WorldWideScience

Sample records for problem-solving task believed

  1. Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question

    OpenAIRE

    Novita, Rita; Zulkardi, Zulkardi; Hartono, Yusuf

    2012-01-01

    Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development student...

  2. Exploring Primary Student’s Problem-Solving Ability by Doing Tasks Like PISA's Question

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2012-07-01

    Full Text Available Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development students’ problem-solving ability. The tasks that have been developed by PISA meet both of these criteria. As stated by the NCTM, that problem-solving skill and ability should be developed to students when they were in primary school (K5-8, therefore, it is important to do an effort to guide students in developing problem-solving ability from primary school such as accustom students to do some mathematical solving-problem tasks. Thus, in this research we tried to investigate how to develop mathematical problem-solving tasks like PISA’s question that have potential effect toward students’ mathematical problem-solving abilities?. We used a  formative evaluation type of development research as an mean  to achieve this research goal. This type of research is conducted in two steps, namely preliminary stage and formative evaluation stage covering self evaluation, prototyping (expert reviews, one-to-one, and small group, and  field test. This research involve four primary schools in Palembang, there are SD Muhammadiyah 6 Palembang, MIN 1 & MIN 2 Palembang, and SDN 179 Palembang. The result of this research showed that the mathematical problem-solving tasks  that have been developed have potential effect in exploring mathematical problem-solving ability of the primary school students. It  is shown from their work in solving problem where all of the indicators of problem solving competency have emerged quite well category. In addition, based on interview

  3. Calculation and word problem-solving skills in primary grades - Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour.

    Science.gov (United States)

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-06-01

    Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and task-persistent behaviour in Grade 1 and Grade 3, and the effect of non-verbal intelligence, linguistic abilities, and executive functioning on math skills and task persistence. Participants were 864 students (52.3% boys) from 33 different schools in Estonia. Students were tested twice - at the end of Grade1 and at the end of Grade 3. Calculation and problem-solving skills, and teacher-rated task-persistent behaviour were measured at both time points. Non-verbal intelligence, linguistic abilities, and executive functioning were measured in Grade 1. Cross-lagged structural equation modelling indicated that calculation skills depend on previous math skills and linguistic abilities, while problem-solving skills require also non-verbal intelligence, executive functioning, and task persistence. Task-persistent behaviour in Grade 3 was predicted by previous problem-solving skills, linguistic abilities, and executive functioning. Gender and mother's educational level were added as covariates. The findings indicate that math skills and self-regulation are strongly related in primary grades and that solving complex tasks requires executive functioning and task persistence from children. Findings support the idea that instructional practices might benefit from supporting self-regulation in order to gain domain-specific, complex skill achievement. © 2015 The British Psychological Society.

  4. A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks.

    Science.gov (United States)

    van Horik, Jayden O; Madden, Joah R

    2016-04-01

    Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus , and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes.

  5. Calculation and Word Problem-Solving Skills in Primary Grades--Impact of Cognitive Abilities and Longitudinal Interrelations with Task-persistent Behaviour

    Science.gov (United States)

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-01-01

    Background: Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. Aims: The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and…

  6. Teaching problem solving using non-routine tasks

    Science.gov (United States)

    Chong, Maureen Siew Fang; Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi

    2018-04-01

    Non-routine problems are related to real-life context and require some realistic considerations and real-world knowledge in order to resolve them. This study examines several activity tasks incorporated with non-routine problems through the use of an emerging mathematics framework, at two junior colleges in Brunei Darussalam. The three sampled teachers in this study assisted in selecting the topics and the lesson plan designs. They also recommended the development of the four activity tasks: incorporating the use of technology; simulation of a reality television show; designing real-life sized car park spaces for the school; and a classroom activity to design a real-life sized dustpan. Data collected from all four of the activity tasks were analyzed based on the students' group work. The findings revealed that the most effective activity task in teaching problem solving was to design a real-life sized car park. This was because the use of real data gave students the opportunity to explore, gather information and give or receive feedback on the effect of their reasons and proposed solutions. The second most effective activity task was incorporating the use of technology as it enhanced the students' understanding of the concepts learnt in the classroom. This was followed by the classroom activity that used real data as it allowed students to work and assess the results mathematically. The simulation of a television show was found to be the least effective since it was viewed as not sufficiently challenging to the students.

  7. Web-Based Undergraduate Chemistry Problem-Solving: The Interplay of Task Performance, Domain Knowledge and Web-Searching Strategies

    Science.gov (United States)

    She, Hsiao-Ching; Cheng, Meng-Tzu; Li, Ta-Wei; Wang, Chia-Yu; Chiu, Hsin-Tien; Lee, Pei-Zon; Chou, Wen-Chi; Chuang, Ming-Hua

    2012-01-01

    This study investigates the effect of Web-based Chemistry Problem-Solving, with the attributes of Web-searching and problem-solving scaffolds, on undergraduate students' problem-solving task performance. In addition, the nature and extent of Web-searching strategies students used and its correlation with task performance and domain knowledge also…

  8. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types.

    Science.gov (United States)

    Webb, Margaret E; Little, Daniel R; Cropper, Simon J

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions.

  9. Moving your eyes to solution: effects of movements on the perception of a problem-solving task.

    Science.gov (United States)

    Werner, K; Raab, M

    2014-01-01

    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  10. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    Science.gov (United States)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  11. Problem solving stages in the five square problem.

    Science.gov (United States)

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  12. Problem solving stages in the five square problem

    Directory of Open Access Journals (Sweden)

    Anna eFedor

    2015-08-01

    Full Text Available According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviourally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. 101 participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and 67 of them also had the possibility of reporting impasse while working on the task. We have found that 49% (19 out of 39 of the solvers and 13% (8 out of 62 of the non-solvers followed the classic four-stage model of insight. The rest of the participants had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model must be extended to explain variability on the individual level. We provide a model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviourally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behaviour to verify insight theory.

  13. The Effects of Authentic Tasks on Preservice Teachers' Attitudes towards Classes and Problem Solving Skills

    Science.gov (United States)

    Kocyigit, Sinan; Zembat, Rengin

    2013-01-01

    This study aimed to investigate the effects of authentic tasks on preschool preservice teachers' attitudes towards the course and problem solving skills. The study was designed in accordance with the pretest-posttest control group model. The data were collected by using the "Problem Solving Skills Inventory", the "Course Attitude…

  14. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  15. The impact of perceived self-efficacy on mental time travel and social problem solving.

    Science.gov (United States)

    Brown, Adam D; Dorfman, Michelle L; Marmar, Charles R; Bryant, Richard A

    2012-03-01

    Current models of autobiographical memory suggest that self-identity guides autobiographical memory retrieval. Further, the capacity to recall the past and imagine one's self in the future (mental time travel) can influence social problem solving. We examined whether manipulating self-identity, through an induction task in which students were led to believe they possessed high or low self-efficacy, impacted episodic specificity and content of retrieved and imagined events, as well as social problem solving. Compared to individuals in the low self efficacy group, individuals in the high self efficacy group generated past and future events with greater (a) specificity, (b) positive words, and (c) self-efficacious statements, and also performed better on social problem solving indices. A lack of episodic detail for future events predicted poorer performance on social problem solving tasks. Strategies that increase perceived self-efficacy may help individuals to selectively construct a past and future that aids in negotiating social problems. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  17. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  18. Dual Task of Fine Motor Skill and Problem Solving in Individuals With Multiple Sclerosis: A Pilot Study.

    Science.gov (United States)

    Goverover, Y; Sandroff, B M; DeLuca, J

    2018-04-01

    To (1) examine and compare dual-task performance in patients with multiple sclerosis (MS) and healthy controls (HCs) using mathematical problem-solving questions that included an everyday competence component while performing an upper extremity fine motor task; and (2) examine whether difficulties in dual-task performance are associated with problems in performing an everyday internet task. Pilot study, mixed-design with both a within and between subjects' factor. A nonprofit rehabilitation research institution and the community. Participants (N=38) included persons with MS (n=19) and HCs (n=19) who were recruited from a nonprofit rehabilitation research institution and from the community. Not applicable. Participant were presented with 2 testing conditions: (1) solving mathematical everyday problems or placing bolts into divots (single-task condition); and (2) solving problems while putting bolts into divots (dual-task condition). Additionally, participants were required to perform a test of everyday internet competence. As expected, dual-task performance was significantly worse than either of the single-task tasks (ie, number of bolts into divots or correct answers, and time to answer the questions). Cognitive but not motor dual-task cost was associated with worse performance in activities of everyday internet tasks. Cognitive dual-task cost is significantly associated with worse performance of everyday technology. This was not observed in the motor dual-task cost. The implications of dual-task costs on everyday activity are discussed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Implementation Authentic Task to Enhance Problem Solving and Self-Management for Physics College Students

    Science.gov (United States)

    Festiyed; Djamas, D.; Pilendia, D.

    2018-04-01

    The purpose of this study is to enhance the problem solving and self-management abilities of student teachers through individual and group authentic task. Preliminary results showed that the learning outcomes in high category, nevertheless problem solving and self-management abilities are still low and average categories (scattered at interval 40 ≤ N ≤ 65). Initiative to improve this condition is needed. Action research is the alternative solution for that condition through planning, acting, evaluating, and reflecting. This study is allowed in 4 cycles. The acting step result with integrated discuss method, case study, and presentation including self-assessment for individual and group. This method was effective to enhance problem solving and self-management abilities. The final learning outcomes seen from the correlation between student self-assessment and lecture-assessment (r=0.19). Its means there are unidirectional relationship between the result of self-assessment and lecture-assessment. The Conclusion of the research was effective to enhance problem solving and self-management ability.

  20. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    Science.gov (United States)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  1. Negotiation as a metaphor for distributed problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Smith, R.G.

    1983-01-01

    The authors describe the concept of distributed problem solving and defines it as the cooperative solution of problems by a decentralized and loosely coupled collection of problem solvers. This approach to problem solving offers the promise of increased performance and provides a useful medium for exploring and developing new problem-solving techniques. A framework is presented called the contract net that specifies communication and control in a distribution problem solver. Task distribution is viewed as an interactive process, a discussion carried on between a node with a task to be executed and a group of nodes that may be able to execute the task. The kinds of information are described that must be passed between nodes during the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation metaphor: task distribution is viewed as a form of contract negotiation. 32 references.

  2. Problem Solving vs. Troubleshooting Tasks: The Case of Sixth-Grade Students Studying Simple Electric Circuits

    Science.gov (United States)

    Safadi, Rafi'; Yerushalmi, Edit

    2014-01-01

    We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…

  3. Information Processing at the Memoryful and Memoryless Channel Levels in Problem-Solving and Recall Tasks.

    Science.gov (United States)

    Fazio, Frank; Moser, Gene W.

    A probabilistic model (see SE 013 578) describing information processing during the cognitive tasks of recall and problem solving was tested, refined, and developed by testing graduate students on a number of tasks which combined oral, written, and overt "input" and "output" modes in several ways. In a verbal chain one subject…

  4. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  5. Patterns of problem-solving in children's literacy and arithmetic.

    Science.gov (United States)

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-11-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.

  6. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  7. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    Science.gov (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  8. The effects of tradition on problem solving by two wild populations of bearded capuchin monkeys in a probing task.

    Science.gov (United States)

    Cardoso, Raphael Moura; Ottoni, Eduardo B

    2016-11-01

    The effects of culture on individual cognition have become a core issue among cultural primatologists. Field studies with wild populations provide evidence on the role of social cues in the ontogeny of tool use in non-human primates, and on the transmission of such behaviours over generations through socially biased learning. Recent experimental studies have shown that cultural knowledge may influence problem solving in wild populations of chimpanzees. Here, we present the results from a field experiment comparing the performance of bearded capuchin monkeys (Sapajus libidinosus) from two wild savannah populations with distinct toolkits in a probing task. Only the population that already exhibited the customary use of probing tools succeeded in solving the new problem, suggesting that their cultural repertoire shaped their approach to the new task. Moreover, only this population, which uses stone tools in a broader range of contexts, tried to use them to solve the problem. Social interactions can affect the formation of learning sets and they affect the performance of the monkeys in problem solving. We suggest that behavioural traditions affect the ways non-human primates solve novel foraging problems using tools. © 2016 The Author(s).

  9. Matching presentational tools' ontology to part-task demands to foster problem-solving in business economics

    NARCIS (Netherlands)

    Slof, Bert; Erkens, Gijsbert; Kirschner, Paul A.

    2011-01-01

    Slof, B., Erkens, G., & Kirschner, P. A. (2010, July). Matching representational tools’ ontology to part-task demands to foster problem-solving in business economics. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the Disciplines: Proceedings of the 9th International Conference of the

  10. After being challenged by a video game problem, sleep increases the chance to solve it.

    Directory of Open Access Journals (Sweden)

    Felipe Beijamini

    Full Text Available In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14 were almost twice as likely to solve it when compared to the wake control group (n = 15. It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  11. After being challenged by a video game problem, sleep increases the chance to solve it.

    Science.gov (United States)

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  12. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    Science.gov (United States)

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  13. RELATIONSHIP BETWEEN MOZART EFFECT AND THE MISSIONARIES AND CANNIBALS PROBLEM SOLVING TASK

    Directory of Open Access Journals (Sweden)

    JULIANA ROJAS CORREDOR

    2005-10-01

    Full Text Available Relation between Mozart effect and problem solving test Missionaries and Cannibals was explored in female studentswith ages between 17 and 20 years old. This relation was measured with the interactive task Missionaries and Cannibalsand the Mozart’s Sonata para dos pianos K448. Statistical analysis with 0.05 significance level showed differences betweencontrol and experimental group; also when significance level was increased to 0.01 (confidence of 99% the testcontinue showing an association between test solution Missionaries and Cannibals and Mozart effect.

  14. Nicotine intake and problem solving strategies are modified during a cognitively demanding water maze task in rats.

    Science.gov (United States)

    Nesil, Tanseli; Kanit, Lutfiye; Pogun, Sakire

    2015-11-01

    Nicotine is the major addictive component in tobacco, and despite well-established adverse health effects of tobacco addiction, some smokers have difficulty quitting. The acute cognitive enhancement and/or the amelioration of the cognitive disruption during withdrawal that some smokers experience after smoking are among important factors that hinder quit attempts. The animal model presented in the current study is comparable to the human smoking condition although nicotine intake routes are different. Rats were exposed to a free choice of oral nicotine starting at adolescence, and given a water maze (WM) task as adults. This design allowed us to see if rats alter their nicotine intake during the WM task and if nicotine preference and intake modify abilities and strategies rats use for problem solving. Male and female rats were exposed to a free choice of oral nicotine/water for 24weeks, starting at five weeks of age. After this period, they were selected based on their nicotine intake and, together with control animals that received only water, were subjected to a place-learning task in the WM. Free-choice nicotine exposure continued during WM testing. Following acquisition, the probe trial presented the rats with a choice between using two different strategies for problem solving. Nicotine supported acquisition and rats increased their nicotine intake during WM testing; this effect was more pronounced in male rats with minimum nicotine preference and intake. Furthermore, nicotine modified the "female type" strategy in solving the place-learning task and nicotine treated female rats, unlike control females, behaved like males. The increase in nicotine intake during mental engagement, and the sexually dimorphic effect of nicotine on problem solving strategies that we have observed in rats, may suggest that implementing sex-specific smoking cessation approaches, especially under stressful and cognitively demanding conditions, may be useful in helping smokers quit

  15. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  16. Self-affirmation improves problem-solving under stress.

    Science.gov (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  17. Integration of the information problem-solving skill in an educational programme: The effects of learning with authentic tasks.

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan

    2008-01-01

    Brand-Gruwel, S., & Wopereis, I. (2006). Integration of the information problem-solving skill in an educational programme: The effects of learning with authentic tasks. Technology, Instruction, Cognition, and Learning, 4, 243-263.

  18. A Problem-Solving Intervention Using iPads to Improve Transition-Related Task Performance of Students with Autism Spectrum Disorder

    Science.gov (United States)

    Yakubova, Gulnoza; Zeleke, Waganesh A.

    2016-01-01

    In this study, the effectiveness of teaching problem-solving to improve transition-related task performance of three students with autism spectrum disorder (ASD) was examined using a multiple probe across students design. Target behaviors included various transition-related tasks individualized for each student based on their individual…

  19. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example.

    Science.gov (United States)

    Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning

    2012-12-01

    Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  20. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  1. Temperament and problem solving in a population of adolescent guide dogs.

    Science.gov (United States)

    Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L

    2017-09-01

    It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.

  2. Personality and problem-solving in common mynas (Acridotheres tristis).

    Science.gov (United States)

    Lermite, Françoise; Peneaux, Chloé; Griffin, Andrea S

    2017-01-01

    Animals show consistent individual differences in behaviour across time and/or contexts. Recently, it has been suggested that proactive personality types might also exhibit fast cognitive styles. The speed with which individuals sample environmental cues is one way in which correlations between personality and cognition might arise. Here, we measured a collection of behavioural traits (competitiveness, neophobia, neophilia, task-directed motivation and exploration) in common mynas (Acridotheres tristis) and measured their relationship with problem solving. We predicted that fast solving mynas would interact with (i.e. sample) the problem solving task at higher rates, but also be more competitive, less neophobic, more neophilic, and more exploratory. Mynas that were faster to solve a novel foraging problem were no more competitive around food and no more inclined to take risks. Unexpectedly, these fast-solving mynas had higher rates of interactions with the task, but also displayed lower levels of exploration. It is possible that a negative relation between problem solving and spatial exploration arose as a consequence of how inter-individual variation in exploration was quantified. We discuss the need for greater consensus on how to measure exploratory behaviour before we can advance our understanding of relationships between cognition and personality more effectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Emotion Oriented Programming: Computational Abstractions for AI Problem Solving

    OpenAIRE

    Darty , Kevin; Sabouret , Nicolas

    2012-01-01

    International audience; In this paper, we present a programming paradigm for AI problem solving based on computational concepts drawn from Affective Computing. It is believed that emotions participate in human adaptability and reactivity, in behaviour selection and in complex and dynamic environments. We propose to define a mechanism inspired from this observation for general AI problem solving. To this purpose, we synthesize emotions as programming abstractions that represent the perception ...

  4. Counterfactual Problem Solving and Situated Cognition

    Directory of Open Access Journals (Sweden)

    Glebkin V.V.,

    2017-08-01

    Full Text Available The paper describes and interprets data of a study on counterfactual problem solving in representatives of modern industrial culture. The study was inspired by similar experiments carried out by A.R. Luria during his expedition to Central Asia. The hypothesis of our study was that representatives of modern industrial culture would solve counterfactual puzzles at a slower rate and with higher numbers of mistakes than similar non-counterfactual tasks. The experiments we conducted supported this hypothesis as well as provided us with some insights as to how to further develop it. For instance, we found no significant differences in time lag in solving counterfactual and ‘realistic’ tasks between the subjects with mathematical and the ones with liberal arts education. As an interpretation of the obtained data, we suggest a two-stage model of counterfactual problem solving: on the first stage, where situated cognition dominates, the realistic situation is transferred into the system of symbols unrelated to this very situation; on the second stage, operations are carried out within the framework of this new system of symbols.

  5. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    Science.gov (United States)

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the

  6. Enhancing memory and imagination improves problem solving among individuals with depression.

    Science.gov (United States)

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  7. Toward High-Performance Communications Interfaces for Science Problem Solving

    Science.gov (United States)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  8. Innovation and problem solving: a review of common mechanisms.

    Science.gov (United States)

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.

    Science.gov (United States)

    O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline

    2015-06-01

    Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. The use of questions as problem-solving strategies during early childhood.

    Science.gov (United States)

    Legare, Cristine H; Mills, Candice M; Souza, André L; Plummer, Leigh E; Yasskin, Rebecca

    2013-01-01

    This study examined the strategic use of questions to solve problems across early childhood. Participants (N=54, 4-, 5-, and 6-year-olds) engaged in two tasks: a novel problem-solving question task that required asking questions to an informant to determine which card in an array was located in a box and a cognitive flexibility task that required classifying stimuli by multiple dimensions. The results from the question task indicated that there were age differences in the types of questions asked, with 6-year-olds asking more constraint-seeking questions than 4- and 5-year-olds. The number of constraint-seeking questions asked was the only significant predictor of accuracy. Performance on the cognitive flexibility task correlated with both constraint-seeking strategy use and accuracy in the question task. In sum, our results provide evidence that the capacity to use questions to generate relevant information develops before the capacity to apply this information successfully and consistently to solve complex problems. We propose that the process of using questions as strategic tools is an ideal context for examining how children come to gain active and intentional control over problem solving. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Is self-generated thought a means of social problem solving?

    Science.gov (United States)

    Ruby, Florence J. M.; Smallwood, Jonathan; Sackur, Jerome; Singer, Tania

    2013-01-01

    Appropriate social problem solving constitutes a critical skill for individuals and may rely on processes important for self-generated thought (SGT). The aim of the current study was to investigate the link between SGT and social problem solving. Using the Means-End Problem Solving task (MEPS), we assessed participants' abilities to resolve daily social problems in terms of overall efficiency and number of relevant means they provided to reach the given solution. Participants also performed a non-demanding choice reaction time task (CRT) and a moderately-demanding working memory task (WM) as a context in which to measure their SGT (assessed via thought sampling). We found that although overall SGT was associated with lower MEPS efficiency, it was also associated with higher relevant means, perhaps because both depend on the capacity to generate cognition that is independent from the hear and now. The specific content of SGT did not differentially predict individual differences in social problem solving, suggesting that the relationship may depend on SGT regardless of its content. In addition, we also found that performance at the WM but not the CRT was linked to overall better MEPS performance, suggesting that individuals good at social processing are also distinguished by their capacity to constrain attention to an external task. Our results provide novel evidence that the capacity for SGT is implicated in the process by which solutions to social problems are generated, although optimal problem solving may be achieved by individuals who display a suitable balance between SGT and cognition derived from perceptual input. PMID:24391621

  12. Problem-Solving: Scaling the "Brick Wall"

    Science.gov (United States)

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    Science.gov (United States)

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  15. Physics: Quantum problems solved through games

    Science.gov (United States)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  16. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks

    Science.gov (United States)

    Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen

    2018-01-01

    During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620

  17. Mathematical Tasks without Words and Word Problems: Perceptions of Reluctant Problem Solvers

    Science.gov (United States)

    Holbert, Sydney Margaret

    2013-01-01

    This qualitative research study used a multiple, holistic case study approach (Yin, 2009) to explore the perceptions of reluctant problem solvers related to mathematical tasks without words and word problems. Participants were given a choice of working a mathematical task without words or a word problem during four problem-solving sessions. Data…

  18. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  19. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  20. Problem-solving performance and reproductive success of great tits in urban and forest habitats.

