Large deviations and idempotent probability
Puhalskii, Anatolii
2001-01-01
In the view of many probabilists, author Anatolii Puhalskii''s research results stand among the most significant achievements in the modern theory of large deviations. In fact, his work marked a turning point in the depth of our understanding of the connections between the large deviation principle (LDP) and well-known methods for establishing weak convergence results.Large Deviations and Idempotent Probability expounds upon the recent methodology of building large deviation theory along the lines of weak convergence theory. The author develops an idempotent (or maxitive) probability theory, introduces idempotent analogues of martingales (maxingales), Wiener and Poisson processes, and Ito differential equations, and studies their properties. The large deviation principle for stochastic processes is formulated as a certain type of convergence of stochastic processes to idempotent processes. The author calls this large deviation convergence.The approach to establishing large deviation convergence uses novel com...
Greenland plays a large role in the gloomy picture painted of probable future sea-level rise
Hanna, Edward
2012-12-01
Antarctica by 3000 AD is no more than 94 cm Antarctica remains relatively insensitive for future sea-level rise given a temperature increase of no more than 5-6 °C (quite a lot) above present levels. Oceanic thermal expansion and, especially, glacier melt seem very much second-order effects, compared with the Greenland sea-level contribution, for the next millennium. As expected, there are considerable differences between the outcomes of the model experiments depending on the time and level at which greenhouse gas emissions are stabilised. I am not quite sure why they 'prefer' the model version which reaches stabilisation at 2000 greenhouse gas levels since those levels have since been significantly exceeded and show no signs of tailing off yet—quite the reverse. According to the famous Keeling et al dataset from Mauna Loa in Hawaii, atmospheric CO2 levels at about 369 parts per million by volume of the global atmosphere in 2000 have since risen to about 392 ppmv in 2012, and this increase shows no signs of abating. Realistically, it's going to be at least another decade or two (or longer) before we can effectively even begin to stabilise atmospheric greenhouse gas levels, assuming the political will is there: which at the moment it is not. Of course this does not commit us to the other three more extreme experimental results (from greenhouse gas stabilization at 2100) reported in the study but we are heading dangerously in that direction. In effect the simulations are sensitivity studies, which may be largely unrealistic but are still useful as a kind of guide to what might happen under future climate change. Naturally, many uncertainties remain, especially concerning how ice-sheet motion ('dynamics') is represented in the models (e.g. the absence of so-called 'higher order physics' including longitudinal (push-pull) stresses which can rapidly transfer peripheral ice velocity perturbations inland (Price et al 2011)). Furthermore, the atmospheric model used in LOVECLIM is
Probably not future prediction using probability and statistical inference
Dworsky, Lawrence N
2008-01-01
An engaging, entertaining, and informative introduction to probability and prediction in our everyday lives Although Probably Not deals with probability and statistics, it is not heavily mathematical and is not filled with complex derivations, proofs, and theoretical problem sets. This book unveils the world of statistics through questions such as what is known based upon the information at hand and what can be expected to happen. While learning essential concepts including "the confidence factor" and "random walks," readers will be entertained and intrigued as they move from chapter to chapter. Moreover, the author provides a foundation of basic principles to guide decision making in almost all facets of life including playing games, developing winning business strategies, and managing personal finances. Much of the book is organized around easy-to-follow examples that address common, everyday issues such as: How travel time is affected by congestion, driving speed, and traffic lights Why different gambling ...
Future probabilities of coastal floods in Finland
Pellikka, Havu; Leijala, Ulpu; Johansson, Milla M.; Leinonen, Katri; Kahma, Kimmo K.
2018-04-01
Coastal planning requires detailed knowledge of future flooding risks, and effective planning must consider both short-term sea level variations and the long-term trend. We calculate distributions that combine short- and long-term effects to provide estimates of flood probabilities in 2050 and 2100 on the Finnish coast in the Baltic Sea. Our distributions of short-term sea level variations are based on 46 years (1971-2016) of observations from the 13 Finnish tide gauges. The long-term scenarios of mean sea level combine postglacial land uplift, regionally adjusted scenarios of global sea level rise, and the effect of changes in the wind climate. The results predict that flooding risks will clearly increase by 2100 in the Gulf of Finland and the Bothnian Sea, while only a small increase or no change compared to present-day conditions is expected in the Bothnian Bay, where the land uplift is stronger.
