WorldWideScience

Sample records for probing fine-scale ionospheric

  1. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  2. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  3. Probing ionospheric structures using the LOFAR radio telescope

    Science.gov (United States)

    Mevius, M.; van der Tol, S.; Pandey, V. N.; Vedantham, H. K.; Brentjens, M. A.; de Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; van Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-07-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m-2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.

  4. On preventing the destructive influence of the ionosphere on the resolution of a microwave trans-ionospheric radar system during remote Earth probing

    International Nuclear Information System (INIS)

    Shtejnshleger, V.B.; Dzenkevich, A.V.; Manakov, V.Yu.; Misezhnikov, G.S.

    1998-01-01

    The results presented testify to the efficiency of the proposed two-dimensional adaptive compensation of dispersion and fluctuation ionospheric distortions of signals from space radar station with synthesized equipment (RSE) of USW range waves. This creates a prerequisite for remote probing of the Earth using trans-ionospheric RSE of USW range wave, possessing an increased capability of penetrating through the plant mantle and upper layer of the Earth surface [ru

  5. Global scale ionospheric irregularities associated with thunderstorm activity

    International Nuclear Information System (INIS)

    Pulinets, Sergey A.; Depuev, Victor H.

    2003-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstorm electric fields onto the Earth's ionosphere. (author)

  6. Global scale ionospheric irregularities associated with thunderstorm activity

    CERN Document Server

    Pulinets, S A

    2002-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstor...

  7. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  8. The relationship between small-scale and large-scale ionospheric electron density irregularities generated by powerful HF electromagnetic waves at high latitudes

    Directory of Open Access Journals (Sweden)

    E. D. Tereshchenko

    2006-11-01

    Full Text Available Satellite radio beacons were used in June 2001 to probe the ionosphere modified by a radio beam produced by the EISCAT high-power, high-frequency (HF transmitter located near Tromsø (Norway. Amplitude scintillations and variations of the phase of 150- and 400-MHz signals from Russian navigational satellites passing over the modified region were observed at three receiver sites. In several papers it has been stressed that in the polar ionosphere the thermal self-focusing on striations during ionospheric modification is the main mechanism resulting in the formation of large-scale (hundreds of meters to kilometers nonlinear structures aligned along the geomagnetic field (magnetic zenith effect. It has also been claimed that the maximum effects caused by small-scale (tens of meters irregularities detected in satellite signals are also observed in the direction parallel to the magnetic field. Contrary to those studies, the present paper shows that the maximum in amplitude scintillations does not correspond strictly to the magnetic zenith direction because high latitude drifts typically cause a considerable anisotropy of small-scale irregularities in a plane perpendicular to the geomagnetic field resulting in a deviation of the amplitude-scintillation peak relative to the minimum angle between the line-of-sight to the satellite and direction of the geomagnetic field lines. The variance of the logarithmic relative amplitude fluctuations is considered here, which is a useful quantity in such studies. The experimental values of the variance are compared with model calculations and good agreement has been found. It is also shown from the experimental data that in most of the satellite passes a variance maximum occurs at a minimum in the phase fluctuations indicating that the artificial excitation of large-scale irregularities is minimum when the excitation of small-scale irregularities is maximum.

  9. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    Science.gov (United States)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  10. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  11. The Multifractal Structure of Small-Scale Artificial Ionospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Vybornov F. I.

    2013-03-01

    Full Text Available We present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.

  12. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  13. Ionospheric effects of thunderstorms and lightning

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  14. Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J.-M. A. Noël

    Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.

    Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions

  15. A new ionospheric storm scale based on TEC and foF2 statistics

    Science.gov (United States)

    Nishioka, Michi; Tsugawa, Takuya; Jin, Hidekatsu; Ishii, Mamoru

    2017-01-01

    In this paper, we propose the I-scale, a new ionospheric storm scale for general users in various regions in the world. With the I-scale, ionospheric storms can be classified at any season, local time, and location. Since the ionospheric condition largely depends on many factors such as solar irradiance, energy input from the magnetosphere, and lower atmospheric activity, it had been difficult to scale ionospheric storms, which are mainly caused by solar and geomagnetic activities. In this study, statistical analysis was carried out for total electron content (TEC) and F2 layer critical frequency (foF2) in Japan for 18 years from 1997 to 2014. Seasonal, local time, and latitudinal dependences of TEC and foF2 variabilities are excluded by normalizing each percentage variation using their statistical standard deviations. The I-scale is defined by setting thresholds to the normalized numbers to seven categories: I0, IP1, IP2, IP3, IN1, IN2, and IN3. I0 represents a quiet state, and IP1 (IN1), IP2 (IN2), and IP3 (IN3) represent moderate, strong, and severe positive (negative) storms, respectively. The proposed I-scale can be used for other locations, such as polar and equatorial regions. It is considered that the proposed I-scale can be a standardized scale to help the users to assess the impact of space weather on their systems.

  16. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    Science.gov (United States)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  17. Ionospheric effects of magnetospheric substorms during SUNDIAL and their modelling

    International Nuclear Information System (INIS)

    Goncharova, E.E.; Kishcha, P.V.; Shashun'kina, V.M.; Telegin, V.A.

    1993-01-01

    Ionospheric effects of substorms are considered using the networks of the vertical probing stations during SUNDIAL periods. Calculations of electron concentration distribution and comparison of calculation results with experimental data are conducted on the basis of the developed technique of simulation of large-scale internal gravitational wave effects

  18. Probing ionospheric structures using the LOFAR radio telescope

    NARCIS (Netherlands)

    Mevius, M.; van der Tol, S.; Pandey, V.N.; Vedantham, H. K.; Brentjens, M. A.; Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelic, Vibor; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-01-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total

  19. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  20. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    Science.gov (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  1. Effect of small-scale ionospheric variability on GNSS radio occultation data quality

    Science.gov (United States)

    Verkhoglyadova, O. P.; Mannucci, A. J.; Ao, C. O.; Iijima, B. A.; Kursinski, E. R.

    2015-09-01

    Global Navigation Satellite Systems (GNSS) radio occultation (RO) measurements are sensitive to thin ionization layers and small-scale ionosphere structures. To evaluate error bounds and possible biases in atmospheric retrievals, we characterized ionospheric irregularities encountered in the affected profiles by analyzing the L1 signal-to-noise ratio (SNR) variability at E layer altitudes (from 90 km to 130 km). New metrics to analyze statistical effects of small-scale ionospheric irregularities on refractivity retrievals are proposed. We analyzed refractivity (N) retrievals with Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ROs in 2011. Using refractivity from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis (NECMWF) as the reference data set, we studied statistical properties of the fractional refractivity bias (ΔN) defined by the difference (NECMWF - N)/NECMWF and averaged in the altitude range from 20 to 25 km for each individual profile. We found that (1) persistently larger variability of the L1 SNR as measured by the interquartile range (IQR) existed when the occultation tangent point was in the 90 km to 110 km altitude range than at higher E layer altitudes; (2) the upper limits on the fractional refractivity bias for COSMIC ROs are 0.06% (for daytime local time), 0.1% (for nighttime local time), and ~0.01% (for all local times); (3) distributions of ΔN are non-Gaussian (leptokurtic); (4) latitudinal distributions of small and large ΔN for different levels of ionospheric variability show large tails (NECMWF > N) occurring around the Himalaya and the Andes regions, which are possibly due to biases in ECMWF analysis. We conclude that the refractivity bias due to small-scale irregularities is small below 25 km altitude and can be neglected.

  2. Wind effect on the motion of medium-scale travelling ionospheric disturbances in the E region of the ionosphere

    International Nuclear Information System (INIS)

    Kikvilashvili, G.B.; Sharadze, Z.S.; Mosashvili, N.V.

    1988-01-01

    Madium-scale travelling ionospheric disturbances (MSTID) in the ionosphere E region in Tbilisi area are investigated by means of spectral analysis of f 0 E s and f b E s variations, synchronously recorded in the three scattered points. The winds at the E s layers formation heights were measured simultaneously by D1 method in one of these points. It is established, that the MSTID motion direction in summer-time E region is controlled by the background thermospheric winds: disturbances mostly more across and against the wind. Tidal winds make the main contribution into the MSTID rate day variations

  3. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    At the latter times, triangulation with 3 uxgate magnetometers located at the vertices of a suitable triangle provides a means of monitoring mobile auroral ionospheric current systems over Maitri. The spacing between the magnetometers is typically kept at 75-200 km, keeping in mind the scale-sizes of ∼100 km for these ...

  4. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  5. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    1998-10-01

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  6. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.

    Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  7. Characteristics of short distance field of a source radiating at electronic frequencies in a ionospheric plasma. Applications to density and electron temperature measurement by mutual impedance probe

    International Nuclear Information System (INIS)

    Debrie, R.

    1983-06-01

    Realization of a new type of radio-frequency probe, the mutual-impedance probe (or the quadrupole probe) is developed. Theoretical results obtained with a cold plasma description of the ionized medium with static magnetic field. Transfer impedance between two dipoles in an homogeneous hot and isotope plasma is then calculated. In equatorial ionosphere, measurements made by the H.F. quadrupole probe, in the Veronique rocket, during the Cisaspe experiment, have been interpreted with this hot plasma theory. The influence of a plasma drift with respect to the emitter dipole is analyzed. The influence of a static magnetic field in hot and homogeneous plasma, on the frequency response curve of the mutual impedance is studied. For, in ionospheric plasmas of auroral and polar zones, the earth magnetic field is no more negligible and gives to the plasma dielectric, strongly anisotropic, properties well described by the microscopic theory in hot magnetoplasma. The space time fast evolution of characteristics of plasma encountered in space experiments has been shown up with a new method of measurement the self-oscillating quadrupole probe. The work synthesis is put in a concrete form on the polar satellite Aureol-3 the first results of which are presented. This satellite allows a precise study of ionosphere auroral zones. At last, it is shown that methods developed for electron density and temperature measurements can be transposed in low frequency. In this case, measurements with quadrupole probe allow to get the ion average mass by lower hybrid frequency excitation [fr

  8. On an effect of the interplanetary magnetic field sector structure on the upper Earth's ionosphere

    International Nuclear Information System (INIS)

    Kolomijtsev, O.P.; Livshits, M.A.; Soboleva, T.N.

    1985-01-01

    According to the data from vertical probing stations, changes are studied in the critical frequency and height of the ionosphere F2 layer after the Earth crosses the boundaries of the interplanetary magnetic field (IMF) sectors in the periods of equinox during decreases in the solar activity. A reversal of the IMF sign causes ionospheric effects, which in some cases are comparable, as to the value, with the effects observed in the presence of flares and strong geomagnetic perturbations. The IMF sector sign reversal is a key momentum, stimulating such changes in the Earth's magnetosphere state which result in the rearrangement of the ionosphere structure near the maximum of electron concentration on the planetary scale

  9. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  10. A modeling study of the thermosphere-ionosphere interactions during the boreal winter and spring 2015-2016: Tidal and planetary-scale waves effect on the ionospheric structure.

    Science.gov (United States)

    Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.

    2017-12-01

    The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.

  11. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    Science.gov (United States)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  12. Radio techniques for probing the terrestrial ionosphere.

    Science.gov (United States)

    Hunsucker, R. D.

    The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.

  13. Turbulence characteristics inside ionospheric small-scale expanding structures observed with SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    R. André

    2003-08-01

    Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence

  14. Medium-Scale Traveling Ionospheric Disturbances (MSTIDs) resulting from Chelyabinsk Meteor Blast

    Science.gov (United States)

    Sheeks, B. J.; Warren, N.; Coster, A. J.

    2013-12-01

    A global network of GPS receivers continuously make line-of-sight (LOS) measurements of the total electron content (TEC) of the ionosphere. This TEC measurement data can be analyzed to 'persistently monitor' natural and man-made activity in the atmosphere (such as volcanic eruptions, earthquakes, rocket launches, etc) which propagate into the ionosphere to produce TIDs (Traveling Ionospheric Disturbances). As an example we have analyzed in detail the TIDs resulting from the 15 Feb 2013 Chelyabinsk meteor blast as observed by the Artu GPS receiver site in Arti, Russia close to the event. Seven of the GPS satellite measurements with LOS pierce points within 1000 km of the blast show disturbances. Four of these clearly show VTEC oscillations with ~12 minute periods. The other three show much weaker responses, but their LOS pierce points are far from the blast and their aspects between the geomagnetic field & blast propagation vector are unfavorable (near broadside). By fitting all seven measurements we estimate a propagation speed of ~380 m/s for these medium-scale TIDs. As future 'persistent surveillance' efforts we intend to investigate the observability of man-made activities such as static rocket engine firings in TEC measurements. Analysis of MSTIDs resulting from the Chelyabinsk meteor blast

  15. Structure functions and intermittency in ionospheric plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2008-11-01

    Full Text Available Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.

  16. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016)

    Science.gov (United States)

    Chou, M. Y.; Lin, C. C. H.; Yue, J.; Chang, L. C.; Tsai, H. F.; Chen, C. H.

    2017-12-01

    Two remarkable typhoon-induced traveling ionospheric disturbances (TIDs) with concentric andnorthwest-southeast (NW-SE) alignments, respectively, associated with concentric gravity waves (CGWs) andionospheric instabilities possibly seeded by CGWs, were observed in total electron content (TEC) derived fromground-based Global Navigation Satellite System networks in Taiwan and Japan when the Category 5 SuperTyphoon Nepartak approached Taiwan on 7 July 2016. The concentric TIDs (CTIDs) first appear withhorizontal phase velocities of 161-200 m/s, horizontal wavelengths of 160-270 km, and periods of 15-22 min during 08:00-11:20 UT. Following the CTIDs, the NW-SE aligned nighttime medium-scale TIDs(MSTIDs) are formed on the west edge of the CTIDs over the Taiwan Strait during 11:30-14:00 UT. It issuggested that the MSTIDs are produced by the electrodynamical coupling of Perkins instability andCGW-induced polarization electric fields. This study proposes connections of typhoon-induced CTIDs andsubsequently occurring MSTIDs in the low-latitude ionosphere.

  17. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    Science.gov (United States)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  18. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  19. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-03-01

    Full Text Available Equatorial spread-F ionospheric plasma irregularities on the night-side, commonly called equatorial plasma bubbles (EPB, include electron density variations over a wide range of spatial scales. Here we focus on intermediate-scale structures ranging from 100 m to 10 km, which play an important role in the evolution of EPBs. High-resolution CHAMP magnetic field measurements sampled along north-south track at 50 Hz are interpreted in terms of diamagnetic effect for illustrating the details of electron density variations. We provide the first comprehensive study on intermediate-scale density structures associated with EPBs, covering a whole solar cycle from 2000 to 2010. The large number of detected events, almost 9000, allows us to draw a detailed picture of the plasma fine structure. The occurrence of intermediate-scale events is strongly favoured by high solar flux. During times of F10.7 < 100 sfu practically no events were observed. The longitudinal distribution of our events with respect to season or local time agrees well with that of the EPBs, qualifying the fine structure as a common feature, but the occurrence rates are smaller by a factor of 4 during the period 2000-2005. Largest amplitude electron density variations appear at the poleward boundaries of plasma bubbles. Above the dip-equator recorded amplitudes are small and fall commonly below our resolution. Events can generally be found at local times between 19 and 24 LT, with a peak lasting from 20 to 22 LT. The signal spectrum can be approximated by a power law. Over the frequency range 1 – 25 Hz we observe spectral indices between -1.4 and -2.6 with peak occurrence rates around -1.9. There is a weak dependence observed of the spectral index on local time. Towards later hours the spectrum becomes shallower. Similarly for the latitude dependence, there is a preference of shallower spectra for latitudes poleward of the ionisation anomaly crest. Our data suggest that the generation of

  20. Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2004-01-01

    Full Text Available On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites Ørsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the Ørsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation – Magnetospheric physics (magnetosphere-ionosphere interactions

  1. The lower ionosphere response to its disturbances by powerful radio waves

    Science.gov (United States)

    Bakhmetieva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Akchurin, A. D.; Zykov, E. Yu.

    2018-04-01

    The paper presents data from some campaigns at Sura heating facility in 2011-1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil'sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50-120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil'sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil'sursk and backscattered signals in Observatory were observed at the height at 40-100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.

  2. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics.

    Keywords

  3. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics. Keywords. Ionosphere (Ionosphere

  4. Aerosols: The key to understanding Titan's lower ionosphere

    Science.gov (United States)

    Molina-Cuberos, G. J.; Cardnell, S.; García-Collado, A. J.; Witasse, O.; López-Moreno, J. J.

    2018-04-01

    The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer. However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2 ×109 m-3 positive ions and ≈ 450 ×106 m-3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.

  5. UK review of radio science, 1984-1986. Ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Rishbeth, H.; Jones, D.

    1986-12-01

    The paper contains the United Kingdom (U.K.) review of Radio Science, 1984-1986, covering ionospheric and magnetospheric science. This is the current UK contribution towards an international review published by the International Union of Radio Science (URSI). The UK review is divided into topics prescribed by URSI and covers work that is actually published within the period October 1983 - Sept. 1986, also as prescribed by URSI. The topics discussed in the review include: incoherent and coherent scatter, probing the magnetosphere, plasma instabilities, ionospheric modification, composition, ionization and chemistry and ionospheric dynamics. (U.K.)

  6. Considering the potential of IAR emissions for ionospheric sounding

    Science.gov (United States)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to

  7. Examination of Cross-Scale Coupling During Auroral Events using RENU2 and ISINGLASS Sounding Rocket Data.

    Science.gov (United States)

    Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.

    2017-12-01

    The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.

  8. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables

    Directory of Open Access Journals (Sweden)

    No-Wook Park

    2013-01-01

    Full Text Available A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM and normalized difference vegetation index (NDVI, the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.

  9. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  10. Fine-scale genetic characterization of Plasmodium falciparum ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Fine-scale genetic characterization of Plasmodium falciparum .... Materials and methods. The DNA ... the order and location of genes (as per the PlasmoDB data resources, available at ... There is currently an. Figure 5.

  11. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  12. Complex network description of the ionosphere

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  13. Interpreting Observations of Large-Scale Traveling Ionospheric Disturbances by Ionospheric Sounders

    Science.gov (United States)

    Pederick, L. H.; Cervera, M. A.; Harris, T. J.

    2017-12-01

    From July to October 2015, the Australian Defence Science and Technology Group conducted an experiment during which a vertical incidence sounder (VIS) was set up at Alice Springs Airport. During September 2015 this VIS observed the passage of many large-scale traveling ionospheric disturbances (TIDs). By plotting the measured virtual heights across multiple frequencies as a function of time, the passage of the TID can be clearly displayed. Using this plotting method, we show that all the TIDs observed during the campaign by the VIS at Alice Springs show an apparent downward phase progression of the crests and troughs. The passage of the TID can be more clearly interpreted by plotting the true height of iso-ionic contours across multiple plasma frequencies; the true heights can be obtained by inverting each ionogram to obtain an electron density profile. These plots can be used to measure the vertical phase speed of a TID and also reveal a time lag between events seen in true height compared to virtual height. To the best of our knowledge, this style of analysis has not previously been applied to other swept-frequency sounder observations. We develop a simple model to investigate the effect of the passage of a large-scale TID on a VIS. The model confirms that for a TID with a downward vertical phase progression, the crests and troughs will appear earlier in virtual height than in true height and will have a smaller apparent speed in true height than in virtual height.

  14. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    Science.gov (United States)

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  15. New Model for Ionospheric Irregularities at Mars

    Science.gov (United States)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  16. Nonlinear physics of the ionosphere and LOIS/LOFAR

    International Nuclear Information System (INIS)

    Thide, Bo

    2007-01-01

    The ionosphere is the only large-scale plasma laboratory without walls that we have direct access to. Here we can study, both in situ and from the ground, basic small- and large-scale processes and fundamental physical principles that control planet Earth's interaction with its space environment. From results obtained in systematic, repeatable experiments, where we can vary the stimulus and observe its response in a controlled, laboratory-like manner, we can draw conclusions on similar physical processes occurring naturally in the Earth's plasma environment as well as in parts of the plasma universe that are not easily accessible to direct probing. Of particular interest is electromagnetic turbulence excited in the ionosphere by beams of particles (photons, electrons) and its manifestation in terms of secondary radiation (electrostatic and electromagnetic waves), structure formation (solitons, cavitons, alfveons, hybrons, striations) and the associated exchange of energy, linear momentum and angular momentum. The primarily astrophysics-oriented, distributed radio telescope Low Frequency Array (LOFAR) currently under construction in the Netherlands, Germany and France, will operate in a frequency range (10-240 MHz), close to fundamental ionospheric plasma resonance/cut-off frequencies, with a sensitivity that is orders of magnitude higher than any radio (or radar) facility used so far. The LOFAR Outrigger in Scandinavia (LOIS) radio and radar facility, with one station in Vaexjoe in southern Sweden and three more planned in the same area (Ronneby, Kalmar, Lund) plus one near Poznan in Poland, supplements LOFAR with optimized Earth and space observing extensions. For this purpose LOIS will operate in the same frequency range as LOFAR (but extended on the low-frequency side) and will augment the observation capability to enable direct radio imaging of plasma vorticity

  17. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

    Science.gov (United States)

    Safargaleev, V. V.; Safargaleeva, N. N.