    Science.gov (United States)

    Preiszner, Bálint; Papp, Sándor; Pipoly, Ivett; Seress, Gábor; Vincze, Ernő; Liker, András; Bókony, Veronika

    2017-01-01

    Success in problem solving, a form of innovativeness, can help animals exploit their environments, and recent research suggests that it may correlate with reproductive success. Innovativeness has been proposed to be especially beneficial in urbanized habitats, as suggested by superior problem-solving performance of urban individuals in some species. If there is stronger selection for innovativeness in cities than in natural habitats, we expect problem-solving performance to have a greater positive effect on fitness in more urbanized habitats. We tested this idea in great tits (Parus major) breeding at two urban sites and two forests by measuring their problem-solving performance in an obstacle-removal task and a food-acquisition task. Urban pairs were significantly faster problem-solvers in both tasks. Solving speed in the obstacle-removal task was positively correlated with hatching success and the number of fledglings, whereas performance in the food-acquisition task did not correlate with reproductive success. These relationships did not differ between urban and forest habitats. Neophobia, sensitivity to human disturbance, and risk taking in the presence of a predator did not explain the relationships of problem-solving performance either with habitat type or with reproductive success. Our results suggest that the benefit of innovativeness in terms of reproductive success is similar in urban and natural habitats, implying that problem-solving skills may be enhanced in urban populations by some other benefits (e.g. increased survival) or reduced costs (e.g. more opportunities to gain practice with challenging tasks).

  1. Completion strategy or emphasis manipulation? Task support for teaching information problem solving

    NARCIS (Netherlands)

    Frerejean, Jimmy; Van Strien, Johan; Kirschner, Paul A.; Brand-Gruwel, Saskia

    2016-01-01

    While most students seem to solve information problems effortlessly, research shows that the cognitive skills for effective information problem solving are often underdeveloped. Students manage to find information and formulate solutions, but the quality of their process and product is questionable.

  2. Completion strategy or emphasis manipulation? : Task support for teaching information problem solving

    NARCIS (Netherlands)

    Frerejean, Jimmy; van Strien, J.L.H.; Kirschner, Paul A.; Brand-Gruwel, Saskia

    While most students seem to solve information problems effortlessly, research shows that the cognitive skills for effective information problem solving are often underdeveloped. Students manage to find information and formulate solutions, but the quality of their process and product is questionable.

  3. Towards effective partnerships in a collaborative problem-solving task.

    Science.gov (United States)

    Schmitz, Megan J; Winskel, Heather

    2008-12-01

    Collaborative learning is recognized as an effective learning tool in the classroom. In order to optimize the collaborative learning experience for children within a collaborative partnership, it is important to understand how to match the children by ability level, and whether assigning roles within these dyads is beneficial or not. The current study investigated the effect of partnering children with different task-specific abilities and assigning or not assigning helping roles within the dyads on the quality of talk used in a collaborative learning task. The participants in this study comprised 54 year 6 pupils from a Western Sydney government primary school (boys=26, girls=28). The ages ranged from 10 years 10 months to 12 years 4 months with a mean age of 11 years 4 months. The children were formed into 27 single sex dyads of low-middle- and low-high-ability partnerships. In half of each of these dyads the higher ability partner was asked to help the lower ability partner, which was compared with just asking partners to work together. The quality of talk used by the dyads while working collaboratively on the problem-solving task was analysed using a language analysis framework developed by Mercer and colleagues (e.g. Littleton et al., 2005; Mercer, 1994, 1996). Results of this study found that children who worked collaboratively in the low-middle-ability dyad condition demonstrated significantly more high-quality exploratory talk than those in the low-high-ability dyad condition. Although there was no significant difference between dyads who were assigned roles and those who were asked to work together, there was an interaction trend which suggests that low-high-ability dyads, who were given the roles of helper and learner, showed more exploratory talk than dyads who were asked just to work together. Mercer's re-conceptualization of Vygotsky's Zone of Proximal Development (ZPD) in terms of the Intermental Development Zone (IDZ), which is reliant on

  4. An episodic specificity induction enhances means-end problem solving in young and older adults.

    Science.gov (United States)

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  5. The role of qualitative discussion in problem solving

    International Nuclear Information System (INIS)

    Cerny, V.

    1998-01-01

    The paper contributes to the methodology of problem solving in physics. We argue that the task of solving a problem does not end by obtaining the result. We claim that a question like 'Why the result came out as it did?' can be meaningfully posed and that deeper understanding of the subject comes out as a result of a discussion on possible answers to such a question (Author)

  6. An Investigation of Problem-Solving Skills of Preservice Science Teachers

    Science.gov (United States)

    Bahtiyar, Asiye; Can, Bilge

    2016-01-01

    Advancements in science and technology have created problems for some people who have difficulties adapting to the new environment. Improving problem solving skills of these people is very important for them to so have the ability to cope with new problems. From the education perspective, it is believed that teachers should help students by not…

  7. E-learning task analysis making temporal evolution graphics on symptoms of waves and the ability to solve problems

    Science.gov (United States)

    Rosdiana, L.; Widodo, W.; Nurita, T.; Fauziah, A. N. M.

    2018-04-01

    This study aimed to describe the ability of pre-service teachers to create graphs, solve the problem of spatial and temporal evolution on the symptoms of vibrations and waves. The learning was conducted using e-learning method. The research design is a quasi-experimental design with one-shot case study. The e-learning contained learning materials and tasks involving answering tasks, making questions, solving their own questions, and making graphs. The participants of the study was 28 students of Science Department, Universitas Negeri Surabaya. The results obtained by using the e-learning were that the students’ ability increase gradually from task 1 to task 3 (the tasks consisted of three tasks). Additionally, based on the questionnaire with 28 respondents, it showed that 24 respondents stated that making graphs via e-learning were still difficult. Four respondents said that it was easy to make graphs via e-learning. Nine respondents stated that the e-learning did not help them in making graphs and 19 respondents stated that the e-learning help in creating graphs. The conclusion of the study is that the students was able to make graphs on paper sheet, but they got difficulty to make the graphs in e-learning (the virtual form).

  8. The Impact of Parental Attitudes on Problem Solving Skills in High School Students

    Science.gov (United States)

    Tösten, Rasim; Han, Bünyamin; Anik, Sabri

    2017-01-01

    Problem solving skill is one of the important skills which are expected to be gained during the educational programs. In the development of children's skills and shaping the behaviors, parental attitudes are believed to be effective. That means problem-solving skills and behavioral characteristics of individuals are closely related. From that…

  9. Processing of Words Related to the Demands of a Previously Solved Problem

    Directory of Open Access Journals (Sweden)

    Kowalczyk Marek

    2014-06-01

    Full Text Available Earlier research by the author brought about findings suggesting that people in a special way process words related to demands of a problem they previously solved, even when they do not consciously notice this relationship. The findings concerned interference in the task in which the words appeared, a shift in affective responses to them that depended on sex of the participants, and impaired memory of the words. The aim of this study was to replicate these effects and to find out whether they are related to working memory (WM span of the participants, taken as a measure of the individual’s ability to control attention. Participants in the experimental group solved a divergent problem, then performed an ostensibly unrelated speeded affective classification task concerning each of a series of nouns, and then performed an unexpected cued recall task for the nouns. Afterwards, a task measuring WM span was administered. In the control group there was no problem-solving phase. Response latencies for words immediately following problem-related words in the classification task were longer in the experimental than in the control group, but there was no relationship between this effect and WM span. Solving the problem, in interaction with sex of the participants and, independently, with their WM span, influenced affective responses to problem-related words. Recall of these words, however, was not impaired in the experimental group.

  10. Mechanical problem-solving strategies in Alzheimer's disease and semantic dementia.

    Science.gov (United States)

    Lesourd, Mathieu; Baumard, Josselin; Jarry, Christophe; Etcharry-Bouyx, Frédérique; Belliard, Serge; Moreaud, Olivier; Croisile, Bernard; Chauviré, Valérie; Granjon, Marine; Le Gall, Didier; Osiurak, François

    2016-07-01

    The goal of this study was to explore whether the tool-use disorders observed in Alzheimer's disease (AD) and semantic dementia (SD) are of the same nature as those observed in left brain-damaged (LBD) patients. Recent evidence indicates that LBD patients with apraxia of tool use encounter difficulties in solving mechanical problems, characterized by the absence of specific strategies. This pattern may show the presence of impaired mechanical knowledge, critical for both familiar and novel tool use. So, we explored the strategies followed by AD and SD patients in mechanical problem-solving tasks in order to determine whether mechanical knowledge is also impaired in these patients. We used a mechanical problem-solving task in both choice (i.e., several tools were proposed) and no-choice (i.e., only 1 tool was proposed) conditions. We analyzed quantitative data and strategy profiles. AD patients but not SD patients met difficulties in solving mechanical problem-solving tasks. However, the key finding is that AD patients, despite their difficulties, showed strategy profiles that are similar to that of SD patients or controls. Moreover, AD patients exhibited a strategy profile distinct from the one previously observed in LBD patients. Those observations lead us to consider that difficulties met by AD patients to solve mechanical problems or even to use familiar tools may not be caused by mechanical knowledge impairment per se. In broad terms, what we call apraxia of tool use in AD is certainly not the same as apraxia of tool use observed in LBD patients. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Robotics and STEM Learning: Students' Achievements in Assignments According to the P3 Task Taxonomy--Practice, Problem Solving, and Projects

    Science.gov (United States)

    Barak, Moshe; Assal, Muhammad

    2018-01-01

    This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…

  12. Factors Influencing Problem-Solving in Middle-Aged and Elderly Adults

    Science.gov (United States)

    Kesler, Mary S.; And Others

    1976-01-01

    Groups of middle-aged and elderly men and women were compared on three problem solving tasks, including written problems, the 20-questions procedure, and problems administered on a Heuristic Evaluation Problem Programmer. (MS)

  13. Task analysis and support for problem solving tasks

    International Nuclear Information System (INIS)

    Bainbridge, L.

    1987-01-01

    This paper is concerned with Task Analysis as the basis for ergonomic design to reduce human error rates, rather than for predicting human error rates. Task Analysis techniques usually provide a set of categories for describing sub tasks, and a framework describing the relations between sub-tasks. Both the task type categories and their organisation have implications for optimum interface and training design. In this paper, the framework needed for considering the most complex tasks faced by operators in process industries is discussed such as fault management in unexpected situations, and what is likely to minimise human error in these circumstances. (author)

  14. Aiding the search: Examining individual differences in multiply-constrained problem solving.

    Science.gov (United States)

    Ellis, Derek M; Brewer, Gene A

    2018-07-01

    Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.

  15. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    Science.gov (United States)

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  16. The coordination of problem solving strategies: when low competence sources exert more influence on task processing than high competence sources.

    Science.gov (United States)

    Quiamzade, Alain; Mugny, Gabriel; Darnon, Céline

    2009-03-01

    Previous research has shown that low competence sources, compared to highly competent sources, can exert influence in aptitudes tasks in as much as they induce people to focus on the task and to solve it more deeply. Two experiments aimed at testing the coordination between self and source's problem solving strategies as a main explanation of such a difference in influence. The influence of a low versus high competence source has been examined in an anagram task that allows for distinguishing between three response strategies, including one that corresponds to the coordination between the source's strategy and participants' own strategy. In Study 1 the strategy suggested by the source was either relevant and useful or irrelevant and useless for solving the task. Results indicated that participants used the coordination strategy in a larger extend when they had been confronted to a low competence rather than a highly competent source but only when the source displayed a strategy that was useful to solve the task. In Study 2 the source's strategy was always relevant and useful, but a decentring procedure was introduced for half of the participants. This procedure induced participants to consider other points of view than their own. Results replicated the difference observed in Study 1 when no decentring was introduced. The difference however disappeared when decentring was induced, because of an increase of the high competence source's influence. These results highlight coordination of strategies as one mechanism underlying influence from low competence sources.

  17. Problem-solving deficits in Iranian people with borderline personality disorder.

    Science.gov (United States)

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  18. Testing problem-solving capacities: differences between individual testing and social group setting.

    Science.gov (United States)

    Krasheninnikova, Anastasia; Schneider, Jutta M

    2014-09-01

    Testing animals individually in problem-solving tasks limits distractions of the subjects during the test, so that they can fully concentrate on the problem. However, such individual performance may not indicate the problem-solving capacity that is commonly employed in the wild when individuals are faced with a novel problem in their social groups, where the presence of a conspecific influences an individual's behaviour. To assess the validity of data gathered from parrots when tested individually, we compared the performance on patterned-string tasks among parrots tested singly and parrots tested in social context. We tested two captive groups of orange-winged amazons (Amazona amazonica) with several patterned-string tasks. Despite the differences in the testing environment (singly vs. social context), parrots from both groups performed similarly. However, we found that the willingness to participate in the tasks was significantly higher for the individuals tested in social context. The study provides further evidence for the crucial influence of social context on individual's response to a challenging situation such as a problem-solving test.

  19. A Problem-Solving Model for Literacy Coaching Practice

    Science.gov (United States)

    Toll, Cathy A.

    2017-01-01

    Literacy coaches are more effective when they have a clear plan for their collaborations with teachers. This article provides details of such a plan, which involves identifying a problem, understanding the problem, deciding what to do differently, and trying something different. For each phase of the problem-solving model, there are key tasks for…

  20. Do job demands and job control affect problem-solving?

    Science.gov (United States)

    Bergman, Peter N; Ahlberg, Gunnel; Johansson, Gun; Stoetzer, Ulrich; Aborg, Carl; Hallsten, Lennart; Lundberg, Ingvar

    2012-01-01

    The Job Demand Control model presents combinations of working conditions that may facilitate learning, the active learning hypothesis, or have detrimental effects on health, the strain hypothesis. To test the active learning hypothesis, this study analysed the effects of job demands and job control on general problem-solving strategies. A population-based sample of 4,636 individuals (55% women, 45% men) with the same job characteristics measured at two times with a three year time lag was used. Main effects of demands, skill discretion, task authority and control, and the combined effects of demands and control were analysed in logistic regressions, on four outcomes representing general problem-solving strategies. Those reporting high on skill discretion, task authority and control, as well as those reporting high demand/high control and low demand/high control job characteristics were more likely to state using problem solving strategies. Results suggest that working conditions including high levels of control may affect how individuals cope with problems and that workplace characteristics may affect behaviour in the non-work domain.

  1. Solving Classical Insight Problems without Aha! Experience: 9 Dot, 8 Coin, and Matchstick Arithmetic Problems

    Science.gov (United States)

    Danek, Amory H.; Wiley, Jennifer; Öllinger, Michael

    2016-01-01

    Insightful problem solving is a vital part of human thinking, yet very difficult to grasp. Traditionally, insight has been investigated by using a set of established "insight tasks," assuming that insight has taken place if these problems are solved. Instead of assuming that insight takes place during every solution of the 9 Dot, 8 Coin,…

  2. A meta-heuristic method for solving scheduling problem: crow search algorithm

    Science.gov (United States)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  3. Rewarding Multitasking: Negative Effects of an Incentive on Problem Solving under Divided Attention

    Science.gov (United States)

    Wieth, Mareike B.; Burns, Bruce D.

    2014-01-01

    Research has consistently shown negative effects of multitasking on tasks such as problem solving. This study was designed to investigate the impact of an incentive when solving problems in a multitasking situation. Incentives have generally been shown to increase problem solving (e.g., Wieth & Burns, 2006), however, it is unclear whether an…

  4. Parent–child problem solving in families of children with or without intellectual disability

    Science.gov (United States)

    Wieland, N.; Green, S.; Ellingsen, R.; Baker, B. L.

    2016-01-01

    Objective To examine differences in child social competence and parent–child interactions involving children with intellectual disability (ID) or typical development (TD) during a Parent–Child Problem-Solving Task. Design Mothers and their 9-year-old children (n = 122) participated in a problem-solving task in which they discussed and tried to resolve an issue they disagreed about. The interactions were coded on child and mother problem solving and affect behaviours, as well as the dyad’s problem resolution. Results Children with ID (n = 35) were rated lower on expression/negotiation skills and higher on resistance to the task than children with TD (n = 87). Mothers in the ID group (vs. TD group) were more likely to direct the conversation. However, there were no group differences on maternal feeling acknowledgement, engagement, warmth or antagonism. The ID dyads were less likely to come to a resolution and to compromise in doing so than the TD dyads. These group differences were not attributable to differences in children’s behaviour problems. Conclusions Children with ID and their mothers had more difficulty resolving problems, and this increased difficulty was not explained by greater behaviour problems. Additionally, with the exception of directiveness, mothers of children with ID displayed similar behaviours and affect towards their children during problem solving as mothers of children with TD. Results suggest that the Parent–Child Problem-Solving Task is a useful way to assess social skills and associated parental behaviours in middle childhood beyond self-report. Implications for future research and intervention are discussed. PMID:23336566

  5. Conflict Management in "Ad Hoc" Problem-Solving Groups: A Preliminary Investigation.

    Science.gov (United States)

    Wallace, Les; Baxter, Leslie

    Full study of small group communication must include consideration of task and socio-emotional dimensions, especially in relation to group problem solving. Thirty small groups were tested for their reactions in various "ad hoc" conflict resolution situations. Instructions to the groups were (1) no problem-solving instructions (control),…

  6. Assessment of vertical transfer in problem solving: Mapping the problem design space

    Science.gov (United States)

    Von Korff, Joshua; Hu, Dehui; Rebello, N. Sanjay

    2012-02-01

    In schema-based theories of cognition, vertical transfer occurs when a learner constructs a new schema to solve a transfer task or chooses between several possible schemas. Vertical transfer is interesting to study, but difficult to measure. Did the student solve the problem using the desired schema or by an alternative method? Perhaps the problem cued the student to use certain resources without knowing why? In this paper, we consider some of the threats to validity in problem design. We provide a theoretical framework to explain the challenges faced in designing vertical transfer problems, and we contrast these challenges with horizontal transfer problem design. We have developed this framework from a set of problems that we tested on introductory mechanics students, and we illustrate the framework using one of the problems.

  7. ENGAGE: A Game Based Learning and Problem Solving Framework

    Science.gov (United States)

    2012-07-13

    Gamification Summit 2012  Mensa Colloquium 2012.2: Social and Video Games  Seattle Science Festival  TED Salon Vancouver : http...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress

  8. HUMAN-MACHINE INTERACTION IN SOLVING TASKS OF THE PLANNING DEPARTMENT

    Directory of Open Access Journals (Sweden)

    Boris Alekseyevich Kucherov

    2017-12-01

    Full Text Available The paper discusses issues of human-machine interaction in solving tasks of the planning department under severe resource restrictions using information technology. The negative factors influencing specialists of the planning department in solving their tasks under the given circumstances are shown. Specific features of designing the user interface in this subject area are noted. Directions to increase the efficiency of reaction of the planning department’s specialists to change the current situation by visual and sound notification of various events are marked. Various ways to develop user interface to generate a conflict-free plan under severe resource restrictions are considered. The variants of informative presentation of operational and statistical information to stakeholders are analyzed. These issues are discussed by the example of the planning department which solves the tasks of allocation of control facilities for spacecraft (a subset of satellite range scheduling problem,

  9. Using the Wonder of Inequalities between Averages for Mathematics Problems Solving

    Science.gov (United States)

    Shaanan, Rachel Mogilevsky; Gordon, Moshe Stupel

    2016-01-01

    The study presents an introductory idea of using mathematical averages as a tool for enriching mathematical problem solving. Throughout students' activities, a research was conducted on their ability to solve mathematical problems, and how to cope with a variety of mathematical tasks, in a variety of ways, using the skills, tools and experiences…

  10. Parent-child problem solving in families of children with or without intellectual disability.

    Science.gov (United States)

    Wieland, N; Green, S; Ellingsen, R; Baker, B L

    2014-01-01

    To examine differences in child social competence and parent-child interactions involving children with intellectual disability (ID) or typical development (TD) during a Parent-Child Problem-Solving Task. Mothers and their 9-year-old children (n = 122) participated in a problem-solving task in which they discussed and tried to resolve an issue they disagreed about. The interactions were coded on child and mother problem solving and affect behaviours, as well as the dyad's problem resolution. Children with ID (n = 35) were rated lower on expression/negotiation skills and higher on resistance to the task than children with TD (n = 87). Mothers in the ID group (vs. TD group) were more likely to direct the conversation. However, there were no group differences on maternal feeling acknowledgement, engagement, warmth or antagonism. The ID dyads were less likely to come to a resolution and to compromise in doing so than the TD dyads. These group differences were not attributable to differences in children's behaviour problems. Children with ID and their mothers had more difficulty resolving problems, and this increased difficulty was not explained by greater behaviour problems. Additionally, with the exception of directiveness, mothers of children with ID displayed similar behaviours and affect towards their children during problem solving as mothers of children with TD. Results suggest that the Parent-Child Problem-Solving Task is a useful way to assess social skills and associated parental behaviours in middle childhood beyond self-report. Implications for future research and intervention are discussed. © 2013 The Authors. Journal of Intellectual Disability Research © 2013 John Wiley & Sons Ltd, MENCAP & IASSIDD.

  11. Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language

    Science.gov (United States)

    Unuakhalu, Mike F.

    2009-01-01

    This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…

  12. Better without (lateral) frontal cortex? Insight problems solved by frontal patients.

    Science.gov (United States)

    Reverberi, Carlo; Toraldo, Alessio; D'Agostini, Serena; Skrap, Miran

    2005-12-01

    A recently proposed theory on frontal lobe functions claims that the prefrontal cortex, particularly its dorso-lateral aspect, is crucial in defining a set of responses suitable for a particular task, and biasing these for selection. This activity is carried out for virtually any kind of non-routine tasks, without distinction of content. The aim of this study is to test the prediction of Frith's 'sculpting the response space' hypothesis by means of an 'insight' problem-solving task, namely the matchstick arithmetic task. Starting from Knoblich et al.'s interpretation for the failure of healthy controls to solve the matchstick problem, and Frith's theory on the role of dorsolateral frontal cortex, we derived the counterintuitive prediction that patients with focal damage to the lateral frontal cortex should perform better than a group of healthy participants on this rather difficult task. We administered the matchstick task to 35 patients (aged 26-65 years) with a single focal brain lesion as determined by a CT or an MRI scan, and to 23 healthy participants (aged 34-62 years). The findings seemed in line with theoretical predictions. While only 43% of healthy participants could solve the most difficult matchstick problems ('type C'), 82% of lateral frontal patients did so (Fisher's exact test, P < 0.05). In conclusion, the combination of Frith's and Knoblich et al.'s theories was corroborated.

  13. Robotic Toys as a Catalyst for Mathematical Problem Solving

    Science.gov (United States)

    Highfield, Kate

    2010-01-01

    Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…

  14. Team Self-Assessment: Problem Solving for Small Workgroups.

    Science.gov (United States)

    LoBue, Robert

    2002-01-01

    Describes team self-assessment, a task force approach involving frontline workers/supervisors in solving problems or improving performance. Provides examples and discusses its theoretical bases: control self-assessment, Belbin's team roles research, and the team climate inventory. (Contains 23 references.) (SK)

  15. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    Science.gov (United States)

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  16. Inverse sex effects on performance of domestic dogs (Canis familiaris) in a repeated problem-solving task.

