WorldWideScience

Sample records for problem-solving teaching approaches

  1. An interactive problem-solving approach to teach traumatology for medical students.

    Science.gov (United States)

    Abu-Zidan, Fikri M; Elzubeir, Margaret A

    2010-08-13

    We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.

  2. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  3. The enhancement of students' mathematical problem solving ability through teaching with metacognitive scaffolding approach

    Science.gov (United States)

    Prabawanto, Sufyani

    2017-05-01

    This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.

  4. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo

    2017-12-01

    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  5. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  6. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  7. The Prevalent Rate of Problem-Solving Approach in Teaching Mathematics in Ghanaian Basic Schools

    Science.gov (United States)

    Nyala, Joseph; Assuah, Charles; Ayebo, Abraham; Tse, Newel

    2016-01-01

    Stakeholders of mathematics education decry the rate at which students' performance are falling below expectation; they call for a shift to practical methods of teaching the subject in Ghanaian basic schools. The study explores the extent to which Ghanaian basic school mathematics teachers use problem-solving approach in their lessons. The…

  8. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  9. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

    Science.gov (United States)

    Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

    2014-01-01

    This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

  10. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen

    2013-12-01

    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  11. (CBTP) on knowledge, problem-solving and learning approach

    African Journals Online (AJOL)

    In the first instance attention is paid to the effect of a computer-based teaching programme (CBTP) on the knowledge, problem-solving skills and learning approach of student ... In the practice group (oncology wards) no statistically significant change in the learning approach of respondents was found after using the CBTP.

  12. Problem solving teaching practices: Observer and teacher's view

    OpenAIRE

    Felmer , Patricio; Perdomo-Díaz , Josefa; Giaconi , Valentina; Espinoza , Carmen ,

    2015-01-01

    International audience; In this article, we report on an exploratory study on teaching practices related to problem solving of a group of 29 novel secondary mathematics teachers. For this purpose, two independent instruments were designed, the first one is based on lesson observations, and the second one is a questionnaire answered by teachers about their teaching practices while working on non-routine problem solving with their students. For each instrument, we perform a statistical analysis...

  13. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    Science.gov (United States)

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  14. [Methods for teaching problem-solving in medical schools].

    Science.gov (United States)

    Shumway, J M; Vargas, M E; Heller, L E

    1984-01-01

    The need to include in the medical curriculum instructional activities to promote the development of problem-solving abilities has been asserted at the national and international levels. In research on the mental process involved in the solution of problems in medicine, problem-solving has been defined as a hypothetical-deductive activity engaged in by experienced physicians, in which the early generation of hypotheses influences the subsequent gathering of information. This article comments briefly on research on the mental process by which medical problems are solved. It describes the methods that research has shown to be most applicable in instruction to develop problem-solving abilities, and presents some educational principles that justify their application. The "trail-following" approach is the method that has been most commonly used to study the physician's problem-solving behavior. The salient conclusions from this research are that in the problem-solving process the diagnostic hypothesis is generated very early on and with limited data; the number of hypotheses is small; the problem-solving approach is specific to the type of medical problem and case in hand; and the accumulation of medical knowledge and experience forms the basis of clinical competence. Four methods for teaching the solution of problems are described: case presentation, the rain of ideas, the nominal groups technique and decision-making consensus, the census and analysis of forces in the field, and the analysis of clinical decisions. These methods are carried out in small groups. The advantages of the small groups are that the students are active participants in the learning process, they receive formative evaluation of their performance in a setting conductive to learning, and are able to interact with their instructor if he makes proper use of the right questioning techniques. While no single problem-solving method can be useful to all students or in all the problems they encounter

  15. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter

    2015-01-01

    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  16. A Structured Approach to Teaching Applied Problem Solving through Technology Assessment.

    Science.gov (United States)

    Fischbach, Fritz A.; Sell, Nancy J.

    1986-01-01

    Describes an approach to problem solving based on real-world problems. Discusses problem analysis and definitions, preparation of briefing documents, solution finding techniques (brainstorming and synectics), solution evaluation and judgment, and implementation. (JM)

  17. Solving Real Community Problems to Improve the Teaching of Public Affairs

    Science.gov (United States)

    Yaghi, Abdulfattah; Alibeli, Madalla

    2014-01-01

    In order to achieve their course learning outcomes, public affairs instructors can train students to solve real community problems (SRCP). This approach focuses on the learners themselves and aims to transform the role of college professors from traditional teaching (lecturing) to facilitating and coaching students' learning activities. This study…

  18. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  19. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  20. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  1. Block Model Approach in Problem Solving: Effects on Problem Solving Performance of the Grade V Pupils in Mathematics

    Science.gov (United States)

    de Guzman, Niño Jose P.; Belecina, Rene R.

    2012-01-01

    The teaching of mathematics involves problem solving skills which prove to be difficult on the part of the pupils due to misrepresentation of the word problems. Oftentimes, pupils tend to represent the phrase "more than" as addition and the word difference as "- ". This paper aims to address the problem solving skills of grade…

  2. THE DEVELOPMENT OF ELECTRONIC TEACHING MATERIALS BY FLIPBOOK ASSISTANCE BASED PROBLEM SOLVING SKILL WITH CTL APPROACH ON LEARNING MATHEMATICS CLASS V

    Directory of Open Access Journals (Sweden)

    RUSNILAWATI Eva Gustiana RUSNILAWATI

    2018-01-01

    Full Text Available The purpose of this research is to produce Flipbook-based Electronic Teaching Materials (BAE based on problem solving skills with CTL Approach on Vocational School Class V learning valid, practical, and effective. This type of research is development research (Development Research. This research developed Flipbook-assisted Electronic Teaching Materials (BAE on the mathematics learning of Class V Primary School by using the 4-D development model developed by Thiagarajan, Semmel, and Semmel. The validation results show that the developed Teaching Materials are worthy of use with a good minimum category. The results of the experiments show that Electronic Materials developed are practical and effective. Completed learning in the classical has reached the minimum criteria of 75% that is for problem-solving test reached 86%. Based on a questionnaire of attitudes toward mathematics, 88% of students showed an increase in attitude scores on mathematics, and 85% of students showed attitudes toward mathematics with a good minimum category.

  3. Internet Addiction Levels and Problem-Solving Skills in the Teaching Profession: An Investigation

    Science.gov (United States)

    Ibili, Emin

    2017-01-01

    In this research, the relationship between Internet addiction levels among teaching candidates and their problem-solving aptitude and self-efficacy perceptions towards the teaching profession was investigated. In addition, the effects of gender, department, Internet use and sporting habits on the Internet addiction, problem-solving skills and…

  4. Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems

    Science.gov (United States)

    Saunders, Alicia F.; Spooner, Fred; Ley Davis, Luann

    2018-01-01

    Mathematical problem solving is necessary in many facets of everyday life, yet little research exists on how to teach students with more severe disabilities higher order mathematics like problem solving. Using a multiple probe across participants design, three middle school students with moderate intellectual disability (ID) were taught to solve…

  5. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    Science.gov (United States)

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  6. Teaching nutrition to medical students: a community-based problem-solving approach.

    Science.gov (United States)

    Bhattacharji, S; Joseph, A; Abraham, S; Muliyil, J; John, K R; Ethirajan, N

    1990-01-01

    This paper presents a community-based problem-solving educational programme which aims at teaching medical and other health science students the importance of nutrition and its application. Through community surveys students assess the nutritional status of children under five using different anthropometric methods. They understand the cultural beliefs and customs related to food fads and the reasons for them. They also acquire the skill to educate the community using the information gathered. They use epidemiological methods such as case control study to find associations between malnutrition and other causative factors. Feedback from students has been positive and evaluation of students' knowledge before and after the programme has shown significant improvement.

  7. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    Science.gov (United States)

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  8. Teaching Handwriting to Elementary Students with Learning Disabilities: A Problem-Solving Approach

    Science.gov (United States)

    Datchuk, Shawn

    2015-01-01

    Problems with handwriting can negatively impact the writing of students with learning disabilities. In this article, an example is provided of a fourth-grade special education teacher's efforts to assist a new student by using a problem-solving approach to help determine an efficient course of action for special education teachers who are trying…

  9. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  10. The Problem-Solving Approach in the Teaching of Number Theory

    Science.gov (United States)

    Toh, Pee Choon; Leong, Yew Hoong; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Tay, Eng Guan; Ho, Foo Him

    2014-01-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to…

  11. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  12. Teaching creativity and inventive problem solving in science.

    Science.gov (United States)

    DeHaan, Robert L

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

  13. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper

    2017-01-01

    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  14. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  15. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  16. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  17. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step

  18. An Approach for Solving Linear Fractional Programming Problems

    OpenAIRE

    Andrew Oyakhobo Odior

    2012-01-01

    Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

  19. Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics

    NARCIS (Netherlands)

    Sweller, John; Clark, Richard; Kirschner, Paul A.

    2010-01-01

    Sweller, J., Clark, R., & Kirschner, P. A. (2010). Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics. Notices of the American Mathematical Society, 57, 1303-1304.

  20. Teaching Mathematical Problem Solving to Middle School Students in Math, Technology Education, and Special Education Classrooms

    Science.gov (United States)

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Rueda, Enrique; Hung, Ya-Hui; Danneker, Jeanne

    2004-01-01

    This study compared two approaches for teaching sixth-grade middle school students to solve math problems in math, technology education, and special education classrooms. A total of 17 students with disabilities and 76 students without disabilities were taught using either enhanced anchored instruction (EAI) or text-based instruction coupled with…

  1. A problem-solving approach to effective insulin injection for patients at either end of the body mass index.

    Science.gov (United States)

    Juip, Micki; Fitzner, Karen

    2012-06-01

    People with diabetes require skills and knowledge to adhere to medication regimens and self-manage this complex disease. Effective self-management is contingent upon effective problem solving and decision making. Gaps existed regarding useful approaches to problem solving by individuals with very low and very high body mass index (BMI) who self-administer insulin injections. This article addresses those gaps by presenting findings from a patient survey, a symposium on the topic of problem solving, and recent interviews with diabetes educators to facilitate problem-solving approaches for people with diabetes with high and low BMI who inject insulin and/or other medications. In practice, problem solving involves problem identification, definition, and specification; goal and barrier identification are a prelude to generating a set of potential strategies for problem resolution and applying these strategies to implement a solution. Teaching techniques, such as site rotation and ensuring that people with diabetes use the appropriate equipment, increase confidence with medication adherence. Medication taking is more effective when people with diabetes are equipped with the knowledge, skills, and problem-solving behaviors to effectively self-manage their injections.

  2. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  3. A four-tier problem-solving scaffold to teach pain management in dental school.

    Science.gov (United States)

    Ivanoff, Chris S; Hottel, Timothy L

    2013-06-01

    Pain constitutes a major reason patients pursue dental treatment. This article presents a novel curriculum to provide dental students comprehensive training in the management of pain. The curriculum's four-tier scaffold combines traditional and problem-based learning to improve students' diagnostic, pharmacotherapeutic, and assessment skills to optimize decision making when treating pain. Tier 1 provides underpinning knowledge of pain mechanisms with traditional and contextualized instruction by integrating clinical correlations and studying worked cases that stimulate clinical thinking. Tier 2 develops critical decision making skills through self-directed learning and actively solving problem-based cases. Tier 3 exposes students to management approaches taken in allied health fields and cultivates interdisciplinary communication skills. Tier 4 provides a "knowledge and experience synthesis" by rotating students through community pain clinics to practice their assessment skills. This combined teaching approach aims to increase critical thinking and problem-solving skills to assist dental graduates in better management of pain throughout their careers. Dental curricula that have moved to comprehensive care/private practice models are well-suited for this educational approach. The goal of this article is to encourage dental schools to integrate pain management into their curricula, to develop pain management curriculum resources for dental students, and to provide leadership for change in pain management education.

  4. Doing physics with scientific notebook a problem solving approach

    CERN Document Server

    Gallant, Joseph

    2012-01-01

    The goal of this book is to teach undergraduate students how to use Scientific Notebook (SNB) to solve physics problems. SNB software combines word processing and mathematics in standard notation with the power of symbolic computation. As its name implies, SNB can be used as a notebook in which students set up a math or science problem, write and solve equations, and analyze and discuss their results. Written by a physics teacher with over 20 years experience, this text includes topics that have educational value, fit within the typical physics curriculum, and show the benefits of using SNB.

  5. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    Science.gov (United States)

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  6. Investigating Pre-Service Chemistry Teachers' Problem Solving Strategies: Towards Developing a Framework in Teaching Stoichiometry

    Science.gov (United States)

    Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.

    2016-01-01

    The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…

  7. Problem solving - an interactive active method for teaching the thermokinetic concept

    Directory of Open Access Journals (Sweden)

    Odochian Lucia

    2014-07-01

    Full Text Available The paper describes a strategy that uses problem solving to teach the thermokinetic concept, based on student’s previously established proficiency in thermochemistry and kinetics. Chemistry teachers often use this method because it ensures easy achievement of both formative and informative science skills. This teaching strategy is tailored for students that prove special intellectual resources, Olympiad participants and to those who find chemistry a potential professional route

  8. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  9. The effect of Think Pair Share (TPS) using scientific approach on students’ self-confidence and mathematical problem-solving

    Science.gov (United States)

    Rifa’i, A.; Lestari, H. P.

    2018-03-01

    This study was designed to know the effects of Think Pair Share using Scientific Approach on students' self-confidence and mathematical problem-solving. Quasi-experimental with pre-test post-test non-equivalent group method was used as a basis for design this study. Self-confidence questionnaire and problem-solving test have been used for measurement of the two variables. Two classes of the first grade in religious senior high school (MAN) in Indonesia were randomly selected for this study. Teaching sequence and series from mathematics book at control group in the traditional way and at experiment group has been in TPS using scientific approach learning method. For data analysis regarding students’ problem-solving skill and self-confidence, One-Sample t-Test, Independent Sample t-Test, and Multivariate of Variance (MANOVA) were used. The results showed that (1) TPS using a scientific approach and traditional learning had positive effects (2) TPS using scientific approach learning in comparative with traditional learning had a more significant effect on students’ self-confidence and problem-solving skill.

  10. Physics students' approaches to learning and cognitive processes in solving physics problems

    Science.gov (United States)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly

  11. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    Science.gov (United States)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  12. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  13. impact of the curriculum reform on problem solving ability in ...

    African Journals Online (AJOL)

    unesco

    that “learning is problem solving”. Therefore, teaching problem solving is teaching people how to learn, so is problem solving in chemistry education. Kalbag (4) states that problem solving orientation in chemistry education has an importance in that problem solving converts information into knowledge. Kalbag further states.

  14. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  15. Towards a Framework of Using Knowledge Tools for Teaching by Solving Problems in Technology-Enhanced Learning Environment

    Science.gov (United States)

    Kostousov, Sergei; Kudryavtsev, Dmitry

    2017-01-01

    Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…

  16. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  17. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  18. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  19. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures

    Directory of Open Access Journals (Sweden)

    Arjun Singh

    2010-12-01

    Full Text Available Arjun SinghDepartment of Pathology, Sri Venkateshwara Medical College Hospital and Research Centre, Pondicherry, IndiaPurpose: We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS system is an innovative teaching–learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, assess its effectiveness, and assess students’ preference for POPS over didactic lectures.Method: One hundred fifty second-year MBBS students were divided into two groups: A and B. Group A was taught by POPS while group B was taught by traditional lectures. Pre- and post-test numerical scores of both groups were evaluated and compared. Students then completed a self-structured feedback questionnaire for analysis.Results: The mean (SD difference in pre- and post-test scores of groups A and B was 15.98 (3.18 and 7.79 (2.52, respectively. The significance of the difference between scores of group A and group B teaching methods was 16.62 (P < 0.0001, as determined by the z-test. Improvement in post-test performance of group A was significantly greater than of group B, demonstrating the effectiveness of POPS. Students responded that POPS facilitates self-learning, helps in understanding topics, creates interest, and is a scientific approach to teaching. Feedback response on POPS was strong in 57.52% of students, moderate in 35.67%, and negative in only 6.81%, showing that 93.19% students favored POPS over simple lectures.Conclusion: It is not feasible to enforce the PBL method of teaching throughout the entire curriculum; However, POPS can be incorporated along with audiovisual aids to break the monotony of dialectic lectures and as alternative to PBL.Keywords: medical education, problem-solving exercise, problem-based learning

  20. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    Science.gov (United States)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  1. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  2. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  3. A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures

    OpenAIRE

    Zhang Zhiren; Liu Wei; Han Junfeng; Guo Sheng; Wu Yuzhang

    2013-01-01

    Abstract Background The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, P...

  4. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  5. Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach

    Science.gov (United States)

    Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro

    2014-01-01

    In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…

  6. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    Science.gov (United States)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  7. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  8. Novel Problem Solving - The NASA Solution Mechanism Guide

    Science.gov (United States)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  9. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  10. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  11. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    Science.gov (United States)

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  12. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  13. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    OpenAIRE

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach problem-solving skills. The present study, as a first study in Turkey, may provide valuable insight for nurse academicians employed at üniversities. Purpose of ...

  14. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    Science.gov (United States)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  15. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  16. Cognitive conflict as a teaching strategy in solving chemistry problems: A dialectic-constructivist perspective

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this study was to evaluate the effect of teaching experiments within a dialectic-constructivist framework based on the following considerations: (a) Cognitive conflicts used in the teaching experiments must be based on problem-solving strategies that students find relatively convincing: (b) after having generated a cognitive conflict, it is essential that the students be provided with an experience that could facilitate the resolution of the conflict; and (c) the teaching strategy developed is used by an interactive constructivist approach within an intact classroom. The study was based on two sections of freshman students who had registered for Chemistry I at the Universidad de Oriente, Venezuela. One of the sections was randomly designated as the control group and the other as the experimental group. To introduce cognitive conflict, the experimental group was exposed to two teaching experiments dealing with stoichiometry problems based on the concept of limiting reagent. Students in the control group were exposed to the same problems - however, without the cognitive conflict teaching experiments format. To evaluate the effect of the teaching experiments, both groups were evaluated on five different problems at different intervals during the semester, referred to as posttests. All posttests formed part of the regular evaluation of the students. Results obtained show the advantage of the experimental group on four of the posttests. It is concluded that the experimental treatment was effective in improving performance on the immediate posttests. It was observed that some students protect their core belief [see Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91-196). Cambridge: Cambridge University Press] in stoichiometry (establishing equivalent relations between different elements or compounds) by ignoring the conflicting

  17. Learning by Preparing to Teach: Fostering Self-Regulatory Processes and Achievement during Complex Mathematics Problem Solving

    Science.gov (United States)

    Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.

    2016-01-01

    We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…

  18. Analytical derivation: An epistemic game for solving mathematically based physics problems

    Science.gov (United States)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  19. Strategy Keys as Tools for Problem Solving

    Science.gov (United States)

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  20. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  1. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    Science.gov (United States)

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  2. Implementing Mixed Method of Peer Teaching and Problem Solving on Undergraduate Students

    Directory of Open Access Journals (Sweden)

    A. Firli

    2017-02-01

    Full Text Available This study examined the application of problem solving method combined with student centered learning (peer teaching method as a mixed method to improve student’s passing level of financial management course. The object of this study was the 84 students of financial management course separated within two classes during the odd semester period 2014/2015, July until December 2015 with fourteen meeting courses. Data used to measure the results of the application is mid and final exam scores of both classes. Researcher used observation, interview and documentation as data collect technique also triangulation technique as data validity check. This study used problem solving method combined with student centered learning (peer teaching method as a mixed method which included into the Classroom Action Research. The final results show the increase in class A passing level is 17%. Class B passing level increased 3%. From the research we also know that in practical use of mixed method learning, leader’s quality and conducive learning environment are influencing factors in improving student’s learning performance. While the result confirms that mixed method improving learning performance, this study also founds additional factors that might be considerably affecting the results of learning performance when implementing the mixed method.

  3. Bricolage Programming and Problem Solving Ability in Young Children : an Exploratory Study

    OpenAIRE

    Rose, Simon

    2016-01-01

    Visual programming environments, such as Scratch, are increasingly being used by schools to teach problem solving and computational thinking skills. However, academic research is divided on the effect that visual programming has on problem solving in a computational context. This paper focuses on the role of bricolage programming in this debate; a bottom-up programming approach that arises when using block-style programming interfaces. Bricolage programming was a term originally used to descr...

  4. The Role of Expository Writing in Mathematical Problem Solving

    Science.gov (United States)

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  5. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems

    Science.gov (United States)

    Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín

    2012-05-01

    A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.

  6. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  7. Problem solving: How can we help students overcome cognitive difficulties

    Directory of Open Access Journals (Sweden)

    Liberato Cardellini

    2014-12-01

    Full Text Available The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in a consistent manner. Topics such as atoms, molecules, and the mole concept are fundamental in chemistry and instructors may think that, for our students, should be easy to learn these concepts and to use them in solving problems, but it is not always so. If teachers do not put emphasis on the logical process during solving problems, students are at risk to become more proficient at applying the formulas rather than to reason. This disappointing result is clear from the outcomes of questionnaires meant to measure the ability to calculate the mass of a sample from the number of atoms and vice versa. A suggestion from the cognitive load theory has proved a useful way to improve students’ skills for this type of problems: the use of worked out examples. The repetition after two weeks of the Friedel-Maloney test after the use of worked examples shows that students' skills significantly improve. Successful students in all questions jumped from 2 to 64%.

  8. A guided problem solving approach for teaching quantum physics in secondary school and physics introductory courses

    Directory of Open Access Journals (Sweden)

    Francisco Savall Alemany

    2017-01-01

    Full Text Available The effectiveness of the problem based teaching on the science learning has been highlighted by the didactic research. This teaching model is characterized by organizing the units around problems and by proposing a research plan to find a solution which requires concepts and models to be introduced in a functional way, as possible solutions to the problem. In this article we present a problem based unit for teaching quantum physics  in  introductory  physics  courses  and  we  analyze  in  detail  the  teaching  strategy  that  we  follow  to build a model to explain the emission and absorption of radiation.