    2018-03-01

    The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

  18. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    Science.gov (United States)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  19. Turbulence scales in the high-latitude ionosphere and their signatures upon echoes detected by SuperDARN HF radars

    International Nuclear Information System (INIS)

    Vallieres, Xavier

    2002-01-01

    SuperDARN is a coherent HF radar network dedicated to the study of high-latitude ionospheric plasma convection and finds its major applications in the field of Sun/Earth connection. This work deals with the interactions between a transmitted radar wave and ionisation gradients at different scales and their impact on measurements. Studies are performed in order to detect the ion cyclotron signature, superimposed to turbulent motions, in observed spectra. On the other hand, the role of intermediate scales (from hundreds of meters to kilometers) on spectral width estimation is evidenced. Statistical studies show that the value of this parameter depends upon transmitted frequency and echo range. We propose an interpretation in terms of a wave front de-correlation during propagation and validate it with numerical simulations based upon realistic ionospheric parameters. (author) [fr

  20. Comparative ionospheres: Terrestrial and giant planets

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  1. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  2. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  3. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  4. Lab-scale development of a high temperature aerosol particle sampling probe system for field measurements in thermochemical conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, M.; Malik, A.; Pagels, J.; Sanati, M. [Lund Univ., Lund (Sweden). Div. of Ergonomics and Aerosol Technology

    2010-07-01

    Thermochemical conversion of biomass requires both combustion in an oxygen rich environment and gasification in an oxygen deficient environment. Therefore, the mass concentration of fly ash from combustion processes is dominated by inorganic compounds, and the particulate matter obtained from gasification is dominated by carbonaceous compounds. The fine fly ash particles can initiate corrosion and fouling and also increases emissions of fine particulates to the atmosphere. This study involved the design of a laboratory scale setup consisting of a high temperature sampling probe and an aerosol generation system to study the formation of fine particle from biomass gasification processes. An aerosol model system using potassium chloride (KCl) as the ash compound and Di Octyl Sebacate oil (DOS) as the volatile organic part was used to test the high temperature sampling probe. Tests conducted at 200 degrees C showed good reproducibility of the aerosol generator. The tests also demonstrated suitable dilution ratios which enabled the denuder to absorb all of the gaseous organic compounds in the set up, thus enabling measurement of only the particle phase. Condensable organic concentrations of 1-68 mg/m{sup 3} were easily handled by the high temperature sampling probe system, indicating that the denuder worked well. Additional tests will be performed using an Aerosol Mass Spectrometer (AMST) to verify that the denuder can capture all of the gaseous organic compounds also when condensed onto agglomerated soot particles. 6 refs., 1 tab., 9 figs.

  5. A new Langmuir probe concept for rapid sampling of space plasma electron density

    International Nuclear Information System (INIS)

    Jacobsen, K S; Pedersen, A; Moen, J I; Bekkeng, T A

    2010-01-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution

  6. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  7. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  8. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    1997-07-01

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  9. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    Science.gov (United States)

    Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi

    2016-01-01

    Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670

  10. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  11. The double probe electric field experiment on Freja: description and first results

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Lindqvist, A.A.; Faelthammar, C.G.; Haerendel, G.; Mozer, F.S.; Pedersen, A.; Tanskanen, P.

    1993-10-01

    A description is given of the Freja double-probe electric field instrument. Its capability to perform high-resolution measurements of the aurora and its fine-structure as well as collect information on sub-auroral and low-latitude phenomena is illustrated by selected results from the first six months of operation. The instrument is highly flexible and possible to operate in a number of different modes. It is also equipped with a 4-Megabyte burst memory for high data sampling rate and temporary storage of data. It has been fully operational since October 1992, and delivers data from ∼22 hours/day including about 5-6 auroral crossings/day of the northern and southern auroral ionosphere. New and important information in the auroral fine structure and electrodynamics is obtained by means of burst resolution data (6144 samples/s) and normal resolution data (768 sample/s). Common burst data collection triggered by the electric field event detector has turned out to be very useful for the selection of scientifically interesting events. This is illustrated by high-resolution data of a pair of extremely intense and narrow electric field structures (1 V/m) which are associated with a total absence of precipitating particles, depletions of the thermal plasma and with an intense wave activity. The low inclination of the Freja orbit provides a new perspective for studying large-scale phenomena associated with east-west gradients as is exemplified by electric field data from a satellite crossing over north-south oriented auroral structures presumably resulting from rotational distortions of east-west aligned auroral arcs. The different plasma regimes encountered by Freja are continuously monitored by means of current sweeps applied to the probes and by the satellite potential

  12. Ionospheric topside sounding.

    Science.gov (United States)

    Calvert, W

    1966-10-14

    Over the past few years, the satellite topside sounders have significantly contributed to the understanding of the upper ionosphere. A great quantity of radio echo data has been accumulated, from which the ionospheric electrondensity distribution can be determined. The topside measurements of electron density essentially agree with similar measurements from the ground, except for an occasional 10-percent discrepancy near the peak of the ionosphere. While horizontal non-uniformity is a likely cause, this discrepancy has not yet been adequately explained. The electron-density scale heights measured at a constant altitude indicate both a higher temperature and a heavier mean ion mass at high latitudes. At low latitudes the topside measurements have shown the detailed latitudinal structure of the equatorial anomaly, demonstrating control by the geomagnetic field. A variety of electron-density irregularities have been studied. Most are greatly elongated along the magnetic field, and produce echoes either by lateral scattering, if they are thin, or by longitudinal ducting, if they are thick. Some of the thick irregularities are continuous between the hemispheres and support conjugate echo propagation. The topside sounders have revealed the complex structure of the ionosphere near the auroral zone and at higher latitudes. At night an east-west trough of greatly reduced electron density occurs equatorward of the auroral zone. At the auroral zone itself the electron density is high and quite variable, both in space and time. The electron density at the polar cap within the auroral zone is often uniform and smooth. Ionospheric irregularities are common in the area of the trough and the auroral zone. Among other satellites, the topside sounders have been used in various plasma studies involving the excitation and propagation of waves. These studies suggest that the ionosphere is an appropriate region for future plasma physics investigations, especially with rocket and

  13. A Combined Time Domain Impedance Probe And Plasma Wave Receiver System For Small Satellite Applications.

    Science.gov (United States)

    Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.

    2017-12-01

    A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.

  14. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  15. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    Science.gov (United States)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  16. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  17. Challenges Handling Magnetospheric and Ionospheric Signals in Internal Geomagnetic Field Modelling

    DEFF Research Database (Denmark)

    Finlay, Chris; Lesur, V.; Thébault, E.

    2017-01-01

    systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently......-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible...

  18. Influence of Ionospheric Irregularities on GNSS Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. V. Tinin

    2015-01-01

    Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.

  19. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    Directory of Open Access Journals (Sweden)

    Shixin Wang

    2016-10-01

    Full Text Available Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR images from the Chinese No. 3 Resources Satellite (ZY-3. Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI yielded better results than built-up presence index (PanTex in building detection, and the morphological shadow index (MSI outperformed color invariant indices (CIIT in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable.

  20. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  1. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    Directory of Open Access Journals (Sweden)

    Philip McDowall

    Full Text Available Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM, a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale three-dimensional (3D habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  2. Dark energy with fine redshift sampling

    Science.gov (United States)

    Linder, Eric V.

    2007-03-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.

  3. Dark energy with fine redshift sampling

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2007-01-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≅0.2-0.3

  4. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  5. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  6. Localized fast flow disturbance observed in the plasma sheet and in the ionosphere

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-02-01

    Full Text Available An isolated plasma sheet flow burst took place at 22:02 UT, 1 September 2002, when the Cluster footpoint was located within the area covered by the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE. The event was associated with a clear but weak ionospheric disturbance and took place during a steady southward IMF interval, about 1h preceding a major substorm onset. Multipoint observations, both in space and from the ground, allow us to discuss the temporal and spatial scale of the disturbance both in the magnetosphere and ionosphere. Based on measurements from four Cluster spacecraft it is inferred that Cluster observed the dusk side part of a localized flow channel in the plasma sheet with a flow shear at the front, suggesting a field-aligned current out from the ionosphere. In the ionosphere the equivalent current pattern and possible field-aligned current location show a pattern similar to the auroral streamers previously obtained during an active period, except for its spatial scale and amplitude. It is inferred that the footpoint of Cluster was located in the region of an upward field-aligned current, consistent with the magnetospheric observations. The entire disturbance in the ionosphere lasted about 10min, consistent with the time scale of the current sheet disturbance in the magnetosphere. The plasma sheet bulk flow, on the other hand, had a time scale of about 2min, corresponding to the time scale of an equatorward excursion of the enhanced electrojet. These observations confirm that localized enhanced convection in the magnetosphere and associated changes in the current sheet structure produce a signature with consistent temporal and spatial scale at the conjugate ionosphere.

  7. A quantitative analysis of fine scale distribution of intertidal meiofauna in response to food resources

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Gauns, M.

    Fine scale vertical and spatial distribution of meiofauna in relation to food abundance was studied in the intertidal sediment at Dias Beach. The major abiotic factors showed significant changes and progressive fine scale decrease in vertical...

  8. Cosmological constraints on variations of the fine structure constant at the epoch of recombination

    International Nuclear Information System (INIS)

    Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A

    2013-01-01

    In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α

  9. Temporal Behavior of the Ionospheric Electron Density at Low Latitudes: First Glimpse

    Science.gov (United States)

    Gjerloev, J. W.; Humberset, B. K.; Gonzalez, S. A.; Garnett Marques Brum, C.

    2013-12-01

    In this paper we address the spatiotemporal characteristics of the electron density at 150 km altitude in the low latitude ionosphere above the Arecibo Observatory. We utilize a new pointing mode that allows us to probe the same volume in the ionosphere for a continuous period of approximately 25 min. or more. The ISR profiles have 150 m range resolution and samples have a 10-second time resolution; we probed 60 individual regions uniformly spaced in local times and covering the full 24 hours. For each time series we determine the total derivative of the electron density using a narrow Hanning bandpass filter that allow us to determine the variability at different frequencies. This is done for each of the 60 local time regions. We further compare to widely used static statistical models and test their underlying assumption: Dynamics can be ignored.

  10. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  11. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  12. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  13. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  14. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    International Nuclear Information System (INIS)

    Webb, S.L.; Strickland, B.K.; Demarais, S.; Webb, S.L.; Gee, K.L.; DeYoung, R.W.

    2010-01-01

    Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus), despite the advent of global positioning system (GPS) technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt) from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363? 364) than postrut (6,156 m±260). Female daily movements were greatest during post parturition (3,357 91), followed by parturition (2,902 m±107), and pre parturition (2,682 m±121). We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  15. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes

    Directory of Open Access Journals (Sweden)

    Masashi Hayakawa

    2007-07-01

    Full Text Available It is recently recognized that the ionosphere is very sensitive to seismic effects,and the detection of ionospheric perturbations associated with earthquakes, seems to bevery promising for short-term earthquake prediction. We have proposed a possible use ofVLF/LF (very low frequency (3-30 kHz /low frequency (30-300 kHz radio sounding ofthe seismo-ionospheric perturbations. A brief history of the use of subionospheric VLF/LFpropagation for the short-term earthquake prediction is given, followed by a significantfinding of ionospheric perturbation for the Kobe earthquake in 1995. After showingprevious VLF/LF results, we present the latest VLF/LF findings; One is the statisticalcorrelation of the ionospheric perturbation with earthquakes and the second is a case studyfor the Sumatra earthquake in December, 2004, indicating the spatical scale and dynamicsof ionospheric perturbation for this earthquake.

  16. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    Science.gov (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  17. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  18. Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

    Science.gov (United States)

    Ryu, Kwangsun; Lee, Junchan; Kim, Songoo; Chung, Taejin; Shin, Goo-Hwan; Cha, Wonho; Min, Kyoungwook; Kim, Vitaly P.

    2017-12-01

    A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of 1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

  19. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  20. CAT scanning of the ionosphere: Pros and cons

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excellent Spatial coverage. Excellent Spatial coverage. Snapshots of the large scale features (km-scale) of the ionosphere. bottomside and topside. Information on remote and inaccessible regions. Inexpensive.

  1. Temperature Distribution of the Ionospheric Plasma at F Layer

    Directory of Open Access Journals (Sweden)

    Hwang-Jae Rhee

    1997-12-01

    Full Text Available Langmuir probe was housed in the sounding rocket to test the probe's performance and to find the environmental parameters at the F layer of the ionosphere. The gold plated cylindrical probe had a length of 14§¯ and a diameter of 0.096 §¯. The applied voltage to the probe consisted of 0.9 sec fixed positive bias followed by 0.1 sec of down/up sweep. This ensured that the probe swept through the probe's current-voltage characteristic at least once during 1 second quiescent periods enabling the electron temperature to be measured during the undisturbed times of the flight. The experimental results showed good agreement of the temperature distribution with IRI model at the lower F layer. In the upper layer, the experimental temperatures were 100-200K lower than the IRI model's because of the different geomagnetic conditions: averaged conditions were used in IRI model and specific conditions were reflected in the experiment.

  2. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  3. Breed locally, disperse globally: Fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist

    Science.gov (United States)

    Jennifer C. Pierson; Fred W. Allendorf; Pierre Drapeau; Michael K. Schwartz

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic...

  4. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    Directory of Open Access Journals (Sweden)

    Stephen L. Webb

    2010-01-01

    Full Text Available Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus, despite the advent of global positioning system (GPS technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363m±364 than postrut (6,156m±260. Female daily movements were greatest during postparturition (3,357m±91, followed by parturition (2,902m±107, and preparturition (2,682m±121. We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  5. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Li Ting; Zhang Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  6. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    Science.gov (United States)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters

  7. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  8. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah

    2017-11-09

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  9. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah; Hong, Byung-Woo; Yezzi, Anthony; Sundaramoorthi, Ganesh

    2017-01-01

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  10. Simulation of D and E region high-power microwave heating with HF ionospheric modification experiments

    International Nuclear Information System (INIS)

    Meltz, G.; Rush, C.M.; Violette, E.J.

    1981-01-01

    The microwave power beam from a Solar Power Satellite (SPS) is sufficiently intense to cause large changes in the properties of the lower ionosphere by ohmic heating of the plasma. Power is absorbed from the beam at a rate that is proportional to the ratio of the flux s and the square of an effective frequency f/sub e/. Throughout most of the lower ionosphere f/sub e/ = f -+ f/sub L/, where f is the wave frequency and f/sub L is a reduced electron gyrofrequency. It follows that SPS equivalent heating can be simulated at much lower power fluxes with HF radio waves. A detailed examination of the frequency scaling, based on fluid and kinetic theory estimates of the change in electron temperature and density, shows that the high-power HF facility at Platteville, CO, can simulate or exceed the ohmic effects of the SPS beam up to 90 km. This paper describes the results of a series of 5.2 and 9.9 MHz underdense heating experiments undertaken to study the effect of high-power microwaves on the lower ionosphere. A pulsed ionosonde probe, located nearly below the most intense portion of the high-power beam, was used to observe the changes in the D and lower E region. Both phase and amplitude measurements were recorded during CW and intermittent heating

  11. Upper ionosphere and magnetospheric-ionospheric coupling

    International Nuclear Information System (INIS)

    Manzano, J.R.

    1989-02-01

    After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs

  12. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  13. D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography

    Science.gov (United States)

    McCormick, J.; Cohen, M.

    2017-12-01

    The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is

  14. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  15. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  16. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  17. Alpine Ecohydrology Across Scales: Propagating Fine-scale Heterogeneity to the Catchment and Beyond

    Science.gov (United States)

    Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Hadjidoukas, P.; Fatichi, S.

    2017-12-01

    In mountainous ecosystems, complex topography and landscape heterogeneity govern ecohydrological states and fluxes. Here, we investigate topographic controls on water, energy and carbon fluxes across different climatic regimes and vegetation types representative of the European Alps. We use an ecohydrological model to perform fine-scale numerical experiments on a synthetic domain that comprises a symmetric mountain with eight catchments draining along the cardinal and intercardinal directions. Distributed meteorological model input variables are generated using observations from Switzerland. The model computes the incoming solar radiation based on the local topography. We implement a multivariate statistical framework to disentangle the impact of landscape heterogeneity (i.e., elevation, aspect, flow contributing area, vegetation type) on the simulated water, carbon, and energy dynamics. This allows us to identify the sensitivities of several ecohydrological variables (including leaf area index, evapotranspiration, snow-cover and net primary productivity) to topographic and meteorological inputs at different spatial and temporal scales. We also use an alpine catchment as a real case study to investigate how the natural variability of soil and land cover affects the idealized relationships that arise from the synthetic domain. In accordance with previous studies, our analysis shows a complex pattern of vegetation response to radiation. We find also different patterns of ecosystem sensitivity to topography-driven heterogeneity depending on the hydrological regime (i.e., wet vs. dry conditions). Our results suggest that topography-driven variability in ecohydrological variables (e.g. transpiration) at the fine spatial scale can exceed 50%, but it is substantially reduced ( 5%) when integrated at the catchment scale.

  18. Ionospheric Values (Daily Work Sheets), F-Plots, Tabulations, Booklets, Catalogs, and Log Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These ionospheric data consist of scaling notes, equipment usage logs, and ionospheric values in the form of daily work sheets, F-Plots, tabulations, and booklets....

  19. Structure of the polar ionosphere and convection of magnetospheric plasma outside the plazmapause

    International Nuclear Information System (INIS)

    Mozhaev, A.M.; Osipov, N.K.; AN SSSR, Moscow. Inst. Zemnogo Magnetizma, Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    The effect of large-scale magnetospheric convection on the space structure of high-latitude ionosphere was investigated. Simple analytical models were used. The continuity equation for the electron concentration at a given rate of transfer is solved. It has been found that the formation of the principal structural forms in the ionosphere is associated with the horizontal convective transfer of ionospheric plasma

  20. Electrodynamics of the magnetosphere-ionosphere coupling in the nightside subauroral zone

    International Nuclear Information System (INIS)

    Streltsov, A.V.; Foster, J.C.

    2004-01-01

    Results from a numerical study of the oscillations of the electric field measured by the Millstone Hill incoherent scatter radar in the E-layer of the nightside subauroral ionosphere during the geomagnetic storm of May 25, 2000 are presented. The frequencies of these oscillations correspond to the discrete frequencies of geomagnetic pulsations usually attributed to the field line resonances or global cavity modes at a high-latitude auroral zone, but they are well below the fundamental eigenfrequency of the subauroral magnetosphere. It is shown that these oscillations can be interpreted as an ionospheric footprint of the surface Alfven waves generated at the equatorial magnetosphere on a steep transverse gradient in the background plasma density associated with the inner edge of the plasmapause developed during strong geomagnetic storms/substorms. This density gradient together with the ionospheric Pedersen conductivity defines the location and amplitude of the electric field in the E-layer: the amplitude of the field is proportional to the amplitude of the density inhomogeneity and inversely proportional to its scale-size and the ionospheric conductivity. Interaction of the large amplitude perpendicular electric field with the low-conducting ionosphere can cause the ionospheric feedback instability, which leads to the formation of small-scale, intense structures in the electric field and the parallel current density in the subauroral magnetosphere

  1. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    Science.gov (United States)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial

  2. Modeling of Mutiscale Electromagnetic Magnetosphere-Ionosphere Interactions near Discrete Auroral Arcs Observed by the MICA Sounding Rocket

    Science.gov (United States)

    Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.

  3. Isolated ionospheric disturbances as deduced from global GPS network

    Directory of Open Access Journals (Sweden)

    E. L. Afraimovich

    2004-01-01

    Full Text Available We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs that manifest themselves in total electron content (TEC variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS. The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m, exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques - Radio science (ionospheric propagation

  4. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    Science.gov (United States)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside

  5. Recovering the fine structures in solar images

    Science.gov (United States)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  6. Time series of GNSS-derived ionospheric maps to detect anomalies as possible precursors of high magnitude earthquakes

    Science.gov (United States)

    Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.

    2012-04-01

    The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009

  7. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  8. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    International Nuclear Information System (INIS)

    Woo, R.; Yang, F.

    1976-01-01

    In this paper we demonstrate that when the frequency spectrum of the log amplitude fluctuations is used, the radio occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of the Pioneer 10 radio occultation measurements reveals that the Jovian ionosphere possesses electron density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of earth. The Pioneer 10 results indicate that the spatial wave number spectrum of the electron density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size

  9. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  10. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  11. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  12. Search of archived data sources for rocket exhaust-induced modifications of the ionosphere

    International Nuclear Information System (INIS)

    Chacko, C.C.; Mendillo, M.

    1980-09-01

    The emergence of the Satellite Power System (SPS) concept as a way of augmenting the dwindling energy sources available for commercial power usage involved such a large and unprecendented technological program that detailed assessment and feasibility studies were undertaken in an attempt to specify the true impact such a program would have. As part of the issues addressed, a comprehensive environmental impact study was initiated that involved an unprecedented scope of concerns ranging from ground-level noise and weather modifications to possible planetary-scale perturbations caused by SPS activity in distant Earth orbits. This report describes results of a study of an intermediate region of the Earth's environment (the ionosphere) where large-scale perturbations are caused by routine rocket activity. The SPS program calls for vast transportation demands into and out from the ionosphere (h approx. = 200 to 1000 km), and thus the well-known effect of chemical depletions of the ionosphere (so-called ionospheric holes) caused by rocket exhaust signaled a concern over the possible large-scale and long-term consequences of the induced effects

  13. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    Science.gov (United States)

    Warwick-Evans, Victoria C; Atkinson, Philip W; Robinson, Leonie A; Green, Jonathan A

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.

  14. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    Directory of Open Access Journals (Sweden)

    Victoria C Warwick-Evans

    Full Text Available During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.

  15. Six-day westward propagating wave in the maximum electron density of the ionosphere

    Directory of Open Access Journals (Sweden)

    D. Altadill

    2003-07-01

    Full Text Available Analyses of time-spatial variations of critical plasma frequency foF2 during the summer of 1998 reveal the existence of an oscillation activity with attributes of a 6-day westward propagating wave. This event manifests itself as a global scale wave in the foF2 of the Northern Hemisphere, having a zonal wave number 2. This event coincides with a 6-day oscillation activity in the meridional neutral winds of the mesosphere/lower thermosphere (MLT. The oscillation in neutral winds seems to be linked to the 6–7-day global scale unstable mode westward propagating wave number 1 in the MLT. The forcing mechanisms of the 6-day wave event in the ionosphere from the wave activity in the MLT are discussed.Key words. Ionosphere (Ionosphere-Atmosphere interactions; Mid-latitude Ionosphere – Meterology and atmospheric dynamics (waves and tides

  16. Neural network based tomographic approach to detect earthquake-related ionospheric anomalies

    Directory of Open Access Journals (Sweden)

    S. Hirooka

    2011-08-01

    Full Text Available A tomographic approach is used to investigate the fine structure of electron density in the ionosphere. In the present paper, the Residual Minimization Training Neural Network (RMTNN method is selected as the ionospheric tomography with which to investigate the detailed structure that may be associated with earthquakes. The 2007 Southern Sumatra earthquake (M = 8.5 was selected because significant decreases in the Total Electron Content (TEC have been confirmed by GPS and global ionosphere map (GIM analyses. The results of the RMTNN approach are consistent with those of TEC approaches. With respect to the analyzed earthquake, we observed significant decreases at heights of 250–400 km, especially at 330 km. However, the height that yields the maximum electron density does not change. In the obtained structures, the regions of decrease are located on the southwest and southeast sides of the Integrated Electron Content (IEC (altitudes in the range of 400–550 km and on the southern side of the IEC (altitudes in the range of 250–400 km. The global tendency is that the decreased region expands to the east with increasing altitude and concentrates in the Southern hemisphere over the epicenter. These results indicate that the RMTNN method is applicable to the estimation of ionospheric electron density.

  17. Ionosphere Waves Service - A demonstration

    Science.gov (United States)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  18. Fine scale heterogeneity in the Earth's upper mantle - observation and interpretation

    DEFF Research Database (Denmark)

    Thybo, Hans

    2014-01-01

    can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense...

  19. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  20. Structure and dynamics of the ionosphere. [Venus atmosphere

    Science.gov (United States)

    Nagy, A. F.; Brace, L. H.

    1982-01-01

    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  1. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  2. Ionospheric research at INPE

    International Nuclear Information System (INIS)

    Abdu, M.A.

    1984-01-01

    Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt

  3. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  4. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  5. Investigation on equatorial ionospheric profiles and IRI model

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    1996-01-01

    Ionospheric profiles below the F2 peak ionisation density are compared with those of the International Reference Ionosphere (IRI). The data used are those of Ibadan (Lat. 7.4 deg N, Long. 3.9 E). The IRI model gives a much thinner bottomside F region ionisation density than what is observed experimentally, in winter; both at high and low solar activity. Similar departures are observed in the summer of both solar epoch but on a reduced scale. The closet agreement occurs during the March equinox of high solar activity. (author). 3 refs, 4 figs

  6. Six-day westward propagating wave in the maximum electron density of the ionosphere

    Directory of Open Access Journals (Sweden)

    D. Altadill

    Full Text Available Analyses of time-spatial variations of critical plasma frequency foF2 during the summer of 1998 reveal the existence of an oscillation activity with attributes of a 6-day westward propagating wave. This event manifests itself as a global scale wave in the foF2 of the Northern Hemisphere, having a zonal wave number 2. This event coincides with a 6-day oscillation activity in the meridional neutral winds of the mesosphere/lower thermosphere (MLT. The oscillation in neutral winds seems to be linked to the 6–7-day global scale unstable mode westward propagating wave number 1 in the MLT. The forcing mechanisms of the 6-day wave event in the ionosphere from the wave activity in the MLT are discussed.

    Key words. Ionosphere (Ionosphere-Atmosphere interactions; Mid-latitude Ionosphere – Meterology and atmospheric dynamics (waves and tides

  7. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  8. High latitude ionospheric structure

    International Nuclear Information System (INIS)

    1984-06-01

    The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling

  9. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  10. Fine-scale foraging ecology of leatherback turtles

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    2015-02-01

    Full Text Available Remote tracking of migratory species and statistical modeling of behaviors have enabled identification of areas that are of high ecological value to these widely distributed taxa. However, direct observations at fine spatio-temporal scales are often needed to correctly interpret behaviors. In this study, we combined GPS-derived locations and archival dive records (1 sec sampling rate with animal-borne video footage from foraging leatherback turtles (Dermochelys coriacea in Nova Scotia, Canada (Northwest Atlantic Ocean to generate the most highly detailed description of natural leatherback behavior presented to date. Turtles traveled shorter distances at slower rates and increased diving rates in areas of high prey abundance, which resulted in higher prey capture rates. Increased foraging effort (e.g., dive rate, dive duration, prey handling time, number of bites was not associated with increased time at the surface breathing to replenish oxygen stores. Instead, leatherbacks generally performed short, shallow dives in the photic zone to or above the thermocline, where they disproportionately captured prey at bottoms of dives and during ascents. This foraging strategy supports visual prey detection, allows leatherbacks to exploit physically structured prey at relatively shallow depths (typically <30m, and increases time turtles spend in warmer water temperatures, thus optimizing net energy acquisition. Our results demonstrate that leatherbacks appear to be continuously foraging during daylight hours while in continental shelf waters of Nova Scotia, and that leatherback foraging behavior is driven by prey availability, not by whether or not a turtle is in a resource patch characterized by a particular size or prey density. Our study demonstrates the fundamental importance of obtaining field-based, direct observations of true behaviors at fine spatial and temporal scales to enhance our efforts to both study and manage migratory species.

  11. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  12. Parallel integer sorting with medium and fine-scale parallelism

    Science.gov (United States)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  13. GeneRecon—A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, Thomas; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2006-01-01

    GeneRecon is a tool for fine-scale association mapping using a coalescence model. GeneRecon takes as input case-control data from phased or unphased SNP and micro-satellite genotypes. The posterior distribution of disease locus position is obtained by Metropolis Hastings sampling in the state space...

  14. A new scaling for the rotational diffusion of molecular probes in polymer solutions.

    Science.gov (United States)

    Qing, Jing; Chen, Anpu; Zhao, Nanrong

    2017-12-13

    In the present work, we propose a new scaling form for the rotational diffusion coefficient of molecular probes in semi-dilute polymer solutions, based on a theoretical study. The mean-field theory for depletion effect and semi-empirical scaling equation for the macroscopic viscosity of polymer solutions are properly incorporated to specify the space-dependent concentration and viscosity profiles in the vicinity of the probe surface. Following the scheme of classical fluid mechanics, we numerically evaluate the shear torque exerted on the probes, which then allows us to further calculate the rotational diffusion coefficient D r . Particular attention is given to the scaling behavior of the retardation factor R rot ≡ D/D r with D being the diffusion coefficient in pure solvent. We find that R rot has little relevance to the macroscopic viscosity of the polymer solution, while it can be well featured by the characteristic length scale r h /δ, i.e. the ratio between the hydrodynamic radius of the probe r h and the depletion thickness δ. Correspondingly, we obtain a novel scaling form for the rotational retardation factor, following R rot = exp[a(r h /δ) b ] with rather robust parameters of a ≃ 0.51 and b ≃ 0.56. We apply the theory to an extensive calculation for various probes in specific polymer solutions of poly(ethylene glycol) (PEG) and dextran. Our theoretical results show good agreements with the experimental data, and clearly demonstrate the validity of the new scaling form. In addition, the difference of the scaling behavior between translational and rotational diffusions is clarified, from which we conclude that the depletion effect plays a more significant role on the local rotational diffusion rather than the long-range translation diffusion.

  15. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    Science.gov (United States)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  16. Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, C [Centre National d' Etudes des Telecommunications (CNET), 92 - Issy-les-Moulineaux (France)

    1977-11-01

    This paper comprises four parts. The first one deals with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements.

  17. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  18. The Occurrence of Small-scale Irregularities in the Mid-latitude Ionosphere from SuperDARN HF Radar Observations

    Science.gov (United States)

    Ruohoniemi, J. M.; Baker, J. B.; Maimaiti, M.; Oksavik, K.; Erickson, P. J.; Scales, W.; Eltrass, A.

    2017-12-01

    The mid-latitude radars of the SuperDARN network routinely observe backscatter from nighttime decameter-scale F region irregularities at latitudes well equatorward of the auroral boundary. This Sub-Auroral Ionospheric Scatter (SAIS) is strongly distinguished from auroral and SAPS backscatter by low Doppler velocities ( tens m/s) and stable, long-lived ( hours) occurrence in discrete events that are extended in both latitude and longitude. Statistical and event studies of SAIS with the SuperDARN radars indicate that the subauroral F region ionosphere is replete with irregularities during events, at least poleward of the 50° Λ horizon of the North American mid-latitude radars, and that radar observation of SAIS backscatter is then primarily limited by the magnetic aspect condition. Joint experiments with incoherent scatter radar have furnished sets of plasma measurements suitable for testing theories of plasma instability. Modeling work stimulated by the observations has explored the temperature-gradient instability (TGI) and the gradient drift instability (GDI) as possible sources of the irregularities. In this talk we review the findings on the occurrence of the SAIS category of mid-latitude F region irregularities, summarize the results of the modeling work, and discuss future research directions.

  19. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus

    DEFF Research Database (Denmark)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of...

  20. Quasi-static electric fields, turbulence and VLF waves in the ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Temerin, M.A.

    1978-01-01

    Two rocket payloads launched from Greenland in December 1974 and January 1975 into the dayside auroral oval measured large scale electric fields. Sunward convection in regions of polar cusp type particle precipitation argues for the existence of a turbulent entry region at the magnetopause. Smaller scale changes in the electric field and energetic electron precipitation require field-aligned currents predominately at the boundaries of auroral arcs. Measurements of electric fields parallel to the magnetic field place upper limits to the parallel electric field. An analysis of the effect of zero-frequency electric field turbulence on the output of an electric field double probe detector is applied to data from two satellites, OVI-17 and S3-3. It is found that the electric field of high latitude low frequency turbulence is polarized perpendicular to the magnetic field and that the frequency is measured by the satellites is due to the Doppler shift of near zero frequency turbulence both in the ionosphere and magnetosphere. In addition, rocket measurements of low frequency turbulence in the dayside auroral oval reveal characteristics similar to those of the large electric field regions recently seen on S3-3 indicating that the turbulence from those regions extends into the ionosphere. VLF waves were also observed during the two rocket flights into the dayside auroral oval. The correlation of the VLF hiss intensity with the fluxes of precipitating electrons above 500 eV on a short spatial and time scale is often poor, even when a positive slope exists in the electron phase space density. The frequency of the lower hybrid waves were used to measure the ratio of NO + and O 2 + to O + . Electrostatic waves were observed during a barium release

  1. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  3. Tsunami Ionospheric warning and Ionospheric seismology

    Science.gov (United States)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  4. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  5. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    Science.gov (United States)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  6. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...

  7. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  8. Solar wind effects on ionospheric convection: a review

    DEFF Research Database (Denmark)

    Lu, G.; Cowley, S.W.H.; Milan, S.E.

    2002-01-01

    ), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...

  9. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    International Nuclear Information System (INIS)

    Ottmar, Roger D.; Blake, John I.; Crolly, William T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  10. Ionospheric Digital Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...

  11. Southern European ionospheric TEC maps based on Kriging technique to monitor ionosphere behavior

    Science.gov (United States)

    Rodríguez-Bouza, Marta; Paparini, Claudia; Otero, Xurxo; Herraiz, Miguel; Radicella, Sandro M.; Abe, Oladipo E.; Rodríguez-Caderot, Gracia

    2017-10-01

    Global or regional Maps of the ionospheric Total Electron Content (TEC) are an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. Ionospheric disturbance periods are of particular interest because these conditions can strongly affect satellite navigation range measurements. This work presents post-processing regional vertical TEC maps over Southern Europe ([35°N-50°N] latitude) obtained by applying Kriging interpolation to GPS derived TEC over more than 100 Global Navigation Satellite System (GNSS) stations. These maps are used to study the behavior of the ionosphere during space weather events and their effects. To validate these maps, hereafter called Southern European Ionospheric Maps (SEIMs), their TEC values have been compared with those obtained from EGNOS Message Server (EMS) and with direct experimental TEC data from GNSS stations. Ionospheric space weather events related to geomagnetic storms of March 17th, 2013, February 19th, 2014 and March 17th, 2015 have been selected. To test the methodology, one period of quiet days has been also analyzed. TEC values obtained by SEIMs in the Ionospheric Grid Points (IGPs) defined by EGNOS are very close to those given by EMS and in the period of major geomagnetic storms the difference does not exceed 6 TEC units. These results confirm the good performance of the technique used for obtaining the SEIMs that can be a useful tool to study the ionosphere behavior during geomagnetic storms and their effects in the region of interest.

  12. Ground-based measurements of ionospheric dynamics

    Science.gov (United States)

    Kouba, Daniel; Chum, Jaroslav

    2018-05-01

    Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.

  13. Electron precipitation control of the Mars nightside ionosphere

    Science.gov (United States)

    Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.

    2017-12-01

    The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.

  14. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  15. Low energy probes of PeV scale sfermions

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  16. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  17. CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.

    2017-12-01

    A new satellite design permits broad science measurements from the ocean to the ionosphere by flying below the F-Layer. The satellite called CARINA for Coastal-Ocean, Assimilation, Radio, Ionosphere, Neutral-Drag, and Atmospherics. The unique system capabilities are long duration orbits below the ionosphere and a HF receiver to measure broadband signals. The CARINA science products include recording the ocean surface properties, data for assimilation into global ionosphere models, radio wave propagation measurements, in-situ observations of ionospheric structures, validating neutral drag models and theory, and broadband atmospheric lightning characterization. CARINA will also measure nonlinear wave-generation using ionospheric modification sites in Alaska, Norway, Puerto Rico, and Russia and collaborate with geophysics HF radars (such as Super-DARN) for system calibration. CARINA is a linear 6-U CubeSat with a long antenna extended in the wake direction. The CARINA science mission is supported by three instruments. First, the Electric Field Instrument (EFI) is a radio receiver covering the 2 to 18 MHz range. The receiver can capture both narrow and wide bandwidths for up to 10 minutes. EFI is designed to provide HF signal strength and phase, radar Doppler shift and group delay, and electron plasma density from photoelectron excited plasma waves. Second a Ram Langmuir Probe (RLP) measures high-resolution ion currents at a 10 kHz rate. These measurements yield electron and ion density at the spacecraft. Finally, the Orbiting GPS Receiver (OGR) provides dual frequency GPS position with ionosphere correction. OGR also measures total electron content above the spacecraft and L-Band scintillations. CARINA will be the lowest satellite in orbit at 250 km altitude, <0.01 eccentricity, and up to 4-month lifetime. The design supports unique capabilities with broad applications to the geosciences. Remote sensing of the ocean will sample the HF signals scattered from the rough

  18. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  19. DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

    Directory of Open Access Journals (Sweden)

    Koichiro Oyama

    2015-09-01

    Full Text Available Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

  20. Influence of Ionospheric Weather on GNSS Radio Occultation Signals

    Science.gov (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.

    2016-12-01

    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  1. A Methodology to Assess Ionospheric Models for GNSS

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Ibánez, Deimos

    2015-04-01

    Testing the accuracy of the ionospheric models used in the Global Navigation Satellite System (GNSS) is a long-standing issue. It is still a challenging problem due to the lack of accurate enough slant ionospheric determinations to be used as a reference. The present study proposes a methodology to assess any ionospheric model used in satellite-based applications and, in particular, GNSS ionospheric models. The methodology complements other analysis comparing the navigation based on different models to correct the code and carrier-phase observations. Specifically, the following ionospheric models are assessed: the operational models broadcast in the Global Positioning System (GPS), Galileo and the European Geostationary Navigation Overlay System (EGNOS), the post-process Global Ionospheric Maps (GIMs) from different analysis centers belonging to the International GNSS Service (IGS) and, finally, a new GIM computed by the gAGE/UPC research group. The methodology is based in the comparison between the predictions of the ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences shall be separated into the hardware delays (a receiver constant plus a satellite constant) per data interval, e.g., a day. The condition that these Differential Code Biases (DCBs) are commonly shared throughout the world-wide network of receivers and satellites provides a global character to the assessment. This approach generalizes simple tests based on double differenced Slant Total Electron Contents (STECs) between pairs of satellites and receivers on a much local scale. The present study has been conducted during the entire 2014, i.e., the last Solar Maximum. The seasonal and latitudinal structures of the results clearly reflect the different strategies used by the different models. On one hand, ionospheric model corrections based on a grid (IGS-GIMs or EGNOS) are shown to be several times better than the models

  2. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  3. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    Science.gov (United States)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  4. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    Science.gov (United States)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications

  5. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  6. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  7. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Science.gov (United States)

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  8. High Resolution Reconstruction of the Ionosphere for SAR Applications

    Science.gov (United States)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  9. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  10. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  11. The ionosphere

    International Nuclear Information System (INIS)

    Taieb, C.

    1977-01-01

    This paper comprises four parts. The first one is dealing with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements [fr

  12. Magnetotail processes and their ionospheric signatures

    Science.gov (United States)

    Ferdousi, B.; Raeder, J.; Zesta, E.; Murphy, K. R.; Cramer, W. D.

    2017-12-01

    In-situ observations in the magnetotail are sparse and limited to single point measurements. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, auroral imagers, and various radars. Since the ionosphere is to some extent a mirror of plasmasheet processes it can be used as a monitor of magnetotail dynamics. Thus, it is of great importance to understand the coupling between the ionosphere and the magnetosphere in order to properly interpret the ionosphere and ground observations in terms of magnetotail dynamics. For this purpose, the global magnetohydrodynamic model OpenGGCM is used to investigate magnetosphere-ionosphere coupling. One of the key processes in magnetotail dynamics are bursty bulk flows (BBFs) which are the major means by which momentum and energy get transferred through the magnetotail and down to the ionosphere. BBFs often manifested in the ionosphere as auroral streamers. This study focuses on mapping such flow bursts from the magnetotail to the ionosphere along the magnetic field lines for three states of the magnetotail: pre-substorm onset through substorm expansion and during steady magnetospheric convection (SMC) following the substorm. We find that the orientation of streamers in the ionosphere differes for different local times, and that, for both tail and ionospheric signatures, activity increases during the SCM configutation compared to the pre-onset and quiet times. We also find that the background convection in the tail impacts the direction and deflection of the BBFs and the subsequent orientation of the auroral streamers in the ionosphere.

  13. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer

    2004-04-01

    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  14. The worldwide ionospheric data base

    International Nuclear Information System (INIS)

    Bilitza, D.

    1989-04-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory

  15. The worldwide ionospheric data base

    Science.gov (United States)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  16. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  17. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  18. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  19. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  20. Review of radio-frequency, nonlinear effects on the ionosphere

    International Nuclear Information System (INIS)

    Gordon, W.E.; Duncan, L.M.

    1983-01-01

    Modification of the ionosphere by high power radio waves in the megahertz band has been intensively investigated over the past two decades. This research has yielded advances in aeronomy, geophysics, and plasma physics with applications to radio communication and has provided a fruitful interaction of radio theorists and experimentalists. There being almost no linear effects of powerful radio waves on the ionosphere, we concentrate on the nonlinear effects. To put the subject in perspective we trace its history beginning in the early 1930s and highlight the important events up to the late 1960s. We then shift to a phenomenological approach and deal in order with ohmic heating, parametric instabilities, self-focusing and kilometer-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. We conclude with the observation that stronger international cooperation would benefit this research, and describe a list of promising, difficult challenges

  1. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  2. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  3. Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited

    Science.gov (United States)

    Förster, M.; Haaland, S.

    2015-07-01

    The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.

  4. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Science.gov (United States)

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  5. AATR an ionospheric activity indicator specifically based on GNSS measurements

    Science.gov (United States)

    Juan, José Miguel; Sanz, Jaume; Rovira-Garcia, Adrià; González-Casado, Guillermo; Ibáñez, D.; Perez, R. Orus

    2018-03-01

    latitude regions which allows to define a planetary index, similar to the geomagnetic ones, (c) the seasonal dependency which is related with the longitude and (d) the variation of the AATR value at different time scales (hourly, daily, seasonal, among others) which confirms most of the well-known time dependences of the ionospheric events, and finally, (e) the relationship with the space weather events.

  6. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Science.gov (United States)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  7. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    Science.gov (United States)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  8. Study of medium-scale traveling ionospheric disturbances (MSTID) with sounding rockets and ground observations

    Science.gov (United States)

    Yamamoto, Mamoru; Abe, Takumi; Kumamoto, Atsushi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Susumu; Tsugawa, Takuya; Ishisaka, Keigo; Iwagami, Naomoto; Nishioka, Michi; Kato, Tomohiro; Takahashi, Takao; Tanaka, Makoto; Mr

    Medium-scale traveling ionospheric disturbance (MSTID) is an interesting phenomenon in the F-region. The MSTID is frequent in summer nighttime over Japan, showing wave structures with wavelengths of 100-200 km, periodicity of about 1 hour, and propagation toward the southwest. The phenomena are observed by the total electron content (TEC) from GEONET, Japanese dense network of GPS receivers, and 630 nm airglow imagers as horizontal pattern. It was also measured as Spread-F events of ionograms or as field-aligned echoes of the MU radar. MSTID was, in the past, explained by Perkins instability (Perkins, 1973) while its low growth rate was a problem. Recently 3D simulation study by Yokoyama et al (2009) hypothesized a generation mechanism of the MSTID, which stands on electromagnetic E/F-region coupling of the ionosphere. The hypothesis is that the MSTID first grows with polarization electric fields from sporadic-E, then show spatial structures resembling to the Perkins instability. We recently conducted a observation campaign to check this hypothesis. We launched JASA ISAS sounding rockets S-310-42 and S-520-27 at 23:00 JST and 23:57JST on July 20, 2013 while an MSTID event was monitored in real-time by the GPS-TEC from GEONET. We found 1-5mV/m northeastward/eastward electric fields during the flight. Variation of electric fileds were associated with horizontal distribution of plasma density. Wind velocity was measured by the TME and Lithium releases from S-310-42 and S-520-27 rockets, respectively, showing southward wind near the sporadic-E layer heights. These results are consistent to the expected generation mechanism shown above. In the presentation we will discuss electric-field results and its relationship with plasma density variability together with preliminary results from the neutral-wind observations.