    Science.gov (United States)

    Duranton, Charlotte; Rödel, Heiko G; Bedossa, Thierry; Belkhir, Séverine

    2015-02-01

    The authors investigated differences between female and male pet dogs in physical cognition using an object manipulation task. Subjects (24 females and 23 males of different breeds) had to open a box in order to obtain a food reward during 3 consecutive trials, and latency times before success were measured. Males were significantly more successful in opening the box during the first trial. However, this sex difference was inversed when successful individuals were retested. During the following 2 trials, females were more successful than males, indicating that they were able to improve their skills more quickly once they had managed to succeed for a first time. Sex-specific dynamics in repeated problem-solving tasks might be an important contributor to individual differences in cognitive performance of pet dogs. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  17. Calculus Problem Solving Behavior of Mathematic Education Students

    Science.gov (United States)

    Rizal, M.; Mansyur, J.

    2017-04-01

    The purpose of this study is to obtain a description of the problem-solving behaviour of mathematics education students. The attainment of the purpose consisted of several stages: (1) to gain the subject from the mathematic education of first semester students, each of them who has a high, medium, and low competence of mathematic case. (2) To give two mathematical problems with different characteristics. The first problem (M1), the statement does not lead to a resolution. The second problem (M2), a statement leads to problem-solving. (3) To explore the behaviour of problem-solving based on the step of Polya (Rizal, 2011) by way of thinking aloud and in-depth interviews. The obtained data are analysed as suggested by Miles and Huberman (1994) but at first, time triangulation is done or data’s credibility by providing equivalent problem contexts and at different times. The results show that the behavioral problem solvers (mathematic education students) who are capable of high mathematic competency (ST). In understanding M1, ST is more likely to pay attention to an image first, read the texts piecemeal and repeatedly, then as a whole and more focus to the sentences that contain equations, numbers or symbols. As a result, not all information can be received well. When understanding the M2, ST can link the information from a problem that is stored in the working memory to the information on the long-term memory. ST makes planning to the solution of M1 and M2 by using a formula based on similar experiences which have been ever received before. Another case when implementing the troubleshooting plans, ST complete the M1 according to the plan, but not all can be resolved correctly. In contrast to the implementation of the solving plan of M2, ST can solve the problem according to plan quickly and correctly. According to the solving result of M1 and M2, ST conducts by reading the job based on an algorithm and reasonability. Furthermore, when SS and SR understand the

  18. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  19. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  20. Parenting Behaviours during Child Problem Solving: The Roles of Child Temperament, Mother Education and Personality, and the Problem-Solving Context

    Science.gov (United States)

    Neitzel, Carin; Stright, Anne Dopkins

    2004-01-01

    Child temperament, parent openness to experience, conscientiousness, and education, and parent a priori assessments of the task were examined in relation to parenting behaviours during child problem solving. Mothers and their children (73 dyads) were visited the summer before kindergarten. Mothers' cognitive, emotional, and autonomy support were…

  1. Differences in problem-solving between canid populations: Do domestication and lifetime experience affect persistence?

    Science.gov (United States)

    Brubaker, Lauren; Dasgupta, Sandipan; Bhattacharjee, Debottam; Bhadra, Anindita; Udell, Monique A R

    2017-07-01

    Past research has suggested that a variety of factors, phylogenetic and ontogenetic, play a role in how canines behave during problem-solving tasks and the degree to which the presence of a human influences their problem-solving behaviour. While comparisons between socialized wolves and domestic dogs have commonly been used to tease apart these predictive factors, in many cases a single dog population, often pets, have been used for these comparisons. Less is understood about how different populations of dogs may behave when compared with wolves, or with each other, during an independent problem-solving task. This experiment compared the independent persistence of four populations of canines (two groups of pet domestic dogs, a group of free-ranging domestic dogs, and human-socialized wolves) on an independent problem-solving task in the presence of an on looking human. Results showed that wolves persisted the most at the task while free-ranging dogs persisted the least. Free-ranging dogs gazed at the human experimenter for the longest durations during the task. While further research is needed to understand why these differences exist, this study demonstrates that dogs, even those living outside human homes as scavengers, show comparatively low levels of persistence when confronted with a solvable task in the presence of a human as well as significantly greater duration of human-directed gaze when compared with wolves.

  2. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  3. Effects of traumatic brain injury on a virtual reality social problem solving task and relations to cortical thickness in adolescence.

    Science.gov (United States)

    Hanten, Gerri; Cook, Lori; Orsten, Kimberley; Chapman, Sandra B; Li, Xiaoqi; Wilde, Elisabeth A; Schnelle, Kathleen P; Levin, Harvey S

    2011-02-01

    Social problem solving was assessed in 28 youth ages 12-19 years (15 with moderate to severe traumatic brain injury (TBI), 13 uninjured) using a naturalistic, computerized virtual reality (VR) version of the Interpersonal Negotiations Strategy interview (Yeates, Schultz, & Selman, 1991). In each scenario, processing load condition was varied in terms of number of characters and amount of information. Adolescents viewed animated scenarios depicting social conflict in a virtual microworld environment from an avatar's viewpoint, and were questioned on four problem solving steps: defining the problem, generating solutions, selecting solutions, and evaluating the likely outcome. Scoring was based on a developmental scale in which responses were judged as impulsive, unilateral, reciprocal, or collaborative, in order of increasing score. Adolescents with TBI were significantly impaired on the summary VR-Social Problem Solving (VR-SPS) score in Condition A (2 speakers, no irrelevant information), p=0.005; in Condition B (2 speakers+irrelevant information), p=0.035; and Condition C (4 speakers+irrelevant information), p=0.008. Effect sizes (Cohen's D) were large (A=1.40, B=0.96, C=1.23). Significant group differences were strongest and most consistent for defining the problems and evaluating outcomes. The relation of task performance to cortical thickness of specific brain regions was also explored, with significant relations found with orbitofrontal regions, the frontal pole, the cuneus, and the temporal pole. Results are discussed in the context of specific cognitive and neural mechanisms underlying social problem solving deficits after childhood TBI. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Perceptual Salience and Children's Multidimensional Problem Solving

    Science.gov (United States)

    Odom, Richard D.; Corbin, David W.

    1973-01-01

    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  5. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter

    2015-01-01

    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  6. Working in Dyads and Alone: Examining Process Variables in Solving Insight Problems

    Science.gov (United States)

    Tidikis, Viktoria; Ash, Ivan K.

    2013-01-01

    This study investigated the effects of working in dyads and their associated gender composition on performance (solution rate and time) and process variables (number of impasses, number of passed solutions, and number of problem solving suggestions and interactions) in a set of classic insight problem solving tasks. Two types of insight problems…

  7. Artificial Immune Systems as a Modern Tool for Solving Multi-Purpose Optimization Tasks in the Field of Logistics

    Directory of Open Access Journals (Sweden)

    Skitsko Volodymyr I.

    2017-03-01

    Full Text Available The article investigates various aspects of the functioning of artificial immune systems and their using to solve different tasks. The analysis of the studied literature showed that nowadays there exist combinations of artificial immune systems, in particular with genetic algorithms, the particle swarm optimization method, artificial neural networks, etc., to solve different tasks. However, the solving of economic tasks is paid little attention. The article presents the basic terminology of artificial immune systems; the steps of the clonal selection algorithm are described, as well as a brief description of the negative selection algorithm, the immune network algorithm and the dendritic algorithm is given; conceptual aspects of the use of an artificial immune system for solving multi-purpose optimization problems are formulated, and an example of solving a problem in the field of logistics is described. Artificial immune systems as a means of solving various weakly structured, multi-criteria and multi-purpose economic tasks, in particular in the sphere of logistics, are a promising tool that requires further research. Therefore, it is advisable in the future to focus on the use of various existing immune algorithms for solving various economic problems.

  8. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  9. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  10. Solving multiconstraint assignment problems using learning automata.

    Science.gov (United States)

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  11. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  12. Learning and interactivity in solving a transformation problem.

    Science.gov (United States)

    Guthrie, Lisa G; Vallée-Tourangeau, Frédéric; Vallée-Tourangeau, Gaëlle; Howard, Chelsea

    2015-07-01

    Outside the psychologist's laboratory, thinking proceeds on the basis of a great deal of interaction with artefacts that are recruited to augment problem-solving skills. The role of interactivity in problem solving was investigated using a river-crossing problem. In Experiment 1A, participants completed the same problem twice, once in a low interactivity condition, and once in a high interactivity condition (with order counterbalanced across participants). Learning, as gauged in terms of latency to completion, was much more pronounced when the high interactivity condition was experienced second. When participants first completed the task in the high interactivity condition, transfer to the low interactivity condition during the second attempt was limited; Experiment 1B replicated this pattern of results. Participants thus showed greater facility to transfer their experience of completing the problem from a low to a high interactivity condition. Experiment 2 was designed to determine the amount of learning in a low and high interactivity condition; in this experiment participants completed the problem twice, but level of interactivity was manipulated between subjects. Learning was evident in both the low and high interactivity groups, but latency per move was significantly faster in the high interactivity group, in both presentations. So-called problem isomorphs instantiated in different task ecologies draw upon different skills and abilities; a distributed cognition analysis may provide a fruitful perspective on learning and transfer.

  13. Self Esteem, Information Search and Problem Solving Efficiency.

    Science.gov (United States)

    1979-05-01

    Weiss (1977, 1978) has shown that low self esteem workers are more likely to model the role behaviors and work values of superiors than are high self ...task where search is functional. Results showed that, as expected, low self esteem subjects searched for more information, search was functional and low ...situation. He has also argued that high self esteem individuals search for less information on problem solving tasks and are therefore less likely to

  14. Fluid Ability (Gf) and Complex Problem Solving (CPS)

    OpenAIRE

    Patrick Kyllonen; Cristina Anguiano Carrasco; Harrison J. Kell

    2017-01-01

    Complex problem solving (CPS) has emerged over the past several decades as an important construct in education and in the workforce. We examine the relationship between CPS and general fluid ability (Gf) both conceptually and empirically. A review of definitions of the two factors, prototypical tasks, and the information processing analyses of performance on those tasks suggest considerable conceptual overlap. We review three definitions of CPS: a general definition emerging from the human pr...

  15. Do New Caledonian crows solve physical problems through causal reasoning?

    Science.gov (United States)

    Taylor, A.H.; Hunt, G.R.; Medina, F.S.; Gray, R.D.

    2008-01-01

    The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow's exceptional tool skills. PMID:18796393

  16. The effect of visual representation style in problem-solving: a perspective from cognitive processes.

    Science.gov (United States)

    Nyamsuren, Enkhbold; Taatgen, Niels A

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.

  17. The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes

    Science.gov (United States)

    Nyamsuren, Enkhbold; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415

  18. The effect of visual representation style in problem-solving: a perspective from cognitive processes.

    Directory of Open Access Journals (Sweden)

    Enkhbold Nyamsuren

    Full Text Available Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.

  19. Relative Effects of Three Questioning Strategies in Ill-Structured, Small Group Problem Solving

    Science.gov (United States)

    Byun, Hyunjung; Lee, Jung; Cerreto, Frank A.

    2014-01-01

    The purpose of this research is to investigate the relative effectiveness of using three different question-prompt strategies on promoting metacognitive skills and performance in ill-structured problem solving by examining the interplay between peer interaction and cognitive scaffolding. An ill-structured problem-solving task was given to three…

  20. A Brighter Side to Memory Illusions: False Memories Prime Children's and Adults' Insight-Based Problem Solving

    Science.gov (United States)

    Howe, Mark L.; Garner, Sarah R.; Charlesworth, Monica; Knott, Lauren

    2011-01-01

    Can false memories have a positive consequence on human cognition? In two experiments, we investigated whether false memories could prime insight problem-solving tasks. Children and adults were asked to solve compound remote associate task (CRAT) problems, half of which had been primed by the presentation of Deese/Roediger-McDermott (DRM) lists…

  1. Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation

    Science.gov (United States)

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…

  2. Struggling Students' Use of Representation When Developing Number Sense and Problem Solving Abilities

    OpenAIRE

    Roxburgh, Allison L.

    2016-01-01

    Through my experience I have found students often rely on concrete or pictorial strategies to solve mathematical problems. These strategies are great to build an understanding in mathematical concepts. However, using these strategies becomes a tedious task when working with multi-digit numbers to solve problems involving mathematical operations. For example, a student who relies on drawing base ten blocks to solve three-digit addition problems may experience fatigue, as this is not the most e...

  3. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    Science.gov (United States)

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  4. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    problem-solving movement, over the last twenty years, mathematics educators around the world started increasingly to appreciate the role of social interaction and mathematical discourse in classrooms, and to take into consideration the infl uence of the social, socio-mathematical and mathematical norms established in classrooms. This shift away from an emphasis on individualised instruction towards classroom practices characterised by rich and focused social interaction orchestrated by the teacher, became the second element, next to problem-solving, of what is now known as the “reform agenda”. Learning and teaching by means of problem-solving in a socially-interactive classroom, with a strong demand for conceptual understanding, is radically different from traditional expository teaching. However, contrary to commonly-held misunderstandings, it requires substantial teacher involvement. It also requires teachers to assume a much higher level of responsibility for the extent and quality of learning than that which teachers tended to assume traditionally. Over the last 10 years, teaching for and via problem solving has become entrenched in the national mathematics curriculum statements of many countries, and programs have been launched to induce and support teachers to implement it. Actual implementation of the “reform agenda” in classrooms is, however, still limited. The limited implementation is ascribed to a number of factors, including the failure of assessment practices to accommodate problem solving and higher levels of understanding that may be facilitated by teaching via problem solving, lack of clarity about what teaching for and via problem solving may actually mean in practice, and limited mathematical expertise of teachers. Some leading mathematics educators (for example, Schoenfeld, Stigler and Hiebert believe that the reform agenda specifi es classroom practices that are fundamentally foreign to culturally embedded pedagogical traditions, and hence

  5. Acquisition and performance of a problem-solving skill.

    Science.gov (United States)

    Morgan, B. B., Jr.; Alluisi, E. A.

    1971-01-01

    The acquisition of skill in the performance of a three-phase code transformation task (3P-COTRAN) was studied with 20 subjects who solved 27 3P-COTRAN problems during each of 8 successive sessions. The purpose of the study was to determine the changes in the 3P-COTRAN factor structure resulting from practice, the distribution of practice-related gains in performance over the nine measures of the five 3P-COTRAN factors, and the effects of transformation complexities on the 3P-COTRAN performance of subjects. A significant performance gain due to practice was observed, with improvements in speed continuing even when accuracy reached asymptotic levels. Transformation complexity showed no effect on early performances but the 3- and 4-element transformations were solved quicker than the 5-element transformation in the problem-solving Phase III of later skilled performances.

  6. The Elementary School Students’ Mathematical Problem Solving Based on Reading Abilities

    Science.gov (United States)

    Wulandari, R. D.; Lukito, A.; Khabibah, S.

    2018-01-01

    The aim of this research is to describe the third grade of elementary school students’ mathematical problem in solving skills based on their reading abilities. This research is a descriptive research with qualitative approach. This research was conducted at elementary school Kebraon II Surabaya in second semester of 2016-2017 academic years. The participants of this research consist of third grade students with different reading abilities that are independent level, instructional level and frustration level. The participants of this research were selected with purposive sampling technique. The data of this study were collected using reading the narration texts, the Ekwall and Shanker Informal Reading Inventory, problem solving task and interview guidelines. The collected data were evaluated using a descriptive analysis method. Once the study had been completed, it was concluded that problem solving skills varied according to reading abilities, student with independent level and instructional level can solve the problem and students with frustration level can’t solve the problem because they can’t interpret the problem well.

  7. Improving insight and non-insight problem solving with brief interventions.

    Science.gov (United States)

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  8. Material Mediation: Tools and Representations Supporting Collaborative Problem-Solving Discourse

    Science.gov (United States)

    Katic, Elvira K.; Hmelo-Silver, Cindy E.; Weber, Keith H.

    2009-01-01

    This study investigates how a variety of resources mediated collaborative problem solving for a group of preservice teachers. The participants in this study completed mathematical, combinatorial tasks and then watched a video of a sixth grader as he exhibited sophisticated reasoning to recognize the isomorphic structure of these problems. The…

  9. Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.

    Science.gov (United States)

    Musen, M A

    1998-01-01

    When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  10. Inhibitory Control, but Not Prolonged Object-Related Experience Appears to Affect Physical Problem-Solving Performance of Pet Dogs

    Science.gov (United States)

    Müller, Corsin A.; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2016-01-01

    Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance. PMID:26863141

  11. Inhibitory Control, but Not Prolonged Object-Related Experience Appears to Affect Physical Problem-Solving Performance of Pet Dogs.

    Directory of Open Access Journals (Sweden)

    Corsin A Müller

    Full Text Available Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject's level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance.

  12. Inhibitory Control, but Not Prolonged Object-Related Experience Appears to Affect Physical Problem-Solving Performance of Pet Dogs.

    Science.gov (United States)

    Müller, Corsin A; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2016-01-01

    Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject's level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance.

  13. Supporting Organizational Problem Solving with a Workstation.

    Science.gov (United States)

    1982-07-01

    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  14. Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

    Science.gov (United States)

    Sari, D. P.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe metacognitive experience of mathematics education students with strong, average, and weak intrapersonal intelligence in open start problem solving. Type of this research was qualitative research. The research subject was mathematics education students in Muhammadiyah University of Surakarta in academic year 2017/2018. The selected students consisted of 6 students with details of two students in each intrapersonal intelligence category. The research instruments were questionnaire, open start problem solving task, and interview guidelines. Data validity used time triangulation. Data analyses were done through data collection, data reduction, data presentation, and drawing conclusion. Based on findings, subjects with strong intrapersonal intelligence had high self confidence that they were able to solve problem correctly, able to do planning steps and able to solve the problem appropriately. Subjects with average intrapersonal intelligence had high self-assessment that they were able to solve the problem, able to do planning steps appropriately but they had not maximized in carrying out the plan so that it resulted incorrectness answer. Subjects with weak intrapersonal intelligence had high self confidence in capability of solving math problem, lack of precision in taking plans so their task results incorrectness answer.

  15. The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems

    Science.gov (United States)

    Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.

    2018-01-01

    This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.

  16. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  17. Understanding the determinants of problem-solving behavior in a complex environment

    Science.gov (United States)

    Casner, Stephen A.

    1994-01-01

    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  18. Simulating the Cost of Cooperation: A Recipe for Collaborative Problem-Solving

    Directory of Open Access Journals (Sweden)

    Andrea Guazzini

    2018-06-01

    Full Text Available Collective problem-solving and decision-making, along with other forms of collaboration online, are central phenomena within ICT. There had been several attempts to create a system able to go beyond the passive accumulation of data. However, those systems often neglect important variables such as group size, the difficulty of the tasks, the tendency to cooperate, and the presence of selfish individuals (free riders. Given the complex relations among those variables, numerical simulations could be the ideal tool to explore such relationships. We take into account the cost of cooperation in collaborative problem solving by employing several simulated scenarios. The role of two parameters was explored: the capacity, the group’s capability to solve increasingly challenging tasks coupled with the collective knowledge of a group, and the payoff, an individual’s own benefit in terms of new knowledge acquired. The final cooperation rate is only affected by the cost of cooperation in the case of simple tasks and small communities. In contrast, the fitness of the community, the difficulty of the task, and the groups sizes interact in a non-trivial way, hence shedding some light on how to improve crowdsourcing when the cost of cooperation is high.

  19. Towards a conceptual framework for identifying student difficulties with solving Real-World Problems in Physics

    DEFF Research Database (Denmark)

    Niss, Martin

    2012-01-01

    This paper develops a conceptual framework for identifying the challenges and obstacles university students encounter when solving real-world problems involving Physics. The framework is based on viewing problem solving as a modelling process. In order to solve a real-world problem, the problem...... solver has to go through the steps and do the tasks of such a process. The paper presents a theoretical analysis of what it takes to solve three real-world problems, demonstrating how the framework presented captures the essential aspects of solving them. Moreover, it is argued that three steps critical...... for real-world problem solving – initial analysis of the problem situation, choice of relevant physical theory (the so-called paradigmatic choice) and mathematization – are not covered by existing models of problem solving in Physics. Finally, the existing research on student difficulties with problem...

  20. Goats display audience-dependent human-directed gazing behaviour in a problem-solving task.

    Science.gov (United States)

    Nawroth, Christian; Brett, Jemma M; McElligott, Alan G

    2016-07-01

    Domestication is an important factor driving changes in animal cognition and behaviour. In particular, the capacity of dogs to communicate in a referential and intentional way with humans is considered a key outcome of how domestication as a companion animal shaped the canid brain. However, the lack of comparison with other domestic animals makes general conclusions about how domestication has affected these important cognitive features difficult. We investigated human-directed behaviour in an 'unsolvable problem' task in a domestic, but non-companion species: goats. During the test, goats experienced a forward-facing or an away-facing person. They gazed towards the forward-facing person earlier and for longer and showed more gaze alternations and a lower latency until the first gaze alternation when the person was forward-facing. Our results provide strong evidence for audience-dependent human-directed visual orienting behaviour in a species that was domesticated primarily for production, and show similarities with the referential and intentional communicative behaviour exhibited by domestic companion animals such as dogs and horses. This indicates that domestication has a much broader impact on heterospecific communication than previously believed. © 2016 The Author(s).

  1. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    Science.gov (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  2. Integrating video and animation with physics problem- solving exercises on the World Wide Web

    Science.gov (United States)

    Titus, Aaron Patrick

    1998-10-01

    Problem solving is of paramount importance in teaching and learning physics. An important step in solving a problem is visualization. To help students visualize a problem, we included video clips with homework questions delivered via the World Wide Web. Although including video with physics problems has a positive effect with some problems, we found that this may not be the best way to integrate multimedia with physics problems since improving visualization is probably not as helpful as changing students' approach. To challenge how students solve problems and to help them develop a more expert-like approach, we developed a type of physics exercise called a multimedia-focused problem where students take data from an animation in order to solve a problem. Because numbers suggestive of a solution are not given in the text of the question, students have to consider the problem conceptually before analyzing it mathematically. As a result, we found that students had difficulty solving such problems compared to traditional textbook-like problems. Students' survey responses showed that students indeed had difficulty determining what was needed to solve a problem when it was not explicitly given to them in the text of the question. Analyzing think-aloud interviews where students verbalized their thoughts while solving problems, we found that multimedia-focused problems indeed required solid conceptual understanding in order for them to be solved correctly. As a result, we believe that when integrated with instruction, multimedia-focused problems can be a valuable tool in helping students develop better conceptual understanding and more expert-like problem solving skills by challenging novice beliefs and problem solving approaches. Multimedia-focused problems may also be useful for diagnosing conceptual understanding and problem skills.

  3. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  4. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  5. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  6. Strategies of solving arithmetic word problems in students with learning difficulties in mathematics

    OpenAIRE

    Kalan, Marko

    2015-01-01

    Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in scho...

  7. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  8. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  9. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  10. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    Science.gov (United States)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  11. Modified task-based learning program promotes problem-solving capacity among Chinese medical postgraduates: a mixed quantitative survey.