  9. Developing a pedagogical problem solving view for mathematics teachers with two reflection programs

    Directory of Open Access Journals (Sweden)

    Bracha KRAMARSKI

    2009-10-01

    Full Text Available The study investigated the effects of two reflection support programs on elementary school mathematics teachers’ pedagogical problem solving view. Sixty-two teachers participated in a professional development program. Thirty teachers were assigned to the self-questioning (S_Q training and thirty two teachers were assigned to the reflection discourse (R_D training. The S_Q program was based on the IMPROVE self-questioning approach which emphasizes systematic discussion along the phases of mathematical or pedagogical problem solving as student and teacher. The R_D program emphasized discussion of standard based teaching and learning principles. Findings indicated that systematic reflection support (S_Q is effective for developing mathematics PCK, and strengthening metacognitive knowledge of mathematics teachers, more than reflection discourse (R_D. No differences were found between the groups in developing beliefs about teaching mathematics in using problem solving view.

  10. Solving the Weighted Constraint Satisfaction Problems Via the Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Khalid Haddouch

    2016-09-01

    Full Text Available A wide variety of real world optimization problems can be modelled as Weighted Constraint Satisfaction Problems (WCSPs. In this paper, we model this problem in terms of in original 0-1 quadratic programming subject to leaner constraints. View it performance, we use the continuous Hopfield network to solve the obtained model basing on original energy function. To validate our model, we solve several instance of benchmarking WCSP. In this regard, our approach recognizes the optimal solution of the said instances.

  11. Teaching problem solving using non-routine tasks

    Science.gov (United States)

    Chong, Maureen Siew Fang; Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi

    2018-04-01

    Non-routine problems are related to real-life context and require some realistic considerations and real-world knowledge in order to resolve them. This study examines several activity tasks incorporated with non-routine problems through the use of an emerging mathematics framework, at two junior colleges in Brunei Darussalam. The three sampled teachers in this study assisted in selecting the topics and the lesson plan designs. They also recommended the development of the four activity tasks: incorporating the use of technology; simulation of a reality television show; designing real-life sized car park spaces for the school; and a classroom activity to design a real-life sized dustpan. Data collected from all four of the activity tasks were analyzed based on the students' group work. The findings revealed that the most effective activity task in teaching problem solving was to design a real-life sized car park. This was because the use of real data gave students the opportunity to explore, gather information and give or receive feedback on the effect of their reasons and proposed solutions. The second most effective activity task was incorporating the use of technology as it enhanced the students' understanding of the concepts learnt in the classroom. This was followed by the classroom activity that used real data as it allowed students to work and assess the results mathematically. The simulation of a television show was found to be the least effective since it was viewed as not sufficiently challenging to the students.

  12. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems

    Science.gov (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.

    1996-12-01

    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  13. Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique

    International Nuclear Information System (INIS)

    Rakkapao, S; Pengpan, T; Srikeaw, S; Prasitpong, S

    2014-01-01

    This study aims to investigate the use of the predict–observe–explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials. (paper)

  14. Psychoeducation for hypochondriasis : A comparison of a cognitive-behavioural approach and a problem-solving approach

    NARCIS (Netherlands)

    Buwalda, Femke M.; Bouman, Theo. K.; van Duijn, Marijtje A. J.; Van der Duin, M.

    In this study, two 6-week psychoeducational courses for hypochondriasis are compared, one based on the cognitive-behavioural approach, and the other on the problem-solving approach. Effects of both courses on hypochondriacal complaints, depression, trait anxiety, and number of problems encountered

  15. Teaching problem solving: Don't forget the problem solver(s)

    Science.gov (United States)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  16. A reflexive perspective in problem solving

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; López, Margarita

    2013-01-01

    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  17. Development of innovative teaching materials: clinical pharmacology problem-solving (CPPS) units: comparison with patient-oriented problem-solving units and problem-based learning--a 10-year review.

    Science.gov (United States)

    Lathers, Claire M; Smith, Cedric M

    2002-05-01

    The First Teaching Clinic in Clinical Pharmacology, sponsored by the American College of Clinical Pharmacology in September 1992, was designed for the preparation and development of new clinical pharmacology problem-solving (CPPS) units. CPPS units are case histories that illustrate pertinent principles in clinical pharmacology. Each unit consists of the following sections: introduction, learning objectives, pretest, four clinical pharmacology scenarios, posttest, answers to pre- and posttest questions, and selected references. The clinical pharmacology content of the CPPS units place greater emphasis on clinical information, drug selection, and risk/benefit analyses, and thus they complement the basic pharmacology presented in the patient-oriented problem-solving (POPS) units. In general, the CPPS units are intended for use by students more advanced in clinical pharmacology than first- and second-year medical students. The CPPS unit "Clinical Pharmacology of Antiepileptic Drug Use: Clinical Pearls about the Perils of Patty" was developed for use by third- and fourth-year medical students doing rotations in neurology or clinical pharmacology; advanced pharmacy students; residents in neurology, pediatrics, internal medicine, and family practice; fellows in clinical pharmacology, and those taking the board examination in clinical pharmacology. The CPPS unit titled "Geriatric Clinical Psychopharmacology" was written for third- and fourth-year medical students; residents in psychiatry, family practice, and internal medicine;fellows in clinical pharmacology; and those studying for boards in clinical pharmacology. The CPPS unit "Anisocoria and Glaucoma" was written for more advanced students of clinical pharmacology. The CPPS unit titled "Antiepileptic Drugs" was intended for second-year medical students. The second teaching clinic was held in November 1993 and focused on the development and editing of the CPPS units and their evaluations by faculty and students from

  18. Constructing squares as a mathematical problem solving process in pre-school

    Directory of Open Access Journals (Sweden)

    MARIA ANGELA SHIAKALLI

    2014-06-01

    Full Text Available Could problem solving be the object of teaching in early education? Could children’s engagement in problem solving processes lead to skills and conceptual understanding development? Could appropriate teaching interventions scaffold children’s efforts? The sample consisted of 25 children attending public pre-school in Cyprus. The children were asked to construct different sized squares. Findings show that children responded positively to the problem and were successful in solving it. During the problem solving process children demonstrated development of skills and conceptual understanding. Teacher-children and children-children interactions played an important role in the positive outcome of the activity.

  19. Addressing Complex Challenges through Adaptive Leadership: A Promising Approach to Collaborative Problem Solving

    Science.gov (United States)

    Nelson, Tenneisha; Squires, Vicki

    2017-01-01

    Organizations are faced with solving increasingly complex problems. Addressing these issues requires effective leadership that can facilitate a collaborative problem solving approach where multiple perspectives are leveraged. In this conceptual paper, we critique the effectiveness of earlier leadership models in tackling complex organizational…

  20. A Systematic Approach for Solving the Great Circle Track Problems based on Vector Algebra

    Directory of Open Access Journals (Sweden)

    Chen Chih-Li

    2016-04-01

    Full Text Available A systematic approach, based on multiple products of the vector algebra (S-VA, is proposed to derive the spherical triangle formulae for solving the great circle track (GCT problems. Because the mathematical properties of the geometry and algebra are both embedded in the S-VA approach, derivations of the spherical triangle formulae become more understandable and more straightforward as compared with those approaches which use the complex linear combination of a vector basis. In addition, the S-VA approach can handle all given initial conditions for solving the GCT problems simpler, clearer and avoid redundant formulae existing in the conventional approaches. With the technique of transforming the Earth coordinates system of latitudes and longitudes into the Cartesian one and adopting the relative longitude concept, the concise governing equations of the S-VA approach can be easily and directly derived. Owing to the advantage of the S-VA approach, it makes the practical navigator quickly adjust to solve the GCT problems. Based on the S-VA approach, a program namely GCTPro_VA is developed for friendly use of the navigator. Several validation examples are provided to show the S-VA approach is simple and versatile to solve the GCT problems.

  1. Serving Up Number Sense and Problem Solving: Dinner at the Panda Palace.

    Science.gov (United States)

    Wickett, Maryann S.

    1997-01-01

    Describes strategies for using literature to teach number sense and problem solving. Reports that the rich class discussions reflected some of the students' thinking, gave students opportunities to share their approaches and understandings, and gave the teacher additional insights into students' thinking. (JRH)

  2. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  3. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    Science.gov (United States)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  4. Analyzing Interpersonal Problem Solving in Terms of Solution Focused Approach and Humor Styles of University Student

    Science.gov (United States)

    Koc, Hayri; Arslan, Coskun

    2017-01-01

    In this study university students interpersonal problem solving approaches were investigated in terms of solution focused approach and humor styles. The participants were 773 (542 female and 231 male, between 17-33 years old) university students. To determine the university students' problem solving approaches "Interpersonal Problem Solving…

  5. Strongly and weakly directed approaches to teaching multiple representation use in physics

    Directory of Open Access Journals (Sweden)

    Patrick B. Kohl

    2007-06-01

    Full Text Available Good use of multiple representations is considered key to learning physics, and so there is considerable motivation both to learn how students use multiple representations when solving problems and to learn how best to teach problem solving using multiple representations. In this study of two large-lecture algebra-based physics courses at the University of Colorado (CU and Rutgers, the State University of New Jersey, we address both issues. Students in each of the two courses solved five common electrostatics problems of varying difficulty, and we examine their solutions to clarify the relationship between multiple representation use and performance on problems involving free-body diagrams. We also compare our data across the courses, since the two physics-education-research-based courses take substantially different approaches to teaching the use of multiple representations. The course at Rutgers takes a strongly directed approach, emphasizing specific heuristics and problem-solving strategies. The course at CU takes a weakly directed approach, modeling good problem solving without teaching a specific strategy. We find that, in both courses, students make extensive use of multiple representations, and that this use (when both complete and correct is associated with significantly increased performance. Some minor differences in representation use exist, and are consistent with the types of instruction given. Most significant are the strong and broad similarities in the results, suggesting that either instructional approach or a combination thereof can be useful for helping students learn to use multiple representations for problem solving and concept development.

  6. Solving the Water Jugs Problem by an Integer Sequence Approach

    Science.gov (United States)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  7. Surveying Turkish high school and university students’ attitudes and approaches to physics problem solving

    Directory of Open Access Journals (Sweden)

    Nuri Balta

    2016-04-01

    Full Text Available Students’ attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  8. Mathematics Teaching as Problem Solving: A Framework for Studying Teacher Metacognition Underlying Instructional Practice in Mathematics.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    1998-01-01

    Uses a "teaching as problem solving" perspective to examine the components of metacognition underlying the instructional practice of seven experienced and seven beginning secondary-school mathematics teachers. Data analysis of observations, lesson plans, videotapes, and audiotapes of structured interviews suggests that the metacognition of…

  9. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  10. The effects of cumulative practice on mathematics problem solving.

    Science.gov (United States)

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  11. Integrating video and animation with physics problem- solving exercises on the World Wide Web

    Science.gov (United States)

    Titus, Aaron Patrick

    1998-10-01

    Problem solving is of paramount importance in teaching and learning physics. An important step in solving a problem is visualization. To help students visualize a problem, we included video clips with homework questions delivered via the World Wide Web. Although including video with physics problems has a positive effect with some problems, we found that this may not be the best way to integrate multimedia with physics problems since improving visualization is probably not as helpful as changing students' approach. To challenge how students solve problems and to help them develop a more expert-like approach, we developed a type of physics exercise called a multimedia-focused problem where students take data from an animation in order to solve a problem. Because numbers suggestive of a solution are not given in the text of the question, students have to consider the problem conceptually before analyzing it mathematically. As a result, we found that students had difficulty solving such problems compared to traditional textbook-like problems. Students' survey responses showed that students indeed had difficulty determining what was needed to solve a problem when it was not explicitly given to them in the text of the question. Analyzing think-aloud interviews where students verbalized their thoughts while solving problems, we found that multimedia-focused problems indeed required solid conceptual understanding in order for them to be solved correctly. As a result, we believe that when integrated with instruction, multimedia-focused problems can be a valuable tool in helping students develop better conceptual understanding and more expert-like problem solving skills by challenging novice beliefs and problem solving approaches. Multimedia-focused problems may also be useful for diagnosing conceptual understanding and problem skills.

  12. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    Science.gov (United States)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  13. Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach

    International Nuclear Information System (INIS)

    Oberaigner, E.R.; Leindl, M.; Antretter, T.

    2010-01-01

    Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)

  14. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    Science.gov (United States)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  15. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  16. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  17. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  18. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures

    OpenAIRE

    Singh, Arjun

    2010-01-01

    Arjun SinghDepartment of Pathology, Sri Venkateshwara Medical College Hospital and Research Centre, Pondicherry, IndiaPurpose: We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS) system is an innovative teaching–learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, asse...

  19. Group problem solving as a different participatory approach to Citizenship Education.

    NARCIS (Netherlands)

    Guérin, Laurence

    2017-01-01

    Purpose: The main goal of this article is to define and justify group problem solving as an approach to citizenship education. It is demonstrated that the choice of theoretical framework of democracy has consequences for the chosen learning goals, educational approach and learning activities. The

  20. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures.

    Science.gov (United States)

    Singh, Arjun

    2011-01-01

    We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, assess its effectiveness, and assess students' preference for POPS over didactic lectures. One hundred fifty second-year MBBS students were divided into two groups: A and B. Group A was taught by POPS while group B was taught by traditional lectures. Pre- and posttest numerical scores of both groups were evaluated and compared. Students then completed a self-structured feedback questionnaire for analysis. The mean (SD) difference in pre- and post-test scores of groups A and B was 15.98 (3.18) and 7.79 (2.52), respectively. The significance of the difference between scores of group A and group B teaching methods was 16.62 (P effectiveness of POPS. Students responded that POPS facilitates self-learning, helps in understanding topics, creates interest, and is a scientific approach to teaching. Feedback response on POPS was strong in 57.52% of students, moderate in 35.67%, and negative in only 6.81%, showing that 93.19% students favored POPS over simple lectures. It is not feasible to enforce the PBL method of teaching throughout the entire curriculum; However, POPS can be incorporated along with audiovisual aids to break the monotony of dialectic lectures and as alternative to PBL.

  1. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    Science.gov (United States)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  2. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    OpenAIRE

    Havva ILGIN; Derya ARSLAN

    2012-01-01

    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  3. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  4. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  5. Data science in R a case studies approach to computational reasoning and problem solving

    CERN Document Server

    Nolan, Deborah

    2015-01-01

    Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions. The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including: Non-standar

  6. Comparison of mathematical problem solving strategies of primary school pupils

    OpenAIRE

    Wasilewská, Eliška

    2016-01-01

    The aim of this dissertation is to describe the role of educational strategy especially in field of the teaching of mathematics and to compare the mathematical problem solving strategies of primary school pupils which are taught by using different educational strategies. In the theoretical part, the main focus is on divergent educational strategies and their characteristics, next on factors affected teaching/learning process and finally on solving the problems. The empirical part of the disse...

  7. A matheuristic approach for solving the Integrated Timetabling and Vehicle Scheduling Problem

    DEFF Research Database (Denmark)

    Fonseca, Joao Filipe Paiva; Larsen, Allan; van der Hurk, Evelien

    between different trips. We consider transfers between bus trips scheduled by the model, but also transfers to other fixed lines that intersect the lines considered in the IT-VSP. We present a MIP formulation of the IT-VSP able to solve small instances of the problem, and a matheuristic approach that uses...... the compact MIP to solve larger instances of the problem. The idea is to iteratively solve restricted versions of the MIP selecting at each step a subset of trips where modifications are allowed, while all other trips remain fixed. The performance of the proposed matheuristic is shown on a case study...

  8. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    Science.gov (United States)

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  9. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    Science.gov (United States)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  10. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  11. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  12. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    Science.gov (United States)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  13. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  14. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  15. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  16. VET workers’ problem-solving skills in technology-rich environments: European approach

    Directory of Open Access Journals (Sweden)

    Raija Hämäläinen

    2014-08-01

    Full Text Available The European workplace is challenging VET adults’ problem-solving skills in technology-rich environments (TREs. So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults’ skills to date. The present study (N=50 369 focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults’ problem-solving skills in TREs across 11 European countries, two main trends can be observed. First, our results show that only a minority of VET adults perform at a high level. Second, there seems to be substantial variation between countries with respect to the proportion of VET adults that can be identified as “at-risk” or “weak” performers. For the future, our findings indicate the variations that can be used as a starting point to identify beneficial VET approaches.

  17. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    Science.gov (United States)

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  18. Exploring the role of conceptual scaffolding in solving synthesis problems

    Directory of Open Access Journals (Sweden)

    Lin Ding1,*

    2011-10-01

    Full Text Available It is well documented that when solving problems experts first search for underlying concepts while students tend to look for equations and previously worked examples. The overwhelming majority of end-of-chapter (EOC problems in most introductory physics textbooks contain only material and examples discussed in a single chapter, rarely requiring a solver to conduct a general search for underlying concepts. Hypothesizing that complete reliance on EOC problems trains students to rely on a nonexpert approach, we designed and implemented “synthesis” problems, each combining two major concepts that are broadly separated in the teaching timeline. To provide students with guided conceptual scaffolding, we encapsulated each synthesis problem into a sequence with two preceding conceptually based multiple-choice questions. Each question contained one of the major concepts covered in the subsequent synthesis problem. Results from a small-scale interview study and two large-scale written tests showed that the scaffolding encouraged students to search for and apply appropriate fundamental principles in solving synthesis problems, and that repeated training using scaffolded synthesis problems also helped students to make cross-topic transfers.

  19. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    Science.gov (United States)

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  20. Decision-Making Styles and Problem-Solving Appraisal.

    Science.gov (United States)

    Phillips, Susan D.; And Others

    1984-01-01

    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  1. The Kantian Attempt to Solve the Mind-Body Problem. A Critical Approach

    Directory of Open Access Journals (Sweden)

    Pedro Jesús Teruel

    2014-11-01

    Full Text Available The mind-body problem is one of the perennial challenges in the history of ideas. Immanuel Kant (1724-1804 tried to solve it through an approach with several modulations –parallel to his intellectual evolution– that brought him into contact with both the later projection of the theoretical issue (the mind brain problem and its practical side (the immortality question. In this paper I face the Kantian approach to the mind-body problem from a triple perspective: descriptive, appraising and critical.

  2. The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill

    Science.gov (United States)

    Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda

    2016-01-01

    One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…

  3. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  4. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    Science.gov (United States)

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  5. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  6. Teaching problem-solving competency in Business Studies at secondary school level

    Directory of Open Access Journals (Sweden)

    Aloe Meintjes

    2015-08-01

    Full Text Available The high unemployment rate in South Africa compels potential entrepreneurs to start their own businesses in order to survive. Often this is with little or no formal training or education in entrepreneurship. Since problem recognition and problem-solving are amongst the most crucial competencies required for a successful entrepreneurial career, this study aimed to determine whether the application of an extended curriculum with a strong focus on active learning in a business-simulated set-up will enhance this competency. The performance of a specific group of Grade 11 Business Studies learners in this study was measured, both before and after they had been exposed to such an extended curriculum in different experimental settings (intervention. Assessments were done qualitatively through observations and interviews, and quantitatively, by means of question-based scenarios. The findings revealed that the intervention enhanced learners' entrepreneurial competencies concerning problem recognition and problem-solving considerably. This also contributed to these learners' positive approach towards Business Studies. In this article, it is argued that practical exposure in a business-simulated set-up will not only result in enhanced entrepreneurial proficiency in school learners, but also contribute to an accelerated pace of economic growth and job creation in our country.

  7. Outcomes-Based Authentic Learning, Portfolio Assessment, and a Systems Approach to "Complex Problem-Solving": Related Pillars for Enhancing the Innovative Role of PBL in Future Higher Education

    Science.gov (United States)

    Richards, Cameron

    2015-01-01

    The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…

  8. Problem Solving of Newton's Second Law through a System of Total Mass Motion

    Science.gov (United States)

    Abdullah, Helmi

    2014-01-01

    Nowadays, many researchers discovered various effective strategies in teaching physics, from traditional to modern strategy. However, research on physics problem solving is still inadequate. Physics problem is an integral part of physics learning and requires strategy to solve it. Besides that, problem solving is the best way to convey principle,…

  9. Virtual microscopy system at Chinese medical university: an assisted teaching platform for promoting active learning and problem-solving skills.

    Science.gov (United States)

    Tian, Yanping; Xiao, Wengang; Li, Chengren; Liu, Yunlai; Qin, Maolin; Wu, Yi; Xiao, Lan; Li, Hongli

    2014-04-09

    Chinese medical universities typically have a high number of students, a shortage of teachers and limited equipment, and as such histology courses have been taught using traditional lecture-based formats, with textbooks and conventional microscopy. This method, however, has reduced creativity and problem-solving skills training in the curriculum. The virtual microscope (VM) system has been shown to be an effective and efficient educational strategy. The present study aims to describe a VM system for undergraduates and to evaluate the effects of promoting active learning and problem-solving skills. Two hundred and twenty-nine second-year undergraduate students in the Third Military Medical University were divided into two groups. The VM group contained 115 students and was taught using the VM system. The light microscope (LM) group consisted of 114 students and was taught using the LM system. Post-teaching performances were assessed by multiple-choice questions, short essay questions, case analysis questions and the identification of structure of tissue. Students' teaching preferences and satisfaction were assessed using questionnaires. Test scores in the VM group showed a significant improvement compared with those in the LM group (p 0.05); however, there were notable differences in the mean score rate of case analysis questions and identification of structure of tissue (p effects of the VM system in terms of additional learning resources, critical thinking, ease of communication and confidence. The VM system is an effective tool at Chinese medical university to promote undergraduates' active learning and problem-solving skills as an assisted teaching platform.

  10. Anger in Middle School: The Solving Problems Together Model

    Science.gov (United States)

    Hall, Kimberly R.; Rushing, Jeri L.; Owens, Rachel B.

    2009-01-01

    Problem-focused interventions are considered to be one of the most effective group counseling strategies with adolescents. This article describes a problem-focused group counseling model, Solving Problems Together (SPT), with a small group of adolescent African American boys struggling with anger management. Adapted from the teaching philosophy of…

  11. Teaching Elementary Mathematics through Problem Solving and Its Relationship to Mathematics Achievement

    Science.gov (United States)

    Bullock, Audrey N.