Probability Weighting and Loss Aversion in Futures Hedging
Mattos, F.; Garcia, P.; Pennings, J.M.E.
2008-01-01
We analyze how the introduction of probability weighting and loss aversion in a futures hedging model affects decision making. Analytical findings indicate that probability weighting alone always affects optimal hedge ratios, while loss and risk aversion only have an impact when probability
Estimating market probabilities of future interest rate changes
Hlušek, Martin
2002-01-01
The goal of this paper is to estimate the market consensus forecast of future monetary policy development and to quantify the priced-in probability of interest rate changes for different future time horizons. The proposed model uses the current spot money market yield curve and available money market derivative instruments (forward rate agreements, FRAs) and estimates the market probability of interest rate changes up to a 12-month horizon.
Shiryaev, A N
1996-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables
Future southcentral US wildfire probability due to climate change
Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.
2018-01-01
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.
Limiting values of large deviation probabilities of quadratic statistics
Jeurnink, Gerardus A.M.; Kallenberg, W.C.M.
1990-01-01
Application of exact Bahadur efficiencies in testing theory or exact inaccuracy rates in estimation theory needs evaluation of large deviation probabilities. Because of the complexity of the expressions, frequently a local limit of the nonlocal measure is considered. Local limits of large deviation
On asymptotically efficient simulation of large deviation probabilities.
Dieker, A.B.; Mandjes, M.R.H.
2005-01-01
ABSTRACT: Consider a family of probabilities for which the decay is governed by a large deviation principle. To find an estimate for a fixed member of this family, one is often forced to use simulation techniques. Direct Monte Carlo simulation, however, is often impractical, particularly if the
Assigning probability gain for precursors of four large Chinese earthquakes
Energy Technology Data Exchange (ETDEWEB)
Cao, T.; Aki, K.
1983-03-10
We extend the concept of probability gain associated with a precursor (Aki, 1981) to a set of precursors which may be mutually dependent. Making use of a new formula, we derive a criterion for selecting precursors from a given data set in order to calculate the probability gain. The probabilities per unit time immediately before four large Chinese earthquakes are calculated. They are approximately 0.09, 0.09, 0.07 and 0.08 per day for 1975 Haicheng (M = 7.3), 1976 Tangshan (M = 7.8), 1976 Longling (M = 7.6), and Songpan (M = 7.2) earthquakes, respectively. These results are encouraging because they suggest that the investigated precursory phenomena may have included the complete information for earthquake prediction, at least for the above earthquakes. With this method, the step-by-step approach to prediction used in China may be quantified in terms of the probability of earthquake occurrence. The ln P versus t curve (where P is the probability of earthquake occurrence at time t) shows that ln P does not increase with t linearly but more rapidly as the time of earthquake approaches.
Genefer: Programs for Finding Large Probable Generalized Fermat Primes
Directory of Open Access Journals (Sweden)
Iain Arthur Bethune
2015-11-01
Full Text Available Genefer is a suite of programs for performing Probable Primality (PRP tests of Generalised Fermat numbers 'b'2'n'+1 (GFNs using a Fermat test. Optimised implementations are available for modern CPUs using single instruction, multiple data (SIMD instructions, as well as for GPUs using CUDA or OpenCL. Genefer has been extensively used by PrimeGrid – a volunteer computing project searching for large prime numbers of various kinds, including GFNs. Genefer’s architecture separates the high level logic such as checkpointing and user interface from the architecture-specific performance-critical parts of the implementation, which are suitable for re-use. Genefer is released under the MIT license. Source and binaries are available from www.assembla.com/spaces/genefer.
Actual growth and probable future of the worldwide nuclear industry
International Nuclear Information System (INIS)
Bupp, I.C.