    Science.gov (United States)

    Tian, Yanping; Li, Chengren; Wang, Jiali; Cai, Qiyan; Wang, Hanzhi; Chen, Xingshu; Liu, Yunlai; Mei, Feng; Xiao, Lan; Jian, Rui; Li, Hongli

    2017-09-07

    Despite great advances, China's postgraduate education faces many problems, for example traditional lecture-based learning (LBL) method provides fewer oppotunities to apply knowledge in a working situation. Task-based learning (TBL) is an efficient strategy for increasing the connections among skills, knowledge and competences. This study aimed to evaluate the effect of a modified TBL model on problem-solving abilities among postgraduate medical students in China. We allocated 228 first-year postgraduate students at Third Military Medical University into two groups: the TBL group and LBL group. The TBL group was taught using a TBL program for immunohistochemistry. The curriculum consisted of five phases: task design, self-learning, experimental operations, discussion and summary. The LBL group was taught using traditional LBL. After the course, learning performance was assessed using theoretical and practical tests. The students' preferences and satisfaction of TBL and LBL were also evaluated using questionnaires. There were notable differences in the mean score rates in the practical test (P 80) in the TBL group was higher than that in the LBL group. We observed no substantial differences in the theoretical test between the two groups (P > 0.05). The questionnaire results indicated that the TBL students were satisfied with teaching content, teaching methods and experiment content. The TBL program was also beneficial for the postgraduates in completing their research projects. Furthermore, the TBL students reported positive effects in terms of innovative thinking, collaboration, and communication. TBL is a powerful educational strategy for postgraduate education in China. Our modified TBL imparted basic knowledge to the students and also engaged them more effectively in applying knowledge to solve real-world issues. In conclusion, our TBL established a good foundation for the students' future in both medical research and clinical work.

  12. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  13. The effects of imagery on problem-solving ability and autobiographical memory.

    Science.gov (United States)

    Dennis, Ashley A; Astell, Arlene; Dritschel, Barbara

    2012-12-01

    Williams et al. (2006) found that increased imageability of cue words during an autobiographical memory task increased specificity of autobiographical memory (ABM) and improved subsequent social problem-solving (SPS). This study explored whether imagery during SPS improved SPS skill, perceived SPS ability, and the specificity of ABMs retrieved in the process of SPS in dysphoric students. Additionally, this study hypothesised that both memory specificity and perceived SPS ability would positively correlate with SPS skill. Dysphoric and non-dysphoric students solved hypothetical social problems on a modified version of the Means-End Problem-Solving task with a verbal or an imagery focus. Participants also completed a questionnaire about ABMs retrieved during SPS and rated their perceived effectiveness of their solutions. Contrary to Williams et al. (2006), the imagery focus did not improve SPS skill or influence perceived effectiveness. Additionally, in contrast to the hypothesis, the imagery group retrieved more overgeneral memories. Finally, ABM specificity did not correlate with SPS skill. However, dysphoric participants perceived specific memories to be significantly less helpful to SPS whereas non-dysphoric participants perceived specific memories to be helpful potentially supporting work on overgeneral ABM and functional avoidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    Science.gov (United States)

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  15. Capturing Students' Abstraction While Solving Organic Reaction Mechanism Problems across a Semester

    Science.gov (United States)

    Weinrich, M. L.; Sevian, H.

    2017-01-01

    Students often struggle with solving mechanism problems in organic chemistry courses. They frequently focus on surface features, have difficulty attributing meaning to symbols, and do not recognize tasks that are different from the exact tasks practiced. To be more successful, students need to be able to extract salient features, map similarities…

  16. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  17. Should My Unemployment Problem Be Solved by Others?

    Directory of Open Access Journals (Sweden)

    Dušanka Lužar

    1996-12-01

    Full Text Available Through implementation of various forms of group and individual counselling, and team approach, the Employment Agency is achieving its goal, stating that the involvement of every individual in employment programmes should be defined by his or her planned career. This basically means that the unemployed should be motivated to actively engage in planning their careers and in seeking for employment. In order to enable individuals to assess their abilities and prepare to present themselves to potential employers, the Agency has designed a workshop entitled "Ways to work and jobs". Its primary target is motivating the participants for solving the problem of work and employment. Individuals too often believe that their employment problems should be solved by third parties instead of assuming personal responsibility. Many of the unemployed think that they are in dire straits; they need to be dissuaded, shown that the seemingly hopeless situation is a mere misconception , and that unemployment is in a way a trial which might lead to a better, more fulfilling period of life and work.

  18. Comprehension and computation in Bayesian problem solving

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2015-07-01

    Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.

  19. Can Architecture Design Solve Social Problem?

    Science.gov (United States)

    Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.

    2017-03-01

    Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.

  20. Role of autobiographical memory in social problem solving and depression.

    Science.gov (United States)

    Goddard, L; Dritschel, B; Burton, A

    1996-11-01

    Depressed patients frequently exhibit deficiencies in social problem solving (SPS). A possible cause of this deficit is an impairment in patients' ability to retrieve specific autobiographical memories. A clinically depressed group and a hospital control group performed the Means-End Problem-Solving (MEPS; J. J. Platt & G. Spivack, 1975a) task, during which they were required to attend to the memories retrieved during solution generation. Memories were categorized according to whether they were specific, categoric, or extended and whether the valence of the memories was positive or negative. Results support the general hypothesis that SPS skill is a function of autobiographical memory retrieval as measured by a cuing task and by the types of memories retrieved during the MEPS. However, the dysfunctional nature of categoric memories in SPS, rather than the importance of specific memories, was highlighted in the depressed group. Valence proved to be an unimportant variable in SPS ability. The cyclical links among autobiographical memory retrieval, SPS skills, and depression are discussed.

  1. Medical education and cognitive continuum theory: an alternative perspective on medical problem solving and clinical reasoning.

    Science.gov (United States)

    Custers, Eugène J F M

    2013-08-01

    Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.

  2. Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability.

    Science.gov (United States)

    Chuderski, Adam; Jastrzębski, Jan

    2018-02-01

    A battery comprising 4 fluid reasoning tests as well as 13 working memory (WM) tasks that involved storage, recall, updating, binding, and executive control, was applied to 318 adults in order to evaluate the true relationship of reasoning ability and WM capacity (WMC) to insight problem solving, measured using 40 verbal, spatial, math, matchstick, and remote associates problems (insight problems). WMC predicted 51.8% of variance in insight problem solving and virtually explained its almost isomorphic link to reasoning ability (84.6% of shared variance). The strong link between WMC and insight pertained generally to most WM tasks and insight problems, was identical for problems solved with and without reported insight, was linear throughout the ability levels, and was not mediated by age, motivation, anxiety, psychoticism, and openness to experience. In contrast to popular views on the sudden and holistic nature of insight, the solving of insight problems results primarily from typical operations carried out by the basic WM mechanisms that are responsible for the maintenance, retrieval, transformation, and control of information in the broad range of intellectual tasks (including fluid reasoning). Little above and beyond WM is unique about insight. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  4. The Effect of Problem Solving Task on Critical Reading of Intermediate EFL Learners in Iranian Context

    Directory of Open Access Journals (Sweden)

    Masoud Khalili Sabet

    2017-12-01

    Full Text Available The attempt in this study is to investigate the effect of teaching critical thinking through problem solving on  reading comprehension performance of EFL intermediate learners. In so doing, forty including twenty male and twenty female intermediate students studying English in an institute in Ardabil, Iran, were selected based on their scores on Preliminary English Test and assigned into control and experimental groups. Afterwards, the sample TOEFL reading comprehension pre-test was administered to both of these groups to ensure homogeneity. The learners in experimental group were taught through problem solving instruction and the learners in control group were taught through traditional method of instructing reading comprehension. After ten sessions of instruction, the same sample TOEFL reading comprehension as post-test was given to the learners to measure the possible differences between pre-test and post-test. The finding revealed teaching problem solving had statistically significant effect on EFL learners reading comprehension performance. Conclusion can be drawn to confirm that teaching critical thinking through problem solving bring better understanding of the text.

  5. Breast compression – An exploration of problem solving and decision-making in mammography

    International Nuclear Information System (INIS)

    Nightingale, J.M.; Murphy, F.J.; Robinson, L.; Newton-Hughes, A.; Hogg, P.

    2015-01-01

    Objective: Breast compression decreases radiation dose and reduces potential for motion and geometric unsharpness, yet there is variability in applied compression force within and between some centres. This article explores the problem solving process applied to the application of breast compression force from the mammography practitioners' perspective. Methods: A qualitative analysis was undertaken using an existing full data set of transcribed qualitative data collected in a phenomenological study of mammography practitioner values, behaviours and beliefs. The data emerged from focus groups conducted at six NHS breast screening centres in England (participant n = 41), and semi-structured interviews with mammography educators (n = 6). A researcher followed a thematic content analysis process to extract data related to mammography compression problem solving, developing a series of categories, themes and sub-themes. Emerging themes were then peer-validated by two other researchers, and developed into a model of practice. Results: Seven consecutive stages contributed towards compression force problem solving: assessing the request; first impressions; explanations and consent; handling the breast and positioning; applying compression force; final adjustments; feedback. The model captures information gathering, problem framing, problem solving and decision making which inform an ‘ideal’ compression scenario. Behavioural problem solving, heuristics and intuitive decision making are reflected within this model. Conclusion: The application of compression should no longer be considered as one single task within mammography, but is now recognised as a seven stage problem solving continuum. This continuum model is the first to be applied to mammography, and is adaptable and transferable to other radiography practice settings. - Highlights: • Mammography compression should no longer be considered as one single examination task. • A seven stage breast

  6. Personality-dependent differences in problem-solving performance in a social context reflect foraging strategies.

    Science.gov (United States)

    Zandberg, Lies; Quinn, John L; Naguib, Marc; van Oers, Kees

    2017-01-01

    Individuals develop innovative behaviours to solve foraging challenges in the face of changing environmental conditions. Little is known about how individuals differ in their tendency to solve problems and in their subsequent use of this solving behaviour in social contexts. Here we investigated whether individual variation in problem-solving performance could be explained by differences in the likelihood of solving the task, or if they reflect differences in foraging strategy. We tested this by studying the use of a novel foraging skill in groups of great tits (Parus major), consisting of three naive individuals with different personality, and one knowledgeable tutor. We presented them with multiple, identical foraging devices over eight trials. Though birds of different personality type did not differ in solving latency; fast and slow explorers showed a steeper increase over time in their solving rate, compared to intermediate explorers. Despite equal solving potential, personality influenced the subsequent use of the skill, as well as the pay-off received from solving. Thus, variation in the tendency to solve the task reflected differences in foraging strategy among individuals linked to their personality. These results emphasize the importance of considering the social context to fully understand the implications of learning novel skills. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cross-national comparisons of complex problem-solving strategies in two microworlds.

    Science.gov (United States)

    Güss, C Dominik; Tuason, Ma Teresa; Gerhard, Christiane

    2010-04-01

    Research in the fields of complex problem solving (CPS) and dynamic decision making using microworlds has been mainly conducted in Western industrialized countries. This study analyzes the CPS process by investigating thinking-aloud protocols in five countries. Participants were 511 students from Brazil, Germany, India, the Philippines, and the United States who worked on two microworlds. On the basis of cultural-psychological theories, specific cross-national differences in CPS strategies were hypothesized. Following theories of situatedness of cognition, hypotheses about the specific frequency of problem-solving strategies in the two microworlds were developed. Results of the verbal protocols showed (a) modification of the theoretical CPS model, (b) task dependence of CPS strategies, and (c) cross-national differences in CPS strategies. Participants' CPS processes were particularly influenced by country-specific problem-solving strategies. Copyright © 2009 Cognitive Science Society, Inc.

  8. A scheme of pedagogical problems solving in kinematic to observe toulmin argumentation feasibility

    Science.gov (United States)

    Manurung, Sondang R.; Rustaman, Nuryani Y.; Siregar, Nelson

    2013-09-01

    The purpose of this study is to determine the students' ability to map out the problem solving. This paper would show a schematic template map used to analyze the students' tasks in performing problem solving pedagogically. Scheme of problem solving map of student was undertaken based on Toulmin Argumentation Pattern (TAP) argumentative discourse. The samples of this study were three work-sheets of physics education students who represented the upper, middle and lower levels of class in one LPTK in Medan. The instrument of this study was an essay test in kinematics topic. The data analyses were performed with schematic template map in order to know the students' ability in mapping the problem solving. The results showed that the student in the Upper level of class followed the appropriate direction pattern, while two others students could not followed the pattern exactly.

  9. Can motto-goals outperform learning and performance goals? Influence of goal setting on performance and affect in a complex problem solving task

    Directory of Open Access Journals (Sweden)

    Miriam S. Rohe

    2016-09-01

    Full Text Available In this paper, we bring together research on complex problem solving with that on motivational psychology about goal setting. Complex problems require motivational effort because of their inherent difficulties. Goal Setting Theory has shown with simple tasks that high, specific performance goals lead to better performance outcome than do-your-best goals. However, in complex tasks, learning goals have proven more effective than performance goals. Based on the Zurich Resource Model (Storch & Krause, 2014, so-called motto-goals (e.g., "I breathe happiness" should activate a person’s resources through positive affect. It was found that motto-goals are effective with unpleasant duties. Therefore, we tested the hypothesis that motto-goals outperform learning and performance goals in the case of complex problems. A total of N = 123 subjects participated in the experiment. In dependence of their goal condition, subjects developed a personal motto, learning, or performance goal. This goal was adapted for the computer-simulated complex scenario Tailorshop, where subjects worked as managers in a small fictional company. Other than expected, there was no main effect of goal condition for the management performance. As hypothesized, motto goals led to higher positive and lower negative affect than the other two goal types. Even though positive affect decreased and negative affect increased in all three groups during Tailorshop completion, participants with motto goals reported the lowest rates of negative affect over time. Exploratory analyses investigated the role of affect in complex problem solving via mediational analyses and the influence of goal type on perceived goal attainment.

  10. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  11. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Science.gov (United States)

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  12. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Directory of Open Access Journals (Sweden)

    Stephen T. Polyak

    2017-11-01

    Full Text Available This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  13. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    Science.gov (United States)

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  14. Visuospatial Anatomy Comprehension: The Role of Spatial Visualization Ability and Problem-Solving Strategies

    Science.gov (United States)

    Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J.; Wilson, Timothy D.

    2014-01-01

    The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among…

  15. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  16. Verbal Problem-Solving Difficulties in Autism Spectrum Disorders and Atypical Language Development

    Science.gov (United States)

    Alderson-Day, Ben

    2018-01-01

    Children with autism spectrum disorders (ASDs) adopt less efficient strategies than typically developing (TD) peers on the Twenty Questions Task (TQT), a measure of verbal problem-solving skills. Although problems with the TQT are typically associated with executive dysfunction, they have also been reported in children who are deaf, suggesting a role for atypical language development. To test the contribution of language history to ASD problem solving, TQT performance was compared in children with high-functioning autism (HFA), children with Asperger syndrome (AS) and TD children. The HFA group used significantly less efficient strategies than both AS and TD children. No group differences were evident on tests of question understanding, planning or verbal fluency. Potential explanations for differences in verbal problem-solving skill are discussed with reference to the development of inner speech and use of visual strategies in ASD. PMID:25346354

  17. Fluid Ability (Gf and Complex Problem Solving (CPS

    Directory of Open Access Journals (Sweden)

    Patrick Kyllonen

    2017-07-01

    Full Text Available Complex problem solving (CPS has emerged over the past several decades as an important construct in education and in the workforce. We examine the relationship between CPS and general fluid ability (Gf both conceptually and empirically. A review of definitions of the two factors, prototypical tasks, and the information processing analyses of performance on those tasks suggest considerable conceptual overlap. We review three definitions of CPS: a general definition emerging from the human problem solving literature; a more specialized definition from the “German School” emphasizing performance in many-variable microworlds, with high domain-knowledge requirements; and a third definition based on performance in Minimal Complex Systems (MCS, with fewer variables and reduced knowledge requirements. We find a correlation of 0.86 between expert ratings of the importance of CPS and Gf across 691 occupations in the O*NET database. We find evidence that employers value both Gf and CPS skills, but CPS skills more highly, even after controlling for the importance of domain knowledge. We suggest that this may be due to CPS requiring not just cognitive ability but additionally skill in applying that ability in domains. We suggest that a fruitful future direction is to explore the importance of domain knowledge in CPS.

  18. Analysing task design and students' responses to context-based problems through different analytical frameworks

    Science.gov (United States)

    Broman, Karolina; Bernholt, Sascha; Parchmann, Ilka

    2015-05-01

    Background:Context-based learning approaches are used to enhance students' interest in, and knowledge about, science. According to different empirical studies, students' interest is improved by applying these more non-conventional approaches, while effects on learning outcomes are less coherent. Hence, further insights are needed into the structure of context-based problems in comparison to traditional problems, and into students' problem-solving strategies. Therefore, a suitable framework is necessary, both for the analysis of tasks and strategies. Purpose:The aim of this paper is to explore traditional and context-based tasks as well as students' responses to exemplary tasks to identify a suitable framework for future design and analyses of context-based problems. The paper discusses different established frameworks and applies the Higher-Order Cognitive Skills/Lower-Order Cognitive Skills (HOCS/LOCS) taxonomy and the Model of Hierarchical Complexity in Chemistry (MHC-C) to analyse traditional tasks and students' responses. Sample:Upper secondary students (n=236) at the Natural Science Programme, i.e. possible future scientists, are investigated to explore learning outcomes when they solve chemistry tasks, both more conventional as well as context-based chemistry problems. Design and methods:A typical chemistry examination test has been analysed, first the test items in themselves (n=36), and thereafter 236 students' responses to one representative context-based problem. Content analysis using HOCS/LOCS and MHC-C frameworks has been applied to analyse both quantitative and qualitative data, allowing us to describe different problem-solving strategies. Results:The empirical results show that both frameworks are suitable to identify students' strategies, mainly focusing on recall of memorized facts when solving chemistry test items. Almost all test items were also assessing lower order thinking. The combination of frameworks with the chemistry syllabus has been

  19. Dissociation of past and present experience in problem solving using a virtual environment.

    Science.gov (United States)

    Sturz, Bradley R; Bodily, Kent D; Katz, Jeffrey S

    2009-02-01

    An interactive 3D desktop virtual environment task was created to investigate learning mechanisms in human problem solving. Participants were assessed for previous video game experience, divided into two groups (Training and Control), and matched for gender and experience. The Training group learned specific skills within the virtual environment before being presented a problem. The Control group was presented the problem only. Completion time was faster for the Training group and was affected by level of previous video game experience. Results indicated problem solving was a function of specific and general experience and demonstrated a method for dissociating these two facets of experience.

  20. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    Science.gov (United States)

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  1. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  2. The Different Role of Working Memory in Open-Ended versus Closed-Ended Creative Problem Solving: A Dual-Process Theory Account

    Science.gov (United States)

    Lin, Wei-Lun; Lien, Yunn-Wen

    2013-01-01

    This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…

  3. Proof Construction: Adolescent Development from Inductive to Deductive Problem-Solving Strategies.

    Science.gov (United States)

    Foltz, Carol; And Others

    1995-01-01

    Studied 100 adolescents' approaches to problem-solving proofs and reasoning competence tasks. Found that a formal level of reasoning competence is associated with a deductive approach. Results support the notion of a cognitive development progression from an inductive approach to a deductive approach. (ETB)

  4. Encrypted Objects and Decryption Processes: Problem-Solving with Functions in a Learning Environment Based on Cryptography

    Science.gov (United States)

    White, Tobin

    2009-01-01

    This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…

  5. The Effect of Visual Representation Style in Problem-Solving : A Perspective from Cognitive Processes

    NARCIS (Netherlands)

    Nyamsuren, Enkhbold; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a

  6. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  7. Verbal problem-solving difficulties in autism spectrum disorders and atypical language development.

    Science.gov (United States)

    Alderson-Day, Ben

    2014-12-01

    Children with autism spectrum disorders (ASDs) adopt less efficient strategies than typically developing (TD) peers on the Twenty Questions Task (TQT), a measure of verbal problem-solving skills. Although problems with the TQT are typically associated with executive dysfunction, they have also been reported in children who are deaf, suggesting a role for atypical language development. To test the contribution of language history to ASD problem solving, TQT performance was compared in children with high-functioning autism (HFA), children with Asperger syndrome (AS) and TD children. The HFA group used significantly less efficient strategies than both AS and TD children. No group differences were evident on tests of question understanding, planning or verbal fluency. Potential explanations for differences in verbal problem-solving skill are discussed with reference to the development of inner speech and use of visual strategies in ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Environmental problem-solving: Psychosocial factors

    Science.gov (United States)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  9. Information Seeking When Problem Solving: Perspectives of Public Health Professionals.

    Science.gov (United States)

    Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna

    2017-04-01

    Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can influence how they collaborate in seeking information. Educators in public health

  10. SOLVING OPTIMAL ASSEMBLY LINE CONFIGURATION TASK BY MULTIOBJECTIVE DECISION MAKING METHODS

    Directory of Open Access Journals (Sweden)

    Ján ČABALA

    2017-06-01

    Full Text Available This paper deals with looking for the optimal configuration of automated assembly line model placed within Department of Cybernetics and Artificial Intelligence (DCAI. In order to solve this problem, Stateflow model of each configuration was created to simulate the behaviour of particular assembly line configuration. Outputs from these models were used as inputs into the multiobjective decision making process. Multi-objective decision-making methods were subsequently used to find the optimal configuration of assembly line. Paper describes the whole process of solving this task, from building the models to choosing the best configuration. Specifically, the problem was resolved using the experts’ evaluation method for evaluating the weights of every decision-making criterion, while the ELECTRE III, TOPSIS and AGREPREF methods were used for ordering the possible solutions from the most to the least suitable alternative. Obtained results were compared and final solution of this multi-objective decisionmaking problem is chosen.

  11. Impact of ageing on problem size and proactive interference in arithmetic facts solving.

    Science.gov (United States)

    Archambeau, Kim; De Visscher, Alice; Noël, Marie-Pascale; Gevers, Wim

    2018-02-01

    Arithmetic facts (AFs) are required when solving problems such as "3 × 4" and refer to calculations for which the correct answer is retrieved from memory. Currently, two important effects that modulate the performance in AFs have been highlighted: the problem size effect and the proactive interference effect. The aim of this study is to investigate possible age-related changes of the problem size effect and the proactive interference effect in AF solving. To this end, the performance of young and older adults was compared in a multiplication production task. Furthermore, an independent measure of proactive interference was assessed to further define the architecture underlying this effect in multiplication solving. The results indicate that both young and older adults were sensitive to the effects of interference and of the problem size. That is, both interference and problem size affected performance negatively: the time needed to solve a multiplication problem increases as the level of interference and the size of the problem increase. Regarding the effect of ageing, the problem size effect remains constant with age, indicating a preserved AF network in older adults. Interestingly, sensitivity to proactive interference in multiplication solving was less pronounced in older than in younger adults suggesting that part of the proactive interference has been overcome with age.