    2017-01-01

    Problem solving in mathematics has been a goal for students for decades. In the reviewed literature, problem solving was most often treated as the dependent variable and was defined very broadly; however, few studies were found that included problem solving as a treatment or independent variable. The purpose of this study was to investigate the…

  12. Incorporating technology-based learning tools into teaching and learning of optimization problems

    Science.gov (United States)

    Yang, Irene

    2014-07-01

    The traditional approach of teaching optimization problems in calculus emphasizes more on teaching the students using analytical approach through a series of procedural steps. However, optimization normally involves problem solving in real life problems and most students fail to translate the problems into mathematic models and have difficulties to visualize the concept underlying. As an educator, it is essential to embed technology in suitable content areas to engage students in construction of meaningful learning by creating a technology-based learning environment. This paper presents the applications of technology-based learning tool in designing optimization learning activities with illustrative examples, as well as to address the challenges in the implementation of using technology in teaching and learning optimization. The suggestion activities in this paper allow flexibility for educator to modify their teaching strategy and apply technology to accommodate different level of studies for the topic of optimization. Hence, this provides great potential for a wide range of learners to enhance their understanding of the concept of optimization.

  13. Application of NASA management approach to solve complex problems on earth

    Science.gov (United States)

    Potate, J. S.

    1972-01-01

    The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.

  14. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    Science.gov (United States)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-09-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department).

  15. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  16. Problem-solving in English through business mazes

    CERN Document Server

    Farthing, Joni

    1981-01-01

    We choose our job carefully. What we cannot choose are our colleagues - so it's not surprising that conflict and friction can arise in our working relationships. Business Mazes presents such problems for you to solve. Follow a route through the maze ans see the outcome of each decision you make. You may find that the quickest rout isn't always the best, or the easiest, in the long run. Business Mazes is designed for intermediate and advanced level students of English, working alone or in groups. It includes full teaching plans and exercises. The mazes may also be used effectively as an interesting approach to discussion for young people preparing their first job.

  17. Increasing self-efficacy in learning to program: exploring the benefits of explicit instruction for problem solving

    Directory of Open Access Journals (Sweden)

    Irene Govender

    2014-07-01

    Full Text Available The difficulty of learning to program has long been identified amongst novices. This study explored the benefits of teaching a problem solving strategy by comparing students’ perceptions and attitudes towards problem solving before and after the strategy was implemented in secondary schools. Based on self-efficacy theory, students’ problem solving self-efficacy as well as teachers’ self-efficacy were investigated, showing that both students’ and teachers’ self-efficacy may have benefited from the explicit instruction. This would imply that teaching problem solving explicitly should be encouraged to increase self-efficacy to program.

  18. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-10-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or ill-structured, problems, similar to the types of problems students might face in their professional lives. Given the national discourse on educational system reform aligned with 21st century skills, including problem solving, it is critical to provide educational experiences that help students learn to solve all types of problems, including ill-structured problems.

  19. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  20. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  1. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  2. A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures

    Science.gov (United States)

    2013-01-01

    Background The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, POPS has never been applied in teaching immunology in China. The aim of this study was to develop POPS in teaching immunology and assess students’ and teachers’ perception to POPS. Methods 321 second-year medical students were divided into two groups: I and II. Group I, comprising 110 students, was taught by POPS, and 16 immunology teachers witnessed the whole teaching process. Group II including the remaining 211 students was taught through traditional lectures. The results of the pre- and post-test of both groups were compared. Group I students and teachers then completed a self-structured feedback questionnaire for analysis before a discussion meeting attended only by the teachers was held. Results Significant improvement in the mean difference between the pre- and post-test scores of those in Groups I and II was seen, demonstrating the effectiveness of POPS teaching. Most students responded that POPS facilitates self-learning, helps them to understand topics and creates interest, and 88.12% of students favored POPS over simple lectures. Moreover, while they responded that POPS facilitated student learning better than lectures, teachers pointed out that limited teaching resources would make it difficult for wide POPS application in China. Conclusions While POPS can break up the monotony of dialectic lectures and serve as a better teaching method, it may not be feasible for the current educational environment in China. The main reason for this is the relative shortage of teaching

  3. A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures

    Directory of Open Access Journals (Sweden)

    Zhang Zhiren

    2013-01-01

    Full Text Available Abstract Background The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, POPS has never been applied in teaching immunology in China. The aim of this study was to develop POPS in teaching immunology and assess students’ and teachers’ perception to POPS. Methods 321 second-year medical students were divided into two groups: I and II. Group I, comprising 110 students, was taught by POPS, and 16 immunology teachers witnessed the whole teaching process. Group II including the remaining 211 students was taught through traditional lectures. The results of the pre- and post-test of both groups were compared. Group I students and teachers then completed a self-structured feedback questionnaire for analysis before a discussion meeting attended only by the teachers was held. Results Significant improvement in the mean difference between the pre- and post-test scores of those in Groups I and II was seen, demonstrating the effectiveness of POPS teaching. Most students responded that POPS facilitates self-learning, helps them to understand topics and creates interest, and 88.12% of students favored POPS over simple lectures. Moreover, while they responded that POPS facilitated student learning better than lectures, teachers pointed out that limited teaching resources would make it difficult for wide POPS application in China. Conclusions While POPS can break up the monotony of dialectic lectures and serve as a better teaching method, it may not be feasible for the current educational environment in China. The main reason for this is the

  4. A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures.

    Science.gov (United States)

    Zhang, Zhiren; Liu, Wei; Han, Junfeng; Guo, Sheng; Wu, Yuzhang

    2013-01-28

    The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, POPS has never been applied in teaching immunology in China. The aim of this study was to develop POPS in teaching immunology and assess students' and teachers' perception to POPS. 321 second-year medical students were divided into two groups: I and II. Group I, comprising 110 students, was taught by POPS, and 16 immunology teachers witnessed the whole teaching process. Group II including the remaining 211 students was taught through traditional lectures. The results of the pre- and post-test of both groups were compared. Group I students and teachers then completed a self-structured feedback questionnaire for analysis before a discussion meeting attended only by the teachers was held. Significant improvement in the mean difference between the pre- and post-test scores of those in Groups I and II was seen, demonstrating the effectiveness of POPS teaching. Most students responded that POPS facilitates self-learning, helps them to understand topics and creates interest, and 88.12% of students favored POPS over simple lectures. Moreover, while they responded that POPS facilitated student learning better than lectures, teachers pointed out that limited teaching resources would make it difficult for wide POPS application in China. While POPS can break up the monotony of dialectic lectures and serve as a better teaching method, it may not be feasible for the current educational environment in China. The main reason for this is the relative shortage of teaching resources such as space, library facilities

  5. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    International Nuclear Information System (INIS)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department). (paper)

  6. Solving of Clock Problems Using An Algebraic Approach And Developing An Application For Automatic Conversion

    Science.gov (United States)

    Lakshmi Devaraj, Shanmuga

    2018-04-01

    The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.

  7. A Problem Solving Model for Use in Science Student Teacher Supervision.

    Science.gov (United States)

    Cavallo, Ann M. L.; Tice, Craig J.

    1993-01-01

    Describes and suggests the use of a problem-solving model that improves communication between student teachers and supervisors through the student teaching practicum. The aim of the model is to promote experimentation with various teaching techniques and to stimulate thinking among student teachers about their teaching experiences. (PR)

  8. Knowledge-Based Instruction: Teaching Problem Solving in a Logo Learning Environment.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    1993-01-01

    Discussion of computer programming and knowledge-based instruction focuses on three studies of elementary and secondary school students which show that five particular problem-solving strategies can be developed in students explicitly taught the strategies and given practice applying them to solve LOGO programming problems. (Contains 53…

  9. DESIGNING ALGORITHMS FOR SOLVING PHYSICS PROBLEMS ON THE BASIS OF MIVAR APPROACH

    Directory of Open Access Journals (Sweden)

    Dmitry Alekseevich Chuvikov

    2017-05-01

    Full Text Available The paper considers the process of designing algorithms for solving physics problems on the basis of mivar approach. The work also describes general principles of mivar theory. The concepts of parameter, relation and class in mivar space are considered. There are descriptions of properties which every object in Wi!Mi model should have. An experiment in testing capabilities of the Wi!Mi software has been carried out, thus the model has been designed which solves physics problems from year 8 school course in Russia. To conduct the experiment a new version of Wi!Mi 2.1 software has been used. The physics model deals with the following areas: thermal phenomena, electric and electromagnetic phenomena, optical phenomena.

  10. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  11. A literature review of expert problem solving using analogy

    OpenAIRE

    Mair, C; Martincova, M; Shepperd, MJ

    2009-01-01

    We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial pr...

  12. PROBLEM SOLVING IN SCHOOL MATHEMATICS BASED ON HEURISTIC STRATEGIES

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2014-03-01

    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  13. ESP Teaching at the Institutions of Higher Education in Modern Russia: Problems and Perspectives

    Science.gov (United States)

    Prudnikova, Nadezhda

    2013-01-01

    The author analyses ESP teaching at the institutions of higher education in modern Russia, explains the main problems and suggests the ways of their solving, details the quality control system of the students' progress improvement, presents the complex approach to interactive ESP teaching and views it as an integral part of up-to-date…

  14. The Effect of Concept Mapping and Problem Solving Teaching Strategies on Achievement in Biology among Nigerian Secondary School Students

    Science.gov (United States)

    Okoye, Nnamdi S.; Okechukwu, Rose N.

    2010-01-01

    The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…

  15. The Effectiveness of Problem-Based Learning on Teaching the First Law of Thermodynamics

    Science.gov (United States)

    Tatar, Erdal; Oktay, Munir

    2011-01-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study…

  16. Pengaruh Pembelajaran Inquiry dan Problem Solving terhadap Motivasi dan Prestasi Belajar Matematika

    Directory of Open Access Journals (Sweden)

    Henri Rianto

    2014-06-01

    This study aimed to describe the difference effect of inquiry approach and problem solving approach on motivations to learn mathematics and student mathematics achievement and the better  effect of inquiry approach and problem solving approach on motivations to learn mathematics and student mathematics achievement. This research was a quasi-experimental using nonrandomized control group, pretest-posttest design. The data were collected through non-test and test. The data were analyzed using the MANOVA test and independent sample t-test with significance level of 0,05. The results of the study show  the inquiry approach and problem solving approach was not effective to increase the student mathematics achievement, the inquiry approach and problem solving approach was not effective to increase the motivation to learn mathematics, and there is no difference effect between the inquiry approach and the problem solving approach on learning motivations and the student mathematics achievement. Keywords: inquiry approach, problem solving approach, motivations to learn mathematics, student mathematics achievement

  17. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  18. What Is Physics Problem-Solving Competency? The Views of Arnold Sommerfeld and Enrico Fermi

    Science.gov (United States)

    Niss, Martin

    2018-05-01

    A central goal of physics education is to teach problem-solving competency, but the description of the nature of this competency is somehwat fragmentary and implicit in the literature. The present article uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions on the nature of physics problem-solving competency. The first, Sommerfeld's, is a "theory first, phenomenon second" approach. Here, the relevant problems originate in one of the theories of physics and the goal of the problem-solver is to make a mathematical analysis of the relevant equation(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi's position is a "phenomenon first, theory second" approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions are illustrated with solutions to two problems and it is shown that the two positions are reflected in problem collections of university educations in physics.

  19. An approach to solve replacement problems under intuitionistic fuzzy nature

    Science.gov (United States)

    Balaganesan, M.; Ganesan, K.

    2018-04-01

    Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.

  20. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  1. Quantitative Reasoning in Problem Solving

    Science.gov (United States)

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  2. Enhanced Critical Thinking Skills through Problem-Solving Games in Secondary Schools

    OpenAIRE

    Scott D McDonald

    2017-01-01

    Aim/Purpose: Students face many challenges improving their soft skills such as critical thinking. This paper offers one possible solution to this problem. Background: This paper considers one method of enhancing critical thinking through a problem-solving game called the Coffee Shop. Problem-solving is a key component to critical thinking, and game-playing is one method of enhancing this through an interactive teaching method. Methodology: Three classes of Vietnamese high school stude...

  3. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  4. Education problems and Web-based teaching: how it impacts dental educators?

    Science.gov (United States)

    Clark, G T

    2001-01-01

    This article looks at six problems that vex educators and how web-based teaching might help solve them. These problems include: (1) limited access to educational content, (2) need for asynchronous access to educational content, (3) depth and diversity of educational content, (4) training in complex problem solving, (5) promotion of lifelong learning behaviors and (6) achieving excellence in education. The advantages and disadvantage of web-based educational content for each problem are discussed. The article suggests that when a poorly organized course with inaccurate and irrelevant content is placed online, it solves no problems. However some of the above issues can be partially or fully solved by hosting well-constructed teaching modules on the web. This article also reviews the literature investigating the efficacy of off-site education as compared to that provided on-site. The conclusion of this review is that teleconference-based and web-based delivery of educational content can be as effective as traditional classroom-based teaching assuming the technologic problems sometimes associated with delivering teaching content to off-site locations do not interfere in the learning process. A suggested hierarchy for rating and comparing e-learning concepts and methods is presented for consideration.

  5. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2013-01-01

    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  6. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  7. Beyond Assertiveness Training: A Problem-Solving Approach.

    Science.gov (United States)

    Scott, Nancy A.

    1979-01-01

    Assertiveness training models show shortcomings in those situations where assertiveness results in stalemates or conflicts, or both. Deadlocks may occur when antagonists demonstrate appropriate assertive behavior. Conflict management using problem-solving skills allows individuals to learn appropriate methods of dealing with conflictual or…

  8. Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem

    International Nuclear Information System (INIS)

    Athayde Costa e Silva, Marsil de; Klein, Carlos Eduardo; Mariani, Viviana Cocco; Santos Coelho, Leandro dos

    2013-01-01

    The environmental/economic dispatch (EED) is an important daily optimization task in the operation of many power systems. It involves the simultaneous optimization of fuel cost and emission objectives which are conflicting ones. The EED problem can be formulated as a large-scale highly constrained nonlinear multiobjective optimization problem. In recent years, many metaheuristic optimization approaches have been reported in the literature to solve the multiobjective EED. In terms of metaheuristics, recently, scatter search approaches are receiving increasing attention, because of their potential to effectively explore a wide range of complex optimization problems. This paper proposes an improved scatter search (ISS) to deal with multiobjective EED problems based on concepts of Pareto dominance and crowding distance and a new scheme for the combination method. In this paper, we have considered the standard IEEE (Institute of Electrical and Electronics Engineers) 30-bus system with 6-generators and the results obtained by proposed ISS algorithm are compared with the other recently reported results in the literature. Simulation results demonstrate that the proposed ISS algorithm is a capable candidate in solving the multiobjective EED problems. - Highlights: ► Economic dispatch. ► We solve the environmental/economic economic power dispatch problem with scatter search. ► Multiobjective scatter search can effectively improve the global search ability

  9. Completion strategy or emphasis manipulation? Task support for teaching information problem solving

    NARCIS (Netherlands)

    Frerejean, Jimmy; Van Strien, Johan; Kirschner, Paul A.; Brand-Gruwel, Saskia

    2016-01-01

    While most students seem to solve information problems effortlessly, research shows that the cognitive skills for effective information problem solving are often underdeveloped. Students manage to find information and formulate solutions, but the quality of their process and product is questionable.

  10. Completion strategy or emphasis manipulation? : Task support for teaching information problem solving

    NARCIS (Netherlands)

    Frerejean, Jimmy; van Strien, J.L.H.; Kirschner, Paul A.; Brand-Gruwel, Saskia

    While most students seem to solve information problems effortlessly, research shows that the cognitive skills for effective information problem solving are often underdeveloped. Students manage to find information and formulate solutions, but the quality of their process and product is questionable.

  11. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  12. Investigasi Kemampuan Problem Solving dan Problem Posing Matematis Mahasiswa Via Pendekatan Realistic

    OpenAIRE

    Afriansyah, Ekasatya Aldila

    2016-01-01

    Mathematical problem solving and problem posing skill are the mathematical skills that need to be owned by students. By having this skill, students can be more creative in expressing ideas by connecting the knowledge that they held previously. But in reality, there are some students who are lack of problem solving skill; therefore it is really important to improve learning through appropriate approach. Realistic approach had been chosen as the learning theory to be applied in the class. This ...

  13. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  14. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    Science.gov (United States)

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  15. THE PHYSICAL LABORATORY ACTIVITIES WITH PROBLEM SOLVING APPROACH TO INCREASE CRITICAL THINKING SKILL AND UNDERSTANDING STUDENT CONCEPT

    Directory of Open Access Journals (Sweden)

    Eli Trisnowati

    2017-10-01

    Full Text Available This study aims to investigate the description of the improvement of students’ critical thinking skills and the concept understanding by implementing the problem-solving approach. This study was in laboratory activities. This study was done in four times meeting. The try out subjects was 31 students of grades X of MAN Yogyakarta III. This research is using the quasi experimental method with the pretest-posttest design. The data were collected by using multiple choices tests with assessment rubric and observation sheets. The data are analyzed by using multivariate analysis. Based on the result, the gain standard value of students’ conceptual understanding and students’ critical thinking skills for grade X who learned through student’s worksheet with a problem-solving approach, called treatment class, are higher than students who learned without student’s worksheet with a problem-solving approach, called control class.

  16. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    Science.gov (United States)

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  17. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  18. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  19. Backtrack Programming: A Computer-Based Approach to Group Problem Solving.

    Science.gov (United States)

    Scott, Michael D.; Bodaken, Edward M.

    Backtrack problem-solving appears to be a viable alternative to current problem-solving methodologies. It appears to have considerable heuristic potential as a conceptual and operational framework for small group communication research, as well as functional utility for the student group in the small group class or the management team in the…

  20. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    Science.gov (United States)

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  1. An Efficient Approach for Solving Mesh Optimization Problems Using Newton’s Method

    Directory of Open Access Journals (Sweden)

    Jibum Kim

    2014-01-01

    Full Text Available We present an efficient approach for solving various mesh optimization problems. Our approach is based on Newton’s method, which uses both first-order (gradient and second-order (Hessian derivatives of the nonlinear objective function. The volume and surface mesh optimization algorithms are developed such that mesh validity and surface constraints are satisfied. We also propose several Hessian modification methods when the Hessian matrix is not positive definite. We demonstrate our approach by comparing our method with nonlinear conjugate gradient and steepest descent methods in terms of both efficiency and mesh quality.

  2. VET workers problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija

    2014-01-01

    The European workplace is challenging VET adults problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults problem-solving sk...

  3. VET workers’ problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults’ problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults’ skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults’ problem-solving...

  4. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  5. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  6. Effects of an explicit problem-solving skills training program using a metacomponential approach for outpatients with acquired brain injury.

    Science.gov (United States)

    Fong, Kenneth N K; Howie, Dorothy R

    2009-01-01

    We investigated the effects of an explicit problem-solving skills training program using a metacomponential approach with 33 outpatients with moderate acquired brain injury, in the Hong Kong context. We compared an experimental training intervention with this explicit problem-solving approach, which taught metacomponential strategies, with a conventional cognitive training approach that did not have this explicit metacognitive training. We found significant advantages for the experimental group on the Metacomponential Interview measure in association with the explicit metacomponential training, but transfer to the real-life problem-solving measures was not evidenced in statistically significant findings. Small sample size, limited time of intervention, and some limitations with these tools may have been contributing factors to these results. The training program was demonstrated to have a significantly greater effect than the conventional training approach on metacomponential functioning and the component of problem representation. However, these benefits were not transferable to real-life situations.

  7. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  8. A Selection Approach for Optimized Problem-Solving Process by Grey Relational Utility Model and Multicriteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Chih-Kun Ke

    2012-01-01

    Full Text Available In business enterprises, especially the manufacturing industry, various problem situations may occur during the production process. A situation denotes an evaluation point to determine the status of a production process. A problem may occur if there is a discrepancy between the actual situation and the desired one. Thus, a problem-solving process is often initiated to achieve the desired situation. In the process, how to determine an action need to be taken to resolve the situation becomes an important issue. Therefore, this work uses a selection approach for optimized problem-solving process to assist workers in taking a reasonable action. A grey relational utility model and a multicriteria decision analysis are used to determine the optimal selection order of candidate actions. The selection order is presented to the worker as an adaptive recommended solution. The worker chooses a reasonable problem-solving action based on the selection order. This work uses a high-tech company’s knowledge base log as the analysis data. Experimental results demonstrate that the proposed selection approach is effective.

  9. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  10. Transformational and derivational strategies in analogical problem solving.

    Science.gov (United States)

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  11. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    Science.gov (United States)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  12. PEMBELAJARAN KONTEKSTUAL OPEN ENDED PROBLEM SOLVING DENGAN KOMIK MATEMATIKA UNTUK MENINGKATKAN KETERAMPILAN PEMECAHAN MASALAH

    Directory of Open Access Journals (Sweden)

    Lenny Kurniati

    2017-01-01

    ABSTRACT The aim of this research to develop a mathematics learning instrument using contextual open ended problem solving with mathematic comic to increase the problem solving skill which valid, practical and effective. The type of research used in this study is development research using modification of Plomp model. Learning instrumen that have been develop are: syllabus, Lesson plan, worksheet, mathematics comic, and problem solving ability test. The results showed: (1 device developed valid; (2 practical learning is characterized by the positive response of students and good teachers ability, (3 Effectiveness characterized by (a problem solving ability score of the experimental class higher than minimum completeness criterion, (b learn interest and problem solving skill, both affected the problem solving ability positively,  (c problem solving ability of the experimental class score is higher than the control class, (d problem solving skill of the experimental class is increasing by 31%, the problem solving ability of the experimental class higher than the control class.. Because of the learning instrument develope are valid, practice and effective, it is shows that the research has ben reach out. Keywords: contextual teaching and learning, open ended problem solving, mathematics comic, problem solving.

  13. The Effectiveness of Problem Solving Therapy on Coping Skills in Women with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Zohreh Hoseini

    2014-06-01

    Full Text Available Objectives: Since problem solving group training is a comprehensive, active program and based-on cognitive behavioral approach, the aim of present study was to determine the effectiveness of problem solving therapy on depression and coping style in patients with type 2 diabetes mellitus. Methods: In an experimental design the study was done with pretest-posttest with control group. Totally 30 female clients who had inclusion criteria with score of 20-28 in Beck Depression Inventory was selected from Prophet Mohammad hospital in Tehran and divided to two groups. Then coping skills questionnaire was completed by experimental and control group. The experimental group participated in seven sessions on problem solving therapy, while the control group received no intervention. T-test analysis and variance analysis with repeated measures on one variable were used for data analysis. Results: The results of variance analysis show that teaching problem solving therapy on Zurilla and Goldfried model lead to significant reducing emotion focused coping skills and significant increasing problem focused coping skills among patients with type 2 diabetes on the experimental group. The results also indicated significant reducing depression between this individual in experimental groups. Discussion: The results of this study indicated that problem solving therapy could be effective way for improvement coping skill and reducing depression in patients with type 2 diabetes mellitus.