  9. Theory of the current-driven ion cyclotron instability in the bottomside ionosphere

    International Nuclear Information System (INIS)

    Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.

    1985-01-01

    A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes

  10. Ionospheric research for space weather service support

    Science.gov (United States)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  11. Characterizing the performance of an affordable, multichannel conductivity probe for density measurements in stratified flows

    Science.gov (United States)

    Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo

    2017-11-01

    In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.

  12. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  13. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    Science.gov (United States)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  14. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  15. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    Science.gov (United States)

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  16. DC Electric Field measurement in the Mid-latitude Ionosphere during MSTID by S-520-27 Sounding Rocket Experiments

    Science.gov (United States)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.

    2015-12-01

    In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.

  17. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the

  18. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  19. C/NOFS Remote Sensing of Ionospheric Reflectance

    Science.gov (United States)

    Burke, W. J.; Pfaff, Robert F.; Martinis, C. R.; Gentile, L. C.

    2016-01-01

    Alfvn waves play critical roles in the electrodynamic coupling of plasmas at magnetically conjugate regions in near-Earth space. Associated electric (E*) and magnetic (dec B*) field perturbations sampled by sensors on satellites in low-Earth orbits are generally super positions of incident and reflected waves. However, lack of knowledge about ionospheric reflection coefficients (alpha) hinders understanding of generator outputs and load absorption of Alfvn wave energies. Here we demonstrate a new method for estimating using satellite measurements of ambient E* and dec B* then apply it to a case in which the Communication Navigation Outage Forecasting System (CNOFS) satellite flew conjugate to the field of view of a 630.0 nm all-sky imager at El Leoncito, Argentina, while medium-scale traveling ionosphere disturbances were detected in its field of view. In regions of relatively large amplitudes of E* and B*,calculated values ranged between 0.67 and 0.88. This implies that due to impedance mismatches, the generator ionosphere puts out significantly more electromagnetic energy than the load can absorb. Our analysis also uncovered caveats concerning the methods range of applicability in regions of low E* and B*. The method can be validated in future satellite-based auroral studies where energetic particle precipitation fluxes can be used to make independent estimates of alpha.

  20. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  1. Ionosphere Waves Service (IWS – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Directory of Open Access Journals (Sweden)

    Ferencz Csaba

    2014-05-01

    Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  2. Advanced solar irradiances applied to satellite and ionospheric operational systems

    Science.gov (United States)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  3. Ionospheric data for two solar cycles available online

    International Nuclear Information System (INIS)

    Bilitza, D.; Papitashvili, N.; Grebowsky, J.; Schar, W.

    2002-01-01

    We report about a project that has as its goal to make a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties easily accessible for public use The original data exist in various machine-specific, highly compressed, binary encoding on 7- or 9-track magnetic tapes. The intent is to decode the data format and convert all data sets to a common ASCII data format and add solar and magnetic indices for user convenience. The original intent of producing CD-ROMs with these data has meanwhile been overtaken by the rapid development of the internet. Most users now prefer to obtain the data directly online and greatly value web-interfaces to browse, plot and subset the data. Accordingly, the focus has shifted to making the data available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on the development of a web-interface (ATMOWeb, http://nssdc.gsfc.nasa.gov/ atmoweb/) to help users study the data and select interesting time periods. The data considered by this project include data sets from the Alouette I, BE-B (Explorer 22), Alouette 2, DME-A (Explorer 31) , AE-B (Explorer 32), AE-C, -D, -E, OGO-6, ESRO-4, ISIS-I, -2, AEROS-I, -2 Taiyo, ISS-b, Hinotori and DE-2 satellites. The data are primarily electron and ion densities and temperatures measured by Langmuir Probes (LP), Retarding Potential Analyzers (RPA), and Ion Mass Spectrometers (IMS) flown on these satellites. The time resolution of the measurements is typically seconds to minutes. This data base covering almost two solar cycles is a unique asset for studies of the variation and variability of ionospheric parameters. It will be an important element in the quest for a better understanding of ionospheric plasma processes and for improved predictions of ionospheric Space Weather. Current models are still very limited in their predictive capabilities especially at equatorial and auroral

  4. Auroral particle acceleration by Alfvén waves and ionospheric feedback

    Science.gov (United States)

    Lysak, R. L.; Song, Y.

    2003-12-01

    Recent observations, particularly by Polar and FAST, have indicated that Alfvén waves can directly accelerate auroral electrons. A model for this interaction has been developed that can describe the linear modification of the Alfvén wave profile by the kinetic effects of electrons, including acceleration and heating of the electron population. While many of the heated electrons are accelerated upward into the magnetosphere by the mirror force, a significant fraction of the input Poynting flux due to Alfvén waves can be converted into precipitating electron energy flux. An important aspect of this particle precipitation is that the hot electrons do not arrive at the ionosphere in phase with the field-aligned current, which at ionospheric altitudes is largely carried by cold electrons. This phase shift has direct implications for models of ionospheric feedback that usually assume that the precipitating flux is in phase with the field-aligned current. The effects of quasi-static electric fields can be included in the model, which will introduce new particle populations such as the effects of secondary electrons of ionospheric origin that are reflected by the parallel potential drop. The possible role of Alfvén waves trapped in the ionospheric resonator in creating small-scale auroral structures through feedback and nonlinear interactions will be discussed.

  5. Martian Ionospheric Observation and Modeling

    Science.gov (United States)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  6. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  7. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  8. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    Science.gov (United States)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  9. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  10. Fine-scale variability of isopycnal salinity in the California Current System

    Science.gov (United States)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  11. Clonal diversity and fine-scale genetic structure in a high andean treeline population

    Czech Academy of Sciences Publication Activity Database

    Peng, Y.; Macek, P.; Macková, Jana; Romoleroux, K.; Hensen, I.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 59-65 ISSN 0006-3606 Grant - others:GA AV ČR(CZ) IAA601110702; GA MŠk(CZ) LM2010009 Program:IA Institutional support: RVO:60077344 Keywords : AFLP * clonal diversity * clonal propagation * fine-scale genetic structure * Polylepis reticulata * treeline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.944, year: 2015

  12. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample of th...

  13. Estimates of Ionospheric Transport and Ion Loss at Mars

    Science.gov (United States)

    Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.

    2017-10-01

    Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.

  14. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  15. Coupling of ionosphere and troposphere during the occurrence of isolated tornadoes on November 20, 1973

    Science.gov (United States)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1979-01-01

    The paper examines the coupling between the ionosphere and the troposphere during time periods with isolated tornadoes on the stormy day of November 20, 1973. Observations are made with a high-frequency CW Doppler array system, in which radio receivers located at a central site monitored signals transmitted from three independent remote sites on three sets of frequencies (4.0125, 4.759, 5.734 MHz) and reflected off the ionosphere approximately halfway between the transmitter and receiver sites. It is shown that the sources of the gravity waves associated with tornadoes are always on the squall lines and near the tornado touchdown locations, and that analyses of ionospheric Doppler sounder observations of medium-scale gravity waves can contribute to the understanding of the coupling between the ionosphere and the troposphere during periods of severe storm activity.

  16. Assessing ionospheric activity by long time series of GNSS signals: the search of possible connection with seismicity

    Science.gov (United States)

    Galeandro, Angelo; Mancini, Francesco; De Giglio, Michaela; Barbarella, Maurizio

    2014-05-01

    The modifications of some atmospheric physical properties prior to a high magnitude earthquake were recently debated in the frame of the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena, the ionization of air at the ionospheric levels due to leaking of gases from earth crust through the analysis of long time series of GNSS (Global Navigation Satellite System) signals was investigated in this work. Several authors used the dispersive properties of the ionospheric strata towards the GNSS signals to detect possible ionospheric anomalies over areas affected by earthquakes and some evidences were encountered. However, the spatial scale and temporal domains over which such disturbances come into evidence is still a controversial item. Furthermore, the correspondence by chance between ionospheric disturbances and relevant seismic activity is even more difficult to model whenever the reference time period and spatial extent of investigation are confined. Problems could also arise from phenomena due to solar activity (now at culmination within the 11 years-long solar cycle) because such global effects could reduce the ability to detect disturbances at regional or local spatial scale. In this work, two case studies were investigated. The first one focuses on the M = 6.3 earthquake occurred on April 6, 2009, close to the city of L'Aquila (Abruzzo, Italy). The second concerns the M = 5.9 earthquake occurred on May 20, 2012, between the cities of Ferrara and Modena (Emilia Romagna, Italy). To investigate possible connections between the ionospheric activity and seismicity for such events, a five-year (2008-2012) long series of high resolution ionospheric maps was used. These maps were produced by authors from GNSS data collected by permanent stations uniformly distributed around the epicenters and allowed to assess the ionospheric activity through the analysis of the TEC (Total Electron Content). To avoid the influence of solar activity

  17. Lagopedo: two F-region ionospheric depletion experiments

    International Nuclear Information System (INIS)

    Pongratz, M.B.; Smith, G.M.; Sutherland, C.D.; Zinn, J.

    1977-01-01

    A significant depletion of ionospheric plasma was produced by a chemical release experiment in the F-layer ionosphere over Hawaii. The results of measurements of the hole produced in the ionospheric plasma are reported

  18. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    Science.gov (United States)

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  19. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    Directory of Open Access Journals (Sweden)

    Panyu Hua

    Full Text Available Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  20. Comparing three spaceborne optical sensors via fine scale pixel-based urban land cover classification products

    CSIR Research Space (South Africa)

    Breytenbach, Andre

    2013-08-01

    Full Text Available Accessibility to higher resolution earth observation satellites suggests an improvement in the potential for fine scale image classification. In this comparative study, imagery from three optical satellites (WorldView-2, Pléiades and RapidEye) were...

  1. In situ probing the interior of single bacterial cells at nanometer scale

    International Nuclear Information System (INIS)

    Liu, Boyin; Wah Ng, Tuck; Fu, Jing; Hemayet Uddin, Md; Paterson, David L; Velkov, Tony; Li, Jian

    2014-01-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB–AFM platform will help in gaining deeper insights of bacteria–drug interactions to develop potential strategies for combating multi-drug resistance. (paper)

  2. The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results

    Czech Academy of Sciences Publication Activity Database

    Lebreton, J. P.; Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Klinge, A.; Merikallio, S.; Lagoutte, D.; Poirier, B.; Blelly, P. L.; Kozáček, Z.; Salaquarda, M.

    2006-01-01

    Roč. 54, č. 5 (2006), s. 472-486 ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : electrostatic probes * ionospheric plasma * electron density and temperature Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.509, year: 2006

  3. Developing an ionospheric map for South Africa

    Directory of Open Access Journals (Sweden)

    D. I. Okoh

    2010-07-01

    Full Text Available The development of a map of the ionosphere over South Africa is presented in this paper. The International Reference Ionosphere (IRI model, South African Bottomside Ionospheric Model (SABIM, and measurements from ionosondes in the South African Ionosonde Network, were combined within their own limitations to develop an accurate representation of the South African ionosphere. The map is essentially in the form of a computer program that shows spatial and temporal representations of the South African ionosphere for a given set of geophysical parameters. A validation of the map is attempted using a comparison of Total Electron Content (TEC values derived from the map, from the IRI model, and from Global Positioning System (GPS measurements. It is foreseen that the final South African ionospheric map will be implemented as a Space Weather product of the African Space Weather Regional Warning Centre.

  4. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    Science.gov (United States)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  5. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  6. Low-frequency electrostatic waves in the ionospheric E-region: a comparison of rocket observations and numerical simulations

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2006-11-01

    Full Text Available Low frequency electrostatic waves in the lower parts of the ionosphere are studied by a comparison of observations by instrumented rockets and of results from numerical simulations. Particular attention is given to the spectral properties of the waves. On the basis of a good agreement between the observations and the simulations, it can be argued that the most important nonlinear dynamics can be accounted for in a 2-D numerical model, referring to a plane perpendicular to a locally homogeneous magnetic field. It does not seem necessary to take into account turbulent fluctuations or motions in the neutral gas component. The numerical simulations explain the observed strongly intermittent nature of the fluctuations: secondary instabilities develop on the large scale gradients of the largest amplitude waves, and the small scale dynamics is strongly influenced by these secondary instabilities. We compare potential variations obtained at a single position in the numerical simulations with two point potential-difference signals, where the latter is the adequate representation for the data obtained by instrumented rockets. We can demonstrate a significant reduction in the amount of information concerning the plasma turbulence when the latter signal is used for analysis. In particular we show that the bicoherence estimate is strongly affected. The conclusions have implications for studies of low frequency ionospheric fluctuations in the E and F regions by instrumented rockets, and also for other methods relying on difference measurements, using two probes with large separation. The analysis also resolves a long standing controversy concerning the supersonic phase velocities of these cross-field instabilities being observed in laboratory experiments.

  7. The ionosphere of Europa from Galileo radio occultations

    Science.gov (United States)

    Kliore, A. J.; Hinson, D. P.; Flasar, F. M.; Nagy, A. F.; Cravens, T. E.

    1997-01-01

    The Galileo spacecraft performed six radio occultation observations of Jupiter's Galilean satellite Europa during its tour of the jovian system. In five of the six instances, these occultations revealed the presence of a tenuous ionosphere on Europa, with an average maximum electron density of nearly 10(4) per cubic centimeter near the surface and a plasma scale height of about 240 +/- 40 kilometers from the surface to 300 kilometers and of 440 +/- 60 kilometers above 300 kilometers. Such an ionosphere could be produced by solar photoionization and jovian magnetospheric particle impact in an atmosphere having a surface density of about 10(8) electrons per cubic centimeter. If this atmosphere is composed primarily of O2, then the principal ion is O2+ and the neutral atmosphere temperature implied by the 240-kilometer scale height is about 600 kelvin. If it is composed of H2O, the principal ion is H3O+ and the neutral temperature is about 340 kelvin. In either case, these temperatures are much higher than those observed on Europa's surface, and an external heating source from the jovian magnetosphere is required.

  8. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  9. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    Science.gov (United States)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  10. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  11. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  12. Massive Statistics of VLF-Induced Ionospheric Disturbances

    Science.gov (United States)

    Pailoor, N.; Cohen, M.; Golkowski, M.

    2017-12-01

    The impact of lightning of the D-region of the ionosphere has been measured by Very Low Frequency (VLF) remote sensing, and can be seen through the observance of Early-Fast events. Previous research has indicated that several factors control the behavior and occurrence of these events, including the transmitter-receiver geometry, as well as the peak current and polarity of the strike. Unfortunately, since each event is unique due to the wide variety of impacting factors, it is difficult to make broad inferences about the interactions between the lightning and ionosphere. By investigating a large database of lightning-induced disturbances over a span of several years and over a continental-scale region, we seek to quantify the relationship between geometry, lightning parameters, and the apparent disturbance of the ionosphere as measured with VLF transmitters. We began with a set of 860,000 cases where an intense lightning stroke above 150 kA occurred within 300 km of a transmiter-receiver path. To then detect ionospheric disturbances from the large volume of VLF data and lightning incidents, we applied a number of classification methods to the actual VLF amplitude data, and find that the most accurate is a convolutional neural network, which yielded a detection efficiency of 95-98%, and a false positive rate less than 25%. Using this model, we were able to assemble a database of more than 97,000 events, with each event stored with its corresponding time, date, receiver, transmitter, and lightning parameters. Estimates for the peak and slope of each disruption were also calculated. From this data, we were able to chart the relationships between geometry and lightning parameters (peak current and polarity) towards the occurrence probability, perturbation intensity, and recovery time, of the VLF perturbation. The results of this analysis are presented here.

  13. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  14. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  15. Probing high scale physics with top quarks at the Large Hadron Collider

    Science.gov (United States)

    Dong, Zhe

    With the Large Hadron Collider (LHC) running at TeV scale, we are expecting to find the deviations from the Standard Model in the experiments, and understanding what is the origin of these deviations. Being the heaviest elementary particle observed so far in the experiments with the mass at the electroweak scale, top quark is a powerful probe for new phenomena of high scale physics at the LHC. Therefore, we concentrate on studying the high scale physics phenomena with top quark pair production or decay at the LHC. In this thesis, we study the discovery potential of string resonances decaying to t/tbar final state, and examine the possibility of observing baryon-number-violating top-quark production or decay, at the LHC. We point out that string resonances for a string scale below 4 TeV can be detected via the t/tbar channel, by reconstructing center-of-mass frame kinematics of the resonances from either the t/tbar semi-leptonic decay or recent techniques of identifying highly boosted tops. For the study of baryon-number-violating processes, by a model independent effective approach and focusing on operators with minimal mass-dimension, we find that corresponding effective coefficients could be directly probed at the LHC already with an integrated luminosity of 1 inverse femtobarns at 7 TeV, and further constrained with 30 (100) inverse femtobarns at 7 (14) TeV.

  16. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  17. Simulation of electron density disturbances of the ionospheric D region produced by high-energy particle fluxes

    International Nuclear Information System (INIS)

    Martynenko, S.I.

    1989-01-01

    Using the large-scale tim expansion analytical solutions of electron concentration balance equation in D-region of the ionosphere for pulsed and periodic changes in the rate of ion formatin under the effect of fluxes of precipitating high-energy particles are obtained. Possible effect of disturbances of temperature of nutrals is taken into account. On the basis of model representations the space-time structure of emerging ionospheric disturbances is discussed

  18. Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities

    Science.gov (United States)

    Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu

    2018-05-01

    A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.

  19. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  20. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    International Nuclear Information System (INIS)

    Tanaka, T.

    1981-01-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents

  1. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  2. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  3. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  4. Space weather and the Earth ionosphere from auroral zone to equator

    Science.gov (United States)

    Biktash, L.

    2007-08-01

    , and the physical processes involved in the solar wind-magnetosphere interaction. Ionosphere effects of the solar wind is much complex. It is very difficult to separate the agents forming ionospheric disturbances during geomagnetic storms. It is considered that the storm wind driven electric fields are responsible for the larger amplitudes and longer lifetimes of the drift perturbations following sudden decreases in convection compared to those associated with sudden convection enhancements. In addition to these reasons we suppose that day-time and night-time equatorial ionosphere have to respond to westward and eastward auroral electrojets and the field-aligned currents by the different way while large-scale internal gravity waves and changes in neutral composition and in neutral wind system have to show the same effect in sign and there are problems to explain positive ionospheric storms. Furthermore, from the presented geomagnetic storms which AU and AL indices have very different amplitudes (nighttime auroral electrojets are much stronger daytime ones AL/AU˜5) and yet it is impossible from models to take account theses effects from termospheric models. It should be noted that amplitudes of AU and AL very variable during different storms, so there are different the IMF Bz and By patterns of auroral electrojets and related the field-aligned currents. Numerical modeling of auroral electrojets during geomagnetic disturbances effects of FAC as well as the polar cap potential drop difference in the auroral electrojet distribution and precipitation of high-energy auroral particles are considered. We suppose to explain of substorm effects in foF2 it is not enough to involve local processes but it is necessary to consider existential distribution of all parameters of near-Earth plasma. In our cases the IMF Bz and Joule heating can show the same effect to decrease of foF2 variations but quick foF2 depression and its correlation the negative the IMF Bz duration seems to show

  5. A modern trans-ionospheric propagation sensing system

    Science.gov (United States)

    Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.

    1989-09-01

    One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.

  6. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  7. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Zhou Peng

    2010-01-01

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  8. The Comprehensive Inner Magnetosphere-Ionosphere Model

    Science.gov (United States)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  9. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  10. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  11. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    International Nuclear Information System (INIS)

    Aburjania, G. D.; Chargazia, Kh. Z.

    2011-01-01

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

  12. St. Patrick's Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    Science.gov (United States)

    García-Rigo, Alberto

    2017-04-01

    clear variations for both global and European scales associated to the event, (6) global maps of inter-frequency phase rate variations as proxy phase scintillation index from 1Hz real-time IGS network (NRCan), (7) manually scaled ionospheric peak parameters from European ionosondes (FUC), (8) NOAA US-Total Electron Content Product (NOAA-USTEC) operational product, which shows the passage of the storm-enhanced density, (9) as well as other products -also from MONITOR ESA/ESTEC-funded project-, such as the Rate of TEC index (ROTI), Single Receiver Medium Scale TIDs index (SRMTID), GNSS Solar Flare Detector (GSFLAD), which is a EUV rate proxy, the Sunlit Ionosphere Sudden TEC Enhancement Detector (SISTED) and the Global Electron Content (GEC) generated from UQRG GIMs (UPC-IonSAT).

  13. Deep inelastic scattering as a probe of new hadronic mass scales

    International Nuclear Information System (INIS)

    Burges, C.J.C.; Schnitzer, H.J.

    1984-01-01

    We present the general form for deep-inelastic cross sections obtained from all SU(3) x SU(2) x U(1) invariant operators of dimension six or less. The operators of dimension six generate corrections to the predictions of the standard model, which serve as a probe of a possible new mass-scale Λ and other new physics. (orig.)

  14. Tsunami in the Ionosphere ? a pinch of gravity with a good plasma sauce !

    Science.gov (United States)

    Occhipinti, Giovanni; Rolland, Ms Lucie; Kherani, Alam; Lognonné, Philippe; Komjathy, Attila; Mannucci, Anthony

    A series of ionospheric anomalies following the Sumatra tsunami has been reported in the scientific literature (e.g., Liu et al. 2006; DasGupta et al. 2006; Occhipinti et al. 2006). Similar anomalies were also observed after the tsunamigenic earthquake in Peru in 2001 (Artru et al., 2005) and after the recent earthquakes in Sumatra and Chile in 2007. All these anomalies show the signature in the ionosphere of tsunami-generated internal gravity waves (IGW) propagating in the neutral atmosphere over oceanic regions. Most of these ionospheric anomalies are deterministic and reproducible by numerical modeling (Occhipinti et al., 2006) via the ocean/neutral atmosphere/ionosphere coupling mechanism. In addition, the numerical modeling supplies useful helps in the estimation of expected anomalies in the global scale to explore the effect of geomagnetic field in the neutral/plasma coupling (Occhipinti et al., 2008). Here we present an overview of the physical coupling mechanism highlighting the strong ampli- fication mechanism of atmospheric IGW; it allows to detect these anomalies when the tsunami is offshore where the see level displacement is still small. This property adds to the increasing coverage of ionospheric sounding measurements, suggests the implication of ionospheric sounding in the future oceanic monitoring and tsunami warning system. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., in press.

  15. 75 FR 60407 - Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale...

    Science.gov (United States)

    2010-09-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale, Long-Term Tracking of Adult White Sharks AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National...

  16. Substorm topology in the ionosphere and magnetosphere during a flux rope event in the magnetotail

    Directory of Open Access Journals (Sweden)

    O. Amm

    2006-03-01

    Full Text Available On 13 August 2002, at ~23:00 UT, about 10 min after a substorm intensification, Cluster observes a flux rope in the central magnetotail, followed by a localised fast flow event about oneminute later. Associated with the flux rope event, a traveling compression region (TCR is seen by those Cluster spacecraft which reside in the lobe. In the conjugate ionospheric region in Northern Scandinavia, the MIRACLE network observes the ionospheric equivalent currents, and the electron densities and electric fields are measured by the EISCAT radar along a meridional scanning profile. Further, the auroral evolution is observed with the Wideband Imaging Camera (WIC on the IMAGE satellite. We compare in detail the substorm evolution as observed in the ionosphere and in the magnetosphere, and examine whether topological correspondences to the flux rope event exist in the ionospheric signatures. The large-scale mapping of both the location and the direction of the flux rope to the ionosphere shows an excellent correspondence to a lens-shaped region of an auroral emission minimum. This region is bracketed by an auroral region equatorward of it which was preexisting to the substorm intensification, and a substorm-related auroral region poleward of it. It is characterised by reduced ionospheric conductances with respect to its environment, and downward field-aligned current (FAC observed both in the magnetosphere and in the ionosphere. As determined from the ionospheric data, this downward FAC area is moving eastward with a speed of ~2 km s-1, in good agreement with the mapped plasma bulk velocity measured at the Cluster satellite closest to that area. Further southwestward to this leading downward FAC area, a trailing upward FAC area is observed that moves eastward with the same speed. The direction of the ionospheric electric field permits a current closure between these two FAC areas through the ionosphere. We speculate that these FAC areas may correspond to

  17. The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian; Wang, Lin; Burns, Gary

    2018-06-01

    Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.

  18. Nonlinear dynamic processes in modified ionospheric plasma

    Science.gov (United States)

    Kochetov, A.; Terina, G.

    Presented work is a contribution to the experimental and theoretical study of nonlinear effects arising on ionospheric plasma under the action of powerful radio emission (G.I. Terina, J. Atm. Terr. Phys., 1995, v.57, p.273; A.V. Kochetov et. al., Advances in Space Research, 2002, in press). The experimental results were obtained by the method of sounding of artificially disturbed ionosphere by short radio pulses. The amplitude and phase characteristics of scattered signal as of "caviton" type (CS) (analogy of narrow-band component of stimulation electromagnetic emission (SEE)) as the main signal (MS) of probing transmitter are considered. The theoretical model is based on numerical solution of driven nonlinear Shrödinger equation (NSE) in inhomogeneous plasma. The simulation allows us to study a self-consistent spatial-temporal dynamics of field and plasma. The observed evolution of phase characteristics of MS and CS qualitatively correspond to the results of numerical simulation and demonstrate the penetration processes of powerful electromagnetic wave in supercritical (in linear approach) plasma regions. The modeling results explain also the periodic generation of CS, the travel CS maximum down to density gradient, the aftereffect of CS. The obtained results show the excitation of strong turbulence and allow us to interpret CS, NC and so far inexplicable phenomena as "spikes" too. The work was supported in part by Russian Foundation for Basic Research (grants Nos. 99-02-16642, 99-02- 16399).

  19. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  20. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    Science.gov (United States)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  1. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  2. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  3. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    Science.gov (United States)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  4. Metrology and ionospheric observation standards

    Science.gov (United States)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  5. A STUDY ON THE KOREAN IONOSPHERIC VARIABILITY

    Directory of Open Access Journals (Sweden)

    Seok-Hee Bae

    1992-06-01

    Full Text Available The ionosphere in accordance with solar activity can affect the transmission of radio waves. The effect of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. The present study is based on the Korean ionospheirc data obtained at the AnYang Radio Research Laboratory from January 1985 through October 1989. The data are analyzed to show the daily and the annual variations of the ionosphere. The data are also used to simulate the density distribution of the Korean ionosphere following the Chapman law.

  6. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  7. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations

    Directory of Open Access Journals (Sweden)

    I. I. Shagimuratov

    Full Text Available TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September, a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.

    Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere

  8. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    Science.gov (United States)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a

  9. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Science.gov (United States)

    Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  10. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Directory of Open Access Journals (Sweden)

    Nicola K Abram

    Full Text Available Reducing Emissions from Deforestation and forest Degradation (REDD+ aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia. Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by

  11. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  12. Predicting ionospheric scintillation: Recent advancements and future challenges

    Science.gov (United States)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  13. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  14. Scaling of heavy ion beam probes for reactor-size devices

    International Nuclear Information System (INIS)

    Hickok, R.L.; Jennings, W.C.; Connor, K.A.; Schoch, P.M.

    1984-01-01

    Heavy ion beam probes for reactor-size plasma devices will require beam energies of approximately 10 MeV. Although accelerator technology appears to be available, beam deflection systems and parallel plate energy analyzers present severe difficulties if existing technology is scaled in a straightforward manner. We propose a different operating mode which will use a fixed beam trajectory and multiple cylindrical energy analyzers. Development effort will still be necessary, but we believe the basic technology is available

  15. The D-Region Ionospheric Response to the 2017 Solar Eclipse

    Science.gov (United States)

    Cohen, M.; McCormick, J.; Gross, N. C.; Higginson-Rollins, M. A.

    2017-12-01

    VLF/LF radio remote sensing (0.5-500 kHz) is an effective means for quantifying the D-region ionosphere (60-90 km altitude). Disturbances in the ionospheric electron density induce changes in the propagation of VLF/LF signals, so a network of transmitters and receivers can effectively "image" a disturbed region. VLF/LF signals can all be detected from 100s-1000s of km away. We utilize Georgia Tech's network of highly-sensitive VLF/LF receivers to quantify the lower ionospheric response to the "Great American Eclipse". Nine of these were deployed and operational across the Continental US, Alaska and Puerto Rico all operated successfully. Each receiver synchronously recorded the full radio spectrum between 0.5-470 kHz. The included figure shows the eclipse track at 80 km altitude with a green swath. The nine operational receivers are shown with blue stars, and operational VLF/LF transmitters in dark red. Gray lines are shown for each great-circle path linking a VLF/LF transmitter to a receiver. This constellation forms a dense spider's-web grid of radio links, with which we can effectively image the disturbed patch of the D-region ionosphere as it moves across the country. In addition, shown in yellow are NDGPS transmitters which lie between 285-325 kHz. The red dots are the 230,000 geolocated lightning strokes during the 90-mintue eclipse pass, each of which emitted an intense VLF/LF impulse. These are also detected by our receivers. We present our observations and comparison with a theoretical model, using a combination of three techniques established by a series of three 2017 journal papers: (1) Polarization measurements of VLF/LF transmitter signals, (2) Lightning-generated VLF sferics detected 1000s of km away, and (3) NDGPS beacons near 300 kHz for shorter-range sounding of a small patch of the ionosphere. We find evidence of large scale ionospheric changes which affect the D-region over the entire continental region with a slowly-varying signal perturbation

  16. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The International Reference Ionosphere: Model Update 2016

    Science.gov (United States)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  18. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    Science.gov (United States)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  19. Ionospheric disturbances generated by different natural processes and by human activity in Earth plasma environment

    Directory of Open Access Journals (Sweden)

    J. Blecki

    2004-06-01

    Full Text Available The magnetosphere-ionosphere-thermosphere subsystem is strongly coupled via the electric field, particle precipitation, heat flows and small scale interaction. Satellites in situ measurements and ground based complex diagnostics can provide comprehensive coverage of both time and geomagnetic place effects. Human activity also can perturb Earth s environment, but few are connected with controlled experiments in the ionosphere and are transient. Most of them are related to industrial activity and have increased in recent years. The most important power sources are broadcasting transmitters, power stations, power lines and heavy industry. At ionospheric altitude some disturbances and physical processes are related to seismic activity, thunderstorm activity and some global changes in the Earth environment such as ozone holes. Various natural and artificial indicators can affect satellite telecommunication quality. The aim of this presentation is to report progress in understanding the physical processes in the ionosphere described above and to assess the application of these considerations to the study of plasma effects on Earth-space and satellite-to-satellite communication.

  20. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

    Science.gov (United States)

    Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone

    2016-01-01

    Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...

  1. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  2. Excitation of twin-vortex flow in the nightside high-latitude ionosphere during an isolated substorm

    Directory of Open Access Journals (Sweden)

    A. Grocott

    Full Text Available We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  3. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  4. A review of ionospheric effects on Earth-space propagation

    Science.gov (United States)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  5. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    Science.gov (United States)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    population of super-thermal ionospheric ions with a density of about 2-3% of the thermal ion population. The super- thermal ions appeared to be heated to temperatures of a few eV at times when LH turbulence and monochromatic wave packets are observed while the temperature of the core ion population is not affected. High time resolution plasma density measurements show the presence of strong small scale plasma irregularities in the depletions that scatter the high amplitude whistler waves and may lead to the development of strong LH turbulence and of monochromatic wave packets. The ensuing interaction between these waves and the ambient ions may lead to the formation of a super-thermal tail in the ion distribution function. Ion acceleration by LH turbulence and solitary waves is a commonly observed phenomenon along auroral magnetic field lines but, to our knowledge, this is the first time that a similar process has been observed in the equatorial ionosphere. These findings exemplify a novel coupling mechanism between the troposphere and the ionosphere: Under highly disturbed conditions at times of magnetic storms, part of the energy released by lightning and radiated as whistlers can dissipate in the equatorial ionosphere and produce super-thermal ion populations.

  6. Observations of 50/60 Hz Power Line Radiation in the Low Latitude Ionosphere Detected by the Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Simoes, F. A.; Liebrecht, M. C.; Farrell, W.

    2017-12-01

    One of the most ubiquitous forms of EM radiation emanating from the earth's surface is that of power line radiation. Associated with AC electric power generation, such emissions are typically launched along conducting power lines that may travel hundreds, or even thousands of km, from generating stations. The fundamental frequencies of such emissions are characteristically 50 Hz or 60 Hz, depending on the regional standards for power generation/consumption. The frequency of this radiation is well below that of the plasma frequency of the ionosphere (typically several MHz) and hence is expected to reflect back to the earth and propagate in the waveguide formed by the earth's surface and the bottom ledge of the ionosphere, typically near 100 km. Given that such power lines are widespread on the exposed lithosphere, the leakage of some ELF emissions associated with electric power generation might nevertheless be expected in the ionosphere, in the same manner in which a small fraction of the power associated with ELF Schumann resonances and lightning sferics have been shown to penetrate into the ionosphere. We present direct measurements of 50/60 Hz power line radiation detected by in situ probes on an orbiting satellite in the earth's ionosphere. The data were gathered by the Vector Electric Field Investigation (VEFI) tri-axial double probe detector flown on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS was launched in April, 2008 into a low latitude (13 deg inclination) orbit with perigee and apogee of 400 km and 850 km, respectively. The electric field wave data were gathered by ELF receivers comprised of two orthogonal broadband channels sampled at 512 s/sec each, and digitized with 16 bit A/D converters. The data show distinct 60 Hz emissions while the satellite sampled within the Brazilian sector whereas distinct 50 Hz emissions were detected over India. Other, less distinct, emissions were observed over Africa and southeast Asia

  7. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  8. Using DORIS measurements for ionosphere modeling

    Science.gov (United States)

    Dettmering, Denise; Schmidt, Michael; Limberger, Marco

    2013-04-01

    Nowadays, most of the ionosphere models used in geodesy are based on terrestrial GNSS measurements and describe the Vertical Total Electron Content (VTEC) depending on longitude, latitude, and time. Since modeling the height distribution of the electrons is difficult due to the measurement geometry, the VTEC maps are based on the the assumption of a single-layer ionosphere. Moreover, the accuracy of the VTEC maps is different for different regions of the Earth, because the GNSS stations are unevenly distributed over the globe and some regions (especially the ocean areas) are not very well covered by observations. To overcome the unsatisfying measurement geometry of the terrestrial GNSS measurements and to take advantage of the different sensitivities of other space-geodetic observation techniques, we work on the development of multi-dimensional models of the ionosphere from the combination of modern space-geodetic satellite techniques. Our approach consists of a given background model and an unknown correction part expanded in terms of B-spline functions. Different space-geodetic measurements are used to estimate the unknown model coefficients. In order to take into account the different accuracy levels of the observations, a Variance Component Estimation (VCE) is applied. We already have proven the usefulness of radio occultation data from space-borne GPS receivers and of two-frequency altimetry data. Currently, we test the capability of DORIS observations to derive ionospheric parameters such as VTEC. Although DORIS was primarily designed for precise orbit computation of satellites, it can be used as a tool to study the Earth's ionosphere. The DORIS ground beacons are almost globally distributed and the system is on board of various Low Earth Orbiters (LEO) with different orbit heights, such as Jason-2, Cryosat-2, and HY-2. The last generation of DORIS receivers directly provides phase measurements on two frequencies. In this contribution, we test the DORIS

  9. An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements

    Science.gov (United States)

    Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing

    2017-10-01

    In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.

  10. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    Science.gov (United States)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; hide

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  11. Impulsive Alfven coupling between the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.

    1994-04-01

    Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)

  12. Wide-field LOFAR-LBA power-spectra analyses: Impact of calibration, polarization leakage and ionosphere

    Science.gov (United States)

    Gehlot, Bharat K.; Koopmans, Léon V. E.

    2018-05-01

    Contamination due to foregrounds, calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a study of a field centered on 3C196 using LOFAR Low Band observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon. We show that this structure arises due to strong instrumental polarization leakage (~30%) towards Cas A which is far away from primary field of view. We measure a small ionospheric diffractive scale towards CasA resembling pure Kolmogorov turbulence. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations.

  13. Characteristics of low latitude ionospheric E-region irregularities ...

    Indian Academy of Sciences (India)

    154°E, dip angle = 37.3°, sub-ionospheric dip = 34°) have been analyzed to study the behaviour of ionospheric E-region irregularities during the active solar and magnetic periods. The autocorrelation functions, power spectral densities, signal de-correlation times are computed to study the temporal features of ionospheric ...

  14. Inverse problem of radiofrequency sounding of ionosphere

    Science.gov (United States)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  15. Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Directory of Open Access Journals (Sweden)

    Y. Hobara

    2005-06-01

    Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with αN=2.2±0.3 and αE=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval αE=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.

  16. Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Directory of Open Access Journals (Sweden)

    Y. Hobara

    2005-06-01

    Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k-α, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with αN=2.2±0.3 and αE=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval αE=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.

  17. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    NARCIS (Netherlands)

    Yoon, I.K.; Getis, A.; Aldstadt, J.; Rothman, A.L.; Tannitisupawong, D.; Koenraadt, C.J.M.; Fansiri, T.; Jones, J.W.; Morrison, A.C.; Jarman, R.G.; Nisalak, A.; Mammen Jr., M.P.; Thammapalo, S.; Srikiatkhachorn, A.; Green, S.; Libraty, D.H.; Gibbons, R.V.; Endy, T.; Pimgate, C.; Scott, T.W.

    2012-01-01

    Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that

  18. Upgrades to the Mars Initial Reference Ionosphere (MIRI) Model Due to Observations from MAVEN, MEX and MRO.

    Science.gov (United States)

    Narvaez, C.; Mendillo, M.; Trovato, J.

    2017-12-01

    A semi-empirical model of the maximum electron density (Nmax) of the martian ionosphere [MIRI-mark-1](1) was derived from an initial set radar observations by the MEX/MARSIS instrument. To extend the model to full electron density profiles, normalized shapes of Ne(h) from a theoretical model(2) were calibrated by MIRI's Nmax. Subsequent topside ionosphere observations from MAVEN indicated that topside shapes from MEX/MARSIS(3) offered improved morphology. The MEX topside shapes were then merged to the bottomside shapes from the theoretical model. Using a larger set of MEX/MARSIS observations (07/31/2005 - 05/24/2015), a new specification of Nmax as a function of solar zenith angle and solar flux is now used to calibrate the normalized Ne(h) profiles. The MIRI-mark-2 model includes the integral with height of Ne(h) to form total electron content (TEC) values. Validation of the MIRI TEC was accomplished using an independent set of TEC derived from the SHARAD(4) experiment on MRO. (1) M. Mendillo, A. Marusiak, P. Withers, D. Morgan and D. Gurnett, A New Semi-empirical Model of the Peak Electron Density of the Martian Ionosphere, Geophysical Research Letters, 40, 1-5, doi:10.1002/2013GL057631, 2013. (2) Mayyasi, M. and M. Mendillo (2015), Why the Viking descent probes found only one ionospheric layer at Mars, Geophys. Res. Lett., 42, 7359-7365, doi:10.1002/2015GL065575 (3) Němec, F., D. Morgan, D. Gurnett, and D. Andrews (2016), Empirical model of the Martian dayside ionosphere: Effects of crustal magnetic fields and solar ionizing flux at higher altitudes, J. Geophys. Res. Space Physics, 121, 1760-1771, doi:10.1002/2015/A022060.(4) Campbell, B., and T. Watters (2016), Phase compensation of MARSIS subsurface sounding and estimation of ionospheric properties: New insights from SHARAD results, J.Geophys. Res. Planets, 121, 180-193, doi:10.1002/2015JE004917.

  19. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  20. Ionospheric Modeling for Precise GNSS Applications

    NARCIS (Netherlands)

    Memarzadeh, Y.

    2009-01-01

    The main objective of this thesis is to develop a procedure for modeling and predicting ionospheric Total Electron Content (TEC) for high precision differential GNSS applications. As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure it is necessary to transfer

  1. Magnetosphere-ionosphere coupling during periods of extended high auroral activity: a case study

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2008-03-01

    Full Text Available Results are presented from a case study of a plasma boundary crossing by the Cluster spacecraft during an extended period of high auroral activity. The boundary between the magnetotail lobe region of the Southern Hemisphere and the plasma sheet boundary layer, was characterized by intense electric and magnetic field variations, structured upward accelerated ion beams, narrow-scale large field-aligned Poynting fluxes directed upward away from the ionosphere, and a relatively sharp plasma density gradient. The observations are shown to be consistent with the concept of a multi-layered boundary with temporal and/or spatial variations in the different layers. H+ and O+ ion beams are seen to be accelerated upwards both by means of a field-aligned electric field and by magnetic pumping caused by large-amplitude and low-frequency electric field fluctuations. The peak energy of the ion beams may here be used as a diagnostic tool for the temporal evolution of the spatial structures, since the temporal changes occur on a time-scale shorter than the times-of-flight of the detected ion species. The case study also shows the boundary region to be mainly characterized by a coupling of the detected potential structures to the low ionosphere during the extended period of high auroral activity, as indicated by the intense field-aligned Poynting fluxes directed upward away from the ionosphere.

  2. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.

    1982-07-01

    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  3. Ionospheric error analysis in gps measurements

    Directory of Open Access Journals (Sweden)

    G. Pugliano

    2008-06-01

    Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

  4. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  5. A study of the ionospheric signature of ion supply from the ionosphere to the magnetosphere

    International Nuclear Information System (INIS)

    Loranc, M.A.P.

    1988-01-01

    Recent studies have demonstrated the importance of the ionosphere as a source of magnetospheric plasma; in particular, the observations of upwelling ions (UWI) by the DE-1 Retarding Ion Mass Spectrometer have illustrated the significance of low-energy ion supply to the magnetosphere. The composition of the UWI implies an ionospheric source, and the Dynamics Explorer dual satellite mission provides an opportunity to search for the ionospheric signature of UWI. Magnetometer data from both satellites are used to determine magnetic conjunctions of the satellites; these conjunctions are searched for correlated observations of UWI and upward flowing thermal ion (UFI) events. Four cases of correlated observations are presented as proof of that the UFI are indeed the ionospheric signature of UWI; it is found from these examples that the event are associated with intense field-aligned currents at both satellites and with anti-sunward convection, enhanced fluxes of low-energy precipitating electrons from the boundary plasma sheet, and upward thermal ion fluxes in excess of 10 9 cm -2 s -1 at DE-2. While USI are primarily a dayside phenomena, UFI are found in all local time sectors sampled by DE-2

  6. The mid-latitude ionosphere under quiet geomagnetic conditions: propagation analysis of SuperDARN radar observations from large ionospheric perturbations

    OpenAIRE

    De Larquier, Sebastien

    2013-01-01

    The Earth's ionosphere is a dynamic environment strongly coupled to the neutral atmosphere, magnetosphere and solar activity. In the context of this research, we restrict our interest to the mid-latitude (a.k.a., sub-auroral) ionosphere during quiet geomagnetic conditions. The Super Dual Auroral Radar Network (SuperDARN) is composed of more than 30 low-power High Frequency (HF, from 8-18 MHz) Doppler radars covering the sub-auroral, auroral and polar ionosphere in both hemispheres. SuperDARN ...

  7. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  8. Ionosphere research with a HF/MF cubesat radio instrument

    Science.gov (United States)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  9. Improving Discoverability Between the Magnetosphere and Ionosphere/Thermosphere Domains

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2016-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field

  10. Simulation and Observation of Acoustic-Gravity Waves in the Ionosphere

    Science.gov (United States)

    Kunitsyn, Viacheslav; Andreeva, Elena; Krysanov, Boris; Nesterov, Ivan

    Atmospheric and ionospheric perturbations associated with the acoustic-gravity waves (AGW) with typical frequencies of a few hertz -millihertz are considered. These events may be caused by the influence from space and atmosphere as well as by oscillations of the Earth surface and other near-surface phenomena. The surface sources include long-period oscillations of the Earth's surface, earthquakes, explosions, thermal heating, seisches and tsunami waves. The wavelike phenomena manifest themself as travelling disturbances of air (in the atmosphere) and of electron density (in the ionosphere). Travelling ionospheric disturbances (TIDs) are well detected by radio physical methods. AGW generation by near-surface sources is modeled by the numerical solution of the equation of geophysical fluid dynamics for different sources in two-dimensional non-linear dissipative compressible atmosphere. The numerical calculations are based on the FCT (Flux Corrected Transport) technique of the second order accuracy in time and space. Different scenarios of AGW generation are analyzed. The AGW caused by the surface sources within a few hertz-millihertz frequency band appear at the altitudes of middle atmosphere and ionosphere as the disturbances with typical scales from a few kilometers to several hundreds kilometers. Such structures can be successfully monitored by the methods of satellite radio tomography (RT). For the purposes of RT diagnostics of such disturbances, low-orbiting navigational satellites like Transit and Tsikada and high-orbiting navigation systems GPS/GLONASS are used. The results of numerical modeling of AGW generation by the surface sources are compared with the data of RT sounding. Also, generation of AGW by volumetric sources such as particle precipitation, rocket launching, heating by high-frequency radiation and other are considered. The obtained results proved the capability of RT methods of detecting and distinguishing between TIDs caused by AGW generated by

  11. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  12. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  13. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  14. Space-polarization Collaborative Suppression Method for Ionospheric Clutter in HFSWR

    Directory of Open Access Journals (Sweden)

    Yang Yunlong

    2016-12-01

    Full Text Available High Frequency Surface Wave Radar (HFSWR is able to receive surface target and low-flying aircraft echoes at a long-distance, but it suffers severely from ionospheric clutter. In this paper, a spacepolarization collaborative-based filter is introduced to mitigate ionospheric clutter. For parameter estimation on ionospheric clutter used for filters, a spatial parameter estimation algorithm based on compressive sensing is introduced to the DOA estimation of ionospheric clutter. In addition, a polarized parameter estimation algorithm based on statistical characteristics is proposed for ionospheric clutter in the range-Doppler spectrum. Higher estimation accuracy is achieved as a result of the range-Doppler spectrum; therefore, these two estimation algorithms enhance the performance of the space-polarization collaborative suppression method for ionospheric clutter. Experimental results of practical dual-polarized HFSWR data show the effectiveness of the two algorithms and the above mentioned filter for ionospheric clutter suppression.

  15. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  16. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Directory of Open Access Journals (Sweden)

    Kihal-Talantikite Wahida

    2016-03-01

    Full Text Available Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs.

  17. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Science.gov (United States)

    Wahida, Kihal-Talantikite; Padilla, Cindy M.; Denis, Zmirou-Navier; Olivier, Blanchard; Géraldine, Le Nir; Philippe, Quenel; Séverine, Deguen

    2016-01-01

    Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i) retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii) a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs. PMID:26999170

  18. Landscape-Level and Fine-Scale Genetic Structure of the Neo tropical Tree Protium spruceanum (Burseraceae)

    International Nuclear Information System (INIS)

    Vieira, F.D.A.; Fajardo, C.G.; De Souza, A.M.; Dulciniea De Carvalho, D.

    2010-01-01

    Knowledge of genetic structure at different scales and correlation with the current landscape is fundamental for evaluating the importance of evolutionary processes and identifying conservation units. Here, we used allozyme loci to examine the spatial genetic structure (SGS) of 230 individuals of Protium spruceanum, a native canopy-emergent in five fragments of Brazilian Atlantic forest (1 to 11.8 ha), and four ecological corridors (460 to 1000 m length). Wright's FST statistic and Mantel tests revealed little evidence of significant genetic structure at the landscape-scale (FST=0.027; rM=-0.051, P=.539). At fine-scale SGS, low levels of relatedness within fragments and corridors (Sp=0.008, P>.05) were observed. Differences in the levels and distribution of the SGS at both spatial scales are discussed in relation to biological and conservation strategies of corridors and forest fragments.

  19. Plasma instabilities in the ionosphere at the crest of anomaly region

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Shivalika, E-mail: shivalikasarkar@gmail.com [Department of Education in Science and Mathematics, Regional Institute of Education, Bhopal – 462013 (India); Tiwari, Sunita, E-mail: suni-tiwari@yahoo.co.in [LNCT, Kalchuri Nagar, Raisen Road, Bhopal (India); Gwal, A. K., E-mail: ashok.gwal@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2015-07-31

    Comparison of the in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal [geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29° N, 151.12°E)] for the low solar activity year, 2005, are presented in this paper. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. It is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during descending low solar activity period.

  20. Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa

    Directory of Open Access Journals (Sweden)

    Valérie Bonnardot

    2012-03-01

    Significance and impact of the study: In the context of climate change, it is crucial to improve knowledge of current climatic conditions at fine scale during periods of grapevine growth and berry ripening in order to have a baseline from which to work when discussing and considering future local adaptations to accommodate to a warmer environnement.

  1. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay,

  2. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  4. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  5. Ionospheric Impacts on UHF Space Surveillance

    Science.gov (United States)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  6. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  7. Modeling ionospheric foF2 by using empirical orthogonal function analysis

    Directory of Open Access Journals (Sweden)

    E. A

    2011-08-01

    Full Text Available A similar-parameters interpolation method and an empirical orthogonal function analysis are used to construct empirical models for the ionospheric foF2 by using the observational data from three ground-based ionosonde stations in Japan which are Wakkanai (Geographic 45.4° N, 141.7° E, Kokubunji (Geographic 35.7° N, 140.1° E and Yamagawa (Geographic 31.2° N, 130.6° E during the years of 1971–1987. The impact of different drivers towards ionospheric foF2 can be well indicated by choosing appropriate proxies. It is shown that the missing data of original foF2 can be optimal refilled using similar-parameters method. The characteristics of base functions and associated coefficients of EOF model are analyzed. The diurnal variation of base functions can reflect the essential nature of ionospheric foF2 while the coefficients represent the long-term alteration tendency. The 1st order EOF coefficient A1 can reflect the feature of the components with solar cycle variation. A1 also contains an evident semi-annual variation component as well as a relatively weak annual fluctuation component. Both of which are not so obvious as the solar cycle variation. The 2nd order coefficient A2 contains mainly annual variation components. The 3rd order coefficient A3 and 4th order coefficient A4 contain both annual and semi-annual variation components. The seasonal variation, solar rotation oscillation and the small-scale irregularities are also included in the 4th order coefficient A4. The amplitude range and developing tendency of all these coefficients depend on the level of solar activity and geomagnetic activity. The reliability and validity of EOF model are verified by comparison with observational data and with International Reference Ionosphere (IRI. The agreement between observations and EOF model is quite well, indicating that the EOF model can reflect the major changes and the temporal distribution characteristics of the mid-latitude ionosphere of the

  8. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

    Science.gov (United States)

    Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying

    2018-04-01

    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to

  9. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  10. Operation of a quadripole probe on magnetospheric satellite (GEOS experiment). Contribution to cold plasma behaviour study near equatorial plasma pause

    International Nuclear Information System (INIS)

    Decreau-Prior, P.

    1983-06-01

    This thesis is concerned with the exploitation of GEOS Satellite RF quadripole probe measurements, GEOS satellites have explored magnetosphere on the geostationary orbit and around it. Results a low to qualify the instrument in magnetospheric plasma (previously, it had been used only in ionosphere). Furthermore existence, outside the outer plasmasphere, of a cold population (from 0,4 to 8 eV) with medium density (from 2 to 50 particles cm -3 ) is shown. This population had been ignored until then, by in situ particle measure experiment. So, new perspectives on coupling nature of the explored region with ionosphere, and with plasma sheet, more particularly because the temperature measured at the equator is on an average, clearly higher than in high ionosphere the principal source of magnetospheric cold plasma [fr

  11. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  12. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  13. Low-latitude ionospheric disturbances associated with earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Depueva, A.; Rotanova, N. [Russian Academy of Sciences, Inst. of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow (Russian Federation)

    2001-04-01

    Topside electron density measured on satellite board was analysed. It was shown that before the two considered earthquakes with their epicenters located at low and equatorial latitudes the stable modification of the ionosphere both at and above the height of the F-layer peak was observed. Electron density gradually decreased and its spatial distribution looked like a funnel located either immediately over the epicenter or from its one side. Electron density irregularities of 300-500 km size in a meridional direction also occurred side by side with aforesaid background large-scale depletions. For detection of local structures of more than 1000 km extent, the method of natural orthogonal component expansion was applied; spectra of smaller scale inhomogeneities were investigated by means of the Blackman-Tukey method. A proposal is made for observed experimental data interpretation.

  14. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    Science.gov (United States)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  15. Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2005-03-01

    Full Text Available The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP, TOPographic EXplorer (TOPEX, and solar wind data from the Advanced Composition Explorer (ACE. A chain of Global Positioning System (GPS stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs. The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.

  16. Magnetosphere-ionosphere coupling during periods of extended high auroral activity: a case study

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2008-03-01

    Full Text Available Results are presented from a case study of a plasma boundary crossing by the Cluster spacecraft during an extended period of high auroral activity. The boundary between the magnetotail lobe region of the Southern Hemisphere and the plasma sheet boundary layer, was characterized by intense electric and magnetic field variations, structured upward accelerated ion beams, narrow-scale large field-aligned Poynting fluxes directed upward away from the ionosphere, and a relatively sharp plasma density gradient.

    The observations are shown to be consistent with the concept of a multi-layered boundary with temporal and/or spatial variations in the different layers. H+ and O+ ion beams are seen to be accelerated upwards both by means of a field-aligned electric field and by magnetic pumping caused by large-amplitude and low-frequency electric field fluctuations. The peak energy of the ion beams may here be used as a diagnostic tool for the temporal evolution of the spatial structures, since the temporal changes occur on a time-scale shorter than the times-of-flight of the detected ion species.

    The case study also shows the boundary region to be mainly characterized by a coupling of the detected potential structures to the low ionosphere during the extended period of high auroral activity, as indicated by the intense field-aligned Poynting fluxes directed upward away from the ionosphere.

  17. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    Science.gov (United States)

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  18. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    Science.gov (United States)

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  19. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    Science.gov (United States)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  20. Ionospheric effects of rocket exhaust products: Skylab and HEAO-C

    International Nuclear Information System (INIS)

    Zinn, J.; Sutherland, C.D.; Duncan, L.M.; Stone, S.N.

    1981-01-01

    This paper is about ionospheric F-layer depletions produced by chemical reactions with exhaust gases from large rockets. It describes a 2-dimensional computer model of the ionosphere, and it compares model results with experimental data on the structure and variability of the natural ionosphere, as well as data on ionospheric holes produced by the launches of Skylab (May, 1973) and HEAO-C (September, 1979). It also describes measurements made in conjunction with the HEAO-C launch. The computer model includes an approximate representation of thermospheric tidal winds and E fields in addition to vertical motions associated with diurnal changes in temperature. The computed ionospheric structure is sensitive to all the above. For a small number of cases, results are compared of computations of the normal diurnal variations of ionospheric structure with incoherent scatter and total electron content data. Computations of ionospheric depletions from the Skylab and HEAO-C launches are in satisfactory agreement with the observations. The winds appear to be essential for interpretation of the Skylab results

  1. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003

    Czech Academy of Sciences Publication Activity Database

    Borries, C.; Jakowski, N.; Kauristie, K.; Amm, O.; Mielich, J.; Kouba, Daniel

    2017-01-01

    Roč. 122, č. 1 (2017), s. 1199-1211 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GA15-24688S Institutional support: RVO:68378289 Keywords : heating * ionosphere * storm * TEC * TID Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA023050/epdf

  2. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    Science.gov (United States)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  3. LIFDAR: A Diagnostic Tool for the Ionosphere

    Science.gov (United States)

    Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.

    2011-12-01

    ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.

  4. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  5. Double-layer model of the venus night-side ionosphere formation from the radio occultation data

    International Nuclear Information System (INIS)

    Osmolovskij, I.K.; Savich, N.A.; Samoznaev, L.N.

    1984-01-01

    The results of the radio occultation experiments performed with the Venera space probes - 9, 10(1975) and Pioneer - Venus satellite (1978) have shown that in most of the cases the electron concentration distribution in the Venus night-side ionosphere in the low solar activity years has two maxima (double-layer profile) whereas in the high activity years - one maximum. The two-component (O + and O 2 + ) diffusion model is suggested that describes naturally the formation of one or two maxima depending on physical conditions in the Venus upper atmosphere. At initial hypothesis accepted is the well-known hypothesis of the night-side ionosphere formation for account of the O + plasma overflow from the day side to the night one. The main idea of the study consists in finding conditions when the upper maximum formed in the O + ion downward current is spaced by height at a certain distance from the lower current caused by the O 2 + ions being formed as a result of O + ion chemical reactions with CO 2 molecules

  6. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  7. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  8. Ionospheric/protonospheric electron content studies using ATS-6

    International Nuclear Information System (INIS)

    Hajeb-Hosseinieh, H.; Kersley, L.; Edwards, K.J.

    1978-01-01

    Measurements of ionospheric and protonospheric contents obtained at Aberystwyth from observations of the ATS-6 satellite radio beacon are reported. The monthly median diurnal behavior shows protonospheric contributions of approximately 15 to 20% to the total content along the ray path by day, rising to a predawn maximum of 35% in summer and more than 40% in winter. The protonospheric results are shown to be typical of those expected from other European stations and differences from earlier American measurements are explained in terms of ionospheric interactions in the conjugate hemisphere. The temporal gradients of protonospheric content provide information on the net integrated ionospheric/protonospheric plasma fluxes and the results obtained indicate the importance of plasma exchange with both local and conjugate ionospheres

  9. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2003-08-01

    Full Text Available We calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn’s ionosphere by partial corotation of the magnetospheric plasma. The calculation incorporates the flattened figure of the planet, a model of Saturn’s magnetic field derived from spacecraft flyby data, and angular velocity models derived from Voyager plasma data. We also employ an effective height-integrated ionospheric Pedersen conductivity of 1 mho, suggested by a related analysis of Voyager magnetic field data. The Voyager plasma data suggest that on the largest spatial scales, the plasma angular velocity declines from near-rigid corotation with the planet in the inner magnetosphere, to values of about half of rigid corotation at the outer boundary of the region considered. The latter extends to ~ 15–20 Saturn radii (RS in the equatorial plane, mapping along magnetic field lines to ~ 15° co-latitude in the ionosphere. We find in this case that the ionospheric Pedersen current peaks near the poleward (outer boundary of this region, and falls toward zero over ~ 5°–10° equator-ward of the boundary as the plasma approaches rigid corotation. The peak current near the poleward boundary, integrated in azimuth, is ~ 6 MA. The field-aligned current required for continuity is directed out of the ionosphere into the magnetosphere essentially throughout the region, with the current density peaking at ~ 10 nA m-2 at ~ 20° co-latitude. We estimate that such current densities are well below the limit requiring field-aligned acceleration of magnetospheric electrons in Saturn’s environment ( ~ 70 nAm-2, so that no significant auroral features associated with this ring of upward current is anticipated. The observed ultraviolet auroras at Saturn are also found to occur significantly closer to the pole (at ~ 10°–15° co-latitude, and show considerable temporal and local time variability, contrary to expectations for corotation

  10. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  11. Means to remove electrode contamination effect of Langmuir probe measurement in space

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z. [Plasma and Space Science Center, National Cheng Kung University, No.1 Ta-Hsueh Rd., Tainan 70101, Taiwan (China)

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  12. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  13. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers.

    Science.gov (United States)

    Shaw, Robyn E; Banks, Sam C; Peakall, Rod

    2018-01-01

    For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.

  14. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  15. Neutrino mass as the probe of intermediate mass scales

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double β decay, where observation would provide a crucial test of the model, and rare muon decays such as μ → eγ and μ → ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures

  16. Neutrino mass as the probe of intermediate mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  17. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2017-02-01

    Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the

  18. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  19. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  20. How does the predicted geomagnetic main field variation alter the thermosphere-ionosphere storm-time response?

    Science.gov (United States)

    Maute, A. I.; Lu, G.; Richmond, A. D.

    2017-12-01

    Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with

  1. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins...... even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...

  2. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  3. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    Science.gov (United States)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  4. Electron Energetics in the Martian Dayside Ionosphere: Model Comparisons with MAVEN Data

    Science.gov (United States)

    Sakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Epavier, Francis G.; hide

    2016-01-01

    This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O2(+) dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.

  5. Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes

    Science.gov (United States)

    Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.

    2017-12-01

    Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.

  6. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  7. Modeling the Ionosphere with GPS and Rotation Measure Observations

    Science.gov (United States)

    Malins, J. B.; Taylor, G. B.; White, S. M.; Dowell, J.

    2017-12-01

    Advances in digital processing have created new tools for looking at and examining the ionosphere. We have combined data from dual frequency GPSs, digital ionosondes and observations from The Long Wavelength Array (LWA), a 256 dipole low frequency radio telescope situated in central New Mexico in order to examine ionospheric profiles. By studying polarized pulsars, the LWA is able to very accurately determine the Faraday rotation caused by the ionosphere. By combining this data with the international geomagnetic reference field, the LWA can evaluate ionospheric profiles and how well they predict the actual Faraday rotation. Dual frequency GPS measurements of total electron content, as well as measurements from digisonde data were used to model the ionosphere, and to predict the Faraday rotation to with in 0.1 rad/m2. Additionally, it was discovered that the predicted topside profile of the digisonde data did not accurate predict faraday rotation measurements, suggesting a need to reexamine the methods for creating the topside predicted profile. I will discuss the methods used to measure rotation measure and ionosphere profiles as well as discuss possible corrections to the topside model.

  8. Thermospheric/ionospheric disturbances under quiet and magneto-perturbed conditions

    Science.gov (United States)

    Zakharov, Ivan G.; Mozgovaya, O. L.

    2003-04-01

    The basic mechanisms of ionospheric storms (IS) are investigated sufficiently full. Despite of it a quantitative forecast of ionospheric disturbance is not always satisfactory. One of the possible causes can be related to the insufficient account of a background ionospheric. In particualr using electron concentration Ne in the peak of F2-region and total electron content are shown, that the amplitude of a IS positive phase for similar magnetic storms can differ by ~1,5 times. Hence a cause of distinction can be variations in the thermosphere conditions, not reflected by known activity indices. For further research we used the incoherent scatter radar data of the Institute of ionosphere in height range 200-1000 km in the very quiet periods coming to the geomagnetic disturbance. A steady periodic disturbance in Ne during quiet conditions in all heights is established, which can be identified as tidal moda m=6. The amplitude of wave is ~15%, the phase changes with a height. The storm onset leads to an increase of the amplitudes approximately twice without a change in the phase. An ionospheric disturbance in very quiet conditions can lead to additional complicating an ionosphere reaction to magnetic storm.

  9. Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum - Magnetic quiet and disturbed conditions

    Science.gov (United States)

    Muella, M. T. A. H.; de Paula, E. R.; Kantor, I. J.; Rezende, L. F. C.; Smorigo, P. F.

    2009-06-01

    A statistical study of L-band amplitude scintillations and zonal drift velocity of Fresnel-scale ionospheric irregularities is presented. Ground-based global positioning system (GPS) data acquired at the equatorial station of São Luís (2.33°S, 44.21°W, dip latitude 1.3°S), Brazil, during the solar maximum period from March 2001 to February 2002 are used in the analysis. The variation of scintillations and irregularity drift velocities with local time, season and magnetic activity are reported. The results reveal that for the near overhead ionosphere (satellite elevation angle >45°) a broad maximum in the occurrence of scintillation is seen from October to February. In general, weak scintillations (S 4 90%) during equinox (March-April; September-October) and December solstice (November-February) quiet time conditions and, many of the scintillations, occurred during pre-midnight hours. The mean zonal velocities of the irregularities are seen to be ˜30 m s -1 larger near December solstice, while during the equinoctial period the velocities decay faster and the scintillations tend to cease earlier. On geomagnetically disturbed nights, scintillation activity seems to be strongly affected by the prompt penetration of magnetospheric electric fields and disturbance dynamo effects. On disturbed days, during the equinox and December solstice seasons, the scintillations tend to be suppressed in the pre-midnight hours, whereas during June solstice months (May-August) the effect is opposite. In the post-midnight period, the mostly marked increase in the scintillation occurrence is observed during the equinox months. The results show that during disturbed conditions only one type of storm (when the main phase maximum takes place during the daytime hours) agrees with the Aarons' description, that is the suppression of L-band scintillations in the first recovery phase night. The results also reveal that the storm-time irregularity drifts become more spread in velocity and

  10. Evaluation of Inversion Methods Applied to Ionospheric ro Observations

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia

    The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.