  12. Customer-centered problem solving.

    Science.gov (United States)

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  13. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  14. Syntactic Awareness and Arithmetic Word Problem Solving in Children with and without Learning Disabilities

    Science.gov (United States)

    Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…

  15. Student’s scheme in solving mathematics problems

    Science.gov (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  16. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  17. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  18. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  19. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  20. Everyday problem solving across the adult life span: solution diversity and efficacy

    Science.gov (United States)

    Mienaltowski, Andrew

    2013-01-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. PMID:22023569

  1. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  2. Metacognition Difficulty of Students with Visual-Spatial Intelligence during Solving Open-Ended Problem

    Science.gov (United States)

    Rimbatmojo, S.; Kusmayadi, T. A.; Riyadi, R.

    2017-09-01

    This study aims to find out students metacognition difficulty during solving open-ended problem in mathematics. It focuses on analysing the metacognition difficulty of students with visual-spatial intelligence in solving open-ended problem. A qualitative research with case study strategy is used in this study. Data in the form of visual-spatial intelligence test result and recorded interview during solving open-ended problems were analysed qualitatively. The results show that: (1) students with high visual-spatial intelligence have no difficulty on each metacognition aspects, (2) students with medium visual-spatial intelligence have difficulty on knowledge aspect on strategy and cognitive tasks, (3) students with low visual-spatial intelligence have difficulty on three metacognition aspects, namely knowledge on strategy, cognitive tasks and self-knowledge. Even though, several researches about metacognition process and metacognition literature recommended the steps to know the characteristics. It is still important to discuss that the difficulties of metacognitive is happened because of several factors, one of which on the characteristics of student’ visual-spatial intelligence. Therefore, it is really important for mathematics educators to consider and pay more attention toward students’ visual-spatial intelligence and metacognition difficulty in designing better mathematics learning.

  3. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  4. Facilitating case reuse during problem solving in algebra-based physics

    Science.gov (United States)

    Mateycik, Frances Ann

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing

  5. Improving Creative Problem-Solving in a Sample of Third Culture Kids

    Science.gov (United States)

    Lee, Young Ju; Bain, Sherry K.; McCallum, R. Steve

    2007-01-01

    We investigated the effects of divergent thinking training (with explicit instruction) on problem-solving tasks in a sample of Third Culture Kids (Useem and Downie, 1976). We were specifically interested in whether the children's originality and fluency in responding increased following instruction, not only on classroom-based worksheets and the…

  6. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  7. Spontaneous gestures influence strategy choices in problem solving.

    Science.gov (United States)

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  8. The application of an artificial immune system for solving the identification problem

    Directory of Open Access Journals (Sweden)

    Astachova Irina

    2017-01-01

    Full Text Available Ecological prognosis sets the identification task, which is to find the capacity of pollution sources based on the available experimental data. This problem is an inverse problem, for the solution of which the method of symbolic regression is considered. The distributed artificial immune system is used as an algorithm for the problem solving. The artificial immune system (AIS is a model that allows solving various problems of identification, its concept was borrowed from biology. The solution is sought using a distributed version of the artificial immune system, which is implemented through a network. This distributed network can operate in any heterogeneous environment, which is achieved through the use of cross-platform Python programming language. AIS demonstrates the ability to restore the original function in the problem of identification. The obtained solution for the test data is represented by the graph.

  9. Solving fatigue-related problems with cardiac arrest survivors living in the community.

    Science.gov (United States)

    Kim, Young Joo; Rogers, Joan C; Raina, Ketki D; Callaway, Clifton W; Rittenberger, Jon C; Leibold, Mary Lou; Holm, Margo B

    2017-09-01

    The aim was to describe fatigue-related problems reported by post-cardiac arrest adults with chronic fatigue and energy conservation strategies generated using an Energy Conservation plus Problem Solving Therapy intervention. Following an introduction to the intervention process outlined in a Participant Workbook, participants engaged in the telephone intervention by identifying one to two fatigue-related problems. They then brainstormed with the interventionist to identify potential strategies to reduce fatigue, tested them, and either modified the strategies or moved to the next problem over three to five sessions. Eighteen cardiac arrest survivors with chronic fatigue identified instrumental activities of daily living and leisure activities as fatigue-related activities more frequently than basic activities of daily living. Energy Conservation strategies used most frequently were: plan ahead, pace yourself, delegate to others, and simplify the task. Post-cardiac arrest adults living in the community with chronic fatigue can return to previous daily activities by using energy conservation strategies such as planning ahead, pacing tasks, delegating tasks, and simplifying tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Language, arithmetic word problems, and deaf students: Linguistic strategies used to solve tasks

    Science.gov (United States)

    Zevenbergen, Robyn; Hyde, Merv; Power, Des

    2001-12-01

    There has been limited examination of the intersection between language and arithmetic in the performance of deaf students, although some previous research has shown that deaf and hearing-impaired1 students are delayed in both their language acquisition and arithmetic performance. This paper examines the performance of deaf and hearing-impaired students in South-East Queensland, Australia, in solving arithmetic word problems. It was found that the subjects' solutions of word problems confirmed trends for hearing students, but that their performance was delayed in comparison. The results confirm other studies where deaf and hearing-impaired students are delayed in their language acquisition and this impacts on their capacity to successfully undertake the resolution of word problems.

  11. Investigation of the relationship between students' problem solving and conceptual understanding of electricity

    Science.gov (United States)

    Cobanoglu Aktan, Derya

    The purpose of this study was to investigate the relationship between students' qualitative problem solving and conceptual understanding of electricity. For the analysis data were collected from observations of group problem solving, from their homework artifacts, and from semi-structured interviews. The data for six undergraduate students were analyzed by qualitative research methods. The students in the study were found to use tools (such as computer simulations and formulas) differently from one another, and they made different levels of interpretations for the electricity representations. Consequently each student had different problem solving strategies. The students exhibited a wide range of levels of understanding of the electricity concepts. It was found that students' conceptual understandings and their problem solving strategies were closely linked with one another. The students who tended to use multiple tools to make high level interpretations for representations to arrive at a single solution exhibited a higher level of understanding than the students who tended to use tools to make low level interpretations to reach a solution. This study demonstrates a relationship between conceptual understanding and problem solving strategies. Similar to the results of the existing research on students' quantitative problem solving, it was found that students were able to give correct answers to some problems without fully understanding the concepts behind the problem. However, some problems required a conceptual understanding in order for a student to arrive at a correct answer. An implication of this study is that careful selection of qualitative questions is necessary for capturing high levels of conceptual understanding. Additionally, conceptual understanding among some types of problem solvers can be improved by activities or tasks that can help them reflect on their problem solving strategies and the tools they use.

  12. The effect of problem-based and lecture-based instructional strategies on learner problem solving performance, problem solving processes, and attitudes

    Science.gov (United States)

    Visser, Yusra Laila

    This study compared the effect of lecture-based instruction to that of problem-based instruction on learner performance (on near-transfer and far-transfer problems), problem solving processes (reasoning strategy usage and reasoning efficiency), and attitudes (overall motivation and learner confidence) in a Genetics course. The study also analyzed the effect of self-regulatory skills and prior-academic achievement on performance for both instructional strategies. Sixty 11th grade students at a public math and science academy were assigned to either a lecture-based instructional strategy or a problem-based instructional strategy. Both treatment groups received 18 weeks of Genetics instruction through the assigned instructional strategy. In terms of problem solving performance, results revealed that the lecture-based group performed significantly better on near-transfer post-test problems. The problem-based group performed significantly better on far-transfer post-test problems. In addition, results indicated the learners in the lecture-based instructional treatment were significantly more likely to employ data-driven reasoning in the solving of problems, whereas learners in the problem-based instructional treatment were significantly more likely to employ hypothesis-driven reasoning in problem solving. No significant differences in reasoning efficiency were uncovered between treatment groups. Preliminary analysis of the motivation data suggested that there were no significant differences in motivation between treatment groups. However, a post-research exploratory analysis suggests that overall motivation was significantly higher in the lecture-based instructional treatment than in the problem-based instructional treatment. Learner confidence was significantly higher in the lecture-based group than in the problem-based group. A significant positive correlation was detected between self-regulatory skills scores and problem solving performance scores in the problem

  13. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  14. Uncovering the Problem-Solving Process: Cued Retrospective Reporting Versus Concurrent and Retrospective Reporting

    OpenAIRE

    Van Gog, Tamara; Paas, Fred; Van Merriënboer, Jeroen; Witte, P.

    2007-01-01

    This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The method of cued retrospective reporting used the original computer-based task and a superimposed record of the participant's eye fixations and mouse-keyb...

  15. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  16. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  17. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  18. Culture and problem-solving: Congruency between the cultural mindset of individualism versus collectivism and problem type.

    Science.gov (United States)

    Arieli, Sharon; Sagiv, Lilach

    2018-06-01

    This research investigates how the cultural mindset influences problem-solving. Drawing on the notion that cultural mindset influences the cognitive process individuals bring to bear at the moment of judgment, we propose that the congruency between the cultural mindset (individualistic vs. collectivistic) and problem type (rule-based vs. context-based) affects success in problem-solving. In 7 studies we incorporated the traditional approach to studying the impact of culture (i.e., comparing cultural groups) with contemporary approaches viewing cultural differences in a more dynamic and malleable manner. We first show that members of an individualistic group (Jewish Americans) perform better on rule-based problems, whereas members of collectivistic groups (ultra-Orthodox Jews and Arabs from Israel) perform better on context-based problems (Study 1). We then study Arabs in Israel using language (Arabic vs. Hebrew) to prime their collectivistic versus individualistic mindsets (Study 2). As hypothesized, among biculturals (those who internalize both cultures) Arabic facilitated solving context-based problems, whereas Hebrew facilitated solving rule-based problems. We follow up with 5 experiments priming the cultural mindset of individualism versus collectivism, employing various manifestations of the cultural dimension: focusing on the individual versus the collective (Studies 3, 6, and 7); experiencing independence versus interdependence (Study 4); and directing attention to objects versus the context (Studies 5a-b). Finally, we took a meta-analytic approach, showing that the effects found in Studies 3-6 are robust across priming tasks, problems, and samples. Taken together, the differences between cultural groups (Studies 1-2) were recreated when the individualistic/collectivistic cultural mindset was primed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Information Problem-Solving Skills in Small Virtual Groups and Learning Outcomes

    Science.gov (United States)

    Garcia, Consuelo; Badia, Antoni

    2017-01-01

    This study investigated the frequency of use of information problem-solving (IPS) skills and its relationship with learning outcomes. During the course of the study, 40 teachers carried out a collaborative IPS task in small virtual groups in a 4-week online training course. The status of IPS skills was collected through self-reports handed in over…

  20. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  1. Solicited versus Unsolicited Metacognitive Prompts for Fostering Mathematical Problem Solving Using Multimedia

    Science.gov (United States)

    Kramarski, Bracha; Friedman, Sheli

    2014-01-01

    The study examined how student control over metacognitive prompts in a multimedia environment affects students' ability to solve mathematical problems in immediate comprehension tasks using a multimedia program and a delayed-transfer test. It also examined the effect on metacognitive discourse, mental effort, and engagement with multimedia-based…

  2. Problem Solving Strategies of Girls and Boys in Single-Sex Mathematics Classrooms

    Science.gov (United States)

    Che, Megan; Wiegert, Elaine; Threlkeld, Karen

    2012-01-01

    This study examines patterns in middle-grade boys' and girls' written problem solving strategies for a mathematical task involving proportional reasoning. The students participating in this study attend a coeducational charter middle school with single-sex classrooms. One hundred nineteen sixth-grade students' responses are analyzed by gender…

  3. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.

    2011-01-01

    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  4. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    OpenAIRE

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach problem-solving skills. The present study, as a first study in Turkey, may provide valuable insight for nurse academicians employed at üniversities. Purpose of ...

  5. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  6. Capturing Problem-Solving Processes Using Critical Rationalism

    Science.gov (United States)

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  7. Solving optimization problems by the public goods game

    Science.gov (United States)

    Javarone, Marco Alberto

    2017-09-01

    We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.

  8. A life history approach to delineating how harsh environments and hawk temperament traits differentially shape children's problem-solving skills.

    Science.gov (United States)

    Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante

    2017-08-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.

  9. SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.

  10. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems

    Science.gov (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.

    1996-12-01

    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  11. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  12. Distraction during learning with hypermedia: Difficult tasks help to keep task goals on track

    Directory of Open Access Journals (Sweden)

    Katharina eScheiter

    2014-03-01

    Full Text Available In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and

  13. Neural pathway in the right hemisphere underlies verbal insight problem solving.

    Science.gov (United States)

    Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L

    2014-01-03

    Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  15. Social problem-solving among adolescents treated for depression.

    Science.gov (United States)

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. The mathematical statement for the solving of the problem of N-version software system design

    Science.gov (United States)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.

  17. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    Science.gov (United States)

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  18. The relationship between everyday problem solving and inconsistency in reaction time in older adults.

    Science.gov (United States)

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-09-01

    The purpose of the present study was to investigate whether inconsistency in reaction time (RT) is predictive of older adults' ability to solve everyday problems. A sample of 304 community dwelling non-demented older adults, ranging in age from 62 to 92, completed a measure of everyday problem solving, the Everyday Problems Test (EPT). Inconsistency in latencies across trials was assessed on four RT tasks. Performance on the EPT was found to vary according to age and cognitive status. Both mean latencies and inconsistency were significantly associated with EPT performance, such that slower and more inconsistent RTs were associated with poorer everyday problem solving abilities. Even after accounting for age, education, and mean level of performance, inconsistency in reaction time continued to account for a significant proportion of the variance in EPT scores. These findings suggest that indicators of inconsistency in RT may be of functional relevance.

  19. Within Your Control? When Problem Solving May Be Most Helpful.

    Science.gov (United States)

    Sarfan, Laurel D; Gooch, Peter; Clerkin, Elise M

    2017-08-01

    Emotion regulation strategies have been conceptualized as adaptive or maladaptive, but recent evidence suggests emotion regulation outcomes may be context-dependent. The present study tested whether the adaptiveness of a putatively adaptive emotion regulation strategy-problem solving-varied across contexts of high and low controllability. The present study also tested rumination, suggested to be one of the most putatively maladaptive strategies, which was expected to be associated with negative outcomes regardless of context. Participants completed an in vivo speech task, in which they were randomly assigned to a controllable ( n = 65) or an uncontrollable ( n = 63) condition. Using moderation analyses, we tested whether controllability interacted with emotion regulation use to predict negative affect, avoidance, and perception of performance. Partially consistent with hypotheses, problem solving was associated with certain positive outcomes (i.e., reduced behavioral avoidance) in the controllable (vs. uncontrollable) condition. Consistent with predictions, rumination was associated with negative outcomes (i.e., desired avoidance, negative affect, negative perception of performance) in both conditions. Overall, findings partially support contextual models of emotion regulation, insofar as the data suggest that the effects of problem solving may be more adaptive in controllable contexts for certain outcomes, whereas rumination may be maladaptive regardless of context.

  20. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  1. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  2. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  3. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    undertaken by 29 subsidiary units supports our hypotheses, demonstrating that these activities are a means to systematically reduce inherent problem solving biases. This study contributes to problem solving theory, the literature on headquarters’ roles in complex organizations, as well as the literature......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...... solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects...

  4. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  5. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  6. Language and mathematical problem solving among bilinguals.

    Science.gov (United States)

    Bernardo, Allan B I

    2002-05-01

    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  7. Junior High School Physics: Using a Qualitative Strategy for Successful Problem Solving

    Science.gov (United States)

    Mualem, Roni; Eylon, Bat Sheva

    2010-01-01

    Students at the junior high school (JHS) level often cannot use their knowledge of physics for explaining and predicting phenomena. We claim that this difficulty stems from the fact that explanations are multi-step reasoning tasks, and students often lack the qualitative problem-solving strategies needed to guide them. This article describes a new…

  8. Age Differences in Relationships Between Crystallized and Fluid Intelligences and Problem Solving.

    Science.gov (United States)

    Hayslip, Bert, Jr.; Sterns, Harvey L.

    One hundred and sixty-two subjects of three age levels were tested to examine the relationship between crystallized and fluid abilities and three problem solving tasks varying in the abstractness/concreteness of their stimuli and emphasis on past experience. These dimensions have been used by Davis to distinguish between Type "O" and Type "C"…

  9. Age-related differences in strategic monitoring during arithmetic problem solving.

    Science.gov (United States)

    Geurten, Marie; Lemaire, Patrick

    2017-10-01

    We examined the role of metacognitive monitoring in strategic behavior during arithmetic problem solving, a process that is expected to shed light on age-related differences in strategy selection. Young and older adults accomplished better strategy-judgment, better strategy-selection, and strategy-execution tasks. Data showed that participants made better strategy judgments when problems were problems with homogeneous unit digits (i.e., problems with both unit digits smaller or larger than 5; 31×62) relative to problems with heterogeneous unit digits (i.e., problems with one unit digit smaller or larger than 5; 31×67) and when the better strategy was cued on rounding-up problems (e.g., 68×23) compared to rounding-down problems (e.g., 36×53). Results also indicated higher rates of better strategy judgment in young than in older adults. These aging effects differed across problem types. Older adults made more accurate judgments on rounding-up problems than on rounding-down problems when the cued strategy was rounding-up, while young adults did not show such problem-related differences. Moreover, strategy selection correlated with strategy judgment, and even more so in older adults than in young adults. To discuss the implications of these findings, we propose a theoretical framework of how strategy judgments occur in young and older adults and discuss how this framework enables to understand relationships between metacognitive monitoring and strategic behaviors when participants solve arithmetic problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dreams and creative problem-solving.

    Science.gov (United States)

    Barrett, Deirdre

    2017-10-01

    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  11. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  12. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  13. Translation among Symbolic Representations in Problem-Solving. Revised.

    Science.gov (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  14. Innovative problem solving by wild spotted hyenas

    Science.gov (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  15. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo

    2017-12-01

    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  16. LEVELING STUDENTS’ CREATIVE THINKING IN SOLVING AND POSING MATHEMATICAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Tatag Yuli Eko Siswono

    2010-07-01

    Full Text Available Many researchers assume that people are creative, but their degree ofcreativity is different. The notion of creative thinking level has beendiscussed .by experts. The perspective of mathematics creative thinkingrefers to a combination of logical and divergent thinking which is basedon intuition but has a conscious aim. The divergent thinking is focusedon flexibility, fluency, and novelty in mathematical problem solving andproblem posing. As students have various backgrounds and differentabilities, they possess different potential in thinking patterns,imagination, fantasy and performance; therefore, students have differentlevels of creative thinking. A research study was conducted in order todevelop a framework for students’ levels of creative thinking inmathematics. This research used a qualitative approach to describe thecharacteristics of the levels of creative thinking. Task-based interviewswere conducted to collect data with ten 8thgrade junior secondary schoolstudents. The results distinguished five levels of creative thinking,namely level 0 to level 4 with different characteristics in each level.These differences are based on fluency, flexibility, and novelty inmathematical problem solving and problem posing.Keywords: student’s creative thinking, problem posing, flexibility,fluency, novelty DOI: http://dx.doi.org/10.22342/jme.1.1.794.17-40

  17. Problem representation and mathematical problem solving of students of varying math ability.

    Science.gov (United States)

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  18. Mental Capacity and Working Memory in Chemistry: Algorithmic "versus" Open-Ended Problem Solving

    Science.gov (United States)

    St Clair-Thompson, Helen; Overton, Tina; Bugler, Myfanwy

    2012-01-01

    Previous research has revealed that problem solving and attainment in chemistry are constrained by mental capacity and working memory. However, the terms mental capacity and working memory come from different theories of cognitive resources, and are assessed using different tasks. The current study examined the relationships between mental…

  19. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  20. The Process of Solving Complex Problems

    Science.gov (United States)

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  1. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

    Science.gov (United States)

    Jupri, Al; Sispiyati, R.

    2017-02-01

    Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

  2. Students’ metacognitive activities in solving the combinatorics problem: the experience of students with holist-serialist cognitive style

    Science.gov (United States)

    Trisna, B. N.; Budayasa, I. K.; Siswono, T. Y. E.

    2018-01-01

    Metacognition is related to improving student learning outcomes. This study describes students’ metacognitive activities in solving the combinatorics problem. Two undergraduate students of mathematics education from STKIP PGRI Banjarmasin were selected as the participants of the study, one person has a holist cognitive style and the other a serialist. Data were collected by task-based interviews where the task contains a combinatorial problem. The interviews were conducted twice using equivalent problem at two different times. The study found that the participants showed metacognitive awareness (A), metacognitive evaluation (E), and metacognitive regulation (R) that operated as pathways from one function to another. Both, holist and serialist, have metacognitive activities in different pathway. The path of metacognitive activities of the holist is AERCAE-AAEER-ACRECCECC-AREERCE with the AERAE-AER-ARE-ARERE pattern, while the path of metacognitive activities of the serialist is AERCA-AAER-ACRERCERC-AREEEE with the AERA-AER-ARERER-ARE pattern. As an implication of these findings, teachers/lecturers need to pay attention to metacognitive awareness when they begin a stage in mathematical problem solving. Teachers/lecturers need to emphasize to students that in mathematical problem solving, processes and results are equally important.

  3. Block Model Approach in Problem Solving: Effects on Problem Solving Performance of the Grade V Pupils in Mathematics

    Science.gov (United States)

    de Guzman, Niño Jose P.; Belecina, Rene R.

    2012-01-01

    The teaching of mathematics involves problem solving skills which prove to be difficult on the part of the pupils due to misrepresentation of the word problems. Oftentimes, pupils tend to represent the phrase "more than" as addition and the word difference as "- ". This paper aims to address the problem solving skills of grade…

  4. Understanding catastrophizing from a misdirected problem-solving perspective.

    Science.gov (United States)

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  5. A literature review of expert problem solving using analogy

    OpenAIRE

    Mair, C; Martincova, M; Shepperd, MJ

    2009-01-01

    We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial pr...

  6. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  7. [Investigation of problem solving skills among psychiatric patients].

    Science.gov (United States)

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  8. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  9. Using a general problem-solving strategy to promote transfer.

    Science.gov (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Group training in interpersonal problem-solving skills for workplace adaptation of adolescents and adults with Asperger syndrome: a preliminary study.

    Science.gov (United States)

    Bonete, Saray; Calero, María Dolores; Fernández-Parra, Antonio

    2015-05-01

    Adults with Asperger syndrome show persistent difficulties in social situations which psychosocial treatments may address. Despite the multiple studies focusing on social skills interventions, only some have focused specifically on problem-solving skills and have not targeted workplace adaptation training in the adult population. This study describes preliminary data from a group format manual-based intervention, the Interpersonal Problem-Solving for Workplace Adaptation Programme, aimed at improving the cognitive and metacognitive process of social problem-solving skills focusing on typical social situations in the workplace based on mediation as the main strategy. A total of 50 adults with Asperger syndrome received the programme and were compared with a control group of typical development. The feasibility and effectiveness of the treatment were explored. Participants were assessed at pre-treatment and post-treatment on a task of social problem-solving skills and two secondary measures of socialisation and work profile using self- and caregiver-report. Using a variety of methods, the results showed that scores were significantly higher at post-treatment in the social problem-solving task and socialisation skills based on reports by parents. Differences in comparison to the control group had decreased after treatment. The treatment was acceptable to families and subject adherence was high. The Interpersonal Problem-Solving for Workplace Adaptation Programme appears to be a feasible training programme. © The Author(s) 2014.