  14. The Effect of Problem Solving Task on Critical Reading of Intermediate EFL Learners in Iranian Context

    Directory of Open Access Journals (Sweden)

    Masoud Khalili Sabet

    2017-12-01

    Full Text Available The attempt in this study is to investigate the effect of teaching critical thinking through problem solving on  reading comprehension performance of EFL intermediate learners. In so doing, forty including twenty male and twenty female intermediate students studying English in an institute in Ardabil, Iran, were selected based on their scores on Preliminary English Test and assigned into control and experimental groups. Afterwards, the sample TOEFL reading comprehension pre-test was administered to both of these groups to ensure homogeneity. The learners in experimental group were taught through problem solving instruction and the learners in control group were taught through traditional method of instructing reading comprehension. After ten sessions of instruction, the same sample TOEFL reading comprehension as post-test was given to the learners to measure the possible differences between pre-test and post-test. The finding revealed teaching problem solving had statistically significant effect on EFL learners reading comprehension performance. Conclusion can be drawn to confirm that teaching critical thinking through problem solving bring better understanding of the text.

  15. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  16. Excel 2016 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching engineering statistics effectively. Similar to the previously published Excel 2013 for Engineering Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However,Excel 2016 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and...

  17. Excel 2016 for business statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching business statistics effectively. Similar to the previously published Excel 2010 for Business Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Business Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each ch...

  18. Excel 2016 for marketing statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This is the first book to show the capabilities of Microsoft Excel in teaching marketing statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical marketing problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in marketing courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Marketing Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader t...

  19. Excel 2013 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach engineering statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs...

  20. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    Science.gov (United States)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  1. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    Science.gov (United States)

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  2. Problem-based learning for technical students on the base TRIZ (theory of inventive problem solving

    Directory of Open Access Journals (Sweden)

    Babenko Oksana

    2016-01-01

    Full Text Available The basis of modern educational technology in teaching is problem-based learning through the use of educational technologies Powerful Thinking - Theory of Inventive Problem Solving (TRIZ, including a systematic approach to the complex organization of independent work of search and research character. Developed by systemic administration of the physical features workshops on the basis TRIZ in the cycle of the natural sciences with the implementation of all aspects of the educational activities - substantive, procedural and motivational. A new model of the physical design of the workshop and its form of organization, which is based on problem-based learning with the use of TRIZ Interactive form of organization of the workshop allows you to get high-quality substantive and personality of the students who have a significant role in the formation of professional competencies and affect the quality of produce practice-oriented specialists.

  3. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    Science.gov (United States)

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  4. Excel 2016 for social work statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2017-01-01

    This text is a step-by-step guide for students taking a first course in statistics for social work and for social work managers and practitioners who want to learn how to use Excel to solve practical statistics problems in in the workplace, whether or not they have taken a course in statistics. There is no other text for a first course in social work statistics that teaches students, step-by-step, how to use Excel to solve interesting social work statistics problems. Excel 2016 for Social Work Statistics explains statistical formulas and offers practical examples for how students can solve real-world social work statistics problems. This book leaves detailed explanations of statistical theory to other statistics textbooks and focuses entirely on practical, real-world problem solving. Each chapter briefly explains a topic and then demonstrates how to use Excel commands and formulas to solve specific social work statistics problems.  This book gives practice in using Excel in two different ways:  (1) writing ...

  5. Negotiation as a metaphor for distributed problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Smith, R.G.

    1983-01-01

    The authors describe the concept of distributed problem solving and defines it as the cooperative solution of problems by a decentralized and loosely coupled collection of problem solvers. This approach to problem solving offers the promise of increased performance and provides a useful medium for exploring and developing new problem-solving techniques. A framework is presented called the contract net that specifies communication and control in a distribution problem solver. Task distribution is viewed as an interactive process, a discussion carried on between a node with a task to be executed and a group of nodes that may be able to execute the task. The kinds of information are described that must be passed between nodes during the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation metaphor: task distribution is viewed as a form of contract negotiation. 32 references.

  6. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  7. Why and How We Made a Problem Oriented AV Teaching Unit for Chemistry Students.

    Science.gov (United States)

    Mulder, T. H. M.; Verdonk, A. H.

    1984-01-01

    Describes an audiovisual teaching unit on the chemical laboratory technique of recrystallization which was developed along problem-solving lines and based on observation of student laboratory behavior. Discussion includes usual procedures for developing such units, how this unit solves problems typically associated with teaching, and its general…

  8. New approaches to solving the management problem of long-lived radionuclides

    International Nuclear Information System (INIS)

    Egorov, N.N.; Zakharov, M.A.; Lazarev, L.N.; Lyubtsev, R.I.; Nikiforov, A.S.; Strakhov, M.V.; Filippov, E.A.

    1991-01-01

    During spent fuel reprocessing the most dangerous long-lived radionuclides are present both in off-gases on the stage of cutting and dissolution and mainly in highly radioactive raffinates arising from the first extraction cycle. In the last years the investigators of the Soviet Union are more and more led to the conclusion that the more reasonable combination of routine methods for waste management and new technical approaches could contribute to the profound solution of this problem. Estimations and specific development are focused on the followings; partitioning of long-lived radionuclides; improvement of solidification methods; substantiation of possibilities for transmutation of long-lived radionuclides; evaluation of potentialities for disposal of radioactive wastes into outer space. Many sided elaborations are needed for the realization of such concept; the most necessary developments have been already performed in some research programs. International cooperation in this field is likely to approach solving the settled problem. (M.N.)

  9. Understanding catastrophizing from a misdirected problem-solving perspective.

    Science.gov (United States)

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  10. Collaborative Learning in Problem Solving: A Case Study in Metacognitive Learning

    Directory of Open Access Journals (Sweden)

    Shelly L. Wismath

    2015-12-01

    Full Text Available Problem solving and collaborative communication are among the key 21st century skills educators want students to develop. This paper presents results from a study of the collaborative work patterns of 133 participants from a university level course designed to develop transferable problem-solving skills. Most of the class time in this course was spent on actually solving puzzles, with minimal direct instruction; students were allowed to work either independently or in small groups of two or more, as they preferred, and to move back and forth between these two modalities as they wished. A distinctive student-driven pattern blending collaborative and independent endeavour was observed, consistently over four course offerings in four years. We discuss a number of factors which appear to be related to this variable pattern of independent and collaborative enterprise, including the thinking and learning styles of the individuals, the preference of the individuals, the types of problems being worked on, and the stage in a given problem at which students were working. We also consider implications of these factors for the teaching of problem solving, arguing that the development of collaborative problem solving abilities is an important metacognitive skill.

  11. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving

    Directory of Open Access Journals (Sweden)

    Balasubrahmanya Hegde

    2012-03-01

    Full Text Available A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results suggests the necessity of identification of the skill sets required for developing better problem solving abilities.

  12. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    Science.gov (United States)

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  13. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    Science.gov (United States)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles

  14. An e-learning approach to informed problem solving

    Directory of Open Access Journals (Sweden)

    Georg Weichhart

    2012-06-01

    Full Text Available When taking into account individualized learning processes not only content and interaction facilities need to be re-considered, but also the design of learning processes per se. Besides explicitness of learning objectives, interactive means of education need to enable intertwining content and communication elements as basic elements of active learning in a flexible way while preserving a certain structure of the learning process. Intelligibility Catchers are a theoretically grounded framework to enable such individualized processes. It allows learners and teachers agreeing and determining a desired learning outcome in written form. This type of e-learning contract enables students to individually explore content and participate in social interactions, while being guided by a transparent learning process structure. The developed implementation empowers learners in terms of creative problem-solving capabilities, and requires adaptation of classroom situations. The framework and its supporting semantic e-learning environment not only enables diverse learning and problem solving processes, but also supports the collaborative construction of e-learning contracts.

  15. Effects of team-based learning on problem-solving, knowledge and clinical performance of Korean nursing students.

    Science.gov (United States)

    Kim, Hae-Ran; Song, Yeoungsuk; Lindquist, Ruth; Kang, Hee-Young

    2016-03-01

    Team-based learning (TBL) has been used as a learner-centered teaching strategy in efforts to improve students' problem-solving, knowledge and practice performance. Although TBL has been used in nursing education in Korea for a decade, few studies have studied its effects on Korean nursing students' learning outcomes. To examine the effects of TBL on problem-solving ability and learning outcomes (knowledge and clinical performance) of Korean nursing students. Randomized controlled trial. 63 third-year undergraduate nursing students attending a single university were randomly assigned to the TBL group (n=32), or a control group (n=31). The TBL and control groups attended 2h of class weekly for 3weeks. Three scenarios with pulmonary disease content were employed in both groups. However, the control group received lectures and traditional case study teaching/learning strategies instead of TBL. A questionnaire of problem-solving ability was administered at baseline, prior to students' exposure to the teaching strategies. Students' problem-solving ability, knowledge of pulmonary nursing care, and clinical performance were assessed following completion of the three-week pulmonary unit. After the three-week educational interventions, the scores on problem-solving ability in the TBL group were significantly improved relative to that of the control group (t=10.89, pproblem-solving ability, knowledge and clinical performance. More research on other specific learning outcomes of TBL for nursing students is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Increasing self-efficacy in learning to program : Exploring the benefits of explicit instruction for problem solving

    NARCIS (Netherlands)

    Govender, I.; Govender, D.; Havenga, M.; Mentz, E.; Breed, B.; Dignum, F.; Dignum, V.

    2014-01-01

    The difficulty of learning to program has long been identified amongst novices. This study explored the benefits of teaching a problem solving strategy by comparing students’ perceptions and attitudes towards problem solving before and after the strategy was implemented in secondary schools. Based

  17. Promotion of Problem Solving Skills by Using Metacognitive-based Instruction in Students of Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    yahya safari

    2017-06-01

    Full Text Available Background and objective: Studies have indicated that metacognitive strategies control and direct cognitive strategies. Thus, application of metacognitive and cognitive strategies together is essential for successful learning to happen. The present study was conducted to examine the effect of metacognitive-oriented instruction on development of problem solving skills in students of Kermanshah University of Medical Sciences. Materials and Methods: This study was a quasi-experimental research with pretest/posttest and control group design. The study sample included the students of Kermanshah University of Medical Sciences (n=4283 in the academic year of 2013-2014. A total number of 40 students were selected through convenient sampling method as the study sample. The samples were randomly placed in experimental and control groups. For the experimental group, problem solving skills were taught based on metacognitive strategies in 8 sessions, each session for 1 and half hours. For the control group, however, problem solving skills were taught through conventional teaching method. The instrument for data collection was Heppner’s problem solving inventory (1988 whose validity and reliability were confirmed previously. Data were analyzed by descriptive statistics, mean and standard deviation, and the hypotheses were tested through t-test. Results: The results of the posttest showed that the total mean of scores for problem solving skills in the experimental group (99.75 was higher than that of the control group (26.800 (p<0.0001. This difference was significant in the case of confidence, approach/avoidance and personal control components (p<0.0001. Moreover, the mean of students’ scores was not significant in terms of gender and major. Conclusion: Given the positive effect of metacognitive strategies on the students’ performance and the necessity of teaching metacognition for the sake of academic achievement, these strategies are recommended to be

  18. Innovative teaching: Using multimedia in a problem-based learning environment

    Directory of Open Access Journals (Sweden)

    Mai Neo

    2001-10-01

    Full Text Available Presently, traditional educational approaches have resulted in a mismatch between what is taught to the students and what the industry needs. As such, many institutions are moving towards problem-based learning as a solution to producing graduates who are creative, can think critically and analytically, and are able to solve problems. In this paper, we focus on using multimedia technology as an innovative teaching and learning strategy in a problem-based learning environment by giving the students a multimedia project to train them in this skill set. The purpose of this project was to access the students’ skills in framing and solving problems using multimedia technologies. The students worked in groups and each group had to pick a topic for their project, develop, design and present it in a CD-ROM. They were then surveyed on their attitudes toward the project and their skills as a team. Results showed that the students were very positive toward the project, enjoyed teamwork, able to think critically and became active participants in their learning process. Therefore, multimedia-oriented projects, like many other problem-based learning solutions, can be used alternatively as an innovative and effective tool in a problem-based learning environment for the acquisition of problem-solving skills.

  19. Methods of solving sequence and series problems

    CERN Document Server

    Grigorieva, Ellina

    2016-01-01

    This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...

  20. The Effects of Social Constructivist Approach on the Learnersâ Problem Solving and Metacognitive Levels

    OpenAIRE

    Erdal Bay; Birsen Bagceci; Bayram Cetin

    2012-01-01

    Problem statement: Socio-cultural constructivism; stressing the social context, culture and collaborative side of learning, is another kind of constructivism. The social constructivist approach has positive effects on learners. It can be said that in improving problem solving and met cognitive awareness skills, which are amongst basic skills every individual should possess today. The purpose of this study is to investigate whether there is a significant difference in the learnersâ problem sol...

  1. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    Science.gov (United States)

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  2. Teaching Problem-Solving Competency in Business Studies at Secondary School Level

    Science.gov (United States)

    Meintjes, Aloe; Henrico, Alfred; Kroon, Japie

    2015-01-01

    The high unemployment rate in South Africa compels potential entrepreneurs to start their own businesses in order to survive. Often this is with little or no formal training or education in entrepreneurship. Since problem recognition and problem-solving are amongst the most crucial competencies required for a successful entrepreneurial career,…

  3. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    Science.gov (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  4. Excel 2013 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching physical sciences statistics effectively. Similar to the previously published Excel 2010 for Physical Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their ...

  5. Excel 2013 for social sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach social science statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formul...

  6. Excel 2010 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmental sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental sciences problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Eac...

  7. Excel 2016 for health services management statistics a guide to solving problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching health services management statistics effectively. Similar to the previously published Excel 2013 for Health Services Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health service management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health service courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply...

  8. Excel 2016 for social science statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching social science statistics effectively. Similar to the previously published Excel 2013 for Social Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in ...

  9. Excel 2013 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmentall sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chap...

  10. Finer Distinctions: Variability in Satisfied Older Couples' Problem-Solving Behaviors.

    Science.gov (United States)

    Rauer, Amy; Williams, Leah; Jensen, Jakob

    2017-06-01

    This study utilized observational and self-report data from 64 maritally satisfied and stable older couples to explore if there were meaningful differences in how couples approached marital disagreements. Using a typology approach to classify couples based on their behaviors in a 15-minute problem-solving interaction, findings revealed four types of couples: (1) problem solvers (characterized by both spouses' higher problem-solving skills and warmth), (2) supporters (characterized by both spouses' notable warmth), (3) even couples (characterized by both spouses' moderate problem-solving skills and warmth), and (4) cool couples (characterized by both spouses' greater negativity and lower problem-solving skills and warmth). Despite the differences in these behaviors, all couples had relatively high marital satisfaction and functioning. However, across nearly all indices, spouses in the cool couple cluster reported poorer marital functioning, particularly when compared to the problem solvers and supporters. These findings suggest that even modest doses of negativity (e.g., eye roll) may be problematic for some satisfied couples later in life. The implications of these typologies are discussed as they pertain to practitioners' efforts to tailor their approaches to a wider swath of the population. © 2015 Family Process Institute.

  11. How illustrations influence performance and eye movement behaviour when solving problems in vector calculus

    DEFF Research Database (Denmark)

    Ögren, Magnus; Nyström, Marcus

    2012-01-01

    Mathematical formulas in vector calculus often have direct visual representations, which in form of illustrations are used extensively during teaching and when assessing students’ levels of understanding. However, there is very little, if any, empirical evidence of how the illustrations...... are utilized during problem solving and whether they are beneficial to comprehension. In this paper we collect eye movements and performance scores (true or false answers) from students while solving eight problems in vector calculus; 20 students solve illustrated problems whereas 16 students solve the same...... problems, but without the illustrations. Results show no overall performance benefit for illustrated problems even though they are clearly visually attended. Surprisingly, we found a significant effect of whether the answer to the problem was true of false; students were more likely to answer...

  12. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    Science.gov (United States)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  13. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    Science.gov (United States)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  14. Technology Confidence, Competence and Problem Solving Strategies: Differences within Online and Face-to-Face Formats

    Science.gov (United States)

    Peterson, Sharon L.; Palmer, Louann Bierlein

    2011-01-01

    This study identified the problem solving strategies used by students within a university course designed to teach pre-service teachers educational technology, and whether those strategies were influenced by the format of the course (i.e., face-to-face computer lab vs. online). It also examined to what extent the type of problem solving strategies…

  15. FGP Approach for Solving Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy parameters

    Directory of Open Access Journals (Sweden)

    m. s. osman

    2017-09-01

    Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.

  16. AI tools in computer based problem solving

    Science.gov (United States)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  17. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    Science.gov (United States)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  18. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  19. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving

    OpenAIRE

    Balasubrahmanya Hegde; B. N. Meera

    2012-01-01

    A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results ...

  20. Problem-solving skills training for mothers of children recently diagnosed with autism spectrum disorder: A pilot feasibility study.

    Science.gov (United States)

    Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B

    2016-01-01

    Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.

  1. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    name; Elective Course Student Sectioning. The problem is solved using ALNS and solutions are proven to be close to optimum. The algorithm has been implemented and made available for the majority of the high schools in Denmark. The second Student Sectioning problem presented is the sectioning of each...... high schools. Two types of consultations are presented; the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). One mathematical model containing both consultation types has been created and solved using an ALNS approach. The received solutions...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  2. KEEFEKTIFAN PENDEKATAN OPEN-ENDED DAN PROBLEM SOLVING PADA PEMBELAJARAN BANGUN RUANG SISI DATAR DI SMP

    Directory of Open Access Journals (Sweden)

    Nuning Melianingsih

    2015-11-01

    Full Text Available Penelitian ini bertujuan untuk menentukan keefektifan dan perbandingan keefektifan dari pendekatan open-ended dan problem solving pada pembelajaran bangun ruang sisi datar ditinjau dari pencapaian kemampuan penalaran, pemecahan masalah, dan komunikasi matematis. Penelitian ini adalah quasi experiment dengan desain pretest-posttest nonequivalent group design. Populasi penelitian mencakup seluruh siswa kelas VIII SMP Negeri 1 Pandak, Bantul, Yogyakarta. Selanjutnya dengan memilih secara acak dari keseluruhan kelas tersebut, terpilih kelas VIII F dan VIII G sebagai sampel penelitian. Untuk menguji keefektifan masing-masing pendekatan pembelajaran digunakan uji one sample t-test. Untuk menguji bahwa pendekatan open-ended lebih efektif daripada pendekatan problem solving, data dianalisis menggunakan MANOVA yang dilanjutkan dengan uji t-Bonferroni. Hasil penelitian menunjukkan bahwa kedua pendekatan pembelajaran efektif ditinjau dari masing-masing aspek, dan pendekatan open-ended lebih efektif daripada pendekatan problem solving pada pembelajaran bangun ruang sisi datar ditinjau dari pencapaian kemampuan penalaran, pemecahan masalah, dan komunikasi matematis di SMP. Kata Kunci: pendekatan open-ended, pendekatan problem solving, kemampuan penalaran, kemampuan pemecahan masalah, kemampuan komunikasi matematis   THE EFFECTIVENESS OF OPEN-ENDED AND PROBLEM SOLVING APPROACH IN MATTER OF FLAT SIDE CONSTRUCT IN JUNIOR HIGH SCHOOL Abstract The aims of this research are to decide the effectiveness and the comparison of the effectiveness of open-ended and problem solving approach toward matter of flat side construct lesson viewed from achivement of reasoning ability, problem solving and mathematics communication. This study was a quasi experimental study using the pretest-posttest nonequivalent group design. The research population covered the entire VIII class students’ of SMP Negeri 1 Pandak, Bantul, Yogyakarta. From the population, classes of VIII F and

  3. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    Science.gov (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  4. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    Science.gov (United States)

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  5. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  6. Excel 2016 for educational and psychological statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching educational and psychological statistics effectively. Similar to the previously published Excel 2013 for Educational and Psychological Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical education and psychology problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in education and psychology courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Educational and Psychological Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and man...

  7. Exploring Early Childhood Preservice Teachers' Problem-Solving Skills through Socioscientific Inquiry Approach

    Science.gov (United States)

    Fadzil, Hidayah Mohd

    2017-01-01

    Developing problem solving skills is often accepted as a desirable goal in many educational settings. However, there is little evidence to support that students are better problem solvers after graduating. The students can solve routine problems but they confronted difficulties when adapting their prior knowledge for the solution of new problems.…

  8. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    Science.gov (United States)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  9. The Features of Using the Information Technologies to Solve the Problems of Teaching the Foreign Language for the Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Marina Alexeevna Laskovets

    2014-05-01

    Full Text Available The strategy of forming a competitive linguistic space dictates a necessity to use modern IT and means of distance learning while teaching foreign languages to postgraduates of non-linguistics higher learning institutions. The problems of designing, implementation and support of the information security systems in the technologies of distant foreign language teaching become essential in a multidiscipline approach of teaching postgraduates.

  10. Math Teachers' Attitudes towards Photo Math Application in Solving Mathematical Problem Using Mobile Camera

    Science.gov (United States)

    Hamadneh, Iyad M.; Al-Masaeed, Aslan

    2015-01-01

    This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…

  11. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  12. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  13. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  14. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  15. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    Science.gov (United States)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  16. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  17. Reflective Teaching via a Problem Exploration--Teaching Adaptations--Resolution Cycle: A Mixed Methods Study of Preservice Teachers' Reflective Notes

    Science.gov (United States)

    Hayden, H. Emily; Chiu, Ming Ming

    2015-01-01

    We explore development of elementary preservice teachers' reflective practices as they solved problems encountered while teaching in a reading clinic. Written reflections (N = 175) were collected across 8 weeks from 23 preservice teachers and analyzed to investigate relationships among problem exploration, teaching adaptations, and problem…

  18. LEMBAR KERJA PESERTA DIDIK (LKPD BERBASIS PROBLEM SOLVING POLYA

    Directory of Open Access Journals (Sweden)

    Lilis Nurliawaty

    2017-03-01

    Full Text Available Lack of exact use of teaching materials and does not correspond to the needs of student leads to lack of analytical ability of students to the process of problem solving. Research development worksheets based on Polya problem solving on the heat material aims to develop valid LKPD, practical, and effective. Stages of development using the 4D model was modified into 3D, namely define (definition, Design (planning, and Development (development The results of the validity of the learning device in the category valid, obtained from the calculation of CVI are in the range 0-1 and said in category reliably with r11 value greater than rtabel (rcount > rtabel. The results of the analysis of questionnaire responses of students obtained an average percentage of 87.9% on the analysis. The analysis result of sheets assessment of learning physics used LKPD-based Polya problem solving obtained average percentage analysis results in the first meeting is 77.33% with good category, the average percentage of the results of the analysis at the second meeting is 81.11% with a very good category and average of results percentage analysis at the third meeting is 78.89% with good category. So it can say that LKPD-based Polya problem solving developed valid, practical and effective to use.