  11. Field-aligned flows of H+ and He+ in the mid-latitude topside ionosphere at solar maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.; Sellek, R.

    1992-01-01

    A time-dependent mathematical model of the Earth's ionosphere and plasmasphere has been used to investigate the field-aligned flows of H + and He + in the topside ionosphere at L = 3 during solar maximum. When the flux-tube content is low there are upward flows of H + and He + during daytime in both the winter and summer topside ionospheres. During winter night-time the directions of flow are, in general, downwards for He + , because of the night-time decrease in He + scale height, and upwards for H + , because of the replenishment needs of the flux tube. In the winter topside ionosphere, during the later stages of flux-tube replenishment, H + generally flows downwards during both day and night as a result of the greater plasma pressure in the summer hemisphere whilst He + flows upwards during the day and downwards at night. In the summer topside ionosphere H + flows upward to replace the H + lost from the plasmasphere to the winter topside ionosphere whilst the winter helium bulge leads to flows of He + that are in the direction winter hemisphere to summer hemisphere. When the flux-tube content is low, counterstreaming of H + and He + , with H + flowing upwards and He + downwards, occurs for most of the day above about 5000 km altitude in the summer hemisphere. There are occurrences of this type of counterstreaming in both the summer and winter hemispheres during the night. When the flux-tube content is high, counterstreaming of H + and He + occurs less frequently and over smaller regions of the flux tube. There are regions in both hemispheres where H + flows downwards whilst He + flows upwards. (Author)

  12. Variations of the ionospheric electron density during the Bhuj seismic event

    Directory of Open Access Journals (Sweden)

    A. Trigunait

    2004-12-01

    Full Text Available Ionospheric perturbations by natural geophysical activity, such as volcanic eruptions and earthquakes, have been studied since the great Alaskan earthquake in 1964. Measurements made from the ground show a variation of the critical frequency of the ionosphere layers before and after the shock. In this paper, we present an experimental investigation of the electron density variations around the time of the Bhuj earthquake in Gujarat, India. Several experiments have been used to survey the ionosphere. Measurements of fluctuations in the integrated electron density or TEC (Total Electron Content between three satellites (TOPEX-POSEIDON, SPOT2, SPOT4 and the ground have been done using the DORIS beacons. TEC has been also evaluated from a ground-based station using GPS satellites, and finally, ionospheric data from a classical ionospheric sounder located close to the earthquake epicenter are utilized. Anomalous electron density variations are detected both in day and night times before the quake. The generation mechanism of these perturbations is explained by a modification of the electric field in the global electric circuit induced during the earthquake preparation. Key words. Ionosphere (ionospheric disturbances – Radio Science (ionospheric physics – History of geophysics (seismology

  13. Present situation of researches on polar ionosphere by C.C.I.R

    International Nuclear Information System (INIS)

    Ishikawa, Saburo

    1974-01-01

    Various subjects of studies made by the sixth research committee of C.C.I.R. (International Radio Consultative Committee) are reported. The C.C.I.R. has not any definite study programme and question concerning polar ionosphere, because it studies and delivers opinion on the techniques and operation of radio communication especially in developing countries. The subjects of study programme by the sixth research committee are as follows: estimation of the intensity and transmission loss of space wave electric field in a zone between 1.5 and 40 MHz, observation of the ionosphere of oblique entrance, scattering propagation of ionosphere, back scattering, fading of signal transmitted through ionosphere, transmission of space waves in the zone between 150 and 1,500 kHz, and effect of ionosphere on space communication. In addition, the following fourteen reports are cited: confirmation of prodromal phenomena of ionosphere disturbances, observation of the ionosphere of oblique entrance, remote propagation with supermode, basic information on forecast, back scattering, side scattering from the ground surface and ionosphere, Esub(s) propagation, scattering propagation, Esub(s) forecast, fading, effect of ionosphere on the transmission between the earth and space, radio noise produced in and above ionosphere, and propagation of standard broadcast wave. (Iwakiri, K.)

  14. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  15. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    Science.gov (United States)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et

  16. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Directory of Open Access Journals (Sweden)

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  17. Electon density profiles of the topside ionosphere

    Directory of Open Access Journals (Sweden)

    D. Bilitza

    2002-06-01

    Full Text Available The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2 down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  18. Formation of dipole vortex in the ionosphere

    International Nuclear Information System (INIS)

    Shukla, P.K.; Yu, M.Y.

    1985-01-01

    It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B 0 gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere

  19. The F-Region Equatorial Ionospheric Electrodynamics Drifts ...

    African Journals Online (AJOL)

    The ionospheric plasma drift is one of the most essential parameters for understanding the dynamics of ionospheric F-region. F-region electromagnetic drifts are calculated for three seasonal conditions from ionosonde observations acquired during quiet period of a typical year of high and low solar activity at Ibadan (7.4oN, ...

  20. CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS): A Concept Development to Aid Tsunami Early Warning Systems

    Science.gov (United States)

    Komjathy, A.; Romero-Wolf, A.; Yang, Y. M.; Langley, R. B.; Foster, J. H.

    2014-12-01

    The Jet Propulsion Laboratory, the University New Brunswick (Canada) and the University of Hawaii have developed a concept to provide open ocean tsunami wave height estimates using very accurate measurements of absolute total electron content (TEC) perturbations. Ionosphere-derived tsunami wave height estimates from our CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS) mission will refine the tsunami source energy calculation and improve the tsunami scale calculation for a localized region. As a secondary science objective, transmitting impulsive HF/VHF (10-40 MHz) transmissions through the ionosphere will provide in-situ geomagnetic disturbance measurements, which allow for discrimination between tsunami-induced signatures and space-weather-related fluctuations. NASA has invested several millions of dollars in the development of a tsunami warning system based on geodetic measurements from ground-based GPS stations. Leveraging this investment by simultaneously using ionospheric measurement from this GPS network for the detection of tsunamis represents a significant step forward. GPS ionospheric imaging is limited, however, by the slowly changing satellite geometry and its weak absolute TEC resolution (about 3 TECU). It has also been shown that GPS ionospheric imaging alone cannot distinguish between space weather fluctuations and those due to natural hazards. The very precise ionospheric measurements generated by CNEWS are expected to provide a quasi-static image of tsunami ionospheric signatures that we will use in an advanced model inversion technique to estimate tsunami wave heights at 10 cm (one sigma) uncertainty. The geomagnetic field strength resolution is also a key constraint for discriminating between natural hazards and space weather effects. HF/VHF impulses can resolve absolute TEC measurements at the 0.02 TECU level and geomagnetic field strength may be measured at 50 nT resolution.

  1. Ionospheric threats to the integrity of airborne GPS users

    Science.gov (United States)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  2. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  3. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  4. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  5. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  6. Monitoring the three-dimensional ionospheric electron density ...

    Indian Academy of Sciences (India)

    In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric ... are usually installed along a fixed longitude chain. Kunitsyn et al (1997) first confirmed the .... The IED value at the center of each pixel is gen- erated from the IRI2001 model and ...

  7. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    Science.gov (United States)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  8. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  9. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  10. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  11. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    2000-04-01

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help to create the positive ionospheric

  12. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  13. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  14. Bayesian estimation for ionospheric calibration in radio astronomy

    NARCIS (Netherlands)

    Van der Tol, S.

    2009-01-01

    Radio astronomical observations at low frequencies (< 250 MHz), can be severely distorted by fluctuations in electron density in the ionosphere. The free electrons cause a phase change of electromagnetic waves traveling through the ionosphere. This effect increases for lower frequencies. For this

  15. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  16. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    O. Molchanov

    2004-01-01

    Full Text Available We present a general concept of mechanisms of preseismic phenomena in the atmosphere and ionosphere. After short review of observational results we conclude: 1. Upward migration of fluid substrate matter (bubble can lead to ousting of the hot water/gas near the ground surface and cause an earthquake (EQ itself in the strength-weakened area; 2. Thus, time and place of the bubble appearance could be random values, but EQ, geochemistry anomaly and foreshocks (seismic, SA and ULF electromagnetic ones are casually connected; 3. Atmospheric perturbation of temperature and density could follow preseismic hot water/gas release resulting in generation of atmospheric gravity waves (AGW with periods in a range of 6–60min; 4. Seismo-induced AGW could lead to modification of the ionospheric turbulence and to the change of over-horizon radio-wave propagation in the atmosphere, perturbation of LF waves in the lower ionosphere and ULF emission depression at the ground.

  17. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  18. A Study on the Radio Propagation in the Korean Ionosphere

    Directory of Open Access Journals (Sweden)

    Seok-Hee Bae

    1992-06-01

    Full Text Available The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, position and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYong Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studies for the various cases of the wave frequency and the altitude.

  19. Ionospheric reflection of the magnetic activity described by the index η

    Science.gov (United States)

    Dziak-Jankowska, Beata; Stanisławska, Iwona; Ernst, Tomasz; Tomasik, Łukasz

    2011-09-01

    Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h'E, h'F2) during 28-day long quiet day conditions (Kp = 0-2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence - ionospheric E layer data (foE characteristic) - reaches median deviations up to (+0.8 MHz and -0.8 MHz) during very low magnetic activity (Kp = 0-1). The high peaks (2-2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h'F2 (in some cases up to -90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.

  20. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  1. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  2. Evaluation of Flat Surface Temperature Probes

    Science.gov (United States)

    Beges, G.; Rudman, M.; Drnovsek, J.

    2011-01-01

    The objective of this paper is elaboration of elements related to metrological analysis in the field of surface temperature measurement. Surface temperature measurements are applicable in many fields. As examples, safety testing of electrical appliances and a pharmaceutical production line represent case studies for surface temperature measurements. In both cases correctness of the result of the surface temperature has an influence on final product safety and quality and thus conformity with specifications. This paper deals with the differences of flat surface temperature probes in measuring the surface temperature. For the purpose of safety testing of electrical appliances, surface temperature measurements are very important for safety of the user. General requirements are presented in European standards, which support requirements in European directives, e.g., European Low Voltage Directive 2006/95/EC and pharmaceutical requirements, which are introduced in official state legislation. This paper introduces a comparison of temperature measurements of an attached thermocouple on the measured surface and measurement with flat surface temperature probes. As a heat generator, a so called temperature artifact is used. It consists of an aluminum plate with an incorporated electrical heating element with very good temperature stability in the central part. The probes and thermocouple were applied with different forces to the surface in horizontal and vertical positions. The reference temperature was measured by a J-type fine-wire (0.2 mm) thermocouple. Two probes were homemade according to requirements in the European standard EN 60335-2-9/A12, one with a fine-wire (0.2 mm) thermocouple and one with 0.5mm of thermocouple wire diameter. Additional commercially available probes were compared. Differences between probes due to thermal conditions caused by application of the probe were found. Therefore, it can happen that measurements are performed with improper equipment or

  3. Impact of Galileo on Global Ionosphere Map Estimation

    NARCIS (Netherlands)

    Undetermined, U.

    2006-01-01

    The upcoming GNSS Galileo, with its new satellite geometry and frequency plan, will not only bring many benefits for navigation and positioning but also help to improve ionosphere delay estimation. This paper investigates ionosphere estimation with Galileo and compares it with the results from

  4. Fine frequency tuning of the PHOENIX charge breeder used as a probe for ECRIS plasmas

    International Nuclear Information System (INIS)

    Lamy, T.; Angot, J.; Melanie, M.J.; Medard, J.; Sortais, P.; Thuillier, T.; Galata, A.; Koivisto, Hannu; Tarvainen, Olli

    2012-01-01

    Fine frequency tuning of ECR ion sources is a main issue to optimize the production of multiply charged ion beams. The PHOENIX charge breeder operation has been tested in the range 13.75 - 14.5 GHz with an HF power of about 400 W. The effect of this tuning is analyzed by measuring the multi-ionization efficiency obtained for various characterized injected 1+ ion beams (produced by the 2.45 GHz COMIC source). The 1+/n+ method includes the capture and the multi ionization processes of the 1+ beam and may be considered as a plasma probe. The n+ spectra obtained could be considered, in first approach, as an image of the plasma of the charge breeder. However, in certain conditions it has been observed that the injection of a few hundreds of nA of 1+ ions (i.e.: Xe+) in the plasma of the charge breeder, is able to destroy the charge state distribution of the support gas (i.e.: up to 40 % of O 6+ and O 7+ disappears). The study of this phenomenon will be presented along with plasma potential measurements for various charge states. This study may help to understand the creation (or destruction) of highly charged ions inside an ECRIS. The paper is followed by the slides of the presentation. (authors)

  5. The Effect of Ionospheric Variability on the Accuracy of High Frequency Position Location

    Science.gov (United States)

    1981-08-01

    these problems are not the major ones in radio source location 1H. Rishbeth and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press ...ionospheric distur- banca ; and (4) employ an integrated network of ionosondes. The firt option recognizes the basic constraints of the available ionospheric...Rishbeth, H., and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press , NY. 2. Georges, T. M., 1967, Ionospheric Effects of

  6. Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS

    International Nuclear Information System (INIS)

    Goldstein, J.

    2016-01-01

    In this paper, we present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 R E . Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 R E . Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after ~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. Finally, the cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

  7. DESIGN AND ENGINEERING BACKGROUND FOR STATION NETWORKS OF VERTICAL IONOSPHERE SOUNDING

    Directory of Open Access Journals (Sweden)

    A. Y. Grishentsev

    2013-05-01

    Full Text Available The paper deals with analysis of the network stations structure for ionosphere vertical sounding. Design features and creation principle of the program complexes for automated processing, analysis and storage of ionosphere sounding are considered. Conceptual model of complex database control system is created. The results of work are used in research practice of leading national organizations to study the ionosphere. Obtained application results of suggested algorithms and programs for automated processing and analysis of ionosphere vertical sounding are shown.

  8. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  9. Behaviour of the intermediate region of the ionosphere at F1 heights

    International Nuclear Information System (INIS)

    Radicella, S.M.; Mosert Gonzalez, M. de; Scotto, C.; Zolesi, B.; Jadur, C.A.

    1997-01-01

    The characteristics and occurrence of the F1 ledge in the electron density profile are reviewed and discussed in terms of its relevance for the empirical modelling of the ionosphere. An updated and selected data base is used to confirm the validity the DuCharme et al. formula taking into account alternative solutions for the particular occurrence restrictions imposed by the formula and the IRI-90. The information considered includes also L conditions that indicates the presence of a less defined F1 cusp in the ionogram. A probability of occurrence of the F1 layer is introduced making use of the hourly ionogram scaling information given in monthly bulletins of ionospheric data. The possible prediction of the electron density at fixed heights in the F1 region is discussed and a formulation for such prediction is proposed as a preliminary step. (author). 10 refs, 7 figs, 2 tabs

  10. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  11. Detection of ionospheric scintillation effects using LMD-DFA

    Science.gov (United States)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  12. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    Science.gov (United States)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  13. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  14. Reconstruction of the ionospheric electron density by geostatistical inversion

    Science.gov (United States)

    Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana

    2015-04-01

    The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be

  15. Ionospheric flow during extended intervals of northward but By -dominated IMF

    Directory of Open Access Journals (Sweden)

    J. B. Sigwarth

    Full Text Available We present SuperDARN radar observations of the nightside high-latitude ionospheric flow during two 6-hour intervals of quasi-steady northward interplanetary magnetic field (IMF. During both intervals (01:30–07:30 UT on 2 December and 21:00–03:00 UT on 14/15 December 1999, the solar wind and IMF remained relatively steady with Bz positive and By negative, such that the IMF clock angle was ~ - 50° to - 60°. Throughout both intervals the radar data clearly indicate the presence of a highly distorted By-dominated twin cell flow pattern, indicative of an open magnetosphere, which is confirmed by DMSP and auroral data. Estimates of the changes in open flux present during each interval indicate approximately balanced dayside and nightside reconnection at rates of ~ 30–35 kV over the full 6 h. However, strong bursts of flow with speeds of over ~ 1000 ms-1 are observed near magnetic midnight on time scales of ~ 1 h, which are associated with increases in the transpolar voltage. These are indicative of the net closure of open flux by recon-nection in the tail. During one large flow burst, the night-side reconnection rate is estimated to have been ~ 1.5 times the dayside rate, i.e. ~ 45–60 kV compared with ~ 30–40 kV. Magnetic bays, which would indicate the formation of a sub-storm current wedge, are not observed in association with these bursts. In addition, no low-latitude Pi2s or geostationary particle injections were observed, although some local, small amplitude Pi2-band (5–50 mHz activity does accompany the bursts. Coincident measurements of the flow and of the low amplitude magnetic perturbations reveal nightside ionospheric conductances of no more than a few mho, indicative of little associated precipitation. Therefore, we suggest that the flow bursts are the ionospheric manifestation of bursty reconnection events occurring in the more distant geomagnetic tail. The main implication of these findings is that, under the circumstances

  16. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  17. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust

    International Nuclear Information System (INIS)

    Huang Yong; Shi Jiaming; Yuan Zhongcai

    2011-01-01

    In terms of the diffusive process of the gases injected from rocket exhaust into the ionosphere and the relevant chemical reactions between the gases and the composition of ionosphere, the modifications in ionosphere caused by the injected hydrogen and carbon dioxide gas from the rocket exhaust are investigated. The results show that the diffusive process of the injected gases at the ionospheric height is very fast, and the injected gases can lead to a local depletion of electron concentration in the F-region. Furthermore, the plasma 'hole' caused by carbon dioxide is larger, deeper and more durable than that by the hydrogen. (astrophysics and space plasma)

  18. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    Science.gov (United States)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  19. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  20. Response of the ionosphere to natural and man-made acoustic sources

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    Full Text Available A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets. A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of "quick" response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.

  1. Large-scale Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Giacinti, Gwenael; Kirk, John G. [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2017-02-01

    We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape of the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.

  2. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  3. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  4. A Comparison of High Frequency Angle of Arrival and Ionosonde Data During a Traveling Ionospheric Disturbance

    Science.gov (United States)

    Knippling, K.; Nava, O.; Emmons, D. J., II; Dao, E. V.

    2017-12-01

    Geolocation techniques are used to track the source of uncooperative high frequency emitters. Traveling ionospheric disturbances (TIDs) make geolocation particularly difficult due to large perturbations in the local ionospheric electron density profiles. Angle of arrival(AoA) and ionosonde virtual height measurements collected at White Sands Missile Range, New Mexico in January, 2014 are analyzed during a medium scale TID (MSTID). MSTID characteristics are extracted from the measurements, and a comparison between the data sets is performed, providing a measure of the correlation as a function of distance between the ionosonde and AoA circuit midpoints. The results of this study may advance real-time geolocation techniques through the implementation of a time varying mirror model height.

  5. Phenomena in the ionosphere-magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2005-01-01

    Full Text Available Experimental results from three ionospheric HF pumping experiments in overdense E or F regions are summarized. The experiments were conducted by the use of the EISCAT HF Heating facility located near Tromsø, Norway, allowing HF pumping the ionosphere in a near geomagnetic field-aligned direction. Distinctive features related to auroral activations in the course of the experiments are identified. Typical features observed in all experiments are the following: generation of scattered components in dynamic HF radio scatter Doppler spectra; strong increase of ion temperatures Ti and local ionospheric electric field E0; modification of the auroral arc and local spiral-like formation. However, some effects were observed only when the HF pump wave was reflected from the F2 layer. Among them are the generation of intense field-aligned ion outflows, and a strong increase in the electron temperature Te with altitude. A possible scenario for the substorm triggering due to HF pumping into an auroral ionosphere is discussed. The authors present their interpretation of the data as follows. It is suggested that two populations of charged particles are at play. One of them is the runaway population of electrons and ions from the ionosphere caused by the effects of the powerful HF radio wave. The other is the population of electrons that precipitate from the magnetosphere. It is shown that the hydrodynamical equilibrium was disrupted due to the effects of the HF pumping. We estimate that the parallel electric field can reach values of the order of 30mV/m during substorm triggering.

  6. Ionospheric disturbances under low solar activity conditions

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia; Laštovička, Jan; Hejda, Pavel; Bochníček, Josef

    2014-01-01

    Roč. 54, č. 2 (2014), s. 185-196 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GAP209/11/1908 Institutional support: RVO:68378289 ; RVO:67985530 Keywords : ionosphere * solar minimum * magnetic storm s * ionospheric variability Subject RIV: DG - Athmosphere Sciences, Meteorology; DG - Athmosphere Sciences, Meteorology (GFU-E) Impact factor: 1.358, year: 2014 http://www.sciencedirect.com/science/article/pii/S027311771400221X

  7. Longitudinal effects of ionospheric responses to substorms at middle and lower latitudes: a case study

    Directory of Open Access Journals (Sweden)

    X. Pi

    1995-08-01

    Full Text Available An ionospheric model is used to simulate total electron content (TEC disturbance events observed at middle and lower latitude sites near 75°W and 7°E longitudes. Within this longitudinal range, daytime TEC disturbances show patterns that are correlated with substrom activity seen in both auroral electrojet and ring current behavior. In modeling studies of the observed ionospheric effects, both electric field and neutral wind perturbations are examined as possible mechanisms. The morphological features of the required electric field perturbations near drawn and dusk are compared with those at other times to examine the local time characteristics of magnetospheric influence. Large-scale traveling atmospheric disturbances (TADs, an alternative candidate for the disturbance source, are also characterized and compared with known thermospheric behavior.

  8. Lightning impact on micro-second long ionospheric variability

    Science.gov (United States)

    Koh, Kuang Liang; Liu, Zhongjian; Fullekrug, Martin

    2017-04-01

    Lightning discharges cause electron heating and enhanced ionisation in the D region ionosphere which disturb the transmission of VLF communications [Inan et al., 2010]. A disturbance of such nature was measured in a VLF transmission with a sampling rate of 1 MHz, enabling much faster ionospheric variability to be observed when compared to previous studies which typically report results with a time resolution >5-20ms. The disturbance resembles "Long Recovery Early VLF" (LORE) events [Haldoupis et al. 2013, Cotts & Inan 2007]. LOREs exhibit observable ionospheric effects that last longer (>200s) than other lightning related disturbances. It was proposed that the mechanism behind the long-lasting effects of LOREs is different to shorter events [Gordillo-Vázquez et al. 2016]. The ionospheric variability inferred from the transmitted signal is seen to change dramatically after the lightning onset, suggesting that there are fast processes in the ionosphere affected or produced which have not been considered in previous research. The ionospheric variability inferred from the main two frequencies of the transmission is different. A possible explanation is a difference in the propagation paths of the two main frequencies of the transmission [Füllekrug et al., 2015]. References Inan, U.S., Cummer, S.A., Marshall, R.A., 2010. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36. doi:10.1029/2009JA014775 Cotts, B.R.T., Inan, U.S., 2007. VLF observation of long ionospheric recovery events. Geophys. Res. Lett. 34, L14809. doi:10.1029/2007GL030094 Haldoupis, C., Cohen, M., Arnone, E., Cotts, B., Dietrich, S., 2013. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. J. Geophys. Res. Space Physics 118, 5392-5402. doi:10.1002/jgra.50489 Gordillo-Vázquez, F.J., Luque, A., Haldoupis, C., 2016. Upper D region chemical kinetic modeling of

  9. Computer-simulation movie of ionospheric electric fields and currents for a magnetospheric substorm life cycle. Technical note

    International Nuclear Information System (INIS)

    Kamide, Y.; Matsushita, S.

    1980-07-01

    Numerical solution of the current conservation equation gives the distributions of electric fields and currents in the global ionosphere produced by the field-aligned currents. By altering ionospheric conductivity distributions as well as the field-aligned current densities and configurations to simulate a magnetospheric substorm life cycle, which is assumed to last for five hours, various patterns of electric fields and currents are computed for every 30-second interval in the life cycle. The simulated results are compiled in the form of a color movie, where variations of electric equi-potential curves are the first sequence, electric current-vector changes are the second, and fluctuations of the electric current system are the third. The movie compresses real time by a factor of 1/180, taking 1.7 minutes of running time for one sequence. One of the most striking features of this simulation is the clear demonstration of rapid and large scale interactions between the auroral zone and middle-low latitudes during the substorm sequences. This technical note provides an outline of the numerical scheme and world-wide contour maps of the electric potential, ionospheric current vectors, and the equivalent ionospheric current system at 5-minute intervals as an aid in viewing the movie and to further detailed study of the 'model' substorms

  10. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2017-03-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  11. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    International Nuclear Information System (INIS)

    Hall, B F; Povey, T

    2017-01-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design. (paper)

  12. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  13. Longitudinal Ionospheric Variability Observed by LITES on the ISS

    Science.gov (United States)

    Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.

  14. The Rocket Investigation of Current Closure in the Ionosphere (RICCI) mission: A novel application of CubeSats from a sounding rocket platform

    Science.gov (United States)

    Cohen, I. J.; Anderson, B. J.; Lessard, M.; Bonnell, J. W.; Bounds, S. R.; Lysak, R. L.; Erlandson, R. E.

    2017-12-01

    The transfer of energy and momentum between the terrestrial magnetosphere and ionosphere is substantially mediated by large-scale field-aligned currents (FACs), driven by magnetopause dynamics and magnetospheric pressures and closing through the ionosphere where the dissipation and drag are governed. While significant insight into ionospheric electrodynamics and the nature of magnetosphere-ionosphere (M-I) coupling have been gained by rocket and satellite measurements, in situ measurement of these ionospheric closure currents remains challenging. To date the best estimates of ionospheric current densities are inferred from ground-based radar observations combining electric fields calculated from drifts with conductivities derived from densities. RICCI aims to observe the structure of the ionospheric currents in situ to determine how the altitude structure of these currents is related to precipitation and density cavities, electromagnetic dynamics, and governs energy dissipation in the ionosphere. In situ measurement of the current density using multi-point measurements of the magnetic field requires precise attitude knowledge for which the only demonstrated technique is the use of star camera systems. The low vehicle rotation rates required for miniature commercial off-the-shelf (COTS) star cameras prohibit the use of available rocket sub-payload technologies at Wallops Flight Facility (WFF) which use high rates of spin to stabilize attitude. However, CubeSat attitude systems are already designed to achieve low vehicle rotation rates, so RICCI will use a set of three CubeSat sub-payloads deployed from a main low altitude payload with apogee of 160 km to provide precise current density measurement through the ionospheric closure altitude regime, together with a second rocket with apogee near 320 km to measure the incident input energy flux and convection electric field. The two rocket payloads and CubeSate sub-payloads are all instrumented with star cameras and

  15. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  16. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  17. Efficiency of the Needle Probe Test for Evaluation of Thermal Conductivity of Composite Materials: Two-Scale Analysis

    Directory of Open Access Journals (Sweden)

    Łydżba Dariusz

    2014-03-01

    Full Text Available The needle probe test, as a thermal conductivity measurement method, has become very popular in recent years. In the present study, the efficiency of this methodology, for the case of composite materials, is investigated based on the numerical simulations. The material under study is a two-phase composite with periodic microstructure of “matrix-inclusion” type. Two-scale analysis, incorporating micromechanics approach, is performed. First, the effective thermal conductivity of the composite considered is found by the solution of the appropriate boundary value problem stated for the single unit cell. Next, numerical simulations of the needle probe test are carried out. In this case, two different locations of the measuring sensor are considered. It is shown that the “equivalent” conductivity, derived from the probe test, is strongly affected by the location of the sensor. Moreover, comparing the results obtained for different scales, one can notice that the “equivalent” conductivity cannot be interpreted as the effective one for the composites considered. Hence, a crude approximation of the effective property is proposed based on the volume fractions of constituents and the equivalent conductivities derived from different sensor locations.

  18. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and ionospheric plasma properties. Brighter arcs are obtained for increased velocity shear in the LLBL; their spatial scale remains virtually unmodified. The field

  19. Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma

    International Nuclear Information System (INIS)

    Levitsky, S.M.

    2009-01-01

    By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.

  20. The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    1989-06-01

    During the past six years, rapid advances in three observational techniques (ground-based radars, optical interferometers and satellite-borne instruments) have provided a means of observing a wide range of spectacular interactions between the coupled magnetosphere, ionosphere and thermosphere system. Perhaps the most fundamental gain has come from the combined data-sets from the NASA Dynamics Explorer (DE) Satellites. These have unambiguously described the global nature of thermospheric flows, and their response to magnetospheric forcing. The DE spacecraft have also described, at the same time, the magnetospheric particle precipitation and convective electric fields which force the polar thermosphere and ionosphere. The response of the thermosphere to magnetospheric forcing is far more complex than merely the rare excitation of 1 km s-1 wind speeds and strong heating; the heating causes large-scale convection and advection within the thermosphere. These large winds grossly change the compositional structure of the upper thermosphere at high and middle latitudes during major geomagnetic disturbances. Some of the major seasonal and geomagnetic storm-related anomalies of the ionosphere are directly attributable to the gross wind-induced changes of thermospheric composition; the mid-latitude ionospheric storm `negative phase', however, is yet to be fully understood. The combination of very strong polar wind velocities and rapid plasma convection forced by magnetospheric electric fields strongly and rapidly modify F-region plasma distributions generated by the combination of local solar and auroral ionization sources. Until recently, however, it has been difficult to interpret the observed complex spatial and time-dependent structures and motions of the thermosphere and ionosphere because of their strong and nonlinear coupling. It has recently been possible to complete a numerical and computational merging of the University College London (UCL) global thermospheric

  1. Ionospheric errors compensation for ground deformation estimation with new generation SAR

    Science.gov (United States)

    Gomba, Giorgio; De Zan, Francesco; Rodriguez Gonzalez, Fernando

    2017-04-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) measurements are disturbed by the propagation velocity changes of microwaves that are caused by the high density of free electrons in the ionosphere. Most affected are low-frequency (L- or P-band) radars, as the recently launched ALOS-2 and the future Tandem-L and NISAR, although higher frequency (C- or X-band) systems, as the recently launched Sentinel-1, are not immune. Since the ionosphere is an obstacle to increasing the precision of new generation SAR systems needed to remotely measure the Earth's dynamic processes as for example ground deformation, it is necessary to estimate and compensate ionospheric propagation delays in SAR signals. In this work we discuss about the influence of the ionosphere on interferograms and the possible correction methods with relative accuracies. Consequently, the effect of ionospheric induced errors on ground deformation measurements prior and after ionosphere compensation will be analyzed. Examples will be presented of corrupted measurements of earthquakes and fault motion along with the corrected results using different methods.

  2. Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000; influence from below and above

    Directory of Open Access Journals (Sweden)

    D. Pancheva

    2002-11-01

    Full Text Available The basic aim of this ‘case study’ is to investigate the variability in the maximum height of the ionospheric F2-layer, hmF2, with periods of planetary waves (2–30 days, and to make an attempt to determine their origin. The hourly data of hmF2 above Millstone Hill (42.6° N, 71.5° W during 01 September 1998 - 31 March 2000 were used for analysis. Three types of disturbances are studied in detail: (i the 27- day oscillations observed in the hmF2 above Millstone Hill are generated by the geomagnetic activity and by the global-scale 27-day wave present in the zonal mesosphere/lower thermosphere (MLT neutral wind. The time delay between the 27-day oscillation in the zonal wind and that in the hmF2 is found to be 5–6 days, while between the 27-day oscillation in the geomagnetic activity and that in the hmF2 is found to be 0.8–1 day; (ii the 16-day oscillation in the hmF2 observed during summer 1999 is probably generated by the global scale 16-day modulation of the semidiurnal tide observed in the MLT region during PSMOS campaign in June–August. We found that if the modulated semidiurnal tide mediates the planetary wave signature in the ionosphere, this planetary wave oscillation has to be best expressed in the amplitude and in the phase of the 12-h periodicity of the ionosphere; and (iii the third type of disturbances studied is the quasi-2- day activity in the hmF2 that increases during geomagnetic disturbances. The strong pseudo diurnal periodicities generated during the geomagnetic storms can interact between each other and produce the quasi-2-day oscillations in the ionosphere.Key words. Ionosphere (ionosphere-atmosphere interactions; ionosphere-magnetoshpere interactions; wave propagation

  3. Does an Intrinsic Magnetic Field Inhibit or Enhance Planetary Ionosphere Outflow and Loss?

    Science.gov (United States)

    Strangeway, R. J.; Russell, C. T.; Luhmann, J. G.; Moore, T. E.; Foster, J. C.; Barabash, S. V.; Nilsson, H.

    2017-12-01

    A characteristic feature of the planets Earth, Venus and Mars is the observation of the outflow of ionospheric ions, most notably oxygen. The oxygen ion outflow is frequently assumed to be a proxy for the loss of water from the planetary atmosphere. In terms of global outflow rates for the Earth the rate varies from 1025 to 1026 s-1, depending on geomagnetic activity. For both Venus and Mars global rates of the order 5x1024 s-1 have been reported. Venus and Mars do not have a large-scale intrinsic magnetic field, and there are several pathways for atmospheric and ionospheric loss. At Mars, because of its low gravity, neutral oxygen can escape through dissociative recombination. At Venus only processes related to the solar wind interaction with the planet such as sputtering and direct scavenging of the ionosphere by the solar wind can result in oxygen escape. At the Earth the intrinsic magnetic field forms a barrier to the solar wind, but reconnection of the Earth's magnetic field with the Interplanetary Magnetic Field allows solar wind energy and momentum to be transferred into the magnetosphere, resulting in ionospheric outflows. Observations of oxygen ions at the dayside magnetopause suggest that at least some of these ions escape. In terms of the evolution of planetary atmospheres how the solar-wind driven escape rates vary for magnetized versus umagnetized planets is also not clear. An enhanced solar wind dynamic pressure will increase escape from the unmagnetized planets, but it may also result in enhanced reconnection at the Earth, increasing outflow and loss rates for the Earth as well. Continued improvement in our understanding of the different pathways for ionospheric and atmospheric loss will allow us to determine how effective an intrinsic planetary field is in preserving a planetary atmosphere, or if we have to look for other explanations as to why the atmospheres of Venus and Mars have evolved to their desiccated state.

  4. Internal variability of fine-scale components of meteorological fields in extended-range limited-area model simulations with atmospheric and surface nudging

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei

    2015-09-01

    Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.

  5. Fine scale distribution constrains cadmium accumulation rates in two geographical groups of Franciscana dolphin from Argentina

    International Nuclear Information System (INIS)

    Polizzi, P.S.; Chiodi Boudet, L.N.; Romero, M.B.; Denuncio, P.E.; Rodríguez, D.H.

    2013-01-01

    Highlights: • Fine scale distribution of two Argentine stocks constrains the Cd accumulation rates. • Cadmium levels and accumulation patterns were different between geographic groups. • Marine diet has a major influence than the impact degree of origin environment. • Engraulis anchoita is the main Cd vector species in Argentine shelf for Franciscana. • Information is valuable for the conservation of Franciscana, a vulnerable species. -- Abstract: Franciscana dolphin is an endemic cetacean in the southwestern Atlantic Ocean and is classified as Vulnerable A3d by the International Union for Conservation of Nature. Cadmium accumulation was assessed in two geographic groups from Argentina; one inhabits the La Plata River estuary, a high anthropogenic impacted environment, and the other is distributed in marine coastal, with negligible pollution. Despite the environment, marine dolphins showed an increase of renal Cd concentrations since trophic independence; while in estuarine dolphins was from 6 years. This is associated with dietary Argentine anchovy which was absent in the diet of estuarine dolphins, being a trophic vector of cadmium in shelf waters of Argentina. Cluster analysis also showed high levels of cd in association with the presence of anchovy in the stomach. The difference in the fine scale distribution of species influences dietary exposure to Cd and, along with other data, indicates two stocks in Argentina

  6. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  7. Characterising the Ionosphere (La caracterisation de l’ionosphere)

    Science.gov (United States)

    2009-01-01

    2003; Valdivia , 2003; Tong et al ., 2004). Tidal motions and planetary waves in the thermosphere have significant influence on ionospheric...such as storms, earthquakes and volcanic explosions may produce F2-layer signatures (Rishbeth, 2006 ). Kazimirovsky et al . (2003) have reviewed such...possible effects. Pulinets et al . ( 2006 ) have published a case study of anomalous variations of the total electron content (TEC) registered over the

  8. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  9. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  10. Fine-scale population structure and the era of next-generation sequencing.

    Science.gov (United States)

    Henn, Brenna M; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D

    2010-10-15

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained over multiple generations. Genome-wide polymorphism data, initially with only a few hundred autosomal microsatellites, have clearly established differences in allele frequency not only among continental regions, but also within continents and within countries. We review recent evidence from the analysis of genome-wide polymorphism data for genetic boundaries delineating human population structure and the main demographic and genomic processes shaping variation, and discuss the implications of population structure for the distribution and discovery of disease-causing genetic variants, in the light of the imminent availability of sequencing data for a multitude of diverse human genomes.

  11. Fine-scale patterns of population stratification confound rare variant association tests.

    Directory of Open Access Journals (Sweden)

    Timothy D O'Connor

    Full Text Available Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies.

  12. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    Science.gov (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  13. Sudden Ionospheric Disturbances (SID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  14. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  15. Ionospheric response to particle precipitation within aurora

    International Nuclear Information System (INIS)

    Wahlund, J.E.

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au)

  16. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence.

    Science.gov (United States)

    Bohrer, Stefanie L; Limb, Ryan F; Daigh, Aaron L; Volk, Jay M; Wick, Abbey F

    2017-03-01

    Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.

  17. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  18. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    Science.gov (United States)

    He, L. M.; Wu, L. X.; Liu, S. J.; Liu, S. N.

    2015-11-01

    Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.

  19. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    Directory of Open Access Journals (Sweden)

    L. M. He

    2015-11-01

    Full Text Available Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.

  20. First demonstration of HF-driven ionospheric currents

    Science.gov (United States)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  1. Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Science.gov (United States)

    Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.

    2010-01-01

    Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic

  2. Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination

    Science.gov (United States)

    Mohan Joshi, Lalit; Sripathi, Samireddipelle; Kumar, Muppidi Ravi; Alam Kherani, Esfhan

    2018-01-01

    Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north-south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north-south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.

  3. Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination

    Directory of Open Access Journals (Sweden)

    L. M. Joshi

    2018-01-01

    Full Text Available Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north–south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north–south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.

  4. Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis

    Science.gov (United States)

    Yagmur, M.

    2016-12-01

    Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere

  5. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella

    2002-06-01

    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  6. Particle precipitation influence in the conductivity of the auroral ionosphere during magnetic storms

    International Nuclear Information System (INIS)

    Monreal M, R.; Llop, C.

    2002-01-01

    The study of the energy transfer between the different regions of the solar wind - magnetosphere - ionosphere system is probably the main goal in Solar-Terrestrial Physics. In the magnetosphere - ionosphere coupling, the ionosphere power dissipation is highly sensitive to the conductivity in such a way that a detailed knowledge of this property in the auroral and polar ionosphere is of great interest because it is important not only to determine Joule heat, but also for electric fields and currents models including the field aligned currents coupling the magnetosphere and ionosphere. The main sources of ionization and subsequent conductivity in the ionosphere are due to the emission of electromagnetic radiation and charged energetic particles from the sun. In this work it is analysed the influence of the precipitating electrons on the auroral ionosphere conductivity during magnetic storms. It is shown that the conductance values appear sub estimated for high levels of activity due to the saturation produced during very intense magnetic storms. (Author)

  7. Digital processing of ionospheric electron content data

    Science.gov (United States)

    Bernhardt, P. A.

    1979-01-01

    Ionospheric electron content data contain periodicities that are produced by a diversity of sources including hydromagnetic waves, gravity waves, and lunar tides. Often these periodicities are masked by the strong daily variation in the data. Digital filtering can be used to isolate the weaker components. The filtered data can then be further processed to provide estimates of the source properties. In addition, homomorphic filtering may be used to identify nonlinear interactions in the ionosphere.

  8. Electron collision frequency variations and electric fields in the lower ionosphere

    International Nuclear Information System (INIS)

    Gokov, A.M.; Martynenko, S.I.

    1997-01-01

    Distribution of relative variations of the electron effective collision frequency at the ionosphere lower boundary is determined on the basis of analysis of radio-signals partially reflected from the lower ionosphere. Technique to evaluate the strength of electrical fields at the ionosphere lower boundary using experimentally measured variations of the effective frequency of electron collisions is elaborated. 12 refs., 2 figs

  9. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?

    Science.gov (United States)

    Maloney, Ryan T

    2015-01-01

    Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.

  10. HAARP-Induced Ionospheric Ducts

    International Nuclear Information System (INIS)

    Milikh, Gennady; Vartanyan, Aram

    2011-01-01

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  11. First results of registering ionospheric disturbances obtained with SibNet network of GNSS receivers in active space experiments

    Science.gov (United States)

    Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy

    2017-12-01

    Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.

  12. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    Science.gov (United States)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    signals into the lithosphere- ionosphere waveguide.; Resonance cavity model formed by the lithosphere-atmosphere-ionosphere system (illustrative, not to the scale of the Earth).

  13. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  14. A method to identify aperiodic disturbances in the ionosphere

    Science.gov (United States)

    Wang, J.-S.; Chen, Z.; Huang, C.-M.

    2014-05-01

    In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.

  15. Subduing the earth: The ionosphere inclusive (Inaugural Lecture)

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    2007-12-01

    The study of the ionosphere is basically relevant to radio propagation. Radio propagation via the ionosphere is a fascinating and important means of long-distance radio communication. Thousands of governmental, private and commercial operators use the ionosphere every day for broadcasting and making contacts over vast distances all over the world. In order to use the upper atmosphere which supports medium and high frequency radio communication effectively, a knowledge of the behaviours of this medium is of uttermost importance. This knowledge helps to determine when to listen, the best frequencies to use and where signals might come from. In fact, the knowledge of the conditions and what each radio band might produce are valuable for any radio operator. The most important feature of the ionosphere in terms of radio communications is its ability to refract radio waves. It is this feature that makes broadcasting around the globe possible. In the use of higher frequencies, particularly satellite communication, the effects of propagation in this medium has to be taken into account for effective performance. The atmosphere can be divided into a variety of different layers according to their properties. The following topics are described in detail in this lecture: the equatorial ionosphere; investigating the ionosphere from the ground station; high frequency radio communication; navigational satellite systems. The University of Ibadan, Nigeria used to be in the forefront of ionospheric studies in the past because it housed an ionosonde for over twenty years. The Ministry of Communication used to give a support for part of the running cost of that observatory and there was a periodic publication of data from the observatory sent to that ministry from time to time. The Ibadan observatory has closed down for over twenty years now because the equipment is no longer functional since it has outlived its life span and there is no replacement. In the whole of the West African

  16. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  17. Electrodynamics of the Martian Ionosphere

    Science.gov (United States)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  18. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  19. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  20. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    OpenAIRE

    L. M. He; L. X. Wu; L. X. Wu; S. J. Liu; S. N. Liu

    2015-01-01

    Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after bo...