1981-01-01
Worldwide nuclear-power-reactor manufacturing capacity will exceed worldwide demand by a factor of two or more during the 1980s. Only in France and the Soviet bloc countries is it likely that the ambitious nuclear-power programs formulated in the mid-1970s will be implemented. In all other developed countries and in most developing countries, further delays and cancellations of previously announced programs are all but certain. The stalemate over the future of nuclear power is particularly deep in America. Administrative and personnel problems in the Nuclear Regulatory Commission, slow progress on radioactive waste disposal by the Department of Energy, severe financial problems for most electric utilities, and drastic reductions in the rate of electricity demand growth combine to make continuation of the five-year-old moratorium on reactor orders inevitable. Many of the ninety plants under construction may never operate, and some of the seventy in operation may shut down before the end of their economic life. Contrary to widespread belief, further oil price increases may not speed up world-wide reactor sales. It is possible that the world is heading for a worst of all possible outcomes: a large number of small nuclear power programs that do little to meet real energy needs but substantially complicate the problem of nuclear weapons proliferation. 24 references, 4 tables
Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick
2012-01-01
Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving
Concepts for Future Large Fire Modeling
A. P. Dimitrakopoulos; R. E. Martin
1987-01-01
A small number of fires escape initial attack suppression efforts and become large, but their effects are significant and disproportionate. In 1983, of 200,000 wildland fires in the United States, only 4,000 exceeded 100 acres. However, these escaped fires accounted for roughly 95 percent of wildfire-related costs and damages (Pyne, 1984). Thus, future research efforts...
Cultural Differences in Young Adults' Perceptions of the Probability of Future Family Life Events.
Speirs, Calandra; Huang, Vivian; Konnert, Candace
2017-09-01
Most young adults are exposed to family caregiving; however, little is known about their perceptions of their future caregiving activities such as the probability of becoming a caregiver for their parents or providing assistance in relocating to a nursing home. This study examined the perceived probability of these events among 182 young adults and the following predictors of their probability ratings: gender, ethnicity, work or volunteer experience, experiences with caregiving and nursing homes, expectations about these transitions, and filial piety. Results indicated that Asian or South Asian participants rated the probability of being a caregiver as significantly higher than Caucasian participants, and the probability of placing a parent in a nursing home as significantly lower. Filial piety was the strongest predictor of the probability of these life events, and it mediated the relationship between ethnicity and probability ratings. These findings indicate the significant role of filial piety in shaping perceptions of future life events.
Marine mimivirus relatives are probably large algal viruses
Directory of Open Access Journals (Sweden)
Claverie Jean-Michel
2008-01-01
Full Text Available Abstract Background Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2 Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea metagenomic data. Results We now further demonstrate the presence of numerous "mimivirus-like" sequences using a larger marine metagenomic data set. We also show that the DNA polymerase sequences from three algal viruses (CeV01, PpV01, PoV01 infecting different marine algal species (Chrysochromulina ericina, Phaeocystis pouchetii, Pyramimonas orientalis are very closely related to their homolog in mimivirus. Conclusion Our results suggest that the numerous mimivirus-related sequences identified in marine environments are likely to originate from diverse large DNA viruses infecting phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for new species of Mimiviridae.
Quantum probability, choice in large worlds, and the statistical structure of reality.
Ross, Don; Ladyman, James
2013-06-01
Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.
Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future
Cates, Grant R.
2014-01-01
The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.
Future development of large steam turbines
International Nuclear Information System (INIS)
Chevance, A.
1975-01-01
An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr
Mediators of the Availability Heuristic in Probability Estimates of Future Events.
Levi, Ariel S.; Pryor, John B.
Individuals often estimate the probability of future events by the ease with which they can recall or cognitively construct relevant instances. Previous research has not precisely identified the cognitive processes mediating this "availability heuristic." Two potential mediators (imagery of the event, perceived reasons or causes for the…
Energy Technology Data Exchange (ETDEWEB)
Lu, S; Streit, R D; Chou, C K
1980-01-01
This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10{sup -12}). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)
International Nuclear Information System (INIS)
Lu, S.; Streit, R.D.; Chou, C.K.