  19. How Do They Solve It? An Insight into the Learner's Approach to the Mechanism of Physics Problem Solving

    Science.gov (United States)

    Hegde, Balasubrahmanya; Meera, B. N.

    2012-01-01

    A perceived difficulty is associated with physics problem solving from a learner's viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students' thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student…

  20. THINK ALOUD PAIR PROBLEM SOLVING (TAPPS STRATEGY IN TEACHING READING

    Directory of Open Access Journals (Sweden)

    Muhammad Zuhri Dj

    2015-12-01

    Full Text Available This research is aim to know what extent the achievement of students’ reading comprehension by using Think Aloud Pair Problem Solving (TAPPS strategy at the tenth grade students of SMKN 3 Watampone. the objectives of the research is to know what extent the achievement of student’s reading comprehension by using Think Aloud Pair Problem Solving (TAPPS strategy. The population of this research is the tenth grade students of SMKN 3 Watampone which has 149 students. The writers applied random sampling, because the school has students more than 100 students. The X Multimedia Class is taken as the sample, because it has many students who have low values in English subject based on their teacher report. This research employs an instrument based on the problem statements investigated, It is Reading comprehension test. After several meetings, this research finds out the achievement of students’ reading comprehension significantly effective to improve the student’s reading comprehension. The result of this research shows that the mean score obtained by the students through pretest was 46.545 and posttest was 88.364; the t-test value was higher than the t-table (49.385 > 2.080. It means that there is a significant difference between the result of the students’ pretest and posttest

  1. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-01-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or…

  2. Toward Teaching Methods that Develop Learning and Enhance Problem Solving Skills in Engineering Students

    Science.gov (United States)

    Loji, K.

    2012-01-01

    Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…

  3. Does Problem-Based Learning Improve Problem Solving Skills?--A Study among Business Undergraduates at Malaysian Premier Technical University

    Science.gov (United States)

    Kadir, Z. Abdul; Abdullah, N. H.; Anthony, E.; Salleh, B. Mohd; Kamarulzaman, R.

    2016-01-01

    Problem-based Learning (PBL) approach has been widely used in various disciplines since it is claimed to improve students' soft skills. However, empirical supports on the effect of PBL on problem solving skills have been lacking and anecdotal in nature. This study aimed to determine the effect of PBL approach on students' problem solving skills…

  4. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  5. Excel 2010 for health services management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2014-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach health services management statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health services management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.   Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health services management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2010 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work....

  6. Excel 2013 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows how Microsoft Excel is able to teach human resource management statistics effectively. Similar to the previously published Excel 2010 for Human Resource Management Statistics, it is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to ...

  7. Excel 2016 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching human resource management statistics effectively. Similar to the previously published Excel 2013 for Human Resource Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how ...

  8. Excel 2013 for health services management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel to teach health services management statistics effectively. Similar to the previously published Excel 2010 for Health Services Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health services management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health services management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers ho...

  9. Excel 2013 for educational and psychological statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach educational and psychological statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical problems in education and psychology. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and practitioners, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Educational and Psychological Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and work. E...

  10. Excel 2010 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2014-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach human resource  management statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and ...

  11. New Problems and Solutions in Basic University Teaching

    Science.gov (United States)

    Olesen, Mogens Noergaard

    2008-01-01

    In this paper we will examine some of the problems and difficulties in modern university teaching and how these difficulties were overcome and the problems were solved. Because the syllabus in Danish (and other European) high schools has been substantially weakened over the last decade and especially since 2002, the university students have…

  12. The Relationship between Students' Problem Solving Frames and Epistemological Beliefs

    Science.gov (United States)

    Wampler, Wendi N.

    2013-01-01

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. "Matter and Interactions"…

  13. A life history approach to delineating how harsh environments and hawk temperament traits differentially shape children's problem-solving skills.

    Science.gov (United States)

    Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante

    2017-08-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.

  14. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  15. Helping students learn effective problem solving strategies by reflecting with peers

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2010-07-01

    We study how introductory physics students engage in reflection with peers about problem solving. The recitations for an introductory physics course with 200 students were broken into a "peer reflection" (PR) group and a traditional group. Each week in recitation, small teams of students in the PR group reflected on selected problems from the homework and discussed why the solutions of some students employed better problem solving strategies than others. The graduate and undergraduate teaching assistants in the PR recitations provided guidance and coaching to help students learn effective problem solving heuristics. In the traditional group recitations students could ask the graduate TA questions about the homework before they took a weekly quiz. The traditional group recitation quiz questions were similar to the homework questions selected for peer reflection in the PR group recitations. As one measure of the impact of this intervention, we investigated how likely students were to draw diagrams to help with problem solving on the final exam with only multiple-choice questions. We found that the PR group drew diagrams on more problems than the traditional group even when there was no explicit reward for doing so. Also, students who drew more diagrams for the multiple-choice questions outperformed those who did not, regardless of which group they were a member.

  16. The main problem solving differences between high school and university in mathematical beliefs and professional behavior

    Directory of Open Access Journals (Sweden)

    Reza Akhlaghi Garmjani

    2016-10-01

    Full Text Available Teaching science and math has been underdeveloped in nurturing the talents and motivations of young people who are in search of professions in these fields. Identifying and strengthening the students' problem solving beliefs and behaviors, can be a great help to those involved in teaching mathematics. This study investigates on the university and high school students, teachers and professors' problem solving beliefs and behaviors. Considering the research method, this study is a field research in which questionnaire is used. Participants in this research were senior high school and university students, math teachers and math professors. Data collection method for beliefs and behavior variables was via the use of a questionnaire. The Mann-Whitney test results showed that problem solving in high school and university was different and the main difference was in mathematical professional beliefs and behaviors.

  17. Investigating Pre-service Mathematics Teachers’ Geometric Problem Solving Process in Dynamic Geometry Environment

    Directory of Open Access Journals (Sweden)

    Deniz Özen

    2013-03-01

    Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers

  18. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  19. Problem solving stages in the five square problem.

    Science.gov (United States)

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  20. Problem solving stages in the five square problem

    Directory of Open Access Journals (Sweden)

    Anna eFedor

    2015-08-01

    Full Text Available According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviourally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. 101 participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and 67 of them also had the possibility of reporting impasse while working on the task. We have found that 49% (19 out of 39 of the solvers and 13% (8 out of 62 of the non-solvers followed the classic four-stage model of insight. The rest of the participants had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model must be extended to explain variability on the individual level. We provide a model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviourally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behaviour to verify insight theory.

  1. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.

  2. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.

  3. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    Science.gov (United States)

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  4. A flipped mode teaching approach for large and advanced electrical engineering courses

    Science.gov (United States)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  5. Current challenges and problems in teaching pathophysiology in Ukraine - another reaction to Churilov's paper.

    Science.gov (United States)

    Ataman, Oleksandr V

    2017-12-01

    Pathophysiology in Ukraine has rich traditions and achievements in the scientific areas, as well as in teaching academic discipline. Its history, the main Ukrainian scientific schools and their famous representatives are briefly described. The content of existing study program, the main approaches to teaching, and some methodological and organizational problems needed to be solved are characterized. The necessity and usefulness of developing and implementing the three separate courses of discipline (Essential, Clinical and Advanced Pathophysiology) are substantiated. The place of Pathophysiology in the training of physicians with different kinds of their future activity is discussed. Relation of teaching Pathophysiology to Translational and Personalized Medicine is tried to be shown.

  6. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Science.gov (United States)

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  7. What's the Right Answer? Team Problem-Solving in Environments of Uncertainty

    Science.gov (United States)

    Jameson, Daphne A.

    2009-01-01

    Whether in the workplace or the classroom, many teams approach problem-solving as a search for certainty--even though certainty rarely exists in business. This search for the one right answer to a problem creates unrealistic expectations and often undermines teams' effectiveness. To help teams manage their problem-solving process and communication…

  8. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    Science.gov (United States)

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  9. Developing material for promoting problem-solving ability through bar modeling technique

    Science.gov (United States)

    Widyasari, N.; Rosiyanti, H.

    2018-01-01

    This study aimed at developing material for enhancing problem-solving ability through bar modeling technique with thematic learning. Polya’s steps of problem-solving were chosen as the basis of the study. The methods of the study were research and development. The subject of this study were five teen students of the fifth grade of Lab-school FIP UMJ elementary school. Expert review and student’ response analysis were used to collect the data. Furthermore, the data were analyzed using qualitative descriptive and quantitative. The findings showed that material in theme “Selalu Berhemat Energi” was categorized as valid and practical. The validity was measured by using the aspect of language, contents, and graphics. Based on the expert comments, the materials were easy to implement in the teaching-learning process. In addition, the result of students’ response showed that material was both interesting and easy to understand. Thus, students gained more understanding in learning problem-solving.

  10. A Novel Approach for Solving Semidefinite Programs

    Directory of Open Access Journals (Sweden)

    Hong-Wei Jiao

    2014-01-01

    Full Text Available A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs (SDP. For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the dual slack variables; then the primal variables, that is, Lagrange multipliers, are updated. In addition, the proposed approach renews all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.

  11. The Effects of Problem-Based Learning on Pre-Service Teachers' Critical Thinking Dispositions and Perceptions of Problem-Solving Ability

    Science.gov (United States)

    Temel, Senar

    2014-01-01

    The aim of this study was two-fold. The first aim was to determine the levels of critical thinking disposition and perception of problem-solving ability of pre-service teachers. The second aim was to compare the effects of problem-based learning and traditional teaching methods on the critical thinking dispositions and perceptions of…

  12. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    Science.gov (United States)

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  13. A Conceptual Model for Solving Percent Problems.

    Science.gov (United States)

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  14. Turkish Primary School Students' Strategies in Solving a Non-Routine Mathematical Problem and Some Implications for the Curriculum Design and Implementation

    Science.gov (United States)

    Erdogan, Abdulkadir

    2015-01-01

    Turkish primary mathematics curriculum emphasizes the role of problem solving for teaching mathematics and pays particular attention to problem solving strategies. Patterns as a subject and the use of patterns as a non-routine problem solving strategy are also emphasized in the curriculum. The primary purpose of this study was to determine how…

  15. Improving Problem Solving Skill and Self Regulated Learning of Senior High School Students through Scientific Approach using Quantum Learning strategy

    Directory of Open Access Journals (Sweden)

    M Sudirman

    2017-12-01

    Full Text Available This research is quasi experiment with control group pretest-postest design. The sampel in this research using the techique of purposive sampling so the samples used were two classes of the 11th grade students of SMAN 14 Bandung in the academic year 2017/2018. The experiment group uses saintific approach using Quantum Learning strategy and control group uses saintific approach. In collecting the data the researcher will use the test of problem solving ability and self regulated learning as the instrument. The aims of this research are to:1find out the improvement of students mathematical problem solving through scientific approach using Quantum Learning study, 2 find out students self regulated learning through scientific approach using Quantum Learning.

  16. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  17. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  18. Excel 2016 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapte...

  19. Problem solving environment for distributed interactive applications

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.

    2008-01-01

    Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE

  20. Peningkatan Kemampuan Problem Solving Mahasiswa Sebagai Calon Guru Fisika Menggunakan Socratic Dialogue

    Directory of Open Access Journals (Sweden)

    Nurita Apridiana Lestari

    2017-03-01

    Full Text Available Mastery of the concepts of physics students can be measured by its ability to solve the problems of physics. Problem solving ability is one component that must be owned by the students as a physics teacher candidates. Based on the results of initial observations, it is known that the problem solving ability of students is still low, especially associated with the use of physics concepts to solve problems. Therefore, the ability of problem solving should be trained in teaching as a form of scaffolding for students. Scaffolding can be done through the method of Socratic dialogue which is the provision of structured questions to help students find answers to the problems of physics using the right concept. This type of research is the Classroom Action Research  with two cycles were performed on physics student teachers in the subjects Physics 1 with a fluid material. Improved problem solving ability was measured using test items at the end of the cycle. The results qualitatively show their developments and increased activity in the classroom compared to learning before the action. These results are supported quantitatively by an increase in average test scores of the first cycle of 70.00 into 75.86 in the second cycle. Keywords: problem solving, socratic dialogue Penguasaan konsep fisika mahasiswa dapat diukur dari kemampuannya dalam memecahkan permasalahan fisika (problem solving. Kemampuan problem solving merupakan salah satu komponen yang harus dimiliki oleh mahasiswa sebagai calon guru fisika. Berdasarkan hasil observasi awal, diketahui bahwa kemampuan problem solving mahasiswa masih rendah, khususnya terkait dengan penggunaan konsep fisika untuk memecahkan masalah. Oleh karena itu, kemampuan problem solving perlu dilatihkan dalam pembelajaran sebagai bentuk scaffolding bagi mahasiswa. Scaffolding dapat dilakukan melalui metode socratic dialogue yang merupakan pemberian pertanyaan terstruktur untuk membantu mahasiswa menemukan jawaban

  1. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    Science.gov (United States)

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  2. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    Science.gov (United States)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching

  3. The Effects of Two Strategic and Meta-Cognitive Questioning Approaches on Children's Explanatory Behaviour, Problem-Solving, and Learning during Cooperative, Inquiry-Based Science

    Science.gov (United States)

    Gillies, Robyn M.; Nichols, Kim; Burgh, Gilbert; Haynes, Michele

    2012-01-01

    Teaching students to ask and answer questions is critically important if they are to engage in reasoned argumentation, problem-solving, and learning. This study involved 35 groups of grade 6 children from 18 classrooms in three conditions (cognitive questioning condition, community of inquiry condition, and the comparison condition) who were…

  4. Excel 2013 for business statistics a guide to solving practical business problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach business statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Business Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work.                                �...

  5. Write Is Right: Using Graphic Organizers to Improve Student Mathematical Problem Solving

    Science.gov (United States)

    Zollman, Alan

    2012-01-01

    Teachers have used graphic organizers successfully in teaching the writing process. This paper describes graphic organizers and their potential mathematics benefits for both students and teachers, elucidates a specific graphic organizer adaptation for mathematical problem solving, and discusses results using the "four-corners-and-a-diamond"…

  6. Recent Trends in Japanese Mathematics Textbooks for Elementary Grades: Supporting Teachers to Teach Mathematics through Problem Solving

    Science.gov (United States)

    Takahashi, Akihiko

    2016-01-01

    Problem solving has been a major theme in Japanese mathematics curricula for nearly 50 years. Numerous teacher reference books and lesson plans using problem solving have been published since the 1960s. Government-authorized mathematics textbooks for elementary grades, published by six private companies, have had more and more problem solving over…

  7. Online Problem Solving for Adolescent Brain Injury: A Randomized Trial of 2 Approaches.

    Science.gov (United States)

    Wade, Shari L; Taylor, Hudson Gerry; Yeates, Keith Owen; Kirkwood, Michael; Zang, Huaiyu; McNally, Kelly; Stacin, Terry; Zhang, Nanhua

    Adolescent traumatic brain injury (TBI) contributes to deficits in executive functioning and behavior, but few evidence-based treatments exist. We conducted a randomized clinical trial comparing Teen Online Problem Solving with Family (TOPS-Family) with Teen Online Problem Solving with Teen Only (TOPS-TO) or the access to Internet Resources Comparison (IRC) group. Children, aged 11 to 18 years, who sustained a complicated mild-to-severe TBI in the previous 18 months were randomly assigned to the TOPS-Family (49), TOPS-TO (51), or IRC group (52). Parent and self-report measures of externalizing behaviors and executive functioning were completed before treatment and 6 months later. Treatment effects were examined using linear regression models, adjusting for baseline symptom levels. Age, maternal education, and family stresses were examined as moderators. The TOPS-Family group had lower levels of parent-reported executive dysfunction at follow-up than the TOPS-TO group, and differences between the TOPS-Family and IRC groups approached significance. Maternal education moderated improvements in parent-reported externalizing behaviors, with less educated parents in the TOPS-Family group reporting fewer symptoms. On the self-report Behavior Rating Inventory of Executive Functions, treatment efficacy varied with the level of parental stresses. The TOPS-Family group reported greater improvements at low stress levels, whereas the TOPS-TO group reported greater improvement at high-stress levels. The TOPS-TO group did not have significantly lower symptoms than the IRC group on any comparison. Findings support the efficacy of online family problem solving to address executive dysfunction and improve externalizing behaviors among youth with TBI from less advantaged households. Treatment with the teen alone may be indicated in high-stress families.

  8. Description of Student’s Metacognitive Ability in Understanding and Solving Mathematics Problem

    Science.gov (United States)

    Ahmad, Herlina; Febryanti, Fatimah; Febryanti, Fatimah; Muthmainnah

    2018-01-01

    This research was conducted qualitative which was aim to describe metacognitive ability to understand and solve the problems of mathematics. The subject of the research was the first year students at computer and networking department of SMK Mega Link Majene. The sample was taken by purposive sampling technique. The data obtained used the research instrument based on the form of students achievements were collected by using test of student’s achievement and interview guidance. The technique of collecting data researcher had observation to ascertain the model that used by teacher was teaching model of developing metacognitive. The technique of data analysis in this research was reduction data, presentation and conclusion. Based on the whole findings in this study it was shown that student’s metacognitive ability generally not develops optimally. It was because of limited scope of the materials, and cognitive teaching strategy handled by verbal presentation and trained continuously in facing cognitive tasks, such as understanding and solving problem.

  9. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  10. Exploiting Quantum Resonance to Solve Combinatorial Problems

    Science.gov (United States)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  11. Exact Methods for Solving the Train Departure Matching Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Bull, Simon Henry

    In this paper we consider the train departure matching problem which is an important subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train units to scheduled departing trains at a railway...... site while respecting multiple physical and operational constraints. In this paper we formally define that subproblem, prove its NP- hardness, and present two exact method approaches for solving the problem. First, we present a compact Mixed Integer Program formulation which we solve using a MIP solver...

  12. A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks.

    Science.gov (United States)

    van Horik, Jayden O; Madden, Joah R

    2016-04-01

    Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus , and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes.

  13. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    Science.gov (United States)

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  14. USING OF TASK APPROACH METHOD WHILE TEACHING PROGRAMMING TO THE FUTURE INFORMATICS TEACHERS

    Directory of Open Access Journals (Sweden)

    Oleksandr M. Kryvonos

    2014-04-01

    Full Text Available This article is dedicated to the problem of teaching programming to the future informatics teachers from the standpoint of competence approach in teaching. The article defines the role and the place of task approach in the process of teaching the module on “Procedure programming”, which is the part of the programming course; it scrutinizes the systematization of levels of tasks, which are proposed by D. Toleengerov. The article describes the levels of complexity of tasks (reproductive, partially searching, research (creative, which are used in the formation of methodological provision for programming course. It also presents the examples of tasks of specific topics to solve which a student should have habits which are crucial for informational communicational technological competence.

  15. Application of Case-Task Based Approach in Business English Teaching--A Case Study of the Marketing Course in SEIB of GDUFS

    Science.gov (United States)

    Guiyu, Dai; Yi, Cai

    2017-01-01

    Business English Teaching aims at cultivating students' ability to analyze and solve problems, improving students' comprehensive language competence and honing their business practical skills. Adhering to the principle of learning by doing and learning by teaching others, Case-Task Based Approach emphasizes students' ability of language use in…

  16. Problem-Solving Skills Appraisal Mediates Hardiness and Suicidal Ideation among Malaysian Undergraduate Students

    Science.gov (United States)

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229

  17. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    Science.gov (United States)

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  18. Integrating marker passing and problem solving a spreading activation approach to improved choice in planning

    CERN Document Server

    Hendler, James A

    2014-01-01

    A recent area of interest in the Artificial Intelligence community has been the application of massively parallel algorithms to enhance the choice mechanism in traditional AI problems. This volume provides a detailed description of how marker-passing -- a parallel, non-deductive, spreading activation algorithm -- is a powerful approach to refining the choice mechanisms in an AI problem-solving system. The author scrutinizes the design of both the algorithm and the system, and then reviews the current literature and research in planning and marker passing. Also included: a comparison of this

  19. An integrated approach for solving a MCDM problem, Combination of Entropy Fuzzy and F-PROMETHEE techniques

    Directory of Open Access Journals (Sweden)

    Amin Shahmardan

    2013-09-01

    Full Text Available Purpose: The intention of this paper is the presentation of a new integrated approach for solving a multi attribute decision making problem by the use of Entropy Fuzzy and F- PROMETHEE (fuzzy preference ranking method for enrichment evaluation techniques. Design/methodology/approach: In these sorts of multi attribute decision making problem, a number of criteria and alternatives are put forward as input data. Ranking of these alternatives according to mentioned criteria is regarded as the outcome of solving these kinds of problems. Initially, weights of criteria are determined by implementation of Entropy Fuzzy method. According to determined weights, F-PROMETHEE method is exerted to rank these alternatives in terms of desirability of DM (decision maker. Findings: Being in an uncertain environment and vagueness of DM’s judgments, lead us to implement an algorithm which can deal with these constraints properly. This technique namely called Entropy Fuzzy as a weighting method and F-PROMETHEE is performed to fulfill this approach more precisely according to tangible and intangible aspects. The main finding of applied approach is the final ranking of alternatives helping DM to have a more reliable decision. Originality/Value: The main contribution of this approach is the giving real significance to DM’s attitudes about mentioned criteria in determined alternatives which is not elucidate in former approaches like Analytical Hierarchy Process (AHP. Furthermore, previous methods like Shanon Entropy do not pay attention sufficiently to satisfaction degree of each criterion in proposed alternatives, regarding to DM’s statements. Comprehensive explanations about these procedures have been made in miscellaneous sections of this article.

  20. ASIT--A Problem Solving Strategy for Education and Eco-Friendly Sustainable Design

    Science.gov (United States)

    Turner, Steve

    2009-01-01

    There is growing recognition of the role teaching and learning experiences in technology education can contribute to Education for Sustainable Development. It appears, however, that in the Technology Education classroom little or no change has been achieved to the practice of designing and problem solving strategies oriented towards sustainable…

  1. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  2. Effects of the Digital Game-Development Approach on Elementary School Students' Learning Motivation, Problem Solving, and Learning Achievement

    Science.gov (United States)

    Chu, Hui-Chun; Hung, Chun-Ming

    2015-01-01

    In this study, the game-based development approach is proposed for improving the learning motivation, problem solving skills, and learning achievement of students. An experiment was conducted on a learning activity of an elementary school science course to evaluate the performance of the proposed approach. A total of 59 sixth graders from two…

  3. An Approximation Approach for Solving the Subpath Planning Problem

    OpenAIRE

    Safilian, Masoud; Tashakkori, S. Mehdi; Eghbali, Sepehr; Safilian, Aliakbar

    2016-01-01

    The subpath planning problem is a branch of the path planning problem, which has widespread applications in automated manufacturing process as well as vehicle and robot navigation. This problem is to find the shortest path or tour subject for travelling a set of given subpaths. The current approaches for dealing with the subpath planning problem are all based on meta-heuristic approaches. It is well-known that meta-heuristic based approaches have several deficiencies. To address them, we prop...

  4. Guidance for modeling causes and effects in environmental problem solving

    Science.gov (United States)

    Armour, Carl L.; Williamson, Samuel C.

    1988-01-01

    Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).

  5. A model for solving the prescribed burn planning problem.

    Science.gov (United States)

    Rachmawati, Ramya; Ozlen, Melih; Reinke, Karin J; Hearne, John W

    2015-01-01

    The increasing frequency of destructive wildfires, with a consequent loss of life and property, has led to fire and land management agencies initiating extensive fuel management programs. This involves long-term planning of fuel reduction activities such as prescribed burning or mechanical clearing. In this paper, we propose a mixed integer programming (MIP) model that determines when and where fuel reduction activities should take place. The model takes into account multiple vegetation types in the landscape, their tolerance to frequency of fire events, and keeps track of the age of each vegetation class in each treatment unit. The objective is to minimise fuel load over the planning horizon. The complexity of scheduling fuel reduction activities has led to the introduction of sophisticated mathematical optimisation methods. While these approaches can provide optimum solutions, they can be computationally expensive, particularly for fuel management planning which extends across the landscape and spans long term planning horizons. This raises the question of how much better do exact modelling approaches compare to simpler heuristic approaches in their solutions. To answer this question, the proposed model is run using an exact MIP (using commercial MIP solver) and two heuristic approaches that decompose the problem into multiple single-period sub problems. The Knapsack Problem (KP), which is the first heuristic approach, solves the single period problems, using an exact MIP approach. The second heuristic approach solves the single period sub problem using a greedy heuristic approach. The three methods are compared in term of model tractability, computational time and the objective values. The model was tested using randomised data from 711 treatment units in the Barwon-Otway district of Victoria, Australia. Solutions for the exact MIP could be obtained for up to a 15-year planning only using a standard implementation of CPLEX. Both heuristic approaches can solve

  6. O enfoque problematizador na formação de profissionais da saúde Problem-solving approach in the training of healthcare professionals

    Directory of Open Access Journals (Sweden)

    Nildo Batista

    2005-04-01

    training of healthcare professionals who would be able to act both in academic life and in educational practices in services and communities. METHODS: This is an analytical description of an experience of problem-based learning in specialization-level training that was developed within a university-level healthcare education institution. The analysis focuses on three perspectives: course design, student-centered learning and the teacher's role. RESULT: The problem-solving approach provided impetus to the learning experience for these postgraduate students. There was increased motivation, leadership development and teamworking. This was translated through their written work, seminars and portfolio preparation. The evaluation process for these experiences presupposes well-founded practices that express the views of the subjects involved: self-assessment and observer assessment. The impact of this methodology on teaching practices is that there is a need for greater knowledge of the educational theories behind the principles of significant learning, teachers as intermediaries and research as an educational axiom. CONCLUSIONS: The problem-solving approach is an innovative response to the challenges of training healthcare professionals. Its potential is recognized, while it is noted that educational innovations are characterized by causing ruptures in consolidated methods and by establishing different ways of responding to demands presented at specific moments. The critical problems were identified, while highlighting the risk of considering this approach to be a technical tool that is unconnected with the design of the teaching policy. Experiences and analyses based on the problem-solving assumptions need to be shared, thus enabling the production of knowledge that strengthens the transformation of educational practices within healthcare.

  7. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  8. Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?

    Science.gov (United States)

    Musgrove, John L; Morris, Jason; Estrada, Carlos A; Kraemer, Ryan R

    2016-05-01

    Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms.

  9. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  10. Enhancing learners’ problem solving performance in mathematics: A cognitive load perspective - See more at: http://www.lectitopublishing.nl/Article/List/88/11/15#sthash.gmkglGIQ.dpuf

    Directory of Open Access Journals (Sweden)

    Joseph J. Dhlamini

    2016-03-01

    Full Text Available This paper reports on a pilot study that investigated the effect of implementing a context-based problem solving instruction (CBPSI to enhance the problem solving performance of high school mathematics learners. Primarily, the pilot study aimed: (1 to evaluate the efficiency of data collection instruments; and, (2 to test the efficacy of CBPSI in relation to learners’ problem solving performance. In this paper CBPSI refers to a teaching approach in which everyday problem solving knowledge and practices are uncovered when learners are exposed to tasks that give meaning to their everyday experiences. Given that the design of a pilot study lacked the inclusion of a control group, it is reasonable to conclude that the current design embraced elements of a pre-experimental research approach in which a one-group pre-test post-test design was followed. Participants consisted of a convenient sample of 57 Grade 10 learners who performed poorly in mathematics problem solving. The results of the study informed various conceptual and methodological revisions to strengthen the design of the main study, however, this paper reports only the effect of CBPSI on participants’ problem solving performance. The post-intervention achievement test suggested that CBPSI was effective in substantially accelerating learners’ problem solving performance (p<0.05. Using a cognitive load theory, it is possible to explain aspects of growth in learners’ problem solving performance in relation to the conceptual notion of human cognitive architecture.

  11. Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

    Science.gov (United States)

    Sharov, J. V.

    2017-12-01

    Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.

  12. Temperament and problem solving in a population of adolescent guide dogs.

    Science.gov (United States)

    Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L

    2017-09-01

    It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.

  13. Environmental problem-solving: Psychosocial factors

    Science.gov (United States)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  14. Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting

    Science.gov (United States)

    Klegeris, Andis; Bahniwal, Manpreet; Hurren, Heather

    2013-01-01

    Problem-based learning (PBL) was originally introduced in medical education programs as a form of small-group learning, but its use has now spread to large undergraduate classrooms in various other disciplines. Introduction of new teaching techniques, including PBL-based methods, needs to be justified by demonstrating the benefits of such techniques over classical teaching styles. Previously, we demonstrated that introduction of tutor-less PBL in a large third-year biochemistry undergraduate class increased student satisfaction and attendance. The current study assessed the generic problem-solving abilities of students from the same class at the beginning and end of the term, and compared student scores with similar data obtained in three classes not using PBL. Two generic problem-solving tests of equal difficulty were administered such that students took different tests at the beginning and the end of the term. Blinded marking showed a statistically significant 13% increase in the test scores of the biochemistry students exposed to PBL, while no trend toward significant change in scores was observed in any of the control groups not using PBL. Our study is among the first to demonstrate that use of tutor-less PBL in a large classroom leads to statistically significant improvement in generic problem-solving skills of students. PMID:23463230

  15. Solving algebraic computational problems in geodesy and geoinformatics the answer to modern challenges

    CERN Document Server

    Awange, Joseph L

    2004-01-01

    While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...

  16. A multilevel cost-space approach to solving the balanced long transportation problem

    Science.gov (United States)

    Cavanaugh, Kevin J.; Henson, Van Emden

    1993-01-01

    We develop a multilevel scheme for solving the balanced long transportation problem, that is, given a set (c(sub kj)) of shipping costs from a set of M supply nodes S(sub k) to a set of N demand nodes D(sub j), we seek to find a set of flows, (x(sub kj)), that minimizes the total cost Sigma(sub k=1)(exp M) Sigma(sub j=1)(exp N) x(sub kj)c(sub kj). We require that the problem be balanced, that is, the total demand must equal the total supply. Solution techniques for this problem are well known from optimization and linear programming. We examine this problem, however, in order to develop principles that can then be applied to more intractible problems of optimization. We develop a multigrid scheme for solving the problem, defining the grids, relaxation, and intergrid operators. Numerical experimentation shows that this line of research may prove fruitful. Further research directions are suggested.

  17. Using the Solving Problems Together Psychoeducational Group Counseling Model as an Intervention for Negative Peer Pressure

    Science.gov (United States)

    Hall, Kimberly R.; Rushing, Jeri Lynn; Khurshid, Ayesha

    2011-01-01

    Problem-focused interventions are considered to be one of the most effective group counseling strategies with adolescents. This article describes a problem-focused group counseling model, Solving Problems Together (SPT), that focuses on working with students who struggle with negative peer pressure. Adapted from the teaching philosophy of…

  18. Problem solving verbal strategies in children with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Gligorović Milica

    2013-01-01

    Full Text Available Problem solving is a process conditioned by the development and application of efficient strategies. The aim of this research is to determine the level of verbal strategic approach to problem solving in children with mild intellectual disability (MID. The sample consists of 93 children with MID, aged between 10 and 14. Intellectual abilities of the examinees are within the defined range for mild intellectual disability (AM=60.45; SD=7.26. The examinees with evident physical, neurological, and emotional disorders were not included in the sample. The closed 20 Questions Test (20Q was used to assess the development and use of verbal strategy, where the examinee is presented with a poster containing 42 different pictures, and instructed to guess the picture selected by the examiner by asking no more than 20 closed questions. Test χ2, and Spearman and Pearson's correlation coefficient were used in statistical analysis. Research results indicate that most children with MID, aged between 10 and 14, use non-efficient strategy in solving the 20 Questions Test. Although strategic approach to problem solving is present in most children (72%, more than half of the examinees (53.5% use an inadequate strategy. Most children with MID have the ability to categorize concepts, however, they do not use it as a strategy in problem solving.

  19. Customer-centered problem solving.

    Science.gov (United States)

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  20. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  1. An Effective Approach to Teaching Electrochemistry.

    Science.gov (United States)

    Birss, Viola I.; Truax, D. Rodney

    1990-01-01

    An approach which may be useful for teaching electrochemistry in freshman college chemistry courses is presented. Discussed are the potential problems with teaching this subject and solutions provided by this approach. (CW)

  2. Student’s scheme in solving mathematics problems

    Science.gov (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  3. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  4. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  5. An Interactive Approach to Learning and Teaching in Visual Arts Education

    Directory of Open Access Journals (Sweden)

    Zlata Tomljenović

    2015-09-01

    Full Text Available The present research focuses on modernising the approach to learning and teaching the visual arts in teaching practice, as well as examining the performance of an interactive approach to learning and teaching in visual arts classes with the use of a combination of general and specific (visual arts teaching methods. The study uses quantitative analysis of data on the basis of results obtained from a pedagogical experiment. The subjects of the research were 285 second- and fourth-grade students from four primary schools in the city of Rijeka, Croatia. Paintings made by the students in the initial and final stage of the pedagogical experiment were evaluated. The research results confirmed the hypotheses about the positive effect of interactive approaches to learning and teaching on the following variables: (1 knowledge and understanding of visual arts terms, (2 abilities and skills in the use of art materials and techniques within the framework of planned painting tasks, and (3 creativity in solving visual arts problems. The research results can help shape an optimised model for the planning and performance of visual arts education, and provide guidelines for planning professional development and the further professional education of teachers, with the aim of establishing more efficient learning and teaching of the visual arts in primary school.

  6. Sonography and hypotension: a change to critical problem solving in undergraduate medical education.

    Science.gov (United States)

    Amini, Richard; Stolz, Lori A; Hernandez, Nicholas C; Gaskin, Kevin; Baker, Nicola; Sanders, Arthur Barry; Adhikari, Srikar

    2016-01-01

    Multiple curricula have been designed to teach medical students the basics of ultrasound; however, few focus on critical problem-solving. The objective of this study is to determine whether a theme-based ultrasound teaching session, dedicated to the use of ultrasound in the management of the hypotensive patient, can impact medical students' ultrasound education and provide critical problem-solving exercises. This was a cross-sectional study using an innovative approach to train 3rd year medical students during a 1-day ultrasound training session. The students received a 1-hour didactic session on basic ultrasound physics and knobology and were also provided with YouTube hyperlinks, and links to smart phone educational applications, which demonstrated a variety of bedside ultrasound techniques. In small group sessions, students learned how to evaluate patients for pathology associated with hypotension. A knowledge assessment questionnaire was administered at the end of the session and again 3 months later. Student knowledge was also assessed using different clinical scenarios with multiple-choice questions. One hundred and three 3rd year medical students participated in this study. Appropriate type of ultrasound was selected and accurate diagnosis was made in different hypotension clinical scenarios: pulmonary embolism, 81% (95% CI, 73%-89%); abdominal aortic aneurysm, 100%; and pneumothorax, 89% (95% CI, 82%-95%). The average confidence level in performing ultrasound-guided central line placement was 7/10, focused assessment with sonography for trauma was 8/10, inferior vena cava assessment was 8/10, evaluation for abdominal aortic aneurysm was 8/10, assessment for deep vein thrombus was 8/10, and cardiac ultrasound for contractility and overall function was 7/10. Student performance in the knowledge assessment portion of the questionnaire was an average of 74% (SD =11%) at the end of workshop and 74% (SD =12%) 3 months later (P=0.00). At our institution, we

  7. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    Science.gov (United States)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  8. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences.

    Science.gov (United States)

    Safari, Yahya; Meskini, Habibeh

    2015-05-17

    Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (pproblem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (pproblem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.

  9. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  10. Culture and problem-solving: Congruency between the cultural mindset of individualism versus collectivism and problem type.

    Science.gov (United States)

    Arieli, Sharon; Sagiv, Lilach

    2018-06-01

    This research investigates how the cultural mindset influences problem-solving. Drawing on the notion that cultural mindset influences the cognitive process individuals bring to bear at the moment of judgment, we propose that the congruency between the cultural mindset (individualistic vs. collectivistic) and problem type (rule-based vs. context-based) affects success in problem-solving. In 7 studies we incorporated the traditional approach to studying the impact of culture (i.e., comparing cultural groups) with contemporary approaches viewing cultural differences in a more dynamic and malleable manner. We first show that members of an individualistic group (Jewish Americans) perform better on rule-based problems, whereas members of collectivistic groups (ultra-Orthodox Jews and Arabs from Israel) perform better on context-based problems (Study 1). We then study Arabs in Israel using language (Arabic vs. Hebrew) to prime their collectivistic versus individualistic mindsets (Study 2). As hypothesized, among biculturals (those who internalize both cultures) Arabic facilitated solving context-based problems, whereas Hebrew facilitated solving rule-based problems. We follow up with 5 experiments priming the cultural mindset of individualism versus collectivism, employing various manifestations of the cultural dimension: focusing on the individual versus the collective (Studies 3, 6, and 7); experiencing independence versus interdependence (Study 4); and directing attention to objects versus the context (Studies 5a-b). Finally, we took a meta-analytic approach, showing that the effects found in Studies 3-6 are robust across priming tasks, problems, and samples. Taken together, the differences between cultural groups (Studies 1-2) were recreated when the individualistic/collectivistic cultural mindset was primed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. DEVELOPMENT OF LARSON’S PROBLEMS SOLVING PATTERNS WITH "IDEAL" STRATEGIES

    Directory of Open Access Journals (Sweden)

    . Junarti

    2018-01-01

    Full Text Available Abstract: Mathematical Problem-solving is taught to improve students' high-order thinking skills. A heuristic problem-solving strategy is used to find different Problem-solving. This research is to: 1 describe the student's Problem-solving ability profile in finding the pattern of algebra solving through the "IDEAL" (Identify Define Explore Act Look back strategy by developing Larson’s Problem-solving pattern, 2 measuring the extent of the pattern can be formed by using " IDEAL". Finding patterns is part of the first heuristic strategy. The research method used a qualitative approach with descriptive analysis. Problems conveyed to students are done in pairs of two people, with the consideration that more discussion opportunities with friends make it possible to get more than five troubleshooting as Larson puts it. The results showed that: 1 profile Problem-solving ability found pattern with "IDEAL" strategy from student got result that from problem given to 20 student group can help solve algebra Problem-solving; 2 there are four kinds of Problem-solving patterns consisting of 3 Larson model Problem-solving patterns and one Problem-solving pattern using geometry sequence pattern. Keyword: Problem-solving Pattern, Heuristic, “IDEAL” Strategy Abstrak: Pemecahan masalah matematika diajarkan untuk meningkatkan kemampuan pemikiran tingkat tinggi mahasiswa.  Strategi pemecahan masalah heuristic digunakan untuk menemukan pemecahan masalah yang berbeda. Penelitian ini untuk: 1 menggambarkan profil kemampuan pemecahan masalah mahasiswa dalam menemukan pola pemecahan aljabar melalui strategi “IDEAL” (Identify Define Explore Act Look back dengan mengembangkan pola pemecahan masalah Larson, 2 mengukur sejauhmana pola yang dapat dibentuk mahasiswa dengan menggunakan strategi “IDEAL”. Menemukan Pola merupakan bagian dari strategi heuristik yang pertama. Metode penelitiannya menggunakan pendekatan kualitatif dengan  analisis deskriptif. Masalah

  12. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  13. Problem formulation as a discursive design activity

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Dorst, Kees; Andreasen, Mogens Myrup

    2009-01-01

    In the design methodology literature, design is often described as a rational problem solving process. This approach has been very successful; it has lead to the creation of design process models, tools, methods and techniques. Design methods teaching along these lines has become an indispensable...... part of any engineering design education. Yet the assumptions behind the rational problem solving approach to design do not sit well with some of the experiences we have in design teaching and design practice. Problem formulation is one such area where we might have to look for a different way...... to describe what is happening in design, beyond the problem solving approach. In this paper an extensive educational case study will be used to see whether a framework for describing design as a discursive activity (based on the notions of ‘discourse’ and ‘paradox’) could be more appropriate to describe...

  14. Students applying their knowledge of material science in problem-solving: implications for competence based-learning at the University of Zimbabwe

    Directory of Open Access Journals (Sweden)

    Peter Kwaira

    2017-05-01

    Full Text Available This study involved a class of serving teachers in their second year of a Bachelor of Education degree programme, in which one of the pre-requisite courses covered during first year was ‘Principles of Material Science (PMS. At the time of study, they were studying ‘Machine-shop Practice’ (MsP; a course based on the Design and Technology (D&T approach, in terms of teaching and learning. They were required to solve practical-technical problems through hands-on practical activities, supported by relevant ancillary theory. In practice, during such activities, students are expected to demonstrate the ability to apply their knowledge of Material Science (MS in various ways; for example, in the choice of materials for given projects aimed at solving specific problems and in the methods of working such materials. Now given this background, the problem was therefore to determine the extent to which students applied their knowledge of MS in solving selected problems under MsP. Data were gathered through interviews, discussions, observations and document analysis. Findings showed students being able to apply their knowledge of MS effectively during problem-solving under MsP; thereby, qualifying their learning as having been outcome-based in nature.

  15. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Impacts of 'Problem-Based Learning’ Approach in Enhancing Critical Thinking Skills to Teaching Literature

    Directory of Open Access Journals (Sweden)

    Mairas Abd Rahman

    2016-11-01

    Full Text Available Teaching can be challenging task especially when the students are categorized as reluctant readers, low self-motivated and lack of critical thinking skills. Therefore, this study focuses on a successful problem-based learning approach on university course called ‘Literature for Language Purposes' taken by Bachelor of English with Communication students at a local Malaysian university. The aim of this study is to investigate the impacts of carrying out problem-based learning in teaching literature. The project involved 55 undergraduates and part of their major course assignments was to organize and participate in an annual English language drama competition. The data was collected through students’ reflective journals, researchers’ reflective journals, response from end of semester questionnaire given and, lecturers’ evaluation on FILA tables. The findings show that problem-based learning is suitable and beneficial in teaching and enhancing critical thinking skills.

  17. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    Science.gov (United States)

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  18. Do Cases Teach Themselves? A Comparison of Case Library Prompts in Supporting Problem-Solving during Argumentation

    Science.gov (United States)

    Tawfik, Andrew A.

    2017-01-01

    Theorists have argued instructional strategies that emphasize ill-structured problem solving are an effective means to support higher order learning skills such as argumentation. However, argumentation is often difficult because novices lack the expertise or experience needed to solve contextualized problems. One way to supplement this lack of…

  19. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  20. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  1. Teaching Personal Finance Mathematical Problem Solving to Individuals with Moderate Intellectual Disability

    Science.gov (United States)

    Root, Jenny; Saunders, Alicia; Spooner, Fred; Brosh, Chelsi

    2017-01-01

    The ability to solve mathematical problems related to purchasing and personal finance is important in promoting skill generalization and increasing independence for individuals with moderate intellectual disabilities (IDs). Using a multiple probe across participant design, this study investigated the effects of modified schema-based instruction…

  2. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    Science.gov (United States)

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  3. Team Self-Assessment: Problem Solving for Small Workgroups.

    Science.gov (United States)

    LoBue, Robert

    2002-01-01

    Describes team self-assessment, a task force approach involving frontline workers/supervisors in solving problems or improving performance. Provides examples and discusses its theoretical bases: control self-assessment, Belbin's team roles research, and the team climate inventory. (Contains 23 references.) (SK)

  4. BUILDING INTERACTIVITY IN HIGHER EDUCATION TO SUPPORT STUDENT ENGAGEMENT IN SPATIAL PROBLEM SOLVING AND PROGRAMMING

    Directory of Open Access Journals (Sweden)

    E.-K. Gulland

    2012-07-01

    Full Text Available Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive

  5. Building Interactivity in Higher Education to Support Student Engagement in Spatial Problem Solving and Programming

    Science.gov (United States)

    Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.

    2012-07-01

    Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and

  6. The Elementary School Students’ Mathematical Problem Solving Based on Reading Abilities

    Science.gov (United States)

    Wulandari, R. D.; Lukito, A.; Khabibah, S.

    2018-01-01

    The aim of this research is to describe the third grade of elementary school students’ mathematical problem in solving skills based on their reading abilities. This research is a descriptive research with qualitative approach. This research was conducted at elementary school Kebraon II Surabaya in second semester of 2016-2017 academic years. The participants of this research consist of third grade students with different reading abilities that are independent level, instructional level and frustration level. The participants of this research were selected with purposive sampling technique. The data of this study were collected using reading the narration texts, the Ekwall and Shanker Informal Reading Inventory, problem solving task and interview guidelines. The collected data were evaluated using a descriptive analysis method. Once the study had been completed, it was concluded that problem solving skills varied according to reading abilities, student with independent level and instructional level can solve the problem and students with frustration level can’t solve the problem because they can’t interpret the problem well.

  7. Conceptual and procedural knowledge community college students use when solving a complex science problem

    Science.gov (United States)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  8. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  9. Solving of L0 norm constrained EEG inverse problem.

    Science.gov (United States)

    Xu, Peng; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2009-01-01

    l(0) norm is an effective constraint used to solve EEG inverse problem for a sparse solution. However, due to the discontinuous and un-differentiable properties, it is an open issue to solve the l(0) norm constrained problem, which is usually instead solved by using some alternative functions like l(1) norm to approximate l(0) norm. In this paper, a continuous and differentiable function having the same form as the transfer function of Butterworth low-pass filter is introduced to approximate l(0) norm constraint involved in EEG inverse problem. The new approximation based approach was compared with l(1) norm and LORETA solutions on a realistic head model using simulated sources. The preliminary results show that this alternative approximation to l(0) norm is promising for the estimation of EEG sources with sparse distribution.

  10. Strategies That Help Learning-Disabled Students Solve Verbal Mathematical Problems.

    Science.gov (United States)

    Giordano, Gerard

    1990-01-01

    Strategies are presented for dealing with factors that can be responsible for failure in mathematical problem solving. The suggestions include personalization of verbal problems, thematic strands based on student interests, visual representation, a laboratory approach, and paraphrasing. (JDD)

  11. Branch and bound algorithms to solve semiring constraint satisfaction problems

    CSIR Research Space (South Africa)

    Leenen, L

    2008-12-01

    Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. Considerable research has been done in solving SCSPs, but limited work has been done in building...

  12. Fostering of ability to solve problems toward consensus-making. From teaching practice on the use of nuclear power as a core of energy issues

    International Nuclear Information System (INIS)

    Harada, Tadanori

    2005-01-01

    In Hiroshima, it is practicing the peace education which aimed to bring up the citizen who practices world peace. In this research, in the nuclear power generation, at the teaching materials, it did the curriculum development to bring up the problem-solving ability to have paid to the consensus building. After practicing a class for the ninth grade life, it got to actually feel ''the problem solving depend on our future''. It understood the following point from this practice. (1) It thinks that the student wants to know the truth. (2) In to devise a way of guiding a teacher, the student becomes able to develop independent learning. (3) If there is not a mistake in the way of taking a problem, it is possible to do a student and a discussion even if it is the problem which touches a sense of values. (4) The understanding of a student is promoted when learning the difference of the mechanism of the atomic bomb and the nuclear power generation. (author)

  13. The Dreaded "Work" Problems Revisited: Connections through Problem Solving from Basic Fractions to Calculus

    Science.gov (United States)

    Shore, Felice S.; Pascal, Matthew

    2008-01-01

    This article describes several distinct approaches taken by preservice elementary teachers to solving a classic rate problem. Their approaches incorporate a variety of mathematical concepts, ranging from proportions to infinite series, and illustrate the power of all five NCTM Process Standards. (Contains 8 figures.)

  14. Excel 2007 for Business Statistics A Guide to Solving Practical Business Problems

    CERN Document Server

    Quirk, Thomas J

    2012-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach business statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses. Its powerful computat

  15. Simulated annealing algorithm for solving chambering student-case assignment problem

    Science.gov (United States)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  16. APPLYING PROFESSIONALLY ORIENTED PROBLEMS OF MATHEMATICAL MODELING IN TEACHING STUDENTS OF ENGINEERING DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Natal’ya Yur’evna Gorbunova

    2017-06-01

    Full Text Available We described several aspects of organizing student research work, as well as solving a number of mathematical modeling problems: professionally-oriented, multi-stage, etc. We underlined the importance of their economic content. Samples of using such problems in teaching Mathematics at agricultural university were given. Several questions connected with information material selection and peculiarities of research problems application were described. Purpose. The author aims to show the possibility and necessity of using professionally-oriented problems of mathematical modeling in teaching Mathematics at agricultural university. The subject of analysis is including such problems into educational process. Methodology. The main research method is dialectical method of obtaining knowledge of finding approaches to selection, writing and using mathematical modeling and professionally-oriented problems in educational process; the methodology is study of these methods of obtaining knowledge. Results. As a result of analysis of literature, students opinions, observation of students work, and taking into account personal teaching experience, it is possible to make conclusion about importance of using mathematical modeling problems, as it helps to systemize theoretical knowledge, apply it to practice, raise students study motivation in engineering sphere. Practical implications. Results of the research can be of interest for teachers of Mathematics in preparing Bachelor and Master students of engineering departments of agricultural university both for theoretical research and for modernization of study courses.

  17. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    Science.gov (United States)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  18. Spontaneous gestures influence strategy choices in problem solving.

    Science.gov (United States)

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  19. Empathy and Critical Thinking: Primary Students Solving Local Environmental Problems through Outdoor Learning

    Science.gov (United States)

    Ampuero, David; Miranda, Christian E.; Delgado, Luisa E.; Goyen, Samantha; Weaver, Sean

    2015-01-01

    The present study explores the outcomes of teaching empathy and critical thinking to solve environmental problems. This investigation was done throughout the duration of an environmental education course within a primary school located in central Chile. A community-based research methodology was used to understand the formation of empathy and…

  20. Engineering Courses on Computational Thinking Through Solving Problems in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Piyanuch Silapachote

    2017-09-01

    Full Text Available Computational thinking sits at the core of every engineering and computing related discipline. It has increasingly emerged as its own subject in all levels of education. It is a powerful cornerstone for cognitive development, creative problem solving, algorithmic thinking and designs, and programming. How to effectively teach computational thinking skills poses real challenges and creates opportunities. Targeting entering computer science and engineering undergraduates, we resourcefully integrate elements from artificial intelligence (AI into introductory computing courses. In addition to comprehension of the essence of computational thinking, practical exercises in AI enable inspirations of collaborative problem solving beyond abstraction, logical reasoning, critical and analytical thinking. Problems in machine intelligence systems intrinsically connect students to algorithmic oriented computing and essential mathematical foundations. Beyond knowledge representation, AI fosters a gentle introduction to data structures and algorithms. Focused on engaging mental tool, a computer is never a necessity. Neither coding nor programming is ever required. Instead, students enjoy constructivist classrooms designed to always be active, flexible, and highly dynamic. Learning to learn and reflecting on cognitive experiences, they rigorously construct knowledge from collectively solving exciting puzzles, competing in strategic games, and participating in intellectual discussions.

  1. Self-affirmation improves problem-solving under stress.

    Science.gov (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  2. Improve Problem Solving Skills through Adapting Programming Tools

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  3. Solution Tree Problem Solving Procedure for Engineering Analysis ...

    African Journals Online (AJOL)

    Illustrations are provided in the thermofluid engineering area to showcase the procedure's applications. This approach has proved to be a veritable tool for enhancing the problem-solving and computer algorithmic skills of engineering students, eliciting their curiosity, active participation and appreciation of the taught course.

  4. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  5. Algorithms for solving the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2006-01-01

    The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration...... are revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...

  6. The effect of problem-based and lecture-based instructional strategies on learner problem solving performance, problem solving processes, and attitudes

    Science.gov (United States)

    Visser, Yusra Laila

    This study compared the effect of lecture-based instruction to that of problem-based instruction on learner performance (on near-transfer and far-transfer problems), problem solving processes (reasoning strategy usage and reasoning efficiency), and attitudes (overall motivation and learner confidence) in a Genetics course. The study also analyzed the effect of self-regulatory skills and prior-academic achievement on performance for both instructional strategies. Sixty 11th grade students at a public math and science academy were assigned to either a lecture-based instructional strategy or a problem-based instructional strategy. Both treatment groups received 18 weeks of Genetics instruction through the assigned instructional strategy. In terms of problem solving performance, results revealed that the lecture-based group performed significantly better on near-transfer post-test problems. The problem-based group performed significantly better on far-transfer post-test problems. In addition, results indicated the learners in the lecture-based instructional treatment were significantly more likely to employ data-driven reasoning in the solving of problems, whereas learners in the problem-based instructional treatment were significantly more likely to employ hypothesis-driven reasoning in problem solving. No significant differences in reasoning efficiency were uncovered between treatment groups. Preliminary analysis of the motivation data suggested that there were no significant differences in motivation between treatment groups. However, a post-research exploratory analysis suggests that overall motivation was significantly higher in the lecture-based instructional treatment than in the problem-based instructional treatment. Learner confidence was significantly higher in the lecture-based group than in the problem-based group. A significant positive correlation was detected between self-regulatory skills scores and problem solving performance scores in the problem

  7. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  8. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  9. Bioinformatics education dissemination with an evolutionary problem solving perspective.

    Science.gov (United States)

    Jungck, John R; Donovan, Samuel S; Weisstein, Anton E; Khiripet, Noppadon; Everse, Stephen J

    2010-11-01

    Bioinformatics is central to biology education in the 21st century. With the generation of terabytes of data per day, the application of computer-based tools to stored and distributed data is fundamentally changing research and its application to problems in medicine, agriculture, conservation and forensics. In light of this 'information revolution,' undergraduate biology curricula must be redesigned to prepare the next generation of informed citizens as well as those who will pursue careers in the life sciences. The BEDROCK initiative (Bioinformatics Education Dissemination: Reaching Out, Connecting and Knitting together) has fostered an international community of bioinformatics educators. The initiative's goals are to: (i) Identify and support faculty who can take leadership roles in bioinformatics education; (ii) Highlight and distribute innovative approaches to incorporating evolutionary bioinformatics data and techniques throughout undergraduate education; (iii) Establish mechanisms for the broad dissemination of bioinformatics resource materials and teaching models; (iv) Emphasize phylogenetic thinking and problem solving; and (v) Develop and publish new software tools to help students develop and test evolutionary hypotheses. Since 2002, BEDROCK has offered more than 50 faculty workshops around the world, published many resources and supported an environment for developing and sharing bioinformatics education approaches. The BEDROCK initiative builds on the established pedagogical philosophy and academic community of the BioQUEST Curriculum Consortium to assemble the diverse intellectual and human resources required to sustain an international reform effort in undergraduate bioinformatics education.

  10. Applying Groebner bases to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.; Smirnov, Vladimir A.

    2006-01-01

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential

  11. Applying Groebner bases to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander V. [Mechanical and Mathematical Department and Scientific Research Computer Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, Vladimir A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-01-15

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential.

  12. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  13. Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach

    Directory of Open Access Journals (Sweden)

    Hossein Yousefi

    2017-06-01

    Full Text Available A vehicle routing problem with time windows (VRPTW is an important problem with many real applications in a transportation problem. The optimum set of routes with the minimum distance and vehicles used is determined to deliver goods from a central depot, using a vehicle with capacity constraint. In the real cases, there are other objective functions that should be considered. This paper considers not only the minimum distance and the number of vehicles used as the objective function, the customer’s satisfaction with the priority of customers is also considered. Additionally, it presents a new model for a bi-objective VRPTW solved by a revised multi-choice goal programming approach, in which the decision maker determines optimistic aspiration levels for each objective function. Two meta-heuristic methods, namely simulated annealing (SA and genetic algorithm (GA, are proposed to solve large-sized problems. Moreover, the experimental design is used to tune the parameters of the proposed algorithms. The presented model is verified by a real-world case study and a number of test problems. The computational results verify the efficiency of the proposed SA and GA.

  14. Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.

    Science.gov (United States)

    Oldenburg, Nancy L; Hung, Wei-Chen

    2010-04-01

    It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.

  15. Interactive video tutorials for enhancing problem solving, reasoning, and meta-cognitive skills of introductory physics students

    OpenAIRE

    Singh, Chandralekha

    2016-01-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solvin...

  16. Distributed Graphs for Solving Co-modal Transport Problems

    OpenAIRE

    Karama , Jeribi; Hinda , Mejri; Hayfa , Zgaya; Slim , Hammadi

    2011-01-01

    International audience; The paper presents a new approach based on a special distributed graphs in order to solve co-modal transport problems. The co-modal transport system consists on combining different transport modes effectively in terms of economic, environmental, service and financial efficiency, etc. However, the problem is that these systems must deal with different distributed information sources stored in different locations and provided by different public and private companies. In...

  17. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  18. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  19. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.

    2011-01-01

    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  20. Solving Problems in Hawaiian-American Classrooms: Excellent Teaching and Cultural Factors. Technical Report #2.

    Science.gov (United States)

    Gallimore, Ronald; And Others

    This paper describes a community research project which preceded the development of the Kamehameha Early Education Project (KEEP). The community project was designed to assist teachers in solving classroom behavior and academic problems. The initial focus on workshops and theories proved inadequate for dealing with daily classroom problems. A…

  1. Proof Construction: Adolescent Development from Inductive to Deductive Problem-Solving Strategies.

    Science.gov (United States)

    Foltz, Carol; And Others

    1995-01-01

    Studied 100 adolescents' approaches to problem-solving proofs and reasoning competence tasks. Found that a formal level of reasoning competence is associated with a deductive approach. Results support the notion of a cognitive development progression from an inductive approach to a deductive approach. (ETB)

  2. Capturing Problem-Solving Processes Using Critical Rationalism

    Science.gov (United States)

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  3. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  4. A "feasible direction" search for Lineal Programming problem solving

    Directory of Open Access Journals (Sweden)

    Jaime U Malpica Angarita

    2003-07-01

    Full Text Available The study presents an approach to solve linear programming problems with no artificial variables. A primal linear minimization problem is standard form and its associated dual linear maximization problem are used. Initially, the dual (or a partial dual program is solved by a "feasible direction" search, where the Karush-Kuhn-Tucker conditions help to verify its optimality and then its feasibility. The "feasible direction" search exploits the characteristics of the convex polyhedron (or prototype formed by the dual program constraints to find a starting point and then follows line segments, whose directions are found in afine subspaces defined by boundary hyperplanes of polyhedral faces, to find next points up to the (an optimal one. Them, the remaining dual constraints not satisfaced at that optimal dual point, if there are any, are handled as nonbasic variables of the primal program, which is to be solved by such "feasible direction" search.

  5. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  6. CLASSROOM SHARING EXPERIENCES: BUILDING STUDENTS’ AWARENESS FOR PROBLEM SOLVING IN TRANSLATING POETRY

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2015-12-01

    Abstract This research was aimed at describing the classroom sharing experiences to build students’ awareness dealing with the problem solving in translating poetry. The data were collected through questionnaire, interview and classroom observation involving 85 sixth semester students in two different classes and two lecturers of Translating Literary Works course at the English Language and Literature Studies in one state university in Bandung city.  The questionnaire was completed by 55 (out of 85 students invited to fill in the questionnaire. Interview was done to complete and cross check the information derived from the questionnaire.  Meanwhile, the observation was administered in the two parallel classes to observe the activities done by the two lecturers and students in the two classes.  The observation was focused on the course materials, teaching methods and techniques applied by the lecturers, problems faced and techniques used to solve the problems by the students in translating poetry. The data were then analyzed based on some relevant theories of translation.  The result of the research showed that the classroom sharing experiences gave some advantages to the students with several reasons: (1 motivating students to do their translation works more seriously since they had to present their translation works to the class; (2 developing the students’ self-confidence in translating the tasks since their translation works were given some feedbacks; (3 training the students to analyze the problems to find out the most appropriate techniques to solve the problems; (4 introducing the students to have more critical knowledge of both source and target languages; and (5 building the students’ awareness of how the problems appeared in a very complex translation process were solved. Keywords: awareness, problem solving, sharing experience

  7. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  8. Using Self-Guided Treatment Software (ePST to Teach Clinicians How to Deliver Problem-Solving Treatment for Depression

    Directory of Open Access Journals (Sweden)

    James A. Cartreine

    2012-01-01

    Full Text Available Problem-solving treatment (PST offers a promising approach to the depression care; however, few PST training opportunities exist. A computer-guided, interactive media program has been developed to deliver PST electronically (ePST, directly to patients. The program is a six-session, weekly intervention modeled on an evidence-based PST protocol. Users are guided through each session by a clinician who is presented via hundreds of branching audio and video clips. Because expert clinician behaviors are modeled in the program, not only does the ePST program have the potential to deliver PST to patients but it may also serve as a training tool to teach clinicians how to deliver PST. Thirteen social workers and trainees used ePST self-instructionally and subsequently attended a day-long workshop on PST. Participants’ PST knowledge level increased significantly from baseline to post-ePST (P=.001 and did not increase significantly further after attending the subsequent workshop. Additionally, attending the workshop did not significantly increase the participants' skill at performing PST beyond the use of the ePST program. Using the ePST program appears to train novices to a sufficient level of competence to begin practicing PST under supervision. This self-instructional training method could enable PST for depression to be widely disseminated, although follow-up supervision is still required.

  9. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  10. Social problem-solving among adolescents treated for depression.

    Science.gov (United States)

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. A Life History Approach to Delineating How Harsh Environments and Hawk Temperament Traits Differentially Shape Children's Problem-Solving Skills

    Science.gov (United States)

    Suor, Jennifer H.; Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante

    2017-01-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and…

  12. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    Science.gov (United States)

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  13. An advanced teaching scheme for integrating problem-based learning in control education

    Science.gov (United States)

    Juuso, Esko K.

    2018-03-01

    Engineering education needs to provide both theoretical knowledge and problem-solving skills. Many topics can be presented in lectures and computer exercises are good tools in teaching the skills. Learning by doing is combined with lectures to provide additional material and perspectives. The teaching scheme includes lectures, computer exercises, case studies, seminars and reports organized as a problem-based learning process. In the gradually refining learning material, each teaching method has its own role. The scheme, which has been used in teaching two 4th year courses, is beneficial for overall learning progress, especially in bilingual courses. The students become familiar with new perspectives and are ready to use the course material in application projects.

  14. Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

    Science.gov (United States)

    Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.

    2016-01-01

    Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…

  15. An approach to solve group-decision-making problems with ordinal interval numbers.

    Science.gov (United States)

    Fan, Zhi-Ping; Liu, Yang

    2010-10-01

    The ordinal interval number is a form of uncertain preference information in group decision making (GDM), while it is seldom discussed in the existing research. This paper investigates how the ranking order of alternatives is determined based on preference information of ordinal interval numbers in GDM problems. When ranking a large quantity of ordinal interval numbers, the efficiency and accuracy of the ranking process are critical. A new approach is proposed to rank alternatives using ordinal interval numbers when every ranking ordinal in an ordinal interval number is thought to be uniformly and independently distributed in its interval. First, we give the definition of possibility degree on comparing two ordinal interval numbers and the related theory analysis. Then, to rank alternatives, by comparing multiple ordinal interval numbers, a collective expectation possibility degree matrix on pairwise comparisons of alternatives is built, and an optimization model based on this matrix is constructed. Furthermore, an algorithm is also presented to rank alternatives by solving the model. Finally, two examples are used to illustrate the use of the proposed approach.

  16. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  17. Goals and everyday problem solving: manipulating goal preferences in young and older adults.

    Science.gov (United States)

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2010-11-01

    In the present study, we examined the link between goal and problem-solving strategy preferences in 130 young and older adults using hypothetical family problem vignettes. At baseline, young adults preferred autonomy goals, whereas older adults preferred generative goals. Imagining an expanded future time perspective led older adults to show preferences for autonomy goals similar to those observed in young adults but did not eliminate age differences in generative goals. Autonomy goals were associated with more self-focused instrumental problem solving, whereas generative goals were related to more other-focused instrumental problem solving in the no-instruction and instruction conditions. Older adults were better at matching their strategies to their goals than young adults were. This suggests that older adults may become better at selecting their strategies in accordance with their goals. Our findings speak to a contextual approach to everyday problem solving by showing that goals are associated with the selection of problem-solving strategies.

  18. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  19. Grading Homework to Emphasize Problem-Solving Process Skills

    Science.gov (United States)

    Harper, Kathleen A.

    2012-01-01

    This article describes a grading approach that encourages students to employ particular problem-solving skills. Some strengths of this method, called "process-based grading," are that it is easy to implement, requires minimal time to grade, and can be used in conjunction with either an online homework delivery system or paper-based homework.

  20. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    undertaken by 29 subsidiary units supports our hypotheses, demonstrating that these activities are a means to systematically reduce inherent problem solving biases. This study contributes to problem solving theory, the literature on headquarters’ roles in complex organizations, as well as the literature......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...... solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects...

  1. DDeveloping and solving a bi-objective joint replenishment problem under storing space constraint

    Directory of Open Access Journals (Sweden)

    ommolbanin yousefi

    2011-03-01

    Full Text Available In this research, a bi-objective joint replenishment problem has been developed and solved with the assumption of one restricted resource. The proposed model has a storing space constraint and tries to optimize two objective functions simultaneously. They include minimizing annual holding and setup costs and minimizing annual inventory investment. Then, for solving this problem, a multi-objective genetic algorithm (MOGA has been developed. In order to analyze the algorithm efficiency, its performance has been examined in solving 1600 randomly produced problems using parameters extracted from literature. The findings imply that the proposed algorithm is capable of producing a good set of Pareto optimal solutions. Finally, the application of the problem solving approach and the findings of the proposed algorithm have been illustrated for a special problem, which has been randomly produced.

  2. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  3. Group Problem Solving as a Zone of Proximal Development activity

    Science.gov (United States)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  4. GeoGebra Assist Discovery Learning Model for Problem Solving Ability and Attitude toward Mathematics

    Science.gov (United States)

    Murni, V.; Sariyasa, S.; Ardana, I. M.