  11. CLASSROOM SHARING EXPERIENCES: BUILDING STUDENTS’ AWARENESS FOR PROBLEM SOLVING IN TRANSLATING POETRY

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2015-12-01

    Abstract This research was aimed at describing the classroom sharing experiences to build students’ awareness dealing with the problem solving in translating poetry. The data were collected through questionnaire, interview and classroom observation involving 85 sixth semester students in two different classes and two lecturers of Translating Literary Works course at the English Language and Literature Studies in one state university in Bandung city.  The questionnaire was completed by 55 (out of 85 students invited to fill in the questionnaire. Interview was done to complete and cross check the information derived from the questionnaire.  Meanwhile, the observation was administered in the two parallel classes to observe the activities done by the two lecturers and students in the two classes.  The observation was focused on the course materials, teaching methods and techniques applied by the lecturers, problems faced and techniques used to solve the problems by the students in translating poetry. The data were then analyzed based on some relevant theories of translation.  The result of the research showed that the classroom sharing experiences gave some advantages to the students with several reasons: (1 motivating students to do their translation works more seriously since they had to present their translation works to the class; (2 developing the students’ self-confidence in translating the tasks since their translation works were given some feedbacks; (3 training the students to analyze the problems to find out the most appropriate techniques to solve the problems; (4 introducing the students to have more critical knowledge of both source and target languages; and (5 building the students’ awareness of how the problems appeared in a very complex translation process were solved. Keywords: awareness, problem solving, sharing experience

  12. Pre-Service Mathematics Teachers’ Problem Solving Processes with Geometer’s Sketchpad: Mirror Problem

    OpenAIRE

    ÖÇAL, Mehmet Fatih; ŞİMŞEK, Mertkan

    2016-01-01

    Problem solving skill is the core of mathematics education and its importance cannot be denied. This study specifically examined 56 freshmen pre-service mathematics teachers’ problem solving processes on a specific problem with the help of Geometer’s Sketchpad (GSP). They were grouped into two-person teams to solve a problem called "the mirror problem". They were expected to solve it by means of GSP. According to their works on GSP and related reflections, there appeared two differe...

  13. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  14. The Effects of Group Monitoring on Fatigue-Related Einstellung during Mathematical Problem Solving

    Science.gov (United States)

    Frings, Daniel

    2011-01-01

    Fatigue resulting from sleep deficit can lead to decreased performance in a variety of cognitive domains and can result in potentially serious accidents. The present study aimed to test whether fatigue leads to increased Einstellung (low levels of cognitive flexibility) in a series of mathematical problem-solving tasks. Many situations involving…

  15. Assessing the Relation between Seventh-Grade Students' Engagement and Mathematical Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, Jon R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  16. Assessing the Relation between Seventh-Grade Students' Engagement and Proportional Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, John R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  17. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  18. Transformational and derivational strategies in analogical problem solving.

    Science.gov (United States)

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  19. Solving inversion problems with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  20. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  1. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    Science.gov (United States)

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  2. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  3. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper

    2017-01-01

    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  4. Search and Coherence-Building in Intuition and Insight Problem Solving

    Directory of Open Access Journals (Sweden)

    Michael Öllinger

    2017-05-01

    Full Text Available Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.

  5. Find the Dimensions: Students Solving a Tiling Problem

    Science.gov (United States)

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  6. Relations between Young Students' Strategic Behaviours, Domain-Specific Self-Concept, and Performance in a Problem-Solving Situation

    Science.gov (United States)

    Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios

    2009-01-01

    This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…

  7. Beyond Psychometrics: The Difference between Difficult Problem Solving and Complex Problem Solving

    Directory of Open Access Journals (Sweden)

    Jens F. Beckmann

    2017-10-01

    Full Text Available In this paper we argue that a synthesis of findings across the various sub-areas of research in complex problem solving and consequently progress in theory building is hampered by an insufficient differentiation of complexity and difficulty. In the proposed framework of person, task, and situation (PTS, complexity is conceptualized as a quality that is determined by the cognitive demands that the characteristics of the task and the situation impose. Difficulty represents the quantifiable level of a person’s success in dealing with such demands. We use the well-documented “semantic effect” as an exemplar for testing some of the conceptual assumptions derived from the PTS framework. We demonstrate how a differentiation between complexity and difficulty can help take beyond a potentially too narrowly defined psychometric perspective and subsequently gain a better understanding of the cognitive mechanisms behind this effect. In an empirical study a total of 240 university students were randomly allocated to one of four conditions. The four conditions resulted from contrasting the semanticity level of the variable labels used in the CPS system (high vs. low and two instruction conditions for how to explore the CPS system’s causal structure (starting with the assumption that all relationships between variables existed vs. starting with the assumption that none of the relationships existed. The variation in the instruction aimed at inducing knowledge acquisition processes of either (1 systematic elimination of presumptions, or (2 systematic compilation of a mental representation of the causal structure underpinning the system. Results indicate that (a it is more complex to adopt a “blank slate” perspective under high semanticity as it requires processes of inhibiting prior assumptions, and (b it seems more difficult to employ a systematic heuristic when testing against presumptions. In combination, situational characteristics, such as the

  8. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  9. Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach

    International Nuclear Information System (INIS)

    Oberaigner, E.R.; Leindl, M.; Antretter, T.

    2010-01-01

    Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)

  10. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  11. Expert Team Decision-Making and Problem Solving: Development and Learning

    Directory of Open Access Journals (Sweden)

    Simona Tancig

    2009-12-01

    Full Text Available Traditional research of decision-making has not significantly contributed towards better understanding of professional judgment and decisions in practice. Researchers dealing with decision-making in various professions and natural settings initiated new perspectives called naturalistic, which put the expert in the focus of research and the expertise thus entered the core of decision-making research in natural situations.Expert team is more than a group of experts. It is defined as a group of interdependent team members with a high level of task related expertise and the mastering of team processes.There have been several advances in understanding of expertise and the team. By combining theories, models, and empirical evidence we are trying to explain effectiveness and adaptation of expert teams in problem-solving and decision-making in complex and dynamic situations.A considerable research has been devoted to finding out what are the characteristics of experts and expert teams during their optimal functioning. These characteristics are discussed as input, process and output factors. As input variables the cognitive, social-affective, and motivational characteristics are presented. Process variables encompass individual and team learning, problem solving and decision-making as presented in Kolb’s cycle of learning, in deeper structures of dialogue and discussion, and in phenomena of collaboration, alignment, and distributed cognition. Outcome variables deal with task performance – activities.

  12. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  13. Solving a Deconvolution Problem in Photon Spectrometry

    CERN Document Server

    Aleksandrov, D; Hille, P T; Polichtchouk, B; Kharlov, Y; Sukhorukov, M; Wang, D; Shabratova, G; Demanov, V; Wang, Y; Tveter, T; Faltys, M; Mao, Y; Larsen, D T; Zaporozhets, S; Sibiryak, I; Lovhoiden, G; Potcheptsov, T; Kucheryaev, Y; Basmanov, V; Mares, J; Yanovsky, V; Qvigstad, H; Zenin, A; Nikolaev, S; Siemiarczuk, T; Yuan, X; Cai, X; Redlich, K; Pavlinov, A; Roehrich, D; Manko, V; Deloff, A; Ma, K; Maruyama, Y; Dobrowolski, T; Shigaki, K; Nikulin, S; Wan, R; Mizoguchi, K; Petrov, V; Mueller, H; Ippolitov, M; Liu, L; Sadovsky, S; Stolpovsky, P; Kurashvili, P; Nomokonov, P; Xu, C; Torii, H; Il'kaev, R; Zhang, X; Peresunko, D; Soloviev, A; Vodopyanov, A; Sugitate, T; Ullaland, K; Huang, M; Zhou, D; Nystrand, J; Punin, V; Yin, Z; Batyunya, B; Karadzhev, K; Nazarov, G; Fil'chagin, S; Nazarenko, S; Buskenes, J I; Horaguchi, T; Djuvsland, O; Chuman, F; Senko, V; Alme, J; Wilk, G; Fehlker, D; Vinogradov, Y; Budilov, V; Iwasaki, T; Ilkiv, I; Budnikov, D; Vinogradov, A; Kazantsev, A; Bogolyubsky, M; Lindal, S; Polak, K; Skaali, B; Mamonov, A; Kuryakin, A; Wikne, J; Skjerdal, K

    2010-01-01

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved.

  14. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    Science.gov (United States)

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  15. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    Science.gov (United States)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  16. Problem-Solving during Shared Reading at Kindergarten

    Science.gov (United States)

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  17. Strategy Keys as Tools for Problem Solving

    Science.gov (United States)

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  18. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  19. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  20. Patterns of brain and cardiovascular activation while solving rule-discovery and rule-application numeric tasks.

    Science.gov (United States)

    Sosnowski, Tytus; Rynkiewicz, Andrzej; Wordecha, Małgorzata; Kępkowicz, Anna; Majewska, Adrianna; Pstrągowska, Aleksandra; Oleksy, Tomasz; Wypych, Marek; Marchewka, Artur

    2017-07-01

    It is known that solving mental tasks leads to tonic increase in cardiovascular activity. Our previous research showed that tasks involving rule application (RA) caused greater tonic increase in cardiovascular activity than tasks requiring rule discovery (RD). However, it is not clear what brain mechanisms are responsible for this difference. The aim of two experimental studies was to compare the patterns of brain and cardiovascular activity while both RD and the RA numeric tasks were being solved. The fMRI study revealed greater brain activation while solving RD tasks than while solving RA tasks. In particular, RD tasks evoked greater activation of the left inferior frontal gyrus and selected areas in the parietal, and temporal cortices, including the precuneus, supramarginal gyrus, angular gyrus, inferior parietal lobule, and the superior temporal gyrus, and the cingulate cortex. In addition, RA tasks caused larger increases in HR than RD tasks. The second study, carried out in a cardiovascular laboratory, showed greater increases in heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) while solving RA tasks than while solving RD tasks. The results support the hypothesis that RD and RA tasks involve different modes of information processing, but the neuronal mechanism responsible for the observed greater cardiovascular response to RA tasks than to RD tasks is not completely clear. Copyright © 2017. Published by Elsevier B.V.

  1. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  2. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Age-related changes in strategic variations during arithmetic problem solving: The role of executive control.

    Science.gov (United States)

    Hinault, T; Lemaire, P

    2016-01-01

    In this review, we provide an overview of how age-related changes in executive control influence aging effects in arithmetic processing. More specifically, we consider the role of executive control in strategic variations with age during arithmetic problem solving. Previous studies found that age-related differences in arithmetic performance are associated with strategic variations. That is, when they accomplish arithmetic problem-solving tasks, older adults use fewer strategies than young adults, use strategies in different proportions, and select and execute strategies less efficiently. Here, we review recent evidence, suggesting that age-related changes in inhibition, cognitive flexibility, and working memory processes underlie age-related changes in strategic variations during arithmetic problem solving. We discuss both behavioral and neural mechanisms underlying age-related changes in these executive control processes. © 2016 Elsevier B.V. All rights reserved.

  4. [Problem-solving strategies and marital satisfaction].

    Science.gov (United States)

    Kriegelewicz, Olga

    2006-01-01

    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  5. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity.

    Science.gov (United States)

    Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred

    2016-08-01

    Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.

  6. Students’ Self-Monitoring on Mathematics Ability: Cube and Cuboid Problem Solving

    Science.gov (United States)

    Lusiana, N. T.; Lukito, A.; Khabibah, S.

    2018-01-01

    This study aims at describing students’ activity to understand the behaviors processes called self-monitoring in a cube and cuboid problem solving viewed from mathematics ability. The subjects were eight graders of junior high school who studied surface area and volume of cube and cuboid clussified into high, average and low mathematics abilities. Mathematics ability test to select the subjects the study. Data were collected through self-monitoring task and interviews. Data triangulation was used to verify the credibillity findings. Data analysis was done by data condensation, data display and conclusion drawing and verification. Results showed that students’ self-monitoring with high math ability is more fullfilled self-monitoring components. Students with average and low math abilities not fullfilled the component that covers verifying the results during solving the problem. It is expected that teachers must provide different learning treatments to improve students’ self-monitoring for better learning outcomes.

  7. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  8. impact of the curriculum reform on problem solving ability in ...

    African Journals Online (AJOL)

    unesco

    that “learning is problem solving”. Therefore, teaching problem solving is teaching people how to learn, so is problem solving in chemistry education. Kalbag (4) states that problem solving orientation in chemistry education has an importance in that problem solving converts information into knowledge. Kalbag further states.

  9. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.

    2008-01-01

    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  10. Decision-Making Styles and Problem-Solving Appraisal.

    Science.gov (United States)

    Phillips, Susan D.; And Others

    1984-01-01

    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  11. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    OpenAIRE

    Havva ILGIN; Derya ARSLAN

    2012-01-01

    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  12. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  13. PROBLEM SOLVING IN SCHOOL MATHEMATICS BASED ON HEURISTIC STRATEGIES

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2014-03-01

    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  14. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  15. Effect of Physics Problem Solving on Structures Schemes and Knowledge Associations

    Science.gov (United States)

    Setyowidodo, I.; Jatmiko, B.; Susantini, E.; Widodo, S.; Shofwan, A.

    2017-09-01

    This study aims to develop learners’ thinking structures through associations, case based, and schematic method so that different knowledge structures have a role in influencing the structure of creative thinking. The learners have low mastery of physics materials since they are not given sufficient opportunity to build their own knowledge. They should be directed to approach each new problem or task with their prior knowledge, assimilate new information, and construct their own understanding. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The learning process of problemsolving consists of: 1) identifying problems, 2) planning projects, 3) creating projects, 4) presenting projects, and 5) evaluating projects. From the results of this research, it can be concluded that problem-solving method can provide strong supports in developing the learners’ creative thinking skills as they can share their knowledge and interact with their friends and the environment. This learning activity also constitutes an appropriate technique to help the learners to develop problem solving knowledge and skills.

  16. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  17. Problem solving using soft systems methodology.

    Science.gov (United States)

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  18. Worrying about the future: An episodic specificity induction impacts problem solving, reappraisal, and well-being.

    Science.gov (United States)

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2016-04-01

    Previous research has demonstrated that an episodic specificity induction--brief training in recollecting details of a recent experience--enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants' performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. (c) 2016 APA, all rights reserved).

  19. Problem solving therapy - use and effectiveness in general practice.

    Science.gov (United States)

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  20. [Methods for teaching problem-solving in medical schools].

    Science.gov (United States)

    Shumway, J M; Vargas, M E; Heller, L E

    1984-01-01

    The need to include in the medical curriculum instructional activities to promote the development of problem-solving abilities has been asserted at the national and international levels. In research on the mental process involved in the solution of problems in medicine, problem-solving has been defined as a hypothetical-deductive activity engaged in by experienced physicians, in which the early generation of hypotheses influences the subsequent gathering of information. This article comments briefly on research on the mental process by which medical problems are solved. It describes the methods that research has shown to be most applicable in instruction to develop problem-solving abilities, and presents some educational principles that justify their application. The "trail-following" approach is the method that has been most commonly used to study the physician's problem-solving behavior. The salient conclusions from this research are that in the problem-solving process the diagnostic hypothesis is generated very early on and with limited data; the number of hypotheses is small; the problem-solving approach is specific to the type of medical problem and case in hand; and the accumulation of medical knowledge and experience forms the basis of clinical competence. Four methods for teaching the solution of problems are described: case presentation, the rain of ideas, the nominal groups technique and decision-making consensus, the census and analysis of forces in the field, and the analysis of clinical decisions. These methods are carried out in small groups. The advantages of the small groups are that the students are active participants in the learning process, they receive formative evaluation of their performance in a setting conductive to learning, and are able to interact with their instructor if he makes proper use of the right questioning techniques. While no single problem-solving method can be useful to all students or in all the problems they encounter

  1. The Solving of Problems in Chemistry: the more open-ended problems

    Science.gov (United States)

    Reid, Norman; Yang, Mei-Jung

    2002-01-01

    Most problem solving in chemistry tends to be algorithmic in nature, while problems in life tend to be very open ended. This paper offers a simple classification of problems and seeks to explore the many factors which may be important in the successful solving of problems. It considers the place of procedures and algorithms. It analyses the role of long-term memory, not only in terms of what is known, but how that knowledge was acquired. It notes the great importance of the limitations of working memory space and the importance of confidence which comes from experience. Finally, various psychological factors are discussed. This paper argues that solving open-ended problems is extremely important in education and that offering learners experience of this in a group work context is a helpful way forward.

  2. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  3. The Unified Problem-Solving Method Development Language UPML

    OpenAIRE

    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob

    2003-01-01

    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  4. Strategies, Not Solutions: Involving Students in Problem Solving.

    Science.gov (United States)

    Von Kuster, Lee N.

    1984-01-01

    Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)

  5. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  6. Quantitative Reasoning in Problem Solving

    Science.gov (United States)

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  7. Measuring Problem Solving Skills in "Portal 2"

    Science.gov (United States)

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  8. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  9. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen

    2013-12-01

    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  10. The importance of the secure base effect for domestic dogs - evidence from a manipulative problem-solving task.

    Directory of Open Access Journals (Sweden)

    Lisa Horn

    Full Text Available It has been suggested that dogs display a secure base effect similar to that found in human children (i.e., using the owner as a secure base for interacting with the environment. In children, this effect influences their daily lives and importantly also their performance in cognitive testing. Here, we investigate the importance of the secure base effect for dogs in a problem-solving task.Using a manipulative task, we tested dogs in three conditions, in which we varied the owner's presence and behavior (Experiment 1: "Absent owner", "Silent owner", "Encouraging owner" and in one additional condition, in which the owner was replaced by an unfamiliar human (Experiment 2: "Replaced owner". We found that the dogs' duration of manipulating the apparatus was longer when their owner was present than absent, irrespective of the owner's behavior. The presence of an unfamiliar human however did not increase their manipulation. Furthermore, the reduced manipulation during the absence of the owner was not correlated with the dog's degree of separation distress scored in a preceding attachment experiment.Our study is the first to provide evidence for an owner-specific secure base effect in dogs that extends from attachment tests to other areas of dogs' lives and also manifests itself in cognitive testing - thereby confirming the remarkable similarity between the secure base effect in dogs and in human children. These results also have important implications for behavioral testing in dogs, because the presence or absence of the owner during a test situation might substantially influence dogs' motivation and therefore the outcome of the test.

  11. Students’ thinking preferences in solving mathematics problems based on learning styles: a comparison of paper-pencil and geogebra

    Science.gov (United States)

    Farihah, Umi

    2018-04-01

    The purpose of this study was to analyze students’ thinking preferences in solving mathematics problems using paper pencil comparing to geogebra based on their learning styles. This research employed a qualitative descriptive study. The subjects of this research was six of eighth grade students of Madrasah Tsanawiyah Negeri 2 Trenggalek, East Java Indonesia academic year 2015-2016 with their difference learning styles; two visual students, two auditory students, and two kinesthetic students.. During the interview, the students presented the Paper and Pencil-based Task (PBTs) and the Geogebra-based Task (GBTs). By investigating students’ solution methods and the representation in solving the problems, the researcher compared their visual and non-visual thinking preferences in solving mathematics problems while they were using Geogebra and without Geogebra. Based on the result of research analysis, it was shown that the comparison between students’ PBTs and GBTs solution either visual, auditory, or kinesthetic represented how Geogebra can influence their solution method. By using Geogebra, they prefer using visual method while presenting GBTs to using non-visual method.

  12. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    Science.gov (United States)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  13. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    Science.gov (United States)

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  14. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  15. The effects of monitoring environment on problem-solving performance.

    Science.gov (United States)

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  16. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  18. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  19. The transportation management division institutional program: Networking and problem solving

    International Nuclear Information System (INIS)

    McGinnis, K.A.; Peterson, J.M.

    1989-06-01

    The US Department of Energy (DOE) has several programs related to transportation. While these programs may have differing missions and legislative authority, the required activities are frequently similar. To ensure a DOE-wide perspective in developing transportation policies and procedures, a DOE Transportation Institutional Task Force (Task Force) has been formed, which is the primary focus of this paper. The Task Force, composed of representatives from each of the major DOE transportation programs, meets periodically to exchange experiences and insights on institutional issues related to Departmental shipping. The primary purpose of the group is to identify opportunities for productive interactions with the transportation community, including interested and affected members of the public. This paper will also focus sharply on the networking of DOE with the State, Tribal, and local officials in fostering better understanding and in solving problems. An example of such activity is the DOE's cooperative agreement with the Energy Task Force of the Urban Consortium. A major effort is to encourage cooperative action in identifying, addressing, and resolving issues that could impede the transportation of radioactive materials

  20. Methods of solving sequence and series problems

    CERN Document Server

    Grigorieva, Ellina

    2016-01-01

    This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...

  1. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  2. The Role of Expository Writing in Mathematical Problem Solving

    Science.gov (United States)

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  3. Transportation Self-Efficacy and Social Problem-Solving of Persons Who Are Blind or Visually Impaired.

    Science.gov (United States)

    Crudden, Adele; O'Mally, Jamie; Antonelli, Karla

    2016-01-01

    Social problem-solving skills and transportation self-efficacy were assessed for 48 vocational rehabilitation consumers with visual disabilities who required assistance securing work transportation. Social problem solving was at the upper end of the normed average; transportation self-efficacy averaged 101.5 out of 140. Level of vision loss was not associated with score differences; urban residence related to slightly higher self-efficacy than suburban or rural residency. Participants appeared to have the skills necessary to secure employment transportation, but were less confident about transportation-seeking activities that required more initiative of social interaction. Training and information might help consumers gain confidence in these tasks and increase viable transportation options.

  4. Ill-defined problem solving in amnestic mild cognitive impairment: linking episodic memory to effective solution generation.

    Science.gov (United States)

    Sheldon, S; Vandermorris, S; Al-Haj, M; Cohen, S; Winocur, G; Moscovitch, M

    2015-02-01

    It is well accepted that the medial temporal lobes (MTL), and the hippocampus specifically, support episodic memory processes. Emerging evidence suggests that these processes also support the ability to effectively solve ill-defined problems which are those that do not have a set routine or solution. To test the relation between episodic memory and problem solving, we examined the ability of individuals with single domain amnestic mild cognitive impairment (aMCI), a condition characterized by episodic memory impairment, to solve ill-defined social problems. Participants with aMCI and age and education matched controls were given a battery of tests that included standardized neuropsychological measures, the Autobiographical Interview (Levine et al., 2002) that scored for episodic content in descriptions of past personal events, and a measure of ill-defined social problem solving. Corroborating previous findings, the aMCI group generated less episodically rich narratives when describing past events. Individuals with aMCI also generated less effective solutions when solving ill-defined problems compared to the control participants. Correlation analyses demonstrated that the ability to recall episodic elements from autobiographical memories was positively related to the ability to effectively solve ill-defined problems. The ability to solve these ill-defined problems was related to measures of activities of daily living. In conjunction with previous reports, the results of the present study point to a new functional role of episodic memory in ill-defined goal-directed behavior and other non-memory tasks that require flexible thinking. Our findings also have implications for the cognitive and behavioural profile of aMCI by suggesting that the ability to effectively solve ill-defined problems is related to sustained functional independence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Psychosocial dimensions of solving an indoor air problem.

    Science.gov (United States)

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  6. Problem Solving Strategies among Primary School Teachers

    Science.gov (United States)

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng

    2017-01-01

    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  7. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    Science.gov (United States)

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  8. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.

    2004-01-01

    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  9. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    Science.gov (United States)

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  10. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  11. Using reflection techniques for flexible problem solving (with examples from diagnosis)

    NARCIS (Netherlands)

    Teije, A. ten; Harmelen, van F.A.H.

    1996-01-01

    Flexible problem solving consists of the dynamic selection and configuration of problem solving methods for a particular problem type, depending on the particular problem and the goal of problem solving. In this paper, we propose an architecture that supports such flexible problem solving

  12. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    Science.gov (United States)

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  13. Beyond Gamification:From Problem-solving to Problem-making

    OpenAIRE

    Ruffino, Paolo

    2014-01-01

    The problem I would like to highlight in this contribution is that gamification has been thought about too much as a tool for problem solving, and not enough as a tool for problem making. The idea of gamification as a tool for problem making could be more useful – although maybe paradoxically. As long as a technique is presented as a method for the solution of problems it can too easily become an authoritative proposal, which takes one solution and vision as necessarily better than the others...

  14. Problem Solving and the Use of Digital Technologies within the Mathematical Working Space Framework

    Science.gov (United States)

    Santos-Trigo, Manuel; Moreno-Armella, Luis; Camacho-Machín, Matías

    2016-01-01

    The aim of this study is to analyze and document the extent to which high school teachers rely on a set of technology affordances to articulate epistemological and cognitive actions in problem solving approaches. Participants were encouraged to construct dynamic representations of tasks and always to look for different ways to identify and support…

  15. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  16. Using Digital Mapping Tool in Ill-Structured Problem Solving

    Science.gov (United States)

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  17. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    Science.gov (United States)

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  18. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  19. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  20. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    Students' Competence in some Problem Solving Skills throughout their B.Sc. Course. ... there is a need for explicitly identifying important cognitive skills and strategies and ... Keywords: Cognitive skills, thinking skills, problem solving, students' ...

  1. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  2. Can renewables etc. solve the greenhouse problem? The negative case

    International Nuclear Information System (INIS)

    Trainer, Ted

    2010-01-01

    Virtually all current discussion of climate change and energy problems proceeds on the assumption that technical solutions are possible within basically affluent-consumer societies. There is however a substantial case that this assumption is mistaken. This case derives from a consideration of the scale of the tasks and of the limits of non-carbon energy sources, focusing especially on the need for redundant capacity in winter. The first line of argument is to do with the extremely high capital cost of the supply system that would be required, and the second is to do with the problems set by the intermittency of renewable sources. It is concluded that the general climate change and energy problem cannot be solved without large scale reductions in rates of economic production and consumption, and therefore without transition to fundamentally different social structures and systems.

  3. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.

  4. Active and passive problem solving: moderating role in the relation between depressive symptoms and future suicidal ideation varies by suicide attempt history.

    Science.gov (United States)

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2015-04-01

    Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem-solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation among suicide attempters and nonattempters. Young adults (n = 324, 73% female, mean age = 19, standard deviation = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and suicidal ideation at baseline, and a self-report measure of suicidal ideation at 6-month follow-up. Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future suicidal ideation. Among attempters, active problem solving buffered against depressive symptoms in predicting future suicidal ideation. Suicide prevention should foster active problem solving, especially among suicide attempters. © 2015 Wiley Periodicals, Inc.

  5. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  6. Give me a hand: Differential effects of gesture type in guiding young children's problem-solving

    OpenAIRE

    Vallotton, Claire; Fusaro, Maria; Hayden, Julia; Decker, Kalli; Gutowski, Elizabeth

    2015-01-01

    Adults’ gestures support children's learning in problem-solving tasks, but gestures may be differentially useful to children of different ages, and different features of gestures may make them more or less useful to children. The current study investigated parents’ use of gestures to support their young children (1.5 – 6 years) in a block puzzle task (N = 126 parent-child dyads), and identified patterns in parents’ gesture use indicating different gestural strategies. Further, we examined the...

  7. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)

    Administrator

    (iii). lack of organizational skill in solving quantitative problems. (Onwu, 1982, Onwu ... improved in terms of conceptual thinking, intuitive knowledge and insightful ... Problem Solving: This is a cognitive learning strategy which has to do with ...

  8. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    Science.gov (United States)

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. An ethics of suffering: does it solve the problems we want to solve?: commentary.

    Science.gov (United States)

    Edwards, Barbara Springer

    1991-01-01

    Erich H. Loewy proposes to elevate the moral obligation to prevent and relieve suffering to the level of a prima facie moral duty by delineating which beings are of primary moral worth and which are of secondary moral worth. Sentient beings have a capacity to suffer and are therefore of primary moral worth. Beings that are insentient cannot suffer; therefore such beings are only of secondary moral worth. Objects of secondary moral worth include patients in a persistent vegetative state (PVS) and brain-dead patients. This proposal, he says, would solve a number of problems in clinical bioethics. First, it would help to clarify our moral duties at the bedside. And secondly, by creating a hierarchy of moral values, it helps to differentiate which patients are owed our primary allegiance and resources. Despite his extensive and painstaking proof, I believe several questions remain about the use of the "capacity of sentient beings to suffer" as a basis for a universal grounding in ethics.

  10. Pre-service mathematics teachers’ ability in solving well-structured problem

    Science.gov (United States)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  11. Perbedaan Keterampilan Pemecahan Masalah pada Pembelajaran Fisika Menggunakan Metode Problem Posing dan Problem Solving

    OpenAIRE

    Rahman, Adetya; Hartini, Sri; An'nur, Syubhan

    2015-01-01

    Teachers should be able to choose the method of learning that can help students in learning physics, namely the method of problem posing and problem solving method. The purposes of this study are : (1) describe the learning physics skills by using problem posing method, (2) describe the learning physics skills by using problem solving method, and (3) know difference between learning physics skills by using problem posing method and problem solving method in class XI of Science SMAN 6 Banjarma...

  12. Three-M in Word Problem Solving

    Science.gov (United States)

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  13. Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi.

    Science.gov (United States)

    Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni

    2016-04-01

    How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem

  14. Analysis of problem solving in terms of cognitive style

    Science.gov (United States)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  15. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  16. Teaching problem solving: Don't forget the problem solver(s)

    Science.gov (United States)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  17. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  18. The Effect of Problem Solving and Problem Posing Models and Innate Ability to Students Achievement

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa   Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the innate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability. Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes   Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar

  19. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    Science.gov (United States)

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  20. Does Solving Insight-Based Problems Differ from Solving Learning-Based Problems? Some Evidence from an ERP Study

    Science.gov (United States)

    Leikin, Roza; Waisman, Ilana; Leikin, Mark

    2016-01-01

    We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…

  1. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    Science.gov (United States)

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach…

  2. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    Science.gov (United States)

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  3. A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction

    Directory of Open Access Journals (Sweden)

    Mourad Ykhlef

    2015-01-01

    Full Text Available Solving winner determination problem in multiunit double auction has become an important E-business task. The main issue in double auction is to improve the reward in order to match the ideal prices and quantity and make the best profit for sellers and buyers according to their bids and predefined quantities. There are many algorithms introduced for solving winner in multiunit double auction. Conventional algorithms can find the optimal solution but they take a long time, particularly when they are applied to large dataset. Nowadays, some evolutionary algorithms, such as particle swarm optimization and genetic algorithm, were proposed and have been applied. In order to improve the speed of evolutionary algorithms convergence, we will propose a new kind of hybrid evolutionary algorithm that combines genetic algorithm (GA with particle swarm optimization (PSO to solve winner determination problem in multiunit double auction; we will refer to this algorithm as AUC-GAPSO.

  4. Interference thinking in constructing students’ knowledge to solve mathematical problems

    Science.gov (United States)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  5. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  6. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  7. Cognitive functioning and social problem-solving skills in schizophrenia.

    Science.gov (United States)

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  8. Fostering information problem solving skills through completion problems and prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, November). Fostering information problem solving skills through completion problems and prompts. Poster presented at the ICO Fall School 2012, Girona, Spain.

  9. Problem-formulation and problem-solving in self-organized communities

    DEFF Research Database (Denmark)

    Foss, Nicolai J.; Frederiksen, Lars; Rullani, Francesco

    2016-01-01

    Building on the problem-solving perspective, we study behaviors related to projects and the communication-based antecedents of such behaviors in the free open-source software (FOSS) community. We examine two kinds of problem/project-behaviors: Individuals can set up projects around the formulation...

  10. Student Obstacles in Solving Algebraic Thinking Problems

    Science.gov (United States)

    Andini, W.; Suryadi, D.

    2017-09-01

    The aim of this research is to analize the student obstacles on solving algebraic thinking problems in low grades elementary school. This research is a preliminary qualitative research, and involved 66 students of grade 3 elementary school. From the analysis student test results, most of student experience difficulty in solving algebraic thinking problems. The main obstacle is the student’s difficulty in understanding the problem of generalizing the pattern because the students are not accustomed to see the rules that exist in generalize the pattern.

  11. The Relation of Maternal Emotional and Cognitive Support During Problem Solving to Pre-Academic Skills in Preschoolers

    Science.gov (United States)

    Leerkes, Esther M.; Blankson, A. Nayena; O’Brien, Marion; Calkins, Susan D.; Marcovitch, Stuart

    2011-01-01

    Using a sample of 263 mother-child dyads, we examined the extent to which maternal emotional and cognitive support during a joint problem solving task when children were 3-years-old predicted children’s academic skills one year later independent of each other, the quality of the home learning environment, and maternal emotional responsiveness. When all parenting measures were examined simultaneously, only maternal emotional support during problem solving and the quality of the home learning environment predicted unique variation in gains in pre-academic skills from age 3 to age 4. The positive effect of emotional support during problem solving was especially apparent for children whose pre-academic skills were low at age 3. These findings are discussed in light of the changing demands placed on young children and their parents as they prepare for entry to the formal school system. PMID:22121336

  12. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  13. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    Science.gov (United States)

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  14. Dimensional analysis and qualitative methods in problem solving: II

    International Nuclear Information System (INIS)

    Pescetti, D

    2009-01-01

    We show that the underlying mathematical structure of dimensional analysis (DA), in the qualitative methods in problem-solving context, is the algebra of the affine spaces. In particular, we show that the qualitative problem-solving procedure based on the parallel decomposition of a problem into simple special cases yields the new original mathematical concepts of special points and special representations of affine spaces. A qualitative problem-solving algorithm piloted by the mathematics of DA is illustrated by a set of examples.

  15. DEVELOPMENT OF LARSON’S PROBLEMS SOLVING PATTERNS WITH "IDEAL" STRATEGIES

    Directory of Open Access Journals (Sweden)

    . Junarti

    2018-01-01

    Full Text Available Abstract: Mathematical Problem-solving is taught to improve students' high-order thinking skills. A heuristic problem-solving strategy is used to find different Problem-solving. This research is to: 1 describe the student's Problem-solving ability profile in finding the pattern of algebra solving through the "IDEAL" (Identify Define Explore Act Look back strategy by developing Larson’s Problem-solving pattern, 2 measuring the extent of the pattern can be formed by using " IDEAL". Finding patterns is part of the first heuristic strategy. The research method used a qualitative approach with descriptive analysis. Problems conveyed to students are done in pairs of two people, with the consideration that more discussion opportunities with friends make it possible to get more than five troubleshooting as Larson puts it. The results showed that: 1 profile Problem-solving ability found pattern with "IDEAL" strategy from student got result that from problem given to 20 student group can help solve algebra Problem-solving; 2 there are four kinds of Problem-solving patterns consisting of 3 Larson model Problem-solving patterns and one Problem-solving pattern using geometry sequence pattern. Keyword: Problem-solving Pattern, Heuristic, “IDEAL” Strategy Abstrak: Pemecahan masalah matematika diajarkan untuk meningkatkan kemampuan pemikiran tingkat tinggi mahasiswa.  Strategi pemecahan masalah heuristic digunakan untuk menemukan pemecahan masalah yang berbeda. Penelitian ini untuk: 1 menggambarkan profil kemampuan pemecahan masalah mahasiswa dalam menemukan pola pemecahan aljabar melalui strategi “IDEAL” (Identify Define Explore Act Look back dengan mengembangkan pola pemecahan masalah Larson, 2 mengukur sejauhmana pola yang dapat dibentuk mahasiswa dengan menggunakan strategi “IDEAL”. Menemukan Pola merupakan bagian dari strategi heuristik yang pertama. Metode penelitiannya menggunakan pendekatan kualitatif dengan  analisis deskriptif. Masalah

  16. Description of Student’s Metacognitive Ability in Understanding and Solving Mathematics Problem

    Science.gov (United States)

    Ahmad, Herlina; Febryanti, Fatimah; Febryanti, Fatimah; Muthmainnah

    2018-01-01

    This research was conducted qualitative which was aim to describe metacognitive ability to understand and solve the problems of mathematics. The subject of the research was the first year students at computer and networking department of SMK Mega Link Majene. The sample was taken by purposive sampling technique. The data obtained used the research instrument based on the form of students achievements were collected by using test of student’s achievement and interview guidance. The technique of collecting data researcher had observation to ascertain the model that used by teacher was teaching model of developing metacognitive. The technique of data analysis in this research was reduction data, presentation and conclusion. Based on the whole findings in this study it was shown that student’s metacognitive ability generally not develops optimally. It was because of limited scope of the materials, and cognitive teaching strategy handled by verbal presentation and trained continuously in facing cognitive tasks, such as understanding and solving problem.

  17. AI tools in computer based problem solving

    Science.gov (United States)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  18. Problem Solving with General Semantics.

    Science.gov (United States)

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  19. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  20. Behavioral flexibility and problem solving in an invasive bird.

    Science.gov (United States)

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  1. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    name; Elective Course Student Sectioning. The problem is solved using ALNS and solutions are proven to be close to optimum. The algorithm has been implemented and made available for the majority of the high schools in Denmark. The second Student Sectioning problem presented is the sectioning of each...... high schools. Two types of consultations are presented; the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). One mathematical model containing both consultation types has been created and solved using an ALNS approach. The received solutions...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  2. Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem

    International Nuclear Information System (INIS)

    Athayde Costa e Silva, Marsil de; Klein, Carlos Eduardo; Mariani, Viviana Cocco; Santos Coelho, Leandro dos

    2013-01-01

    The environmental/economic dispatch (EED) is an important daily optimization task in the operation of many power systems. It involves the simultaneous optimization of fuel cost and emission objectives which are conflicting ones. The EED problem can be formulated as a large-scale highly constrained nonlinear multiobjective optimization problem. In recent years, many metaheuristic optimization approaches have been reported in the literature to solve the multiobjective EED. In terms of metaheuristics, recently, scatter search approaches are receiving increasing attention, because of their potential to effectively explore a wide range of complex optimization problems. This paper proposes an improved scatter search (ISS) to deal with multiobjective EED problems based on concepts of Pareto dominance and crowding distance and a new scheme for the combination method. In this paper, we have considered the standard IEEE (Institute of Electrical and Electronics Engineers) 30-bus system with 6-generators and the results obtained by proposed ISS algorithm are compared with the other recently reported results in the literature. Simulation results demonstrate that the proposed ISS algorithm is a capable candidate in solving the multiobjective EED problems. - Highlights: ► Economic dispatch. ► We solve the environmental/economic economic power dispatch problem with scatter search. ► Multiobjective scatter search can effectively improve the global search ability

  3. Social problem solving ability predicts mental health among undergraduate students.

    Science.gov (United States)

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-11-01

    The main objective of this study was predicting student's mental health using social problem solving- ability. In this correlational. descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson's correlation, t test, and stepwise regression analysis. Data analysis showed significant relationship between social problem solving ability and mental health (P Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P social problem solving ability and mental health.

  4. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  5. Indoor Air Quality Problem Solving Tool

    Science.gov (United States)

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  6. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  7. Relationship between Problem-Solving Ability and Career Maturity ...

    African Journals Online (AJOL)

    This study investigated the relationship between problem-solving ability and career maturity of secondary school students in Ibadan, Oyo State, Nigeria. 230 final year secondary school students completed self-report measures of problem solving and career maturity. Multiple regression analysis was used to analyse the data ...

  8. A problem solving model for regulatory policy making

    NARCIS (Netherlands)

    Boer, A.; van Engers, T.; Sileno, G.; Wyner, A.; Benn, N.

    2011-01-01

    In this paper we discuss how the interests and field theory promoted by public administration as a stakeholder in policy argumentation, directly arise from its problem solving activities, using the framework for public administration problem solving we proposed in [1,2]. We propose that calls for

  9. Problem-Solving Methods for the Prospective Development of Urban Power Distribution Network

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2014-01-01

    Full Text Available This article succeeds the former A. P. K nko’ and A. I. Kuzmina’ ubl t on titled "A mathematical model of urban distribution electro-network considering its future development" (electronic scientific and technical magazine "Science and education" No. 5, 2014.The article offers a model of urban power distribution network as a set of transformer and distribution substations and cable lines. All elements of the network and new consumers are determined owing to vectors of parameters consistent with them.A problem of the urban power distribution network design, taking into account a prospective development of the city, is presented as a problem of discrete programming. It is in deciding on the optimal option to connect new consumers to the power supply network, on the number and sites to build new substations, and on the option to include them in the power supply network.Two methods, namely a reduction method for a set the nested tasks of global minimization and a decomposition method are offered to solve the problem.In reduction method the problem of prospective development of power supply network breaks into three subtasks of smaller dimension: a subtask to define the number and sites of new transformer and distribution substations, a subtask to define the option to connect new consumers to the power supply network, and a subtask to include new substations in the power supply network. The vector of the varied parameters is broken into three subvectors consistent with the subtasks. Each subtask is solved using an area of admissible vector values of the varied parameters at the fixed components of the subvectors obtained when solving the higher subtasks.In decomposition method the task is presented as a set of three, similar to reduction method, reductions of subtasks and a problem of coordination. The problem of coordination specifies a sequence of the subtasks solution, defines the moment of calculation termination. Coordination is realized by

  10. The effect of training and breed group on problem-solving behaviours in dogs.

    Science.gov (United States)

    Marshall-Pescini, Sarah; Frazzi, Chiara; Valsecchi, Paola

    2016-05-01

    Dogs have become the focus of cognitive studies looking at both their physical and social problem-solving abilities (Bensky et al. in Adv Stud Behav, 45:209-387, 2013), but very little is known about the environmental and inherited factors that may affect these abilities. In the current study, we presented a manipulation task (a puzzle box) and a spatial task (the detour) to 128 dogs belonging to four different breed groups: Herding, Mastiff-like, Working and Retrievers (von Holdt et al. in Nature 464:898-902, 2010). Within each group, we tested highly trained and non-trained dogs. Results showed that trained dogs were faster at obtaining the reward in the detour task. In the manipulation task, trained dogs approached the apparatus sooner in the first familiarization trial, but no effect of breed emerged on this variable. Furthermore, regardless of breed, dogs in the trained group spent proportionally more time interacting with the apparatus and were more likely to succeed in the test trial than dogs in the non-trained group, whereas regardless of training, dogs in the working breed group were more likely to succeed than dogs in the retriever and herding breed groups (but not the mastiff-like group). Finally, trained dogs were less likely to look at a person than non-trained dogs during testing, but dogs in the herding group more likely to do so than dogs in the retriever and working but not the mastiff-like breed groups. Overall, results reveal a strong influence of training experience but less consistent differences between breed groups on different components thought to affect problem solving.

  11. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  12. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  13. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    Directory of Open Access Journals (Sweden)

    Yalçın KANBAY

    2013-12-01

    Full Text Available Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students was enrolled in the study . Several participants were excluded due to incomplete questionnaires, and eventually a total of 231 nursing students were included in the final sampling. Socio Demographic Features Data Form and the California Critical Thinking Disposition Scale and Problem Solving Inventory were used for data collection. The mean age of 231 subjects (148 girls, 83 boys was 21.34. The mean score of critical thinking was 255.71 for the first-grade, 255.57 for the second-grade, 264.73 for the third-grade, and 256.468 for the forth-grade students. The mean score of critical thinking was determined as 257.41 for the sample, which can be considered as an average value. Although there are mean score differences of critical thinking between the classes , they were not statistically significant (p> 0.05. With regard to the mean score of problem solving, the first-grade students had 92.86, the second-grade students had 94. 29, the third-grade students had 87.00, and the forth-grade students had 92.87. The mean score of problem solving was determined as 92.450 for the sample. Although there are differences between the classes in terms of mean scores of problem solving, it was not found statistically significant (p> 0.05. In this study, statistically significant correlation could not be identified between age and critical thinking skills of the subjects (p>0.05. However, a negative correlation was identified at low levels between critical thinking skills and

  14. USING TASK LIKE PISA’S PROBLEM TO SUPPORT STUDENT’S CREATIVITY IN MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2016-01-01

    Full Text Available Creativity is one of keys to success in the evolving global economy and also be a fundamental skill that is absolutely necessary in the 21st century. Also In mathematics, creativity or thinking creatively is important to be developed because creativity is an integral part of mathematics. However, limiting the use of creativity in the classroom reduces mathematics to a set of skills to master and rules to memorize. Doing so causes many children’s natural curiosity and enthusiasm for mathematics to disappear as they get older, creating a tremendous problem for mathematics educators who are trying to instil these very qualities. In order to investigate the increase in awareness of elementary school students’ creativity in solving mathematics’ problems by using task like PISA’s Question, a qualitative research emphasizing on holistic description was conducted. We used a formative evaluation type of development research as a mean to develop mathematical tasks like PISA’s question that have potential effect to support students’ creativity in mathematics. Ten elementary school students of grade 6 in Palembang were involved in this research. They judged the task given for them is very challenging and provokes their curiosity. The result showed that task like PISA’s question can encourage students to more creatively in mathematics.Key Words: PISA, Problem Solving, Creativity in Mathematics DOI: http://dx.doi.org/10.22342/jme.7.1.2815.31-42

  15. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  16. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  17. Development and validation of a physics problem-solving assessment rubric

    Science.gov (United States)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  18. Human-Assisted Machine Information Exploitation: a crowdsourced investigation of information-based problem solving

    Science.gov (United States)

    Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff

    2017-05-01

    The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.