1980-01-01
This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10 -12 ). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)
Fixation probability of a nonmutator in a large population of asexual mutators.
Jain, Kavita; James, Ananthu
2017-11-21
In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Future development of large superconducting generators
International Nuclear Information System (INIS)
Singh, S.K.; Mole, C.J.
1989-01-01
Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field
Toda, S.; Stein, R.S.; Reasenberg, P.A.; Dieterich, J.H.; Yoshida, A.
1998-01-01
The Kobe earthquake struck at the edge of the densely populated Osaka-Kyoto corridor in southwest Japan. We investigate how the earthquake transferred stress to nearby faults, altering their proximity to failure and thus changing earthquake probabilities. We find that relative to the pre-Kobe seismicity, Kobe aftershocks were concentrated in regions of calculated Coulomb stress increase and less common in regions of stress decrease. We quantify this relationship by forming the spatial correlation between the seismicity rate change and the Coulomb stress change. The correlation is significant for stress changes greater than 0.2-1.0 bars (0.02-0.1 MPa), and the nonlinear dependence of seismicity rate change on stress change is compatible with a state- and rate-dependent formulation for earthquake occurrence. We extend this analysis to future mainshocks by resolving the stress changes on major faults within 100 km of Kobe and calculating the change in probability caused by these stress changes. Transient effects of the stress changes are incorporated by the state-dependent constitutive relation, which amplifies the permanent stress changes during the aftershock period. Earthquake probability framed in this manner is highly time-dependent, much more so than is assumed in current practice. Because the probabilities depend on several poorly known parameters of the major faults, we estimate uncertainties of the probabilities by Monte Carlo simulation. This enables us to include uncertainties on the elapsed time since the last earthquake, the repeat time and its variability, and the period of aftershock decay. We estimate that a calculated 3-bar (0.3-MPa) stress increase on the eastern section of the Arima-Takatsuki Tectonic Line (ATTL) near Kyoto causes fivefold increase in the 30-year probability of a subsequent large earthquake near Kyoto; a 2-bar (0.2-MPa) stress decrease on the western section of the ATTL results in a reduction in probability by a factor of 140 to
Rainfall and net infiltration probabilities for future climate conditions at Yucca Mountain
International Nuclear Information System (INIS)
Long, A.; Childs, S.W.
1993-01-01
Performance assessment of repository integrity is a task rendered difficult because it requires predicting the future. This challenge has occupied many scientists who realize that the best assessments are required to maximize the probability of successful repository sitting and design. As part of a performance assessment effort directed by the EPRI, the authors have used probabilistic methods to assess the magnitude and timing of net infiltration at Yucca Mountain. A mathematical model for net infiltration previously published incorporated a probabilistic treatment of climate, surface hydrologic processes and a mathematical model of the infiltration process. In this paper, we present the details of the climatological analysis. The precipitation model is event-based, simulating characteristics of modern rainfall near Yucca Mountain, then extending the model to most likely values for different degrees of pluvial climates. Next the precipitation event model is fed into a process-based infiltration model that considers spatial variability in parameters relevant to net infiltration of Yucca Mountain. The model predicts that average annual net infiltration at Yucca Mountain will range from a mean of about 1 mm under present climatic conditions to a mean of at least 2.4 mm under full glacial (pluvial) conditions. Considerable variations about these means are expected to occur from year-to-year
Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.
2017-12-01
Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.
Ruin probability of the renewal model with risky investment and large claims
Institute of Scientific and Technical Information of China (English)
2009-01-01
The ruin probability of the renewal risk model with investment strategy for a capital market index is investigated in this paper.For claim sizes with common distribution of extended regular variation,we study the asymptotic behaviour of the ruin probability.As a corollary,we establish a simple asymptotic formula for the ruin probability for the case of Pareto-like claims.