    2017-09-01

    This study aims to describe the effet of GeoGebra utilization in the discovery learning model on mathematical problem solving ability and students’ attitude toward mathematics. This research was quasi experimental and post-test only control group design was used in this study. The population in this study was 181 of students. The sampling technique used was cluster random sampling, so the sample in this study was 120 students divided into 4 classes, 2 classes for the experimental class and 2 classes for the control class. Data were analyzed by using one way MANOVA. The results of data analysis showed that the utilization of GeoGebra in discovery learning can lead to solving problems and attitudes towards mathematics are better. This is because the presentation of problems using geogebra can assist students in identifying and solving problems and attracting students’ interest because geogebra provides an immediate response process to students. The results of the research are the utilization of geogebra in the discovery learning can be applied in learning and teaching wider subject matter, beside subject matter in this study.

  5. Language and mathematical problem solving among bilinguals.

    Science.gov (United States)

    Bernardo, Allan B I

    2002-05-01

    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  6. Digital Story-Based Problem Solving Applications: Preservice Primary Teachers' Experiences and Future Integration Plans

    Science.gov (United States)

    Kilic, Çigdem; Sancar-Tokmak, Hatice

    2017-01-01

    This case study investigates how preservice primary school teachers describe their experiences with digital story-based problem solving applications and their plans for the future integration of this technology into their teaching. Totally 113 preservice primary school teachers participated in the study. Data collection tools included a…

  7. Sonography and hypotension: a change to critical problem solving in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Amini R

    2016-01-01

    Full Text Available Richard Amini, Lori A Stolz, Nicholas C Hernandez, Kevin Gaskin, Nicola Baker, Arthur Barry Sanders, Srikar AdhikariDepartment of Emergency Medicine, University of Arizona Medical Center, College of Medicine, University of Arizona, Tucson, AZ, USAStudy objectives: Multiple curricula have been designed to teach medical students the basics of ultrasound; however, few focus on critical problem-solving. The objective of this study is to determine whether a theme-based ultrasound teaching session, dedicated to the use of ultrasound in the management of the hypotensive patient, can impact medical students’ ultrasound education and provide critical problem-solving exercises.Methods: This was a cross-sectional study using an innovative approach to train 3rd year medical students during a 1-day ultrasound training session. The students received a 1-hour didactic session on basic ultrasound physics and knobology and were also provided with YouTube hyperlinks, and links to smart phone educational applications, which demonstrated a variety of bedside ultrasound techniques. In small group sessions, students learned how to evaluate patients for pathology associated with hypotension. A knowledge assessment questionnaire was administered at the end of the session and again 3 months later. Student knowledge was also assessed using different clinical scenarios with multiple-choice questions.Results: One hundred and three 3rd year medical students participated in this study. Appropriate type of ultrasound was selected and accurate diagnosis was made in different hypotension clinical scenarios: pulmonary embolism, 81% (95% CI, 73%–89%; abdominal aortic aneurysm, 100%; and pneumothorax, 89% (95% CI, 82%–95%. The average confidence level in performing ultrasound-guided central line placement was 7/10, focused assessment with sonography for trauma was 8/10, inferior vena cava assessment was 8/10, evaluation for abdominal aortic aneurysm was 8/10, assessment for

  8. Teaching Lean Manufacturing with Simulations and Games: A Survey and Future Directions

    Science.gov (United States)

    Badurdeen, Fazleena; Marksberry, Philip; Hall, Arlie; Gregory, Bob

    2010-01-01

    Problem-based learning focuses on small groups using authentic problems as a means to help participants obtain knowledge and problem-solving skills. This approach makes problem-based learning ideal for teaching lean manufacturing, which is driven by a culture of problem solving that values learning as one key output of manufacturing production.…

  9. Dreams and creative problem-solving.

    Science.gov (United States)

    Barrett, Deirdre

    2017-10-01

    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  10. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  11. Pendekatan Problem Solving berbantuan Komputer dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Laswadi Laswadi

    2015-06-01

    Full Text Available Creating effective mathematics learning is a complex and continuous undertaking. Using the right approach of learning and utilizing technological developments is an attempt to improve the quality of learning. This paper examines the problem solving learning computer-assisted and how its potential in developing high-order thinking skills of students. 

  12. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  13. 〈Articles〉Using LEGO® Serious Play® to Foster Communication in Intercultural English Problem-Solving Discussions

    OpenAIRE

    Dunn, Robert; Adamson, Calum; Thorpe, Todd

    2017-01-01

    [Abstract]Many people have fond memories of playing with LEGO® in their youth. Increasingly recognised as offering significant educational advantages to young children that go far beyond enjoyable play-time, LEGO® has been claimed to boost fine motor skill development (Haga, 2008); to teach three-dimensional thinking (Welch, 1998); to foster planning, problem solving, and organizational abilities (Shakir, 2006); to improve creativity; and to teach systematization through the following of inst...

  14. An approach using quantum PBIL to solve the traveling salesman problem

    International Nuclear Information System (INIS)

    Silva, Marcio Henrique; Schirru, Roberto

    2011-01-01

    Quantum inspired evolutionary algorithms are optimization tools based in artificial intelligence developed to simulate the quantum processing in classical computers viewing that there are not quantum computers available nowadays. In this work is introduced one of these tools, which adds quantum concepts such as the linear superposition of states and the qubit representation to standard PBIL named Quantum PBIL. Here we use Quantum PBIL to solve a well-known NPHard benchmark, the Traveling salesman problem. The objective is to find the shorter path made by a traveler linking all the available cities visiting each one only once and returning to the starter one at the final of his journey. As the main purpose of this work is employ the algorithm to solve the nuclear reload optimization in the future, and according to the similarities that both problems share, TSP is a good challenge for Quantum PBIL. The results have shown that the algorithm is able to obtain good performance when applied on this problem. It is also fast and has a great capacity to find good solutions when compared to other versions of PBIL found in literature despite of its stagnation of bits tendency can easily lead it to local minimums. (author)

  15. An approach using quantum PBIL to solve the traveling salesman problem

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio Henrique; Schirru, Roberto, E-mail: marciohenrique@lmp.ufrj.br, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Quantum inspired evolutionary algorithms are optimization tools based in artificial intelligence developed to simulate the quantum processing in classical computers viewing that there are not quantum computers available nowadays. In this work is introduced one of these tools, which adds quantum concepts such as the linear superposition of states and the qubit representation to standard PBIL named Quantum PBIL. Here we use Quantum PBIL to solve a well-known NPHard benchmark, the Traveling salesman problem. The objective is to find the shorter path made by a traveler linking all the available cities visiting each one only once and returning to the starter one at the final of his journey. As the main purpose of this work is employ the algorithm to solve the nuclear reload optimization in the future, and according to the similarities that both problems share, TSP is a good challenge for Quantum PBIL. The results have shown that the algorithm is able to obtain good performance when applied on this problem. It is also fast and has a great capacity to find good solutions when compared to other versions of PBIL found in literature despite of its stagnation of bits tendency can easily lead it to local minimums. (author)

  16. Translation among Symbolic Representations in Problem-Solving. Revised.

    Science.gov (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  17. Innovative problem solving by wild spotted hyenas

    Science.gov (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  18. VET Workers' Problem-Solving Skills in Technology-Rich Environments: European Approach

    Science.gov (United States)

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults' problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults' skills to date. The present study (N = 50 369) focuses on gaining insight…

  19. Knowledge Management and Problem Solving in Real Time: The Role of Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Chris W Callaghan

    2016-06-01

    Full Text Available Knowledge management research applied to the development of real-time research capability, or capability to solve societal problems in hours and days instead of years and decades, is perhaps increasingly important, given persistent global problems such as the Zika virus and rapidly developing antibiotic resistance. Drawing on swarm intelligence theory, this paper presents an approach to real-time research problem-solving in the form of a framework for understanding the complexity of real-time research and the challenges associated with maximizing collaboration. The objective of this research is to make explicit certain theoretical, methodological, and practical implications deriving from new literature on emerging technologies and new forms of problem solving and to offer a model of real-time problem solving based on a synthesis of the literature. Drawing from ant colony, bee colony, and particle swarm optimization, as well as other population-based metaheuristics, swarm intelligence principles are derived in support of improved effectiveness and efficiency for multidisciplinary human swarm problem-solving. This synthesis seeks to offer useful insights into the research process, by offering a perspective of what maximized collaboration, as a system, implies for real-time problem solving.

  20. An analysis of the Six Sigma DMAIC method from the perspective of problem solving

    NARCIS (Netherlands)

    de Mast, J.; Lokkerbol, J.

    2012-01-01

    The DMAIC (Define-Measure-Analyze-Improve-Control) method in Six Sigma is often described as an approach for problem solving. This paper compares critically the DMAIC method with insights from scientific theories in the field of problem solving. As a single authoritative account of the DMAIC method

  1. Problem representation and mathematical problem solving of students of varying math ability.

    Science.gov (United States)

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  2. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    Science.gov (United States)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  3. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  4. The Process of Solving Complex Problems

    Science.gov (United States)

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  5. Community problem-solving framed as a distributed information use environment: bridging research and practice

    Directory of Open Access Journals (Sweden)

    Joan C. Durrance

    2006-01-01

    Full Text Available Introduction. This article results from a qualitative study of 1 information behavior in community problem-solving framed as a distributed information use environment and 2 approaches used by a best-practice library to anticipate information needs associated with community problem solving. Method. Several approaches to data collection were used - focus groups, interviews, observation of community and library meetings, and analysis of supporting documents. We focused first on the information behaviour of community groups. Finding that the library supported these activities we sought to understand its approach. Analysis. Data were coded thematically for both information behaviour concepts and themes germane to problem-solving activity. A grounded theory approach was taken to capture aspects of the library staff's practice. Themes evolved from the data; supporting documentation - reports, articles and library communication - was also coded. Results. The study showed 1 how information use environment components (people, setting, problems, problem resolutions combine in this distributed information use environment to determine specific information needs and uses; and 2 how the library contributed to the viability of this distributed information use environment. Conclusion. Community problem solving, here explicated as a distributed IUE, is likely to be seen in multiple communities. The library model presented demonstrates that by reshaping its information practice within the framework of an information use environment, a library can anticipate community information needs as they are generated and where they are most relevant.

  6. Teaching STEM Effectively with the Learning Cycle Approach

    Directory of Open Access Journals (Sweden)

    Pradeep M. Dass

    2015-01-01

    Full Text Available The main challenges for teachers with regard to STEM-oriented instruction are: 1 How to integrate science, technology, engineering and mathematics in such a way that students see the interconnectedness and interdependence between these disciplines; and 2 How to help students realize that solutions to real world problems or issues involve the combined use of knowledge, processes and practices from all of these disciplines. In order to teach STEM effectively, these two challenges must be met, but how? Teachers need pedagogical approaches or models that can address these challenges effectively. Given that the STEM definition adopted by IPST includes "the application of knowledge to real-life problem solving", it follows that effective STEM-oriented instruction must involve a pedagogy that is centered around real-life issues, concerns, problems or questions and offers students the opportunity to employ two or more of the STEM disciplines in an integrated manner to address the questions.

  7. Online and face-to-face role-play simulations in promoting social work students’ argumentative problem solving

    Directory of Open Access Journals (Sweden)

    Kati Vapalahti

    2015-03-01

    Full Text Available This paper reports on a teaching experiment in which social work students (n=38 practiced problem solving through argumentative tasks. A teaching experiment was carried out at a Mikkeli University of Applied Sciences in Finland in connection with a course concerning preventative work against alcohol- and drug abuse. This quasi- experimental study investigated whether role-play simulation conducted either online (15 students or face-to-face (14 students improved students’ problem solving on social issues. As a pre-test, the students wrote an essay after having watched a dramatization of problematic cases on elderly people’s use of alcohol. The students also attended lectures (30 x 45 min on the effect of substance abuse and preventive work, and after the role-play simulation they wrote another essay (post-test. Nine controls wrote an essay without participating in the role-play simulation. Lastly, the students filled out feedback questionnaires.

  8. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    Science.gov (United States)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  9. [Investigation of problem solving skills among psychiatric patients].

    Science.gov (United States)

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  10. Students’ Relational Understanding in Quadrilateral Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Safitri, A. N.; Juniati, D.; Masriyah

    2018-01-01

    The type of research is qualitative approach which aims to describe how students’ relational understanding of solving mathematic problem that was seen from Adversity Quotient aspect. Research subjects were three 7th grade students of Junior High School. They were taken by category of Adversity Quotient (AQ) such quitter, camper, and climber. Data collected based on problem solving and interview. The research result showed that (1) at the stage of understanding the problem, the subjects were able to state and write down what is known and asked, and able to mention the concepts associated with the quadrilateral problem. (2) The three subjects devise a plan by linking concepts relating to quadrilateral problems. (3) The three subjects were able to solve the problem. (4) The three subjects were able to look back the answers. The three subjects were able to understand the problem, devise a plan, carry out the plan and look back. However, the quitter and camper subjects have not been able to give a reason for the steps they have taken.

  11. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  12. Using a general problem-solving strategy to promote transfer.

    Science.gov (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. The Application of Task- oriented Teaching Approach to Enhancing Communicative Competence of EFL

    Directory of Open Access Journals (Sweden)

    LI Mingxin

    2014-02-01

    Full Text Available To communicate is the primary goal of most foreign language learning (EFL. As an important component of the four macro skills (listening, speaking, reading and writing, reading should also serve this purpose. However, traditional methodology still dominates extensive reading teaching in most of the universities. To promote a communicative extensive reading class, we may start by designing various tasks and activities. This paper introduces a task-oriented approach in English extensive reading class. According to Nunan, task-oriented teaching involves learners in the classroom to comprehend, manipulate, produce or interact in the target language, but the focus is on the meaning rather than the form. In light of psycholinguistic model and schema theory model, the methodology covers information-gap activity, opinion-gap activity and reasoning-gap activity which can be run in the class. The task-approaches make the interaction between teacher and students, students and students more active and meaningful. Skills of reading to solve communicative problems are always treated consciously. This approach may hopefully result in some improvement on the teaching of English reading.

  14. THE EFFECT OF PROBLEM SOLVING LEARNING MODEL BASED JUST IN TIME TEACHING (JiTT ON SCIENCE PROCESS SKILLS (SPS ON STRUCTURE AND FUNCTION OF PLANT TISSUE CONCEPT

    Directory of Open Access Journals (Sweden)

    Resha Maulida

    2017-11-01

    Full Text Available The purpose of this study was to determine the effect of Problem Solving learning model based Just in Time Teaching (JiTT on students' science process skills (SPS on structure and function of plant tissue concept. This research was conducted at State Senior High School in South Tangerang .The research conducted using the quasi-experimental with Nonequivalent pretest-Postest Control Group Design. The samples of this study were 34 students for experimental group and 34 students for the control group. Data was obtained using a process skill test instrument (essai type that has been tested for its validity and reliability. Result of data analysis by ANACOVA, show that there were significant difference of postest between experiment and control group, by controlling the pretest score (F = 4.958; p <0.05. Thus, the problem-solving learning based on JiTT proved to improve students’ SPS. The contribution of this treatment in improving the students’ SPS was 7.2%. This shows that there was effect of problem solving model based JiTT on students’ SPS on the Structure and function of plant tissue concept.

  15. Pre-Service Mathematics Teachers’ Problem Solving Processes with Geometer’s Sketchpad: Mirror Problem

    OpenAIRE

    ÖÇAL, Mehmet Fatih; ŞİMŞEK, Mertkan

    2016-01-01

    Problem solving skill is the core of mathematics education and its importance cannot be denied. This study specifically examined 56 freshmen pre-service mathematics teachers’ problem solving processes on a specific problem with the help of Geometer’s Sketchpad (GSP). They were grouped into two-person teams to solve a problem called "the mirror problem". They were expected to solve it by means of GSP. According to their works on GSP and related reflections, there appeared two differe...

  16. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  17. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    Science.gov (United States)

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  18. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  19. Solving inversion problems with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  20. The special study module: a novel approach to undergraduate teaching in occupational medicine.

    Science.gov (United States)

    Fletcher, G; Agius, R M

    1995-12-01

    Difficulties in teaching occupational medicine to undergraduates stem from the reduced availability of teaching time and the perception of the specialty. Recent changes in the General Medical Council curricular framework have permitted the development of a special study module (options course) in occupational medicine, in which a small number of motivated undergraduates elected to participate and which was adequately resourced. This course laid particular emphasis on changing students' attitudes towards the specialty, self-learning techniques, problem-solving and other skills such as workplace assessment. The objectives, content and teaching methods of the course are described, as is a preliminary evaluation. It is suggested that other medical schools should adopt and refine this approach in order to improve the quality of undergraduate training in at least a proportion of the output of medical schools.

  1. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    Science.gov (United States)

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  2. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  3. Effects of the TIP Strategy on Problem Solving Skills of Young Adults with Intellectual Disability

    Science.gov (United States)

    Hua, Youjia; Woods-Groves, Suzanne; Kaldenberg, Erica R.; Lucas, Kristin G.; Therrien, William J.

    2015-01-01

    The purpose of the study was to investigate the effectiveness of teaching a three-step cognitive strategy (TIP) using the schema broadening procedures on functional mathematical problem solving skills of young adults with intellectual disability (ID). We randomly assigned 14 learners with ID to the control and experimental group before the…

  4. Using a Problem-Solving Strategy to Prevent Work-Related Accidents Due to Unsafe Worker Behavior.

    Science.gov (United States)

    Martella, Ronald C.; And Others

    1992-01-01

    A two-stage problem-solving strategy involving cue cards and their gradual withdrawal was used to teach nine sheltered workshop employees how to prevent work-related accidents. Results indicated that participants used the strategy appropriately and generalized their skills to similar and dissimilar situations up to eight weeks after training.…

  5. Information Seeking When Problem Solving: Perspectives of Public Health Professionals.

    Science.gov (United States)

    Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna

    2017-04-01

    Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can influence how they collaborate in seeking information. Educators in public health

  6. Solving network design problems via decomposition, aggregation and approximation

    CERN Document Server

    Bärmann, Andreas

    2016-01-01

    Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period network design problems. Next, he develops a general framework for the solution of network design problems via aggregation of the underlying graph structure. This approach is shown to save much computation time as compared to standard techniques. Finally, the author devises a modelling framework for the approximation of the robust counterpart under ellipsoidal uncertainty, an often-studied case in the literature. Each of these three approaches opens up a fascinating branch of research which promises a better theoretical understanding of the problem and an increasing range of solvable application settings at the same time. Contents Decomposition for Multi-Period Network Design Solving Network Design Problems via Ag...

  7. Using interactive problem-solving techniques to enhance control systems education for non English-speakers

    Science.gov (United States)

    Lamont, L. A.; Chaar, L.; Toms, C.

    2010-03-01

    Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.

  8. Ontology Design for Solving Computationally-Intensive Problems on Heterogeneous Architectures

    Directory of Open Access Journals (Sweden)

    Hossam M. Faheem

    2018-02-01

    Full Text Available Viewing a computationally-intensive problem as a self-contained challenge with its own hardware, software and scheduling strategies is an approach that should be investigated. We might suggest assigning heterogeneous hardware architectures to solve a problem, while parallel computing paradigms may play an important role in writing efficient code to solve the problem; moreover, the scheduling strategies may be examined as a possible solution. Depending on the problem complexity, finding the best possible solution using an integrated infrastructure of hardware, software and scheduling strategy can be a complex job. Developing and using ontologies and reasoning techniques play a significant role in reducing the complexity of identifying the components of such integrated infrastructures. Undertaking reasoning and inferencing regarding the domain concepts can help to find the best possible solution through a combination of hardware, software and scheduling strategies. In this paper, we present an ontology and show how we can use it to solve computationally-intensive problems from various domains. As a potential use for the idea, we present examples from the bioinformatics domain. Validation by using problems from the Elastic Optical Network domain has demonstrated the flexibility of the suggested ontology and its suitability for use with any other computationally-intensive problem domain.

  9. The development and nature of problem-solving among first-semester calculus students

    Science.gov (United States)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving

  10. Ensinar capacidades gerais de resolução de problemas não é uma substituição, nem um complemento viável, a ensinar matemática [Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics

    NARCIS (Netherlands)

    Sweller, John; Clark, Richard; Kirschner, Paul A.

    2012-01-01

    Sweller, J., Clark, R. E., & Kirschner, P. A. (2012). Ensinar capacidades gerais de resolução de problemas não é uma substituição, nem um complemento viável, a ensinar matemática [Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics]. Gazeta

  11. Find the Dimensions: Students Solving a Tiling Problem

    Science.gov (United States)

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  12. Concept mapping improves academic performance in problem solving questions in biochemistry subject.

    Science.gov (United States)

    Baig, Mukhtiar; Tariq, Saba; Rehman, Rehana; Ali, Sobia; Gazzaz, Zohair J

    2016-01-01

    To assess the effectiveness of concept mapping (CM) on the academic performance of medical students' in problem-solving as well as in declarative knowledge questions and their perception regarding CM. The present analytical and questionnaire-based study was carried out at Bahria University Medical and Dental College (BUMDC), Karachi, Pakistan. In this analytical study, students were assessed with problem-solving questions (A-type MCQs), and declarative knowledge questions (short essay questions), and 50% of the questions were from the topics learned by CM. Students also filled a 10-item, 3-point Likert scale questionnaire about their perception regarding the effectiveness of the CM approach, and two open-ended questions were also asked. There was a significant difference in the marks obtained in those problem-solving questions, which were learned by CM as compared to those topics which were taught by the traditional lectures (pacademic performance in problem solving but not in declarative knowledge questions. Students' perception about the effectiveness of CM was overwhelmingly positive.

  13. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  14. Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression

    Directory of Open Access Journals (Sweden)

    Stephen M. Akandwanaho

    2014-01-01

    Full Text Available This paper solves the dynamic traveling salesman problem (DTSP using dynamic Gaussian Process Regression (DGPR method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP tour and less computational time in nonstationary conditions.

  15. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  16. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    Science.gov (United States)

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the

  17. The Caterer's Problem.

    Science.gov (United States)

    Krause, Eugene F.

    1983-01-01

    An approach to teaching problem solving to preservice and in-service middle school teachers is described. They examined an unsolved question as a class research project. The process of developing the solution is detailed, and difficulties contained within the process are noted. (MP)

  18. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  19. MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics

    Science.gov (United States)

    Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan

    2015-01-01

    The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…

  20. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    Science.gov (United States)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.