  19. A reflexive perspective in problem solving

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; López, Margarita

    2013-01-01

    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  20. Uncovering the problem-solving process: cued retrospective reporting versus concurrent and retrospective reporting.

    Science.gov (United States)

    van Gog, Tamara; Paas, Fred; van Merriënboer, Jeroen J G; Witte, Puk

    2005-12-01

    This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The method of cued retrospective reporting used the original computer-based task and a superimposed record of the participant's eye fixations and mouse-keyboard operations as a cue for retrospection. Cued retrospective reporting (with the exception of why information) and concurrent reporting (with the exception of metacognitive information) resulted in a higher number of codes on the different types of information than did retrospective reporting.

  1. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  2. High School Teachers' Problem Solving Activities to Review and Extend Their Mathematical and Didactical Knowledge

    Science.gov (United States)

    Santos-Trigo, Manuel; Barrera-Mora, Fernando

    2011-01-01

    The study documents the extent to which high school teachers reflect on their need to revise and extend their mathematical and practicing knowledge. In this context, teachers worked on a set of tasks as a part of an inquiring community that promoted the use of different computational tools in problem solving approaches. Results indicated that the…

  3. Interpersonal Problem-Solving Deficits in Self-Poisoning Patients.

    Science.gov (United States)

    McLeavey, Breda C.; And Others

    1987-01-01

    Compared self-poisoning patients with psychiatric patients and nonpatient controls on problem-solving skills and locus of control. The psychiatric and self-poisoning groups showed deficits on interpersonal problem solving compared with nonpatient controls. The self-poisoning group performed below or at the level of the psychiatric group. Locus of…

  4. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  5. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  6. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  7. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  8. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation.

    Science.gov (United States)

    Cross, Fiona R; Jackson, Robert R

    2015-03-01

    Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.

  9. A Framework for Distributed Problem Solving

    Science.gov (United States)

    Leone, Joseph; Shin, Don G.

    1989-03-01

    This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.

  10. Worry and problem-solving skills and beliefs in primary school children.

    Science.gov (United States)

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  11. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  12. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  13. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  14. The effects of cumulative practice on mathematics problem solving.

    Science.gov (United States)

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  15. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  16. Fostering Information Problem Solving Skills Through Completion Problems and Prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, September). Fostering Information Problem Solving Skills Through Completion Problems and Prompts. Poster presented at the EARLI SIG 6 & 7 "Instructional Design" and "Learning and Instruction with Computers", Bari, Italy.

  17. Emergent Leadership in Children's Cooperative Problem Solving Groups

    Science.gov (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  18. Critical Thinking Skills of an Eighth Grade Male Student with High Mathematical Ability in Solving Problem

    Science.gov (United States)

    Ismail

    2018-01-01

    This study aims to describe student’s critical thinking skill of grade VIII in solving mathematical problem. A qualitative research was conducted to a male student with high mathematical ability. Student’s critical thinking skill was obtained from a depth task-based interview. The result show that male student’s critical thinking skill of the student as follows. In understanding the problem, the student did categorization, significance decoding, and meaning clarification. In devising a plan he examined his ideas, detected his argument, analyzed his argument and evaluated his argument. During the implementation phase, the skill that appeared were analyzing of the argument and inference skill such as drawing conclusion, deliver alternative thinking, and problem solving skills. At last, in rechecking all the measures, they did self-correcting and self-examination.

  19. Investigasi Kemampuan Problem Solving dan Problem Posing Matematis Mahasiswa Via Pendekatan Realistic

    OpenAIRE

    Afriansyah, Ekasatya Aldila

    2016-01-01

    Mathematical problem solving and problem posing skill are the mathematical skills that need to be owned by students. By having this skill, students can be more creative in expressing ideas by connecting the knowledge that they held previously. But in reality, there are some students who are lack of problem solving skill; therefore it is really important to improve learning through appropriate approach. Realistic approach had been chosen as the learning theory to be applied in the class. This ...

  20. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  1. Problem solving and Program design using the TI-92

    NARCIS (Netherlands)

    Ir.ing. Ton Marée; ir Martijn van Dongen

    2000-01-01

    This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or

  2. Analogy as a strategy for supporting complex problem solving under uncertainty.

    Science.gov (United States)

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  3. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  4. Threshold Concepts in the Development of Problem-solving Skills

    Directory of Open Access Journals (Sweden)

    Shelly Wismath

    2015-03-01

    Full Text Available Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course. These changes can be posited to reveal three underlying threshold concepts in the evolution and establishment of students’ problem-solving skills.

  5. An Approach for Solving Linear Fractional Programming Problems

    OpenAIRE

    Andrew Oyakhobo Odior

    2012-01-01

    Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

  6. Problem Solving Frameworks for Mathematics and Software Development

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  7. Solving Problems with the Percentage Bar

    Science.gov (United States)

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  8. Rational approximatons for solving cauchy problems

    Directory of Open Access Journals (Sweden)

    Veyis Turut

    2016-08-01

    Full Text Available In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA. Multivariate Padé approximations (MPA were applied to power series solutions of Cauchy problems that solved by using He’s variational iteration method (VIM. Then, numerical results obtained by using multivariate Padé approximations were compared with the exact solutions of Cauchy problems.

  9. Threshold Concepts in the Development of Problem-Solving Skills

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  10. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    Science.gov (United States)

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  11. Comparability of Conflict Opportunities in Human-to-Human and Human-to-Agent Online Collaborative Problem Solving

    Science.gov (United States)

    Rosen, Yigal

    2014-01-01

    Students' performance in human-to-human and human-to-agent collaborative problem solving assessment task is investigated in this paper. A secondary data analysis of the research reported by Rosen and Tager (2013) was conducted in order to investigate the comparability of the opportunities for conflict situations in human-to-human and…

  12. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    OpenAIRE

    Jennifer L. Docktor; Jay Dornfeld; Evan Frodermann; Kenneth Heller; Leonardo Hsu; Koblar Alan Jackson; Andrew Mason; Qing X. Ryan; Jie Yang

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of...

  13. Solved problems concerning RL and DC circuits in college textbooks

    Directory of Open Access Journals (Sweden)

    Norah Silvana Giacosa

    2015-10-01

    Full Text Available In this paper, we describe and characterize the solved problems concerning LR circuits in direct current that are present in twelve college textbooks commonly used in Argentine Republic. These books were examined through content analysis. The results indicate that in the analyzed sample, in general terms, the explicitness is deficient for the physic systems studied, the proposed hypotheses, their limits of validity and for the verbalized explanations. On the other hand, the displayed resolution of the problems has little coherence with the research work conducted, and this would not promote the scientific work in students. Based on these outcomes and implications for teaching, we noticed that reinforcing the conceptual issues in the classroom that are not enough emphasized in the textbooks is an avoidable task for Physics professors of the basic college cycle.

  14. Behaviors of Problem-Solving Groups

    National Research Council Canada - National Science Library

    Bennis, Warren G

    1958-01-01

    The results of two studies are contained in this report in summary form. They represent the first parts of a program of research designed to study the effects of change and history on the on the behaviors of problem-solving Groups...

  15. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  16. Solving L-L Extraction Problems with Excel Spreadsheet

    Science.gov (United States)

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  17. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  18. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  19. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    Science.gov (United States)

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  20. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  1. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2005-01-01

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examination's planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  2. Regularization method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Denisov, A.M.; Krylov, A.S.

    1985-01-01

    The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table

  3. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  4. An Online Game Approach for Improving Students' Learning Performance in Web-Based Problem-Solving Activities

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang

    2012-01-01

    In this paper, an online game was developed in the form of a competitive board game for conducting web-based problem-solving activities. The participants of the game determined their move by throwing a dice. Each location of the game board corresponds to a gaming task, which could be a web-based information-searching question or a mini-game; the…

  5. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  6. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  7. The Association of DRD2 with Insight Problem Solving.

    Science.gov (United States)

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  8. Using creative problem solving (CPS) to improve leadership in a non-profit organization

    OpenAIRE

    Sousa, Fernando; Castelão, Paula; Monteiro, Ileana Pardal; Pellissier, René

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of the Creative Problem Solving (CPS) method in improving the leadership process in a non-profit organization. The research was designed around an intervention and structured in three stages (pre-consult, intervention and follow-up), with a team designated by management, in order to bring leadership cohesion to both departments of the organization and also between the board and executive management. The results, expressed in the task...

  9. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Directory of Open Access Journals (Sweden)

    Martine Baars

    2017-08-01

    Full Text Available Self-regulated learning (SRL skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale, motivation (i.e., autonomous and controlled motivation, mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels. In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  10. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  11. Give me a hand: Differential effects of gesture type in guiding young children's problem-solving

    Science.gov (United States)

    Vallotton, Claire; Fusaro, Maria; Hayden, Julia; Decker, Kalli; Gutowski, Elizabeth

    2015-01-01

    Adults’ gestures support children's learning in problem-solving tasks, but gestures may be differentially useful to children of different ages, and different features of gestures may make them more or less useful to children. The current study investigated parents’ use of gestures to support their young children (1.5 – 6 years) in a block puzzle task (N = 126 parent-child dyads), and identified patterns in parents’ gesture use indicating different gestural strategies. Further, we examined the effect of child age on both the frequency and types of gestures parents used, and on their usefulness to support children's learning. Children attempted to solve the puzzle independently before and after receiving help from their parent; half of the parents were instructed to sit on their hands while they helped. Parents who could use their hands appear to use gestures in three strategies: orienting the child to the task, providing abstract information, and providing embodied information; further, they adapted their gesturing to their child's age and skill level. Younger children elicited more frequent and more proximal gestures from parents. Despite the greater use of gestures with younger children, it was the oldest group (4.5-6.0 years) who were most affected by parents’ gestures. The oldest group was positively affected by the total frequency of parents’ gestures, and in particular, parents’ use of embodying gestures (indexes that touched their referents, representational demonstrations with object in hand, and physically guiding child's hands). Though parents rarely used the embodying strategy with older children, it was this strategy which most enhanced the problem-solving of children 4.5 – 6 years. PMID:26848192

  12. Give me a hand: Differential effects of gesture type in guiding young children's problem-solving.

    Science.gov (United States)

    Vallotton, Claire; Fusaro, Maria; Hayden, Julia; Decker, Kalli; Gutowski, Elizabeth

    2015-11-01

    Adults' gestures support children's learning in problem-solving tasks, but gestures may be differentially useful to children of different ages, and different features of gestures may make them more or less useful to children. The current study investigated parents' use of gestures to support their young children (1.5 - 6 years) in a block puzzle task (N = 126 parent-child dyads), and identified patterns in parents' gesture use indicating different gestural strategies. Further, we examined the effect of child age on both the frequency and types of gestures parents used, and on their usefulness to support children's learning. Children attempted to solve the puzzle independently before and after receiving help from their parent; half of the parents were instructed to sit on their hands while they helped. Parents who could use their hands appear to use gestures in three strategies: orienting the child to the task, providing abstract information, and providing embodied information; further, they adapted their gesturing to their child's age and skill level. Younger children elicited more frequent and more proximal gestures from parents. Despite the greater use of gestures with younger children, it was the oldest group (4.5-6.0 years) who were most affected by parents' gestures. The oldest group was positively affected by the total frequency of parents' gestures, and in particular, parents' use of embodying gestures (indexes that touched their referents, representational demonstrations with object in hand, and physically guiding child's hands). Though parents rarely used the embodying strategy with older children, it was this strategy which most enhanced the problem-solving of children 4.5 - 6 years.

  13. The unconscious nature of insight: A dual-task paradigm investigation

    Directory of Open Access Journals (Sweden)

    Lebed A. A.

    2017-09-01

    Full Text Available Background. Insight is a specific part of the thinking process during creative problem solving. The experience of a sudden unexpected solution of the problem makes it distinct from other problem solving. Though the insight problem solving process is hidden from the observer and the solver himself, it is possible to study working memory changes during the problem-solving process in order to observe the tracks of insight. Objective. A critical experiment was carried out to determine whether it is legitimate to measure insight-problem-solving dynamics within a dual-task paradigm and working memory model. Also a verification was conducted of the hypothesis of whether insight problem solving competes for cognitive resources with unconscious processes. Design. We designed a special procedure based on Kahneman’s (1973 modified dual-task paradigm, allowing simultaneous performance of the problem-solving process and probe tasks of different types. The reaction time was measured for the probe task. ere were two problems conditions (insight and regular, and two probe tasks conditions (implicit and explicit. Participants: 32 participants, aged from 18 to 32 years (M = 19.81; σ = 2.51. Results. Significant differences in implicit probe reaction time were found between the dual-task condition (implicit categorization and insight problem solving and solo implicit probe condition (t(15 = –3.21, p = .006, d = –.76. A joint effect of problem type and probe type was found (F(1, 60= 4.85, p = .035, ηp2 = .07. Conclusion. The results support the idea that information processing of conscious and of unconscious processes are separate. Unconscious processing capacity is limited. Implicit skill seems to be operated by the same mechanisms as insight problem solving, therefore competing for a common resource. It was also shown that such hidden creative unconscious processes as insight can be tracked via working memory load.

  14. Characteristics of students in comparative problem solving

    Science.gov (United States)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  15. EISPACK-J: subprogram package for solving eigenvalue problems

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Tsutsui, Tsuneo

    1979-05-01

    EISPACK-J, a subprogram package for solving eigenvalue problems, has been developed and subprograms with a variety of functions have been prepared. These subprograms can solve standard problems of complex matrices, general problems of real matrices and special problems in which only the required eigenvalues and eigenvectors are calculated. They are compared to existing subprograms, showing their features through benchmark tests. Many test problems, including realistic scale problems, are provided for the benchmark tests. Discussions are made on computer core storage and computing time required for each subprogram, and accuracy of the solution. The results show that the subprograms of EISPACK-J, based on Householder, QR and inverse iteration methods, are the best in computing time and accuracy. (author)

  16. Analytical derivation: An epistemic game for solving mathematically based physics problems

    Science.gov (United States)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  17. Male foraging efficiency, but not male problem-solving performance, influences female mating preferences in zebra finches

    Directory of Open Access Journals (Sweden)

    Véronique Chantal

    2016-08-01

    Full Text Available Experimental evidence suggests that females would prefer males with better cognitive abilities as mates. However, little is known about the traits reflecting enhanced cognitive skills on which females might base their mate-choice decisions. In particular, it has been suggested that male foraging performance could be used as an indicator of cognitive capacity, but convincing evidence for this hypothesis is still lacking. In the present study, we investigated whether female zebra finches (Taeniopygia guttata modify their mating preferences after having observed the performance of males on a problem-solving task. Specifically, we measured the females’ preferences between two males once before and once after an observation period, during which their initially preferred male was incapable of solving the task contrary to their initially less-preferred male. We also conducted a control treatment to test whether the shift in female preferences was attributable to differences between the two stimulus males in their foraging efficiency. Finally, we assessed each bird’s performance in a color associative task to check whether females can discriminate among males based on their learning speed. We found that females significantly increased their preference toward the most efficient male in both treatments. Yet, there was no difference between the two treatments and we found no evidence that females assess male cognitive ability indirectly via morphological traits. Thus, our results suggest that females would not use the males’ problem-solving performance as an indicator of general cognitive ability to gain indirect fitness benefits (i.e., good genes but rather to assess their foraging efficiency and gain direct benefits.

  18. Pose and Solve Varignon Converse Problems

    Science.gov (United States)

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  19. The role of problem solving method on the improvement of mathematical learning

    Directory of Open Access Journals (Sweden)

    Saeed Mokhtari-Hassanabad

    2012-10-01

    Full Text Available In history of education, problem solving is one of the important educational goals and teachers or parents have intended that their students have capacity of problem solving. In present research, it is tried that study the problem solving method for mathematical learning. This research is implemented via quasi-experimental method on 49 boy students at high school. The results of Leven test and T-test indicated that problem solving method has more effective on the improvement of mathematical learning than traditional instruction method. Therefore it seems that teachers of mathematics must apply the problem solving method in educational systems till students became self-efficiency in mathematical problem solving.

  20. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  1. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    Science.gov (United States)

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (Pproblem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (PProblem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

    Science.gov (United States)

    Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

    2014-01-01

    This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

  3. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    Science.gov (United States)

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, pproblem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Social problem-solving in high-functioning schizophrenia: specific deficits in sending skills.

    Science.gov (United States)

    Vaskinn, Anja; Sundet, Kjetil; Hultman, Christina M; Friis, Svein; Andreassen, Ole A

    2009-02-28

    This study examined social problem-solving performance in high-functioning schizophrenia (n=26) and its relation to neurocognition. Ten healthy controls were used as a comparison group. Social problem-solving was assessed with the Assessment of Interpersonal Problem Solving Skills (AIPSS) method. The schizophrenia group was outperformed by healthy controls on all AIPSS measures, reaching statistical significance for sending skills. Exploration of the internal relationship between different aspects of social problem-solving showed that identification of an interpersonal problem (a receiving skill) was not correlated with formulating solutions to the problem (processing skills) or successfully role-playing solutions (interpersonal sending skills). Non-verbal performance in the role-play (an interpersonal sending skill) was not significantly correlated with identification of an interpersonal problem or the generation of solutions. This suggests a dissociation of social problem-solving processes. Social problem-solving was significantly associated with psychomotor speed, verbal learning, semantic fluency and cognitive flexibility. Clinical implications are that remediation of social problem-solving skills should focus on role-playing (nonverbal) interpersonal behaviors, rather than on verbally analyzing an interpersonal problem and clarifying alternative solutions.

  5. Social support, problem solving, and the longitudinal course of newlywed marriage.

    Science.gov (United States)

    Sullivan, Kieran T; Pasch, Lauri A; Johnson, Matthew D; Bradbury, Thomas N

    2010-04-01

    Married couples (N = 172) were observed as newlyweds and observed again 1 year later while engaging in 2 problem-solving and 2 personal support discussions. Microanalytic coding of these conversations was used to examine associations between problem-solving and social support behaviors for 1 year and their relative contributions to 10-year trajectories of self-reported relationship satisfaction and dissolution. Results demonstrated that initially lower levels of positive support behaviors and higher levels of negative support behaviors predicted 1-year increases in negative emotion displayed during problem-solving conversations. Emotions coded from the initial problem-solving conversations did not predict 1-year changes in social support behaviors. Controlling for emotions displayed during problem-solving interactions eliminated or reduced associations between initial social support behaviors and (a) later levels of satisfaction and (b) relationship dissolution. These findings corroborate models that prioritize empathy, validation, and caring as key elements in the development of intimacy (e.g., Reis & Shaver, 1988) and suggest that deficits in these domains foreshadow deterioration in problem solving and conflict management. Implications for integrating support and problem solving in models of relationship change are outlined, as are implications for incorporating social support in education programs for developing relationships.

  6. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Science.gov (United States)

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  7. Self-directed questions to improve students' ability in solving chemical problems

    Science.gov (United States)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  8. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  9. Social problem solving ability predicts mental health among undergraduate students

    Directory of Open Access Journals (Sweden)

    Mansour Ranjbar

    2013-01-01

    Methods : In this correlational- descriptive study, 369 (208 female and 161 male from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t test, and stepwise regression analysis. Results : Data analysis showed significant relationship between social problem solving ability and mental health (P < 0.01. Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P < 0.01. Conclusions: The results of our study demonstrated that there is a significant correlation between social problem solving ability and mental health.

  10. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    Science.gov (United States)

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  11. Working memory components as predictors of children's mathematical word problem solving.

    Science.gov (United States)

    Zheng, Xinhua; Swanson, H Lee; Marcoulides, George A

    2011-12-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N=310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM, reading, and math calculation. Structural equation modeling analyses indicated that (a) all three WM components significantly predicted problem-solving accuracy, (b) reading skills and calculation proficiency mediated the predictive effects of the central executive system and the phonological loop on solution accuracy, and (c) academic mediators failed to moderate the relationship between the visual-spatial sketchpad and solution accuracy. The results support the notion that all components of WM play a major role in predicting problem-solving accuracy, but basic skills acquired in specific academic domains (reading and math) can compensate for some of the influence of WM on children's mathematical word problem solving. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  13. Uncertainty dimensions of information behaviour in a group based problem solving context

    DEFF Research Database (Denmark)

    Hyldegård, Jette

    2009-01-01

    This paper presents a study of uncertainty dimensions of information behaviour in a group based problem solving context. After a presentation of the cognitive uncertainty dimension underlying Kuhlthau's ISP-model, uncertainty factors associated with personality, the work task situation and social...... members' experiences of uncertainty differ from the individual information seeker in Kuhlthau's ISP-model, and how this experience may be related to personal, work task and social factors. A number of methods have been employed to collect data on each group member during the assignment process......: a demographic survey, a personality test, 3 process surveys, 3 diaries and 3 interviews. It was found that group members' experiences of uncertainty did not correspond with the ISP-model in that other factors beyond the mere information searching process seemed to intermingle with the complex process...

  14. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    Science.gov (United States)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  15. Problem Solving and the Development of Expertise in Management.

    Science.gov (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  16. Student’s thinking process in solving word problems in geometry

    Science.gov (United States)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  17. Parents' and Teachers' Opinions of Preschool Children's Social Problem-Solving and Behavioural Problems

    Science.gov (United States)

    Kasik, László; Gál, Zita

    2016-01-01

    The aim of our study was to shed light on (1) what Hungarian mothers, fathers and teachers of 4-6-year-olds think of these children's social problem-solving (SPS) and their difficulties in terms of problem-solving, adaptability and prosocial behaviour; (2) studying any correlation between the examined aspects and (3) the connection between one's…

  18. Transformational and transactional leadership and problem solving in restaurant industry

    OpenAIRE

    Huhtala, Nina

    2013-01-01

    The study tries to give information on the leadership behavior of restaurant managers in their problem solving. The results of the study were collected by evaluating three restaurant managers by interviewing them. The restaurant managers’ answers were compared to transformational and transactional leadership model and the aspects of it. Their problem solving skills were evaluated by the help of a rational and creative problem solving model. The study showed that restaurant managers have both ...

  19. Self-Assessment of Problem Solving Disposition in Medical Students

    Directory of Open Access Journals (Sweden)

    Silvia Lizett Olivares-Olivares

    2014-01-01

    Full Text Available Medical schools are committed to both students and society to develop capabilities required to succeed in health care environments. Present diagnosis and treatment methods become obsolete faster, demanding that medical schools incorporate competency-based education to keep pace with future demands. This study was conducted to assess the problem solving disposition of medical students. A three-subcategory model of the skill is proposed. The instrument was validated on content by a group of 17 experts in medical education and applied to 135 registered students on the sixth year of the M.D. Physician Surgeon program at a private medical school. Cronbach’s alpha indicated an internal consistency of 0.751. The findings suggest that selected items have both homogeneity and validity. The factor analysis resulted in components that were associated with three problem-solving subcategories. The students’ perceptions are higher in the pattern recognition and application of general strategies for problem solving subcategories of the Problem solving disposition model.

  20. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…