Safeguarding future large-scale plutonium bulk handling facilities
International Nuclear Information System (INIS)
1979-01-01
The paper reviews the current status, advantages, limitations and probable future developments of material accountancy and of containment and surveillance. The major limitations on the use of material accountancy in applying safeguards to future plants arise from the uncertainty with which flows and inventories can be measured (0.5 to 1.0%), and the necessity to carry out periodical physical inventories to determine whether material has been diverted. The use of plant instrumentation to determine in-process inventories has commenced and so has the development of statistical methods for the evaluations of the data derived from a series of consecutive material balance periods. The limitations of accountancy can be overcome by increased use of containment and surveillance measures which have the advantage that they are independent of the operator's actions. In using these measures it will be necessary to identify the credible diversion paths, build in sufficient redundancy to reduce false alarm rates, develop automatic data recording and alarming
Lee, Sunghee; Liu, Mingnan; Hu, Mengyao
2017-06-01
Time orientation is an unconscious yet fundamental cognitive process that provides a framework for organizing personal experiences in temporal categories of past, present and future, reflecting the relative emphasis given to these categories. Culture lies central to individuals' time orientation, leading to cultural variations in time orientation. For example, people from future-oriented cultures tend to emphasize the future and store information relevant for the future more than those from present- or past-oriented cultures. For survey questions that ask respondents to report expected probabilities of future events, this may translate into culture-specific question difficulties, manifested through systematically varying "I don't know" item nonresponse rates. This study drew on the time orientation theory and examined culture-specific nonresponse patterns on subjective probability questions using methodologically comparable population-based surveys from multiple countries. The results supported our hypothesis. Item nonresponse rates on these questions varied significantly in the way that future-orientation at the group as well as individual level was associated with lower nonresponse rates. This pattern did not apply to non-probability questions. Our study also suggested potential nonresponse bias. Examining culture-specific constructs, such as time orientation, as a framework for measurement mechanisms may contribute to improving cross-cultural research.
Projection of Korean Probable Maximum Precipitation under Future Climate Change Scenarios
Directory of Open Access Journals (Sweden)
Okjeong Lee
2016-01-01
Full Text Available According to the IPCC Fifth Assessment Report, air temperature and humidity of the future are expected to gradually increase over the current. In this study, future PMPs are estimated by using future dew point temperature projection data which are obtained from RCM data provided by the Korea Meteorological Administration. First, bias included in future dew point temperature projection data which is provided on a daily basis is corrected through a quantile-mapping method. Next, using a scale-invariance technique, 12-hour duration 100-year return period dew point temperatures which are essential input data for PMPs estimation are estimated from bias-corrected future dew point temperature data. After estimating future PMPs, it can be shown that PMPs in all future climate change scenarios (AR5 RCP2.6, RCP 4.5, RCP 6.0, and RCP 8.5 are very likely to increase.
Assessing the Probability that a Finding Is Genuine for Large-Scale Genetic Association Studies.
Kuo, Chia-Ling; Vsevolozhskaya, Olga A; Zaykin, Dmitri V
2015-01-01
Genetic association studies routinely involve massive numbers of statistical tests accompanied by P-values. Whole genome sequencing technologies increased the potential number of tested variants to tens of millions. The more tests are performed, the smaller P-value is required to be deemed significant. However, a small P-value is not equivalent to small chances of a spurious finding and significance thresholds may fail to serve as efficient filters against false results. While the Bayesian approach can provide a direct assessment of the probability that a finding is spurious, its adoption in association studies has been slow, due in part to the ubiquity of P-values and the automated way they are, as a rule, produced by software packages. Attempts to design simple ways to convert an association P-value into the probability that a finding is spurious have been met with difficulties. The False Positive Report Probability (FPRP) method has gained increasing popularity. However, FPRP is not designed to estimate the probability for a particular finding, because it is defined for an entire region of hypothetical findings with P-values at least as small as the one observed for that finding. Here we propose a method that lets researchers extract probability that a finding is spurious directly from a P-value. Considering the counterpart of that probability, we term this method POFIG: the Probability that a Finding is Genuine. Our approach shares FPRP's simplicity, but gives a valid probability that a finding is spurious given a P-value. In addition to straightforward interpretation, POFIG has desirable statistical properties. The POFIG average across a set of tentative associations provides an estimated proportion of false discