafer. Experimental and analytical methods were employed to evaluate the die shift occurring during each stage of the molding process and that resulting from the geometrical changes after the debonding process. The die shift caused by the EMC flow drag force is evaluated from the data on die movements due to thermal contraction/expansion and warpage. The relationship between the die shift and variation in the die gap is determined through regression analysis in order to predict the die shift due to the flow drag force. The results can be used for die realignment by predicting and compensating for the die shift.

  1. Effects of plant root on hydraulic performance of clogging process in subsurface flow constructed wetland

    Science.gov (United States)

    Hua, Guofen; Zhao, Zhongwei; Zeng, Yitao

    2013-04-01

    Subsurface flow constructed wetlands (SFCWs) have proven to be an efficient ecological technology for the treatment of various kinds of wastewaters. The clogging issue is the main operational problem, which limits its wide application. Clogging is a complicated process with physical (such as physical filtration), biogeochemical and plant-related processes. It was generally stated that suspended solids accumulation and biofilm play dominant roles response for clogging. However, the role of plants in SFCWs clogging remains unclear and debatable. In this paper, the performance of plants in the whole clogging process was addressed based on the lab-experiments between planted and unplanted system by measuring effective porosity, coefficient of permeability of the substrate within different operation periods. Furthermore, flow pattern and transport properties of the clogging process in the planted and unplanted wetland systems were evaluated by hydraulic performance (e.g. mean residence time, short-circuiting, volumetric efficiency, number of continuously stirred tank reactors, hydraulic efficiency factor, etc.) with salt tracer experiments. Plants played different roles in different clogging stage. In the earlier clogging stage, there were no obvious different effects on clogging process between planted and unplanted system. The effective porosity and coefficient of permeability slightly decreased within the planted system, which indicated that plant root restricted the flow of water when the pore spaces were lager. In the middle and later clogging stage, especially, in the later stage, the effective porosity and the coefficient of permeability increased considerably in the plant root zone. Furthermore, the longer retention times and higher hydraulic efficiency factors were gained in the planted system compared to that of unplanted, which implied that growing roots might open the new pore spaces in the substrate. The results are expected to be useful in the design of

  2. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  3. Phase Diagram of Integer Quantum Hall Effect

    OpenAIRE

    Sheng, D. N.; Weng, Z. Y.

    1999-01-01

    The phase diagram of integer quantum Hall effect is numerically determined in the tight-binding model, which can account for overall features of recently obtained experimental phase diagram. In particular, the quantum Hall plateaus are terminated by two distinct insulating phases, characterized by the Hall resistance with classic and quantized values, respectively, which is also in good agreement with experiments.

  4. Automatically extracting class diagrams from spreadsheets

    NARCIS (Netherlands)

    Hermans, F.; Pinzger, M.; Van Deursen, A.

    2010-01-01

    The use of spreadsheets to capture information is widespread in industry. Spreadsheets can thus be a wealthy source of domain information. We propose to automatically extract this information and transform it into class diagrams. The resulting class diagram can be used by software engineers to under

  5. Mapping Images with the Coherence Length Diagrams

    CERN Document Server

    Sparavigna, A

    2008-01-01

    Statistical pattern recognition methods based on the Coherence Length Diagram (CLD) have been proposed for medical image analyses, such as quantitative characterisation of human skin textures, and for polarized light microscopy of liquid crystal textures. Further investigations are made on image maps originated from such diagram and some examples related to irregularity of microstructures are shown.

  6. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  7. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  8. The TOUGH codes - a family of simulation tools for multiphase flow and transport processes in permeable media

    OpenAIRE

    Pruess, Karsten

    2003-01-01

    Numerical simulation has become a widely practiced and accepted technique for studying flow and transport processes in the vadose zone and other subsurface flow systems. This article discusses a suite of codes, developed primarily at Lawrence Berkeley National Laboratory (LBNL), with the capability to model multiphase flows with phase change. We summarize history and goals in the development of the TOUGH codes, and present the governing equations for multiphase, multicomponent flow. Spec...

  9. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    OpenAIRE

    E. Dendy Sloan; Amadeu K. Sum; Koh, Carolyn A.

    2010-01-01

    The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin†hydrate sample preparation protocols and testing.

  10. Gas hydrate stability and sampling: the future as related to the phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E. D.; Koh, C. A.; Sum, A. K. [Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2010-12-15

    The phase diagram for methane plus water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for 'Round Robin' hydrate sample preparation protocols and testing. (authors)

  11. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  12. Persistence Diagrams and the Heat Equation Homotopy

    CERN Document Server

    Fasy, Brittany Terese

    2010-01-01

    Persistence homology is a tool used to measure topological features that are present in data sets and functions. Persistence pairs births and deaths of these features as we iterate through the sublevel sets of the data or function of interest. I am concerned with using persistence to characterize the difference between two functions f, g : M -> R, where M is a topological space. Furthermore, I formulate a homotopy from g to f by applying the heat equation to the difference function g-f. By stacking the persistence diagrams associated with this homotopy, we create a vineyard of curves that connect the points in the diagram for f with the points in the diagram for g. I look at the diagrams where M is a square, a sphere, a torus, and a Klein bottle. Looking at these four topologies, we notice trends (and differences) as the persistence diagrams change with respect to time.

  13. K-Means Clustering Method to Classify Freeway Traffic Flow Patterns

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Silgu

    2014-06-01

    Full Text Available In this paper, performances of multivariate clustering methods in specifying flow pattern variations reconstructed by a macroscopic flow model are sought. In order to remove the noise in and the wide scatter of traffic data, raw flow measures are filtered prior to modeling process. Traffic flow is simulated by the cell transmission model adopting a two phase fundamental diagram. Flow dynamics specific to the selected freeway test stretch are used to determine prevailing traffic conditions. The classification of flow states over the fundamental diagram are sought utilizing the methods of partitional cluster analyses by considering the stretch density. The fundamental diagram of speed-density is plotted to specify the current corresponding flow state. Non-hierarchical or partitional clustering analysis returned promising results on state classification which in turn helps to capture sudden changes on test stretch flow states. The procedure followed by multivariate clustering methods is systematically dynamic that enables the partitions over the fundamental diagram match approximately with the flow patterns derived by the static partitioning method. The measure of determination coefficient calculated by using the K-means method is comparatively evaluated to statistically derive this conclusion.

  14. Comparative Study on DFD to UML Diagrams Transformations

    CERN Document Server

    Jilani, Atif A A; Nadeem, Aamer

    2011-01-01

    Most of legacy systems use nowadays were modeled and documented using structured approach. Expansion of these systems in terms of functionality and maintainability requires shift towards object-oriented documentation and design, which has been widely accepted by the industry. In this paper, we present a survey of the existing Data Flow Diagram (DFD) to Unified Modeling language (UML) transformation techniques. We analyze transformation techniques using a set of parameters, identified in the survey. Based on identified parameters, we present an analysis matrix, which describes the strengths and weaknesses of transformation techniques. It is observed that most of the transformation approaches are rule based, which are incomplete and defined at abstract level that does not cover in depth transformation and automation issues. Transformation approaches are data centric, which focuses on data-store for class diagram generation. Very few of the transformation techniques have been applied on case study as a proof of ...

  15. Structure and Process - Influence of Historical Agriculture of Linear Flow Paths by Extreme Rainfall in Brandenburg

    OpenAIRE

    Dr. Detlef Deumlich

    2012-01-01

    Long-term erosion forecast can completely misinterpret in extreme events in plain regions. Flow paths are well represented in the plain using digital elevation models in the 1-m grid (DEM1). The scale of the erosion process models and the elevation models is comparable. With it instruments are available to improve the erosion simulation. Simulations, based on (R)USLE family and bigger grid width, are relevant for regional overviews, to the clarification of small scale relevant lin...

  16. Influence of Mass Transfer Processes on Couette Flow of Magnetic Fluid

    OpenAIRE

    V.G. Bashtovoi; S.G. Pogirnitskaya; R. Kuzhir; V.M. Polunin; P.A. Ryapolov; I.A. Shabanova; A.M. Storozhenko

    2013-01-01

    International audience This article describes the results of a theoretical study of magnetic fluid two-dimensional Couett flow in magnetic fluid seal model in view of mass transfer processes. It has been shown that very inhomogeneous magnetic field in seal gap lead to magnetic particle concentration rearrangement due to magnetophoresis and Brownian diffusion. In turn, it lead to inhomogeneous magnetic fluid viscosity and change in local and integral shearing force at channel walls. Integra...

  17. Architectural Knowledge: key flows and processes in designing an inter-organizational technological platform

    OpenAIRE

    Amel Attour; Maelle Della-Peruta

    2014-01-01

    The main objective is to identify which knowledge flows are key elements for designing an inter-organisational technological platform. It mobilizes two theories: the literature of platform strategies and the architectural innovation theory. In the literature, the technological platform is already existing, is the property of only one firm and it is the starting point for an inter-organisational innovation process because it is enhanced and enriched by niche players. This paper considers the c...

  18. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  19. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    OpenAIRE

    Jhong-Yin Chen; Chao-Wang Young; Chyung Ay

    2013-01-01

    The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface softwar...

  20. Selection of the economic objective function for the optimization of process flow sheets

    OpenAIRE

    Novak-Pintarič, Zorka; Kravanja, Zdravko

    2012-01-01

    This paper highlights the problem of selecting the most suitable economic optimization criteria for mathematical programming approaches to the synthesis, design, and optimization of chemical process flow sheets or their subsystems. Minimization of costs and maximization of profit are the most frequently used economic criteria in technical papers. However, there are manyother financial measures which can lead to different optimal solutions if applied in the objective function. This paper descr...

  1. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  2. Flow Behavior and Processing Maps of a Low-Carbon Steel During Hot Deformation

    Science.gov (United States)

    Yang, Xiawei; Li, Wenya

    2015-12-01

    The hot isothermal compression tests of a low-carbon steel containing 0.20 pct C were performed in the temperature range of 973 K to 1273 K (700 °C to 1000 °C) and at the strain rate range of 0.001 to 1 s-1. The results show that the flow stress is dependent on deformation temperature and strain rate (decreasing with increasing temperature and/or increasing with increasing strain rate). The flow stress predicted by Arrhenius-type and artificial neural network models were both in a good agreement with experimental data, while the prediction accuracy of the latter is better than the former. A processing map can be obtained by superimposing an instability map on a power dissipation map. Finally, an FEM model was successfully established to simulate the compression test process of this steel. The processing map combined with the FEM model can be very beneficial to solve the problems of residual stress, distortion, and flow instability of components.

  3. A Signal Pre-processing Algorithm Applied for Ultrasonic Flow-Meter

    OpenAIRE

    Rang-ding Wang; Qiang Liu; Chen-tou Du; Ling Yao

    2013-01-01

    In order to solve the problem of time difference ultrasonic flow meter’s low accuracy, against the basic characteristics of the sample data, a data-processing algorithm is proposed. First, we use shell sort do a data pre-processing to the samples, then remove the error of the sample space by complex digital filter, and use the error compensation algorithm to get the final sample results. Among them, the complex digital filter is mainly composed by median filtering algorithm, sliding window...

  4. Relationship Between Storm Hydrograph Components and Subsurface Flow Processes in a Hilly Headwater Basin, Toyota, Japan

    Science.gov (United States)

    Tsujimura, M.; Asai, K.; Takei, R.

    2001-05-01

    Temporal and spatial distribution of tracer elements and subsurface flow processes were investigated to study relationship between storm hydrograph components and behavior of subsurface water in a headwater catchment of Toyota Hill, Aichi prefecture, central Japan. The catchment has an area of 0.857 ha with an altitude of 60 to 100 m, and is underlain by granite. The soil depth revealed by sounding test ranges from 0.5 to 4.0 m. Rain, stream, soil and ground waters were sampled once in a week, and the stream water was sampled at 5 to 60 minute intervals during rainstorms. The pressure head of subsurface water was monitored using tensiometers and piezometers nests, and the stream flow was monitored using V-notch weir. The stable isotopic ratios of deuterium and oxygen 18 and inorganic ion concentrations were determined on all water samples. The oxygen 18 isotopic ratio in stream water decreased with rainfall during the rainstorms. The ratio of event water component to the total runoff water at the peak discharge ranged from 16 to 92 %, and the event water ratio correlated with the peak discharge rate and rainfall intensity. The tesiometric data showed that the shallow subsurface water with low isotopic ratios at the lower slope discharged directly to the stream during the heavy rainstorms. The shallow subsurface flow at the lower slope and overland flow on the raiparian zone contributed much to the stream water chemistry during heavy rainstorms.

  5. Phase diagram of a model of the protein amelogenin

    Science.gov (United States)

    Haaga, Jason; Pemberton, Elizabeth; Gunton, J. D.; Rickman, J. M.

    2016-08-01

    There has been considerable recent interest in the self-assembly and phase behavior of models of colloidal and protein particles with anisotropic interactions. One example of particular interest is amelogenin, an important protein involved in the formation of dental enamel. Amelogenin is primarily hydrophobic with a 25-residue charged C-terminus tail. This protein undergoes a hierarchical assembly process that is crucial to mineral deposition, and experimental work has demonstrated that the deletion of the C-terminus tail prevents this self-assembly. A simplified model of amelogenin has been proposed in which the protein is treated as a hydrophobic sphere, interacting via the Asakura-Oosawa (AO) potential, with a tethered point charge on its surface. In this paper, we examine the effect of the Coulomb interaction between the point charges in altering the phase diagram of the AO model. For the parameter case specific to amelogenin, we find that the previous in vitro experimental and model conditions correspond to the system being near the low-density edge of the metastable region of the phase diagram. Our study illustrates more generally the importance of understanding the phase diagram for proteins, in that the kinetic pathway for self-assembly and the resulting aggregate morphology depends on the location of the initial state in the phase diagram.

  6. Algorithmic Identification for Wings in Butterfly Diagrams.

    Science.gov (United States)

    Illarionov, E. A.; Sokolov, D. D.

    2012-12-01

    We investigate to what extent the wings of solar butterfly diagrams can be separated without an explicit usage of Hale's polarity law as well as the location of the solar equator. Two algorithms of cluster analysis, namely DBSCAN and C-means, have demonstrated their ability to separate the wings of contemporary butterfly diagrams based on the sunspot group density in the diagram only. Here we generalize the method for continuous tracers, give results concerning the migration velocities and presented clusters for 12 - 20 cycles.

  7. STRUKTURISASI ENTITY RELATIONSHIP DIAGRAM DAN DATA FLOW DIAGRAM BERBASIS BUSINESS EVENT-DRIVEN

    Directory of Open Access Journals (Sweden)

    Suroto Adi

    2014-06-01

    Full Text Available Makalah ini berisi langkah-langkah sistematis pendekatan perancangan ERD dan DFD dengan pendekatan business event-driven yang diwakili dengan model REA, yaitu strukturisasi REA-ERD dan strukturisasi REA-DFD. Tujuan penulisan ini adalah menjelaskan langkah-langkah perancangan sistem informasi berdasarkan proses bisnis dan kegiatan bisnis, sehingga sistem informasi yang dihasilkan relevan dan mendukung visi, misi, dan strategi bisnis. Hasil yang didapat juga memperkuat pendapat sebagian analis sistem informasi tentang perlunya pendekatan dalam penyusunan model dan sebaiknya perancangan logik ERD dilakukan terlebih dahulu sebelum perancangan DFD, sehingga menyempurnakan balancing antara entitas dalam ERD dan penetapan datastore dalam DFD. Kemudahan penerapan langkah-langkah ini perlu diuji secara kualitatif maupun kuantitatif.

  8. Numerical simulation of gas flow process in mining-induced crack network

    Institute of Scientific and Technical Information of China (English)

    Zhou Hongwei; Liu Jinfeng; Xue Dongjie; Yi Haiyang; Xue Junhua

    2012-01-01

    The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.

  9. Chemical Homogenization Of Liquid Steel Flowed Through Continuous Casting Slab Tundish During Alloying Process

    Directory of Open Access Journals (Sweden)

    Cwudziński A.

    2015-06-01

    Full Text Available This paper presents the results of research on the behaviour of an alloy addition in steel flowing through the tundish used for casting slabs. The device under examination is a wedge-shaped single-nozzle tundish of a capacity of 30 Mg. Due to the complexity of alloy addition dissolution and dispersion in metallurgical processes, a decision was made to use the Species Model available within the Ansys-Fluent® program. For describing the turbulence, the Realizable k-ɛ model was chosen. By defining the heat losses on respective planes making up the virtual model, the non-isothermal conditions existing during the flow of liquid steel through the tundish were considered. From the performed numerical simulations, the fields of steel flow and steel temperature and alloy addition concentration in the tundish working space were obtained. In order to accurately illustrate the process of chemical homogenization in the tundish working space, mixing curves were recorded. Based on the obtained results (mixing curves, the mixing time needed for achieving the 95% level of chemical homogenization was calculated.

  10. Multiphase fluid dynamics and transport processes of low capillary number cavitating flows

    Institute of Scientific and Technical Information of China (English)

    Xiangbin Li; Guoyu Wang; Zhiyi Yu; Wei Shyy

    2009-01-01

    To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG κ-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavitation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage,the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.

  11. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    Science.gov (United States)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  12. Resin Flow of an Advanced Grid-Stiffened Composite Structure in the Co-Curing Process

    Science.gov (United States)

    Huang, Qizhong; Ren, Mingfa; Chen, Haoran

    2013-06-01

    The soft-mold aided co-curing process which cures the skin part and ribs part simultaneously was introduced for reducing the cost of advanced grid-stiffened composite structure (AGS). The co-curing process for a typical AGS, preformed by the prepreg AS4/3501-6, was simulated by a finite element program incorporated with the user-subroutines `thermo-chemical' module and the `chemical-flow' module. The variations of temperature, cure degree, resin pressure and fiber volume fraction of the AGS were predicted. It shows that the uniform distributions of temperature, cure degree and viscosity in the AGS would be disturbed by the unique geometrical pattern of AGS. There is an alternation in distribution of resin pressure at the interface between ribs and skin, and the duration time of resin flow is sensitive to the thickness of the AGS. To obtain a desired AGS, the process parameters of the co-curing process should be determined by the geometry of an AGS and the kinds of resin.

  13. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  14. River flow forecasting with Artificial Neural Networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin

    Directory of Open Access Journals (Sweden)

    M. K. Akhtar

    2009-04-01

    Full Text Available This paper explores the use of flow length and travel time as a pre-processing step for incorporating spatial precipitation information into Artificial Neural Network (ANN models used for river flow forecasting. Spatially distributed precipitation is commonly required when modelling large basins, and it is usually incorporated in distributed physically-based hydrological modelling approaches. However, these modelling approaches are recognised to be quite complex and expensive, especially due to the data collection of multiple inputs and parameters, which vary in space and time. On the other hand, ANN models for flow forecasting are frequently developed only with precipitation and discharge as inputs, usually without taking into consideration the spatial variability of precipitation. Full inclusion of spatially distributed inputs into ANN models still leads to a complex computational process that may not give acceptable results. Therefore, here we present an analysis of the flow length and travel time as a basis for pre-processing remotely sensed (satellite rainfall data. This pre-processed rainfall is used together with local stream flow measurements of previous days as input to ANN models. The case study for this modelling approach is the Ganges river basin. A comparative analysis of multiple ANN models with different hydrological pre-processing is presented. The ANN showed its ability to forecast discharges 3-days ahead with an acceptable accuracy. Within this forecast horizon, the influence of the pre-processed rainfall is marginal, because of dominant influence of strongly auto-correlated discharge inputs. For forecast horizons of 7 to 10 days, the influence of the pre-processed rainfall is noticeable, although the overall model performance deteriorates. The incorporation of remote sensing data of spatially distributed precipitation information as pre-processing step showed to be a promising alternative for the setting-up of ANN models for

  15. Process Design of Continuous-Flow Pervaporation Separa tion for Alcohol Dehydration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The separation characteristics of the PVA-CS (polyvinyl alcohol-chitosan) blended composite membrane for dehydration of ethanol-water mixture are examined. The relationships of flux and separation factor with the feed concentration and operation temperature are established. Using this correlated equation, the continuous-flow pervaporation process about 500 kilolitres/year dehydrated ethanol is designed. The numbers of stage and reheater are calculated by stage-by-stage method for two kinds of cascades: one with equal membrane area and the other with 10℃C of temperature decrement per section. The results show that when the numbers of stage and reheater are the same, the cascade with 10℃C of temperature decrement has more advantages than that with equal membrane area. The influences of feed concentration and flow rate on the numbers of stage and reheater in the cascades are discnssed.

  16. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    Science.gov (United States)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  17. Solute transport processes in flow-event-driven stream-aquifer interaction

    Science.gov (United States)

    Xie, Yueqing; Cook, Peter G.; Simmons, Craig T.

    2016-07-01

    The interaction between streams and groundwater controls key features of the stream hydrograph and chemograph. Since surface runoff is usually less saline than groundwater, flow events are usually accompanied by declines in stream salinity. In this paper, we use numerical modelling to show that, at any particular monitoring location: (i) the increase in stream stage associated with a flow event will precede the decrease in solute concentration (arrival time lag for solutes); and (ii) the decrease in stream stage following the flow peak will usually precede the subsequent return (increase) in solute concentration (return time lag). Both arrival time lag and return time lag increase with increasing wave duration. However, arrival time lag decreases with increasing wave amplitude, whereas return time lag increases. Furthermore, while arrival time lag is most sensitive to parameters that control river velocity (channel roughness and stream slope), return time lag is most sensitive to groundwater parameters (aquifer hydraulic conductivity, recharge rate, and dispersitivity). Additionally, the absolute magnitude of the decrease in river concentration is sensitive to both river and groundwater parameters. Our simulations also show that in-stream mixing is dominated by wave propagation and bank storage processes, and in-stream dispersion has a relatively minor effect on solute concentrations. This has important implications for spreading of contaminants released to streams. Our work also demonstrates that a high contribution of pre-event water (or groundwater) within the flow hydrograph can be caused by the combination of in-stream and bank storage exchange processes, and does not require transport of pre-event water through the catchment.

  18. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.

    Science.gov (United States)

    De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin

    2013-11-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile

  19. Influence of core box vents distribution on flow dynamics of core shooting process based on experiment and numerical simulation

    OpenAIRE

    Chang-jiang Ni; Gao-chun Lu; Qing-dong Zhang

    2016-01-01

    Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow b...

  20. Revised Diagnostic Diagrams for Planetary Nebulae

    CERN Document Server

    Riesgo, H

    2006-01-01

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  1. Massless sunset diagrams in finite asymmetric volumes

    CERN Document Server

    Niedermayer, Ferenc

    2016-01-01

    In this paper we present methods to compute massless sunset diagrams in finite asymmetric volumes in the framework of dimensional regularization and lattice regularization. We also consider 1-loop sums in both regularizations.

  2. Covariant diagrams for one-loop matching

    CERN Document Server

    Zhang, Zhengkang

    2016-01-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  3. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...

  4. Elementary diagrams in nuclear and neutron matter

    International Nuclear Information System (INIS)

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E4 diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developed a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, Sxyz(r12, r13, r23), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E4 diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid 3He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid 3He and Bethe's homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v14 interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density

  5. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  6. Novel Quality Metrics for Power System Diagrams

    OpenAIRE

    Cuffe, Paul; Keane, Andrew

    2016-01-01

    Power network diagrams are typically neither enlightening nor attractive to look at. Encouragingly, though, the visualization of generic complex networks has been an active area of research for the past two decades, and there now exist a number of widely-deployed algorithms that show a network's structure in a revealing and aesthetic way. Additionally, recent work by the present authors has proposed techniques for diagramming power systems that explicitly use meaningful electrical distance me...

  7. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    Science.gov (United States)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  8. The study of flow pattern and phase-change problem in die casting process

    Science.gov (United States)

    Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.

    1996-01-01

    The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.

  9. Effect of rheology on flow displacement during cementing process in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, Andre; Naccache, Monica F.; Fonseca, Marcos I. [Dept. Mechanical Engineering. Pontificia Universidade Catolica (PUR-Rio), Rio de Janeiro, RJ (Brazil)], e-mails: mnaccache@puc-rio.br; Miranda, Cristiane R. de; Martins, Andre L.; Aranha, Pedro E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mails: crisrichard@petrobras.com.br, aleibsohn@petrobras.com.br, pearanha@petrobras.com.br

    2010-07-01

    This paper describes a set of numerical simulations of the displacement flow of three non-Newtonian fluids through annular eccentric wells. The main application of this work is the studying of drilling and completion processes of oil wells where a cement slurry pushes the drilling mud, used in the drilling process to lubricate the drill and to remove the produced drilling cuts. To avoid contamination, a spacer fluid is usually inserted between them. Both drilling mud and cement slurry behave as non-Newtonian fluids, and the spacer fluid can be Newtonian or non-Newtonian. The analysis of flow and interface configuration between these fluids helps to determine contamination, and is an important tool for the process optimization. The numerical solution of the governing conservation equations of mass and momentum is obtained with the Fluent software, using the finite volume technique and the volume of fluid method. The effects of rheological parameters, density ratios and pumped volume of the spacer fluid are investigated. The results obtained show that the displacement is better when a more viscous spacer fluid is used. The results also show that using lower amounts of the spacer fluid can lead to contamination, which is worse in the smaller gap region of the annular space, in the case of non-rectilinear well. It was also observed that the density ratios play a major role in the cementing operation. (author)

  10. Teaching groundwater flow processes: connecting lecture to practical and field classes

    Science.gov (United States)

    Hakoun, V.; Mazzilli, N.; Pistre, S.; Jourde, H.

    2013-05-01

    Preparing future hydrogeologists to assess local and regional hydrogeological changes and issues related to water supply is a challenging task that creates a need for effective teaching frameworks. The educational literature suggests that hydrogeology courses should consistently integrate lecture class instructions with practical and field classes. However, most teaching examples still separate these three class components. This paper presents an introductory course to groundwater flow processes taught at Université Montpellier 2, France. The adopted pedagogical scheme and the proposed activities are described in details. The key points of the proposed scheme for the course are: (i) iterations into the three class components to address groundwater flow processes topics, (ii) a course that is structured around a main thread (well testing) present in each class component, and (iii) a pedagogical approach that promotes active learning strategies, in particular using original practical classes and field experiments. The experience indicates that the proposed scheme improves the learning process, as compared to a classical, teacher-centered approach.

  11. Semantic Complex Event Processing over End-to-End Data Flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi [University of Southern California; Simmhan, Yogesh; Prasanna, Viktor K.

    2012-04-01

    Emerging Complex Event Processing (CEP) applications in cyber physical systems like SmartPower Grids present novel challenges for end-to-end analysis over events, flowing from heterogeneous information sources to persistent knowledge repositories. CEP for these applications must support two distinctive features - easy specification patterns over diverse information streams, and integrated pattern detection over realtime and historical events. Existing work on CEP has been limited to relational query patterns, and engines that match events arriving after the query has been registered. We propose SCEPter, a semantic complex event processing framework which uniformly processes queries over continuous and archived events. SCEPteris built around an existing CEP engine with innovative support for semantic event pattern specification and allows their seamless detection over past, present and future events. Specifically, we describe a unified semantic query model that can operate over data flowing through event streams to event repositories. Compile-time and runtime semantic patterns are distinguished and addressed separately for efficiency. Query rewriting is examined and analyzed in the context of temporal boundaries that exist between event streams and their repository to avoid duplicate or missing results. The design and prototype implementation of SCEPterare analyzed using latency and throughput metrics for scenarios from the Smart Grid domain.

  12. Reading fitness landscape diagrams through HSAB concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vigneresse, Jean-Louis, E-mail: jean-louis.vigneresse@univ-lorraine.fr

    2014-10-31

    Highlights: • Qualitative information from HSAB descriptors. • 2D–3D diagrams using chemical descriptors (χ, η, ω, α) and principles (MHP, mEP, mPP). • Estimate of the energy exchange during reaction paths. • Examples from complex systems (geochemistry). - Abstract: Fitness landscapes are conceived as range of mountains, with local peaks and valleys. In terms of potential, such topographic variations indicate places of local instability or stability. The chemical potential, or electronegativity, its value changed of sign, carries similar information. In addition to chemical descriptors defined through hard-soft acid-base (HSAB) concepts and computed through density functional theory (DFT), the principles that rule chemical reactions allow the design of such landscape diagrams. The simplest diagram uses electrophilicity and hardness as coordinates. It allows examining the influence of maximum hardness or minimum electrophilicity principles. A third dimension is introduced within such a diagram by mapping the topography of electronegativity, polarizability or charge exchange. Introducing charge exchange during chemical reactions, or mapping a third parameter (f.i. polarizability) reinforces the information carried by a simple binary diagram. Examples of such diagrams are provided, using data from Earth Sciences, simple oxides or ligands.

  13. Reading fitness landscape diagrams through HSAB concepts

    International Nuclear Information System (INIS)

    Highlights: • Qualitative information from HSAB descriptors. • 2D–3D diagrams using chemical descriptors (χ, η, ω, α) and principles (MHP, mEP, mPP). • Estimate of the energy exchange during reaction paths. • Examples from complex systems (geochemistry). - Abstract: Fitness landscapes are conceived as range of mountains, with local peaks and valleys. In terms of potential, such topographic variations indicate places of local instability or stability. The chemical potential, or electronegativity, its value changed of sign, carries similar information. In addition to chemical descriptors defined through hard-soft acid-base (HSAB) concepts and computed through density functional theory (DFT), the principles that rule chemical reactions allow the design of such landscape diagrams. The simplest diagram uses electrophilicity and hardness as coordinates. It allows examining the influence of maximum hardness or minimum electrophilicity principles. A third dimension is introduced within such a diagram by mapping the topography of electronegativity, polarizability or charge exchange. Introducing charge exchange during chemical reactions, or mapping a third parameter (f.i. polarizability) reinforces the information carried by a simple binary diagram. Examples of such diagrams are provided, using data from Earth Sciences, simple oxides or ligands

  14. Towards a Metropolitan Fundamental Diagram Using Travel Survey Data.

    Science.gov (United States)

    Wang, Kai; Levinson, David M

    2016-01-01

    Using travel diary data from 2000-2001 and 2010-2012 this research examines fundamental traffic relationships at the metropolitan level. The results of this paper can help to explain the causes of some traffic phenomena. Network average speed by time of day can be explained by trip length and cumulative number of vehicles on the road. A clockwise hysteresis loop is found in the Metropolitan Fundamental Diagram in the morning period and a reverse process happens in the afternoon.

  15. Towards a Metropolitan Fundamental Diagram Using Travel Survey Data.

    Science.gov (United States)

    Wang, Kai; Levinson, David M

    2016-01-01

    Using travel diary data from 2000-2001 and 2010-2012 this research examines fundamental traffic relationships at the metropolitan level. The results of this paper can help to explain the causes of some traffic phenomena. Network average speed by time of day can be explained by trip length and cumulative number of vehicles on the road. A clockwise hysteresis loop is found in the Metropolitan Fundamental Diagram in the morning period and a reverse process happens in the afternoon. PMID:26866913

  16. Cloning Voronoi Diagrams via Retroactive Data Structures

    CERN Document Server

    Dickerson, Matthew T; Goodrich, Michael T

    2010-01-01

    We address the problem of replicating a Voronoi diagram $V(S)$ of a planar point set $S$ by making proximity queries, which are of three possible (in decreasing order of information content): 1. the exact location of the nearest site(s) in $S$; 2. the distance to and label(s) of the nearest site(s) in $S$; 3. a unique label for every nearest site in $S$. We provide algorithms showing how queries of Type 1 and Type 2 allow an exact cloning of $V(S)$ with $O(n)$ queries and $O(n \\log^2 n)$ processing time. We also prove that queries of Type 3 can never exactly clone $V(S)$, but we show that with $O(n \\log\\frac{1}{\\epsilon})$ queries we can construct an $\\epsilon$-approximate cloning of $V(S)$. In addition to showing the limits of nearest-neighbor database security, our methods also provide one of the first natural algorithmic applications of retroactive data structures.

  17. Influence of Mass Transfer Processes on Couette Flow of Magnetic Fluid

    Directory of Open Access Journals (Sweden)

    V.G. Bashtovoi

    2013-12-01

    Full Text Available This article describes the results of a theoretical study of magnetic fluid two-dimensional Couett flow in magnetic fluid seal model in view of mass transfer processes. It has been shown that very inhomogeneous magnetic field in seal gap lead to magnetic particle concentration rearrangement due to magnetophoresis and Brownian diffusion. In turn, it lead to inhomogeneous magnetic fluid viscosity and change in local and integral shearing force at channel walls. Integral shearing force has been shown to depend on magnetic field and magnetic fluid parameters. Closely-packed fluid density distribution conditions have been defined. Proposed theory covers real magnetic fluid seal performance features adequately.

  18. Coupled Simulation of Flow and Thermal Field of Twin-Roll Strip Casting Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The first micro-segregation under conditions of twin roll strip casting was simulated. The relationship between the temperature and solid fraction in the mushy zone was given. The temperatures such as ZDT, LIT were got from this simulation. Then using the turbulent model, the flow field and thermal field in the pool of twin-roll strip caster was simulated. The speed and temperature at different casting speed was given, and the results were also explained. By these two simulations, the appropriate casting speed can be found. These simulations can provide effective data for controlling the twin-roll strip casting process.

  19. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    OpenAIRE

    Van herle, Jan; Favrat, Daniel; Maréchal, François; Bucheli, Olivier; Leuenberger, Sacha; Membrez, Yves

    2004-01-01

    A model for a 1000 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 degreesC displaying state-of- the-art electrochemical performance (0.15 W/cm(2) at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m(3)/h biogas (63% ...

  20. Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process

    Institute of Scientific and Technical Information of China (English)

    CHEN Ting; HUANG Xiu-bao

    2002-01-01

    The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harpham and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.

  1. A Novel Mechanism for TRF of Plant-wide Material Flows in Process Industry MES

    Institute of Scientific and Technical Information of China (English)

    朱炜; 朱峰; 荣冈

    2014-01-01

    This paper is standing on the recent viewpoint originated from relevant industrial practices that well or-ganized tracing, representing and feedback (TRF) mechanism of material-flow information is crucial for system utility and usability of manufacturing execution systems (MES), essentially, for activities on the side of multi-level decision making and optimization mainly in the planning and scheduling. In this paper, we investigate a key issue emphasized on a route of multi-level information evolution on the side of large-scale feedback, where material-flow states could evolve from the measuring data (local states) to networked event-type information cells (global states) and consequently to the key performance indicators (KPI) type information (gross states). Importantly, with adapta-bilities to frequent structural dynamics residing in running material flows, this evolving route should be modeled as a suit of sophisticated mechanism for large-scale dynamic states tracking and representing so as to upgrade accu-racy and usability of the feedback information in MES. To clarify inherent complexities of this evolving route, the investigated issue is demonstrated from extended process systems engineering (PSE) point of view, and the TRF principles of the multi-level feedback information (states) are highlighted under the multi-scale methodology. As the main contribution, a novel mechanism called TRF modeling mechanism is introduced.

  2. Mathematical modelling of flow and transport processes in tissue engineering bioreactors

    Science.gov (United States)

    Waters, Sarah; Pearson, Natalie; Oliver, James; Shipley, Rebecca

    2014-11-01

    To artificially engineer tissues numerous biophysical and biochemical processes must be integrated to produce tissues with the desired in vivo properties. Tissue engineering bioreactors are cell culture systems which aim to mimic the in vivo environment. We consider a hollow fibre membrane bioreactor (HFMB), which utilises fluid flow to enhance the delivery of growth factors and nutrients to, and metabolite removal from, the cells, as well as provide appropriate mechanical stimuli to the cells. Biological tissues comprise a wide variety of interacting components, and multiphase models provide a natural framework to investigate such interactions. We present a suite of mathematical models (capturing different experimental setups) which consider the fluid flow, solute transport, and cell yield and distribution within a HFMB. The governing equations are simplified by exploiting the slender geometry of the bioreactor system, so that, e.g., lubrication theory may be used to describe flow in the lumen. We interrogate the models to illustrate typical behaviours of each setup in turn, and highlight the dependence of results on key experimentally controllable parameter values. Once validated, such models can be used to inform and direct future experiments.

  3. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the \\'hydrodynamic resist to dynamic wetting\\', is discovered where the influence of the capillary\\'s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.

  4. An Excel Macro to Plot the HFE-Diagram to Identify Sea Water Intrusion Phases.

    Science.gov (United States)

    Giménez-Forcada, Elena; Sánchez San Román, F Javier

    2015-01-01

    A hydrochemical facies evolution diagram (HFE-D) is a multirectangular diagram, which is a useful tool in the interpretation of sea water intrusion processes. This method note describes a simple method for generating an HFE-D plot using the spreadsheet software package, Microsoft Excel. The code was applied to groundwater from the alluvial coastal plain of Grosseto (Tuscany, Italy), which is characterized by a complex salinization process in which sea water mixes with sulfate or bicarbonate recharge water.

  5. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D. (Georgia Institute of Technology, Atlanta, GA)

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  6. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.

    Science.gov (United States)

    Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús

    2015-01-15

    Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can

  7. Novel back-channel-etch process flow based a-IGZO TFTs for circuit and display applications on PEN foil

    NARCIS (Netherlands)

    Nag, M.; Rockele, M.; Steudel, S.; Chasin, A.; Myny, K.; Bhoolokam, A.; Willegems, M.; Smout, S.; Vicca, P.; Ameys, M.; Ke, T.H.; Schols, S.; Genoe, J.; Steen, J.L. P.J. van der; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this study, we report high-quality amorphous indiunrv-galiium-zinc-oxide (a-IGZO) thinfilm transistors (TFTs) fabricated on a polyethylene naphthalate foil using a new back-channel-etch (BCE) process flow. The BCE flow allows a better scalability of TFTs for high-resolution backplanes and related

  8. Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

    Directory of Open Access Journals (Sweden)

    Shaunak Chakrabartty

    2014-05-01

    Full Text Available The study was aimed to develop the various aspects of Anti reset windup or Integral windup and also the different algorithms available to eliminate the phenomenon of windup. Different open loop responses were obtained from a Flow process Station using MATLAB and SIMULINK and VI Microsystems process control software. The open loop responses were evaluated and different system models were generated using the two point method. The system models were found to follow a decreasing order of Gain values and an increasing order of Td and T values. A SIMULINK model was obtained to implement Back calculation combined with Conditional Integration. The models for the system obtained were simulated using the SIMULINK model and a PID controller and the closed loop responses were generated. The closed loop responses using a PID controller with Back calculation and Conditional integration were found to follow the set point as expected.

  9. CFD study of flow-diffusion process in Y-shape micromixer

    Institute of Scientific and Technical Information of China (English)

    陈卓; 张睿琦; 王晓娜

    2016-01-01

    A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the “diffusion angle” is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number (Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes ofRe (Reynolds number) andSc (Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested asPe≤10000 andRe≤10.

  10. A work process and information flow description of control room operations

    International Nuclear Information System (INIS)

    The control room workplace is the location from which all plant operations are supervised and controlled on a shift-to-shift basis. The activities comprising plant operations are structured into a number of work processes, and information is the common currency that is used to convey work requirements, communicate business and operating decisions, specify work practice, and describe the ongoing plant and work status. This paper describes the motivation for and early experience with developing a work process and information flow model of CANDU control room operations, and discusses some of the insights developed from model examination that suggest ways in which changes in control centre work specification, organization of resources, or asset layout could be undertaken to achieve operational improvements. (author)

  11. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    Energy Technology Data Exchange (ETDEWEB)

    Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu

    2007-06-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  12. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie

    2007-08-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  13. Evaluating the flow processes in ultrafine-grained materials at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Megumi Kawasaki

    2013-06-01

    Full Text Available When polycrystalline materials are tested in tension at elevated temperatures, the flow mechanisms depend upon various parameters including the temperature of testing, the applied stress and the material grain size. The plotting of deformation mechanism maps is a procedure used widely in displaying and interpreting the creep properties of conventional coarse-grained metals but there have been few attempts to date to use this same procedure for ultrafine-grained and nanocrystalline materials produced through the application of severe plastic deformation (SPD. This report examines the potential for using deformation mechanism mapping for materials processed by SPD and presents examples for materials processed using equal-channel angular pressing and high-pressure torsion.

  14. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  15. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  16. Ultrafast Excitonic and Plasmonic Processes at the Nanoscale: Understanding Energy Flow in Hybrid Nanostructures

    Science.gov (United States)

    Wiederrecht, Gary

    2015-03-01

    Nanoscale plasmonic and excitonic structures frequently possess ultrafast processes that can be initiated and monitored by light. Nanoscale structures lend themselves to strong light-matter interactions for a variety of reasons, including a tendency towards large optical extinction and polarizability. Many times these nanostructures have strong resonances due to collective excitations with coherence, a property that lends itself very well to optical control opportunities. These types of collective excitations can also couple strongly to excitations of other nanostructures with different composition and with disparate properties in order to realize hybrid excitations. Hybridization presents unique opportunities for inducing directional energy and charge flow initiated by light. Thus, using ultrafast pulses of appropriate photon energy, combined with considerations of material composition and shape, brings the possibility to control energy flow in excitonic and plasmonic hybrid nanostructures. In this talk, I discuss our recent efforts to create and characterize electronically coupled nanostructures and the impact this has on ultrafast photoresponse. These processes have strong impact on applications such as light harvesting and nonlinear optical responses in nanoscale structures. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  17. Migrant nurses in Brazil: demographic characteristics, migration flow and relationship with the training process.

    Science.gov (United States)

    Silva, Kênia Lara; Sena, Roseni Rosângela de; Tavares, Tatiana Silva; Belga, Stephanie Marques Moura Franco; Maas, Lucas Wan Der

    2016-01-01

    Objective to analyze the migration of nurses in Brazil, describe the demographic characteristics of migrant nurses, the main migration flows, and establish relationships with the training process. Method a descriptive, exploratory study, based on 2010 Census data. The data were analyzed using descriptive statistics. Result there were 355,383 nurses in Brazil in 2010. Of these, 36,479 (10.3%) reported having moved compared to the year 2005: 18,073 (5.1%) for intrastate migration, 17,525 (4.8%) interstate migration, and 871 (0.2%) international migration. Females (86.3%), Caucasians (65.2%), and unmarried (48.3%) nurses prevailed in the population, without considerable variation between groups according to migration situation. The findings indicate that the migration flows are driven by the training process for states that concentrate a greater number of courses and positions in undergraduate and graduate studies, and the motivation of employment opportunity in regions of economic expansion in the country. Conclusion it is necessary to deepen the discussion on the movement of nurses in Brazil, their motivations, and international migration. PMID:27027681

  18. Unsaturated and Saturated Flow Front Tracking in Liquid Composite Molding Processes using Dielectric Sensors

    Science.gov (United States)

    Carlone, P.; Palazzo, G. S.

    2015-10-01

    Liquid composite molding processes are manufacturing techniques involving the impregnation and saturation of dry fibrous preforms by means of injection or infusion of catalyzed resin systems. Complete wetting of the reinforcement and reduction of voids are key issues to enhance mechanical properties of the final product, as a consequence on line monitoring and control of resin flow is highly desirable to detect and avoid potentialbet macro- as well as micro-voids. In this paper, parallel-plate dielectric sensors were investigated to track the position of unsaturated as well as saturated flow fronts through dual scale porous media. Sensors configuration was analyzed and improved via electromagnetic (EM) finite element simulations. The effectiveness of the proposed system was assessed in one-dimensional impregnation tests. Good agreement was found between unsaturated front positions provided by the considered system and acquired through conventional visual techniques. An indirect verification strategy, based on CFD and EM simulations of the process, was applied to investigate the reliability of dielectric sensors with respect to saturation phenomena. Obtained outcomes highlighted the intriguing capabilities of the proposed method.

  19. Experimental investigation on chill-down process of cryogenic flow line

    Science.gov (United States)

    Jin, Lingxue; Park, Changgi; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2016-10-01

    This paper describes the cryogenic chill-down experiments that are conducted on a 12.7 mm outer diameter, 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The pipe is vacuum insulated during the experiment to minimize the heat leak from room temperature and to enable one to numerically simulate the process easily. The temperature and the pressure profiles of the chill-down line are obtained at the location which is 5.5 m in a distance from the pipe inlet. The mass flux range is approximately from 19 kg/m2 s to 49 kg/m2 s, which corresponds to the Reynolds numbers range from 1469 to 5240. The transient histories of temperature, pressure and mass flow rate during the line chill-down process are monitored, and the heat transfer coefficient and the heat flux are computed by an inverse problem solving method. The amplitude of the pressure oscillation and the oscillating period become larger and longer at higher pressure conditions. In the low mass flux conditions, the critical heat flux in horizontal pipes is not sensitive to mass flux, and is higher than that in vertical pipes. Kutateladze's correlation with the constant coefficient, B = 0.029 , well matches the experimental data in the current work. In nucleate flow boiling regime, heat transfer coefficient, h , is proportional to (q″)n , and n is equal to 0.7.

  20. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  1. Assessment of processes affecting low-flow water quality of Cedar Creek, west-central Illinois

    Science.gov (United States)

    Schmidt, Arthur R.; Freeman, W.O.; McFarlane, R.D.

    1989-01-01

    Water quality and the processes that affect dissolved oxygen, nutrient (nitrogen and phosphorus species), and algal concentrations were evaluated for a 23.8-mile reach of Cedar Creek near Galesburg, west-central Illinois, during periods of warm-weather, low-flow conditions. Water quality samples were collected and stream conditions were measured over a diel (24 hour) period on three occasions during July and August 1985. Analysis of data from the diel-sampling periods indicates that concentrations of iron, copper, manganese, phenols, and total dissolved-solids exceeded Illinois ' general-use water quality standards in some locations. Dissolved-oxygen concentrations were less than the State minimum standard throughout much of the study reach. These data were used to calibrate and verify a one-dimensional, steady-state, water quality model. The computer model was used to assess the relative effects on low-flow water quality of processes such as algal photosynthesis and respiration, ammonia oxidation, biochemical oxygen demand, sediment oxygen demand, and stream reaeration. Results from model simulations and sensitivity analysis indicate that sediment oxygen demand is the principal cause of low dissolved-oxygen concentrations in the creek. (USGS)

  2. Interface flow process audit: using the patient's career as a tracer of quality of care and of system organisation

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Unger

    2004-05-01

    Full Text Available Objectives: This case study aims to demonstrate the method's feasibility and capacity to improve quality of care. Several drawbacks attached to tracer condition and selected procedure audits oblige clinicians to rely on external evaluators. Interface flow process audit is an alternative method, which also favours integration of health care across institutions divide. Methods: An action research study was carried out to test the feasibility of interface flow process audit and its impact on quality improvement. An anonymous questionnaire was carried out to assess the participants' perception of the process. Results: In this study, interface flow process audit brought together general practitioners and hospital doctors to analyse the co-ordination of their activities across the primary-secondary interface. Human factors and organisational characteristics had a clear influence on implementation of the solutions. In general, the participants confirmed that the interface flow process audit helped them to analyse the quality of case management both at primary and secondary care level. Conclusions: The interface flow process audit appears a useful method for regular in-service self-evaluation. Its practice enabled to address a wide scope of clinical, managerial and economical problems. Bridging the primary-secondary care gap, interface flow process audit's focus on the patient's career combined with the broad scope of problems that can be analysed are particularly powerful features. The methodology would benefit from an evaluation of its practice on larger scale.

  3. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  4. Integrated process design for the inter-company plant layout planning of dynamic mass flow networks. PepOn

    OpenAIRE

    Geldermann, Jutta; Treitz, Martin; Schollenberger, Hannes; Ludwig, Jens; Rentz, Otto

    2007-01-01

    Inter-company production networks can improve the resource efficiency of production processes. This book shows the results of the research project Integrated Process Design for the Inter-Company Plant Layout Planning of Dynamic Mass Flow Networks (PepOn). A systematic approach for process design for the best utilisation of process streams based on multiple pinch analyses is proposed for a holistic evaluation of process alternatives and for determining saving potentials for production networks.

  5. Semantic annotation of requirements for automatic UML class diagram generation

    CERN Document Server

    Amdouni, Soumaya; Bouabid, Sondes

    2011-01-01

    The increasing complexity of software engineering requires effective methods and tools to support requirements analysts' activities. While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In this context, we propose a tool for transforming text documents describing users' requirements to an UML model. The presented tool uses Natural Language Processing (NLP) and semantic rules to generate an UML class diagram. The main contribution of our tool is to provide assistance to designers facilitating the transition from a textual description of user requirements to their UML diagrams based on GATE (General Architecture of Text) by formulating necessary rules that generate new semantic annotations.

  6. Use of S-α diagram for representing tokamak equilibrium

    International Nuclear Information System (INIS)

    A use of the S-α diagram is proposed as a tool for representing the plasma equilibrium with a qualitative characterization of its stability through pattern recognition. The diagram is an effective tool for visually presenting the relationship between the shear and dimensionless pressure gradient of an equilibrium. In the PBX-M tokamak, an H-mode operating regime with high poloidal β and L-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime results in favorable qualities of both regimes. The β collapse process and ELM event also manifest themselves as characteristic changes in the S-α pattern

  7. TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A.; Edwards, T.

    2010-07-08

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T{sub g}) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T{sub g} of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as

  8. Semantic annotation of requirements for automatic UML class diagram generation

    Directory of Open Access Journals (Sweden)

    Soumaya Amdouni

    2011-05-01

    Full Text Available The increasing complexity of software engineering requires effective methods and tools to support requirements analysts' activities. While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In this context, we propose a tool for transforming text documents describing users' requirements to an UML model. The presented tool uses Natural Language Processing (NLP and semantic rules to generate an UML class diagram. The main contribution of our tool is to provide assistance to designers facilitating the transition from a textual description of user requirements to their UML diagrams based on GATE (General Architecture of Text by formulating necessary rules that generate new semantic annotations.

  9. A numerical analysis on generating process of intermittent debris flow surges

    Science.gov (United States)

    Arai, Muneyuki

    2016-04-01

    The generation of debris flow has some causes. This researche is on intermittent debris flow surges and due to mathematical approach of wave equation by numerical analysis. The following wave equation was obtained based on the momentum equation of shallow water. ∂η' '∂η' ∂2η' ∂3η' ∂τ' + a1η ∂ξ' ‑ a2∂ξ'2 + a3∂ξ'3 = 0 (1) where, a1 = (3/2)c0'2, a2 = (1/2)( ) 1/c0'2 ‑ 1/2tanθ (c0'/u0'), a3 = (1/2){ 4 2 } (2 + c0')/(2c0')‑ 3/2 , u0' = u0/c0, c0' = c0/vp0, c0 = √ ---- gh0cosθ, η' = η/h0, t' = tvp0/h0, ξ = ɛ1/2(x‑ vp0t), τ = ɛ3/2t, ξ' = ξ/h0 = ɛ1/2(x' ‑ t'), τ' = ɛ3/2t', u0, h0 : velocity, depth of steady uniform flow, x : axis of flow direction, t : time, η : variance of flow surface from depth h0, θ : slope angle of the channel, g : acceleration due to gravity, ξ, τ : the Gardner-Morikawa transformation of x axis and time, ɛ : parameter of perturbative expansion, vp0 : phase velocity, c0 : long wave velocity, '(with prime) : non-dimensional variable. η' of equation (1) changes depending on the values of a1, a2, a3 on same section of ξ' and τ', and a1, a2 and a3 are function of c0'. c0' is ratio of long wave velocity and phase velocity, and c0' = 1 when phase velocity is equal to long wave velocity. For c0' = 1, then a3 = 0, the equation (1) becomes Burgers Equation, the waves deform to a wave of wave number one with increased phase velocity on progress at time. Therefor, the wave parts from Burgers equation and becomes the one that depend on equation (1) , KdV-Burgers equation. When the new phase velocity is grater than 1.04 times c0' (long wave velocity), waveform behaves as a solitary wave. This research shows these processes by some numerical solutions of equation (1).

  10. Effect of die shape on the metal flow pattern during direct extrusion process

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, N.; Solomon, I.

    2010-07-01

    The geometric shape of the tools is the main factor by which an optimum technological process can be developed. In the case of extrusion process the strain distribution and other important variables that influence material structure, such as hydrostatic stress, are strongly dependent on the geometry of the die. Careful design of the extrusion die profile can therefore control the product structure and can be used to minimise the amount of inhomogeneity imparted into the product. A possibility to minimise the amount of product inhomogeneity is the using of a flat die with a fillet radius in front to the bearing surface with leads to a minimum dead zone and consequently to a minimum friction at billet-container interface. In the case of aluminium alloy type 2024, for an extrusion ratio of R=8.5, good results were obtained with a fillet radius of 3.0 mm. The experimental data have been used for the finite element numerical simulation of the extrusion process. The data obtained by numerical simulation with FORGE2 programme confirm the theoretical and experimental outcomes. The aim of this paper is to study the influence of such flat die on the material flow during direct extrusion process and consequently on extruded product microstructure and mechanical properties. (Author).

  11. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes.

    Science.gov (United States)

    Herrero, Mónica; Quirós, Covadonga; García, Luis A; Díaz, Mario

    2006-10-01

    The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes. PMID:17021224

  12. Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes

    Directory of Open Access Journals (Sweden)

    L Le Guen

    2011-01-01

    Full Text Available Concrete asphalt is a hydrocarbon material that includes a mix of mineral components along with a bituminous binder. Prior to mixing, its production protocol requires drying and heating the aggregates. Generally performed in a rotary drum, these drying and heating steps within mix asphalt processes have never been studied from a physical perspective. We are thus proposing in the present paper to analyze the drying and heating mechanisms when granular materials and hot gases are involved in a co-current flow. This process step accounts for a large proportion of the overall energy consumed during hot-mix asphalt manufacturing. In the present context, the high energy cost associated with this step has encouraged developing new strategies specifically for the drying process. Applying new asphalt techniques so that an amount of moisture can be preserved in the asphalt concrete appears fundamental to such new strategies. This low-energy asphalt, also referred to as the "warm technique", depends heavily on a relevant prediction of the actual moisture content inside asphalt concrete during the mixing step. The purpose of this paper is to present a physical model dedicated to the evolution in temperature and moisture of granular solids throughout the drying and heating steps carried out inside a rotary drum. An initial experimental campaign to visualize inside a drum at the pilot scale (i.e. 1/3 scale has been carried out in order to describe the granular flow and establish the necessary physical assumptions for the drying and heating model. Energy and mass balance equations are solved by implementing an adequate heat and mass transfer coupling, yielding a 1D model from several parameters that in turn drives the physical modeling steps. Moreover, model results will be analyzed and compared to several measurements performed in an actual asphalt mix plant at the industrial scale (i.e. full scale.

  13. The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning

    Science.gov (United States)

    Dimmel, Justin K.; Herbst, Patricio G.

    2015-01-01

    Geometry diagrams use the visual features of specific drawn objects to convey meaning about generic mathematical entities. We examine the semiotic structure of these visual features in two parts. One, we conduct a semiotic inquiry to conceptualize geometry diagrams as mathematical texts that comprise choices from different semiotic systems. Two,…

  14. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.

    2015-04-02

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  15. Seasonality of low flows and dominant processes in the Rhine River

    NARCIS (Netherlands)

    Tongal, H.; Demirel, M.C.; Booij, M.J.

    2013-01-01

    Low flow forecasting is crucial for sustainable cooling water supply and planning of river navigation in the Rhine River. The first step in reliable low flow forecasting is to understand the characteristics of low flow. In this study, several methods are applied to understand the low flow characteri

  16. Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…

  17. The Use of Computational Diagrams and Nomograms in Higher Education.

    Science.gov (United States)

    Brandenburg, Richard K.; Simpson, William A.

    1984-01-01

    The use of computational diagrams and nomographs for the calculations that frequently occur in college administration is examined. Steps in constructing a nomograph and a four-dimensional computational diagram are detailed, and uses of three- and four-dimensional diagrams are covered. Diagrams and nomographs are useful in the following cases: (1)…

  18. Algorithm for generating goldstone and Bloch--Brandow diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kaldor, U.

    1976-04-01

    An algorithm for the automatic generation of Goldstone and Bloch--Brandow diagrams, needed for diagrammatic perturbation expansions, is described (the Bloch--Brandow diagrams are required for degenerate perturbations). Diagrams are produced in sets, each set consisting of members related by exchanges about interaction lines. Only distinct connected diagrams are generated. Applications are described. 5 figures, 1 table.

  19. Phase diagram of a truncated tetrahedral model

    Science.gov (United States)

    Krcmar, Roman; Gendiar, Andrej; Nishino, Tomotoshi

    2016-08-01

    Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group method. The obtained phase diagram consists of four different phases, which are separated by five transition lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is observed.

  20. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen;

    2012-01-01

    systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way...... to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model...... checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems....

  1. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  2. The efficiency of turn-over processes in degraded peat as investigated under continuous flow conditions

    Science.gov (United States)

    Kleimeier, Christian; Karsten, Ulf; Janssen, Manon; Lennartz, Bernd

    2013-04-01

    Nitrate removal from run-off from agricultural land is in general required to reach a "good chemical status" of surface and groundwater bodies according to the European Water Framework Directive. Removing nitrates via heterotrophic denitrification is highly effective but requires stable anoxic environmental conditions as well as available organic carbon as an electron donator. Constructed wetlands, established on peat soils, through which the nitrate-loaded water is routed, may provide denitrification favorable conditions. A long-term flow experiment (mesocosm) was conducted employing a laboratory container set-up filled with decomposed peat aiming at quantifying the nitrate removal efficiency at various nitrate influx rates. The redox potential was measured at different depths to determine the spatial distribution of denitrificating zones. This new methodological approach allows the observation of biological nitrate turn over without interrupting the adjusted flow rate. We investigated the hydraulic properties and derived transport parameters for the mesocosm by analyzing experimental data from tracer tests. The obtained bromide breakthrough curves (BTC) were subjected to model analysis using the CXTFIT routine of the STANMOD software package. It could be demonstrated that the degraded peat has a dual porosity structure with roughly 40% of the pore water not participating in convective flow and transport processes. Further, the first flushing of mineralized nitrate upon rewetting and onset of flux may compromise any positive clean-up and nitrate removal effects occurring during long-term operation of peat wetlands. The development of the spatial sequence of bacterial cultures is characterized by the redox potential. It is dominated by the available substrates that serve as electron acceptors in bacterial respiration and occurs in a thermodynamically determined top-down order. The zonal development of the nitrate-consuming bacteria was observed and used to describe

  3. Flow, heat transfer, and free surface shape during the optical fiber drawing process

    Science.gov (United States)

    Xiao, Zhihui

    1997-12-01

    A two-dimensional finite element model is introduced for analyzing glass and gas flows, heat transfer, and fiber formation during the optical fiber drawing process. This study consists of simulations in three different areas: the upper region, the tip region, and the whole furnace region. Conjugating the glass and gas flows and heat transfer, the shapes of an optical fiber as free surfaces in the upper neck-down and the tip regions are separately obtained by solving the coupled continuity, momentum, and energy equations. In the upper region simulation, a surface-to-surface radiation model is used for the enclosure which consists of the wall and the glass surface, and the Rosseland approximation radiation model is employed to account for the radiation effect in the glass region. In the tip region simulation, only the glass fiber region is considered and a convective heat transfer model on the fiber surface is employed to account for the energy exchange between the fiber surface and the purge gas. In the fiber, radiation in the axial direction is included. The whole furnace simulation uses a calculated fiber neck-down shape and an assumed fiber tip shape as a fixed interface and computes the convective heat transfer coefficient profile in the tip region which was used in the tip region simulation. The glass viscosity is temperature-dependent and significantly affects the fiber shape. The finite element code FIDAP is used in the study. The effects of various operating conditions such as draw speed, wall temperature distribution, and gas flow rate are studied.

  4. Numerical determination of the forming limit diagrams

    Directory of Open Access Journals (Sweden)

    T. Pepelnjak

    2007-01-01

    Full Text Available Purpose: At present the industrial practice demands a reliable determination of forming limits which assuresthe prediction of properly selecting the forming process in a digital environment. Therefore, technological limitsdefined with the forming limit diagrams (FLDs have to be known. The experimental evaluation of FLDs forsheet metal is time consuming and demands expensive equipment. The experimental work could be omitted bypredicting the FLD with numerical simulations.Design/methodology/approach: The paper presents a methodology to determine the entire range of the FLDfor sheet metal in a digital environment. The Marciniak testing procedure simulated with the FEM programABAQUS was selected to determine the FLD. To assure the reliability of the developed method, differentmaterials were analysed: two types of deep drawing steel, an aluminium 3000 alloy, and a Ti-alloy. The selectedmaterials have different mechanical properties and sheet thicknesses ranging from 0.5 mm to 1.23 mm. For theverification of numerically obtained results parallel experimental determinations of the FLDs were performedshowing a good correlation between the FLDs obtained by both approaches.Findings: A specially developed method for the evaluation of the thickness strain as a function of time as well asthe first and the second time derivation of the thickness strain enable the determination of the onset of necking.Research limitations/implications: The presented method of the digital evaluation of the FLDs is still ina developmental phase and needs further improvements for industrial practice. However, in some cases thenumerical approach had already been used for a fast prediction of the FLD prior to performing the experiments.At the current level the developed program still needs an expert to support it in some critical decisions.Originality/value: Considering some methodological improvements and automation procedures the developedmethod could be used in everyday practice.

  5. 从UML顺序图生成状态图的一个方法%A Method for the Transformation from Sequence Diagram to Statechart Diagram

    Institute of Scientific and Technical Information of China (English)

    袁海; 李宣东; 郑国梁

    2003-01-01

    UML (Unified Modeling Language) is a visual modeling language used for specifying, visualizing, constructing,and documenting the artifacts of software systems by various diagrams. It has been widely accepted as a standard modeling language in both academic and industrial areas. UML sequence diagrams are mostly used in specifying system requirements. By representing interactions, which are arranged in time sequence,between the objects in a system,sequence diagrams can construct scenarios indicating the system's functions. A UML statechart diagram is a graph shows the sequences of states that an object or an interaction goes through during its life in response to received stimuli,together with its responses and actions. It's useful in the design stage of system development. This essay discusses the computer-aided transformation from sequence diagrams to statechart diagrams,which can offer strong support for the transfering from requirement analysis to system design in the software development process. With OCL (Object Control Language) semantic constrain,a transform algorithm is provided in the paper. And the differences with the related works are also mentioned.

  6. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  7. Multiplexed fibre optic sensors for monitoring resin infusion, flow, and cure in composite material processing

    Science.gov (United States)

    Chehura, Edmon; Jarzebinska, Renata; Da Costa, Elisabete F. R.; Skordos, Alexandros A.; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.

    2013-04-01

    The infusion, flow and cure of RTM6 resin in a carbon fibre reinforced composite preform have been monitored using a variety of multiplexed fibre optic sensors. Optical fibre Fresnel sensors and tilted fibre Bragg grating (TFBG) sensors were configured to monitor resin infusion/flow in-plane of the component. The results obtained from the different sensors were in good agreement with visual observations. The degree of cure was monitored by Fresnel sensors via a measurement of the refractive index of the resin which was converted to degree of cure using a calibration determined from Differential Scanning Calorimetry. Fibre Bragg grating sensors fabricated in highly linearly birefringent fibre were used to monitor the development of transverse strain during the cure process, revealing through-thickness material shrinkage of about 712 μɛ and residual strain of 223 μɛ. An alternative approach to infusion monitoring, based on an array of multiplexed tapered optical fibre sensors interrogated using optical frequency domain reflectometry, was also investigated in a separate carbon fibre preform that was infused with RTM6 resin.

  8. Two-Phase Flow in Pipes: Numerical Improvements and Qualitative Analysis for a Refining Process

    Directory of Open Access Journals (Sweden)

    Teixeira R.G.D.

    2015-03-01

    Full Text Available Two-phase flow in pipes occurs frequently in refineries, oil and gas production facilities and petrochemical units. The accurate design of such processing plants requires that numerical algorithms be combined with suitable models for predicting expected pressure drops. In performing such calculations, pressure gradients may be obtained from empirical correlations such as Beggs and Brill, and they must be integrated over the total length of the pipe segment, simultaneously with the enthalpy-gradient equation when the temperature profile is unknown. This paper proposes that the set of differential and algebraic equations involved should be solved as a Differential Algebraic Equations (DAE System, which poses a more CPU-efficient alternative to the “marching algorithm” employed by most related work. Demonstrating the use of specific regularization functions in preventing convergence failure in calculations due to discontinuities inherent to such empirical correlations is also a key feature of this study. The developed numerical techniques are then employed to examine the sensitivity to heat-transfer parameters of the results obtained for a typical refinery two-phase flow design problem.

  9. An in-plane low-noise accelerometer fabricated with an improved process flow

    Institute of Scientific and Technical Information of China (English)

    Xu-dong ZHENG; Zhong-he JIN; Yue-lin WANG; Wei-jun LIN; Xiao-qi ZHOU

    2009-01-01

    We present a bulk micromachined in-plane capacitive accelerometer fabricated with an improved process flow, by etching only one-fifth of the wafer thickness at the back of the silicon while forming the bar-structure electrode for the sensing capacitor. The improved flow greatly lowers the footing effect during deep reactive ion etching (DRIE), and increases the proof mass by 54% compared to the traditional way, resulting in both improved device quality and a higher yield rate. Acceleration in the X direction is sensed capacitively by varying the overlapped area of a differential capacitor pair, which eliminates the nonlinear behavior by fixing the parallel-plate gap. The damping coefficient of the sensing motion is low due to the slide-film damping. A large proof mass is made using DRIE, which also ensures that dimensions of the spring beams in the Y and Z directions can be made large to lower cross axis coupling and increase the pull-in voltage. The theoretical Brownian noise floor is 0.47 μg/Hz1/2 at room temperature and atmospheric pressure. The tested frequency response of a prototype complies with the low damping design scheme. Output data for input acceleration from-1 g to 1 g are recorded by a digital multimeter and show very good linearity. The tested random bias of the prototype is 130 μg at an averaging time of around 6 s.

  10. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  11. Phase diagrams modified by interfacial penalties

    Directory of Open Access Journals (Sweden)

    Atanacković T.M.

    2007-01-01

    Full Text Available The conventional forms of phase diagrams are constructed without consideration of interfacial energies and they represent an impor­tant tool for chemical engineers and metallurgists. If interfacial energies are taken into consideration, it is intuitively obvious that the regions of phase equilibria must become smaller, because there is a penalty on the formation of interfaces. We investigate this phe­nomenon qualitatively for a one-dimensional model, in which the phases occur as layers rather than droplets or bubbles. The modified phase diagrams are shown in Chapters 3 and 4.

  12. DEPENDENCE ANALYSIS FOR UML CLASS DIAGRAMS

    Institute of Scientific and Technical Information of China (English)

    Wu Fangjun; Yi Tong

    2004-01-01

    Though Unified Modeling Language (UML) has been widely used in software development, the major problems confronted lie in comprehension and testing. Dependence analysis is an important approach to analyze, understand, test and maintain programs. A new kind of dependence analysis method for UML class diagrams is developed. A set of dependence relations is definedcorresponding to the relations among classes. Thus, the dependence graph of UML class diagram can be constructed from these dependence relations. Based on this model, both slicing and measurement coupling are further given as its two applications.

  13. System Model Semantics of Class Diagrams

    OpenAIRE

    Cengarle, Maria Victoria; Grönninger, Hans; Rumpe, Bernhard

    2014-01-01

    Defining semantics for UML is a difficult task. Disagreements in the meaning of UML constructs as well as the size of UML are major obstacles. In this report, we describe our approach to define the semantics for UML. Semantics is defined denotationally as a mapping into our semantics domain called the system model [4, 5, 6]. We demonstrate our approach by defining the semantics for a comprehensive version of class diagrams. The semantics definition is detailed for UML/P class diagrams, a vari...

  14. The Voronoi diagram of circles made easy

    DEFF Research Database (Denmark)

    Anton, François; Mioc, Darka; Gold, Christopher

    2007-01-01

    Proximity queries among circles could be effectively answered if the Delaunay graph for sets of circles could be computed in an efficient and exact way. In this paper, we first show a necessary and sufficient condition of connectivity of the Voronoi diagram of circles. Then, we show how the Delau......Proximity queries among circles could be effectively answered if the Delaunay graph for sets of circles could be computed in an efficient and exact way. In this paper, we first show a necessary and sufficient condition of connectivity of the Voronoi diagram of circles. Then, we show how...

  15. Structure and Process - Influence of Historical Agriculture of Linear Flow Paths by Extreme Rainfall in Brandenburg

    Directory of Open Access Journals (Sweden)

    Dr. Detlef Deumlich

    2012-12-01

    Full Text Available Long-term erosion forecast can completely misinterpret in extreme events in plain regions. Flow paths are well represented in the plain using digital elevation models in the 1-m grid (DEM1. The scale of the erosion process models and the elevation models is comparable. With it instruments are available to improve the erosion simulation. Simulations, based on (RUSLE family and bigger grid width, are relevant for regional overviews, to the clarification of small scale relevant linear erosion forms, however, unsuitably. The cross-slope tillage has intensified the water erosion in the examined case with special area morphology. From historical sources furrows of the ridge and furrow system were identified as runoff ways. Historical and actual information sources allowed the clarification of especially regional erosion events. Site specific and climatic factors as well as the actual land management caused a high damage magnitude in particular with extreme rainstorms, modified by historical land use structures.

  16. Rapid Determination of Optimal Conditions in a Continuous Flow Reactor Using Process Analytical Technology

    Directory of Open Access Journals (Sweden)

    Michael F. Roberto

    2013-12-01

    Full Text Available Continuous flow reactors (CFRs are an emerging technology that offer several advantages over traditional batch synthesis methods, including more efficient mixing schemes, rapid heat transfer, and increased user safety. Of particular interest to the specialty chemical and pharmaceutical manufacturing industries is the significantly improved reliability and product reproducibility over time. CFR reproducibility can be attributed to the reactors achieving and maintaining a steady state once all physical and chemical conditions have stabilized. This work describes the implementation of a smart CFR with univariate physical and multivariate chemical monitoring that allows for rapid determination of steady state, requiring less than one minute. Additionally, the use of process analytical technology further enabled a significant reduction in the time and cost associated with offline validation methods. The technology implemented for this study is chemistry and hardware agnostic, making this approach a viable means of optimizing the conditions of any CFR.

  17. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    The qualitative and quantitative effects of macropore flow and transport in an agricultural subsurface-drained glacial till soil in eastern Denmark have been investigated. Three controlled tracer experiments on individual field plots (each approximately 1000 m(2)) were carried out by surface...... application of the conservative chloride ion under different application conditions. The subsequent continuous long-term monitoring of the rate and chloride concentration of the drainage discharge represented an integrated and large-scale approach to the problem. In addition, point-scale determination...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...

  18. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  19. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air.

  20. Simulation of the self-discharge process in vanadium redox flow battery

    Science.gov (United States)

    You, Dongjiang; Zhang, Huamin; Sun, Chenxi; Ma, Xiangkun

    A simple mathematical model is established to predict the self-discharge process in a kilowatt-class vanadium redox flow battery stack. The model uses basic mass transport theory to simulate the transfer of vanadium ions in the battery. The simulation results agree reasonably with the experimental values, confirming the validity of the model. It is found that the diffusion rate of vanadium ions depends on the diffusion coefficient, the partition coefficient and the concentration gradient of the vanadium ions between the two half cells. For the self-discharge process at the initial SOC of 0, the net transfer direction of vanadium ions is towards the negative electrolyte until the diffusion flux of V 3+ becomes larger than that of VO 2+. For the self-discharge process at the initial SOC of 65%, the net transfer direction of vanadium ions is towards the positive electrolyte at the initial 20 h and then turns to the negative electrolyte. There are two obvious changes in the diffusion flux of vanadium ions at about 33 h and 43 h, corresponding to the vanishing time of VO 2 + and V 2+ respectively.

  1. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. PMID:27155436

  2. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance.

    Science.gov (United States)

    Jiang, Bo; Yu, Lihong; Wu, Lantao; Mu, Di; Liu, Le; Xi, Jingyu; Qiu, Xinping

    2016-05-18

    Nafion membranes are now the most widely used membranes for long-life vanadium flow batteries (VFBs) because of their extremely high chemical stability. Today, the type of Nafion membrane that should be selected and how to pretreat these Nafion membranes have become critical issues, which directly affects the performance and cost of VFBs. In this work, we chose the Nafion 115 membrane to investigate the effect of the pretreatment process (as received, wet, boiled, and boiled and dried) on the performance of VFBs. The relationship between the nanostructure and transport properties of Nafion 115 membranes is elucidated by wide-angle X-ray diffraction and small-angle X-ray scattering techniques. The self-discharge process, battery efficiencies, electrolyte utilization, and long-term cycling stability of VFBs with differently pretreated Nafion membranes are presented comprehensively. An online monitoring system is used to monitor the electrolyte volume that varies during the long-term charge-discharge test of VFBs. The capacity fading mechanism and electrolyte imbalance of VFBs with these Nafion 115 membranes are also discussed in detail. The optimal pretreatment processes for the benchmark membrane and practical application are synthetically selected. PMID:27123693

  3. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming

    2014-10-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  4. Relationship between effective solar radiation and sap flow process during an entire growing season in Western Mountains of Beijing

    Institute of Scientific and Technical Information of China (English)

    Xu Jun-jiang; Ma Lv-yi

    2007-01-01

    In order to explore the relationship between the time processes of solar radiation and sap flow, sap flow velocity (SFV) of Platycladus orientalis and Pinus tabulaeformis,effective solar radiation (ESR) and other environmental factors wore synchronously monitored for one year in the Beijing Western Mountains by using a thermal dissipation probe (TDP) system and an automatic weather station. Results showed significant differences between changes in diurnal characteristics of ESR and sap flow in sunny days during three seasons. Starting times of sap flow occurred generally 1. 5-3 hours later than those of solar radiation and there were small differences between Platycladus orientalis and Pinus tabulaeformis. But peak times and stopping times of sap flow varied considerably with large contrasts in ESR. The duration of sap flow showed clear differences among the seasons owing to the variable rhythms of climate factors in Beijing. Fluctuation amplitude in the duration of sap flow remained relatively stable during the autumn but changed greatly during spring and summer. Changes in diurnal sap flow velocity of both Platycladus orientalis and Pinus tabulaeformis were about 0-3 hours later than those of ESR but with the same configuration. The start of sap flow was mainly induced by the sudden intensification of ESR (sunrise effect). Seasonal models of SFV indicated that a cubic equation had the best fit. It Was more practical to simulate seasonal water consumption models of trees with ESR. In further investigations,these models should be optimized.

  5. Control On Fluid Flow Properties In Sandstone: Interactions Between Diagenesis Processes And Fracture Corridors

    Science.gov (United States)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca

    2016-04-01

    During the development of a fault zone, processes occur at different scales: secondary faults and fractures development in the damage zone while "diagenetic" processes, i.e: fluid rock interaction at the grains size scale, contribute to modify the matrix features. Spatial distribution of these processes is clearly controlled by microstructural transformations induced by fractured corridors and their location. Understanding flowing properties in the associated damage zone contributes to the better modeling of the fluid flow in faulted and fractured reservoirs which could be oil, gas or water bearing. The Lower Triassic Buntsandstein sandstones outcrop of Cleebourg is located in the Hochwald Horst affected by a major NNE-SSW striking fault, and the structure globally dips with 30° toward Rhenish Fault (Upper Rhine Graben main western border fault). The study of the outcrop aims to decipher the fluid-flow scheme and interactions between fracture network and diagenetic features distribution in the damage zone of a fault, located close to major faulted areas, through field and laboratories petrophysical measurements (permeability, thermic conductivity), and samples microstructural and diagenetical descriptions. The outcrop is structurally divided into a 14 meters thick fault core, surrounded by 5 meters thick transition zones, and damage zone of minimum thickness of 40 meters (total thickness unknown, due to the limits of the outcrop). Damage zone includes three fractured corridors, perpendicular to bedding and from 2 to 5 meters thick. Results presented here were acquired in 2 different layers with similar lithology but only on damage zone samples. In entire damage zone, porosity results and thin section description allow to distinguish two different facies: • Fa1 Intermediate porous (porosity of 12%) sandstone with major illite cement and clay content up to 20% (detrital and diagenetic); • Fa2 High porous (porosity >15%) sandstone with quartz feeding

  6. Mixed wasted integrated program: Logic diagram

    International Nuclear Information System (INIS)

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development's Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR)

  7. Orphan-Free Anisotropic Voronoi Diagrams

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.

  8. Decoding the Golay code with Venn diagrams

    OpenAIRE

    Blaum, Mario; Bruck, Jehoshua

    1990-01-01

    A decoding algorithm, based on Venn diagrams, for decoding the [23, 12, 7] Golay code is presented. The decoding algorithm is based on the design properties of the parity sets of the code. As for other decoding algorithms for the Golay code, decoding can be easily done by hand.

  9. Influence Diagrams for Optimal Maintenance Planning

    DEFF Research Database (Denmark)

    Friis-Hansen, Andreas

    2000-01-01

    Over the last two decades Bayesian networks and influence diagrams have received notable attention within the field of artificial intelligence and expert systems. During the last few years the technology has been further developed for problem solving within other engineering fields. The objective...

  10. Complexities of One-Component Phase Diagrams

    Science.gov (United States)

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  11. Construction of Lax operators from weight diagrams

    International Nuclear Information System (INIS)

    We show that cyclic weight diagrams corresponding to representations of affine Lie algebras allow one to read-off the associated Lax operator. The resultant Lax pair generates the modified KdV equations, and have been shown in some cases to produce acceptable solutions of the string equation of matrix models

  12. Fine structure of the butterfly diagram revisited

    Science.gov (United States)

    Major, Balázs

    The latitudinal time distribution of sunspots (butterfly diagram) was studied by Becker (1959) and Antalová & Gnevyshev (1985). Our goal is to revisit these studies. In the first case we check whether there is a poleward migration in sunspot activity. In the second case we confirm the results, and make more quantitative statements concerning their significance and the position of the activity peaks.

  13. Graphic lambda calculus and knot diagrams

    OpenAIRE

    Buliga, Marius

    2012-01-01

    In arXiv:1207.0332 [cs.LO] was proposed a graphic lambda calculus formalism, which has sectors corresponding to untyped lambda calculus and emergent algebras. Here we explore the sector covering knot diagrams, which are constructed as macros over the graphic lambda calculus.

  14. Solution space diagram in conflict detection scenarios

    NARCIS (Netherlands)

    Rahman, S.M.A.; Borst, C.; Mulder, M.; Van Paassen, M.M.

    2015-01-01

    This research investigates the use of Solution Space Diagram (SSD) as a measure of sector complexity and also as a predictor of performance and workload, focusing on the scenarios regarding Air Traffic Controller (ATCO)’s ability to detect future conflicts. A human-in-the-loop experiment with varyin

  15. Image Attributes: A Study of Scientific Diagrams.

    Science.gov (United States)

    Brunskill, Jeff; Jorgensen, Corinne

    2002-01-01

    Discusses advancements in imaging technology and increased user access to digital images, as well as efforts to develop adequate indexing and retrieval methods for image databases. Describes preliminary results of a study of undergraduates that explored the attributes naive subjects use to describe scientific diagrams. (Author/LRW)

  16. On traces of tensor representations of diagrams

    NARCIS (Netherlands)

    A. Schrijver

    2015-01-01

    Let T be an (abstract) set of types, and let (unknown symbol), o : T -> Z(+). A T-diagram is a locally ordered directed graph G equipped with a function tau : V (G) -> T such that each vertex v of G has indegree (unknown symbol)(tau(v)) and outdegree o(tau(v)). (A directed graph is locally ordered i

  17. Geometrical splitting and reduction of Feynman diagrams

    CERN Document Server

    Davydychev, Andrei I

    2016-01-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  18. Phase Diagrams of Strongly Interacting Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally report...

  19. Articulated Entity Relationship (AER Diagram for Complete Automation of Relational Database Normalization

    Directory of Open Access Journals (Sweden)

    P. S. Dhabe

    2010-05-01

    Full Text Available In this paper an Articulated Entity Relationship (AER diagram is proposed, which is an extension of EntityRelationship (ER diagram to accommodate the Functional Dependency (FD information as its integral partfor complete automation of normalization. In current relational databases (RDBMS automation ofnormalization by top down approach is possible using ER diagram as an input, provided the FD informationis available independently, meanwhile, through user interaction. Such automation we call partial andconditional automation. To avoid this user interaction, there is a strong need to accommodate FDinformation as an element of ER diagram itself. Moreover, ER diagrams are not designed by taking intoaccount the requirements of normalization. However, for better automation of normalization it must be anintegral part of conceptual design (ER Diagram. The prime motivation behind this paper to design a systemthat need only proposed AER diagram as a sole input and normalize the database up to a given normal formin one go. This would allow more amount of automation than the current approach. Such automation we callas total and unconditional automation, which is better and complete in true sense. As the proposed AERdiagram is designed by taking in to account the normalization process, normalization up to Boyce CoddNormal Form (BCNF becomes an integral part of conceptual design. Additional advantage of AER diagramis that any modifications (addition, deletion or updation of attributes made to the AER diagram willautomatically be reflected in its FD information. Thus description of schema and FD information isguaranteed to be consistent. This cannot be assured in current approach using ER diagrams, as schema andFD information are provided to the system at two different times, separately.

  20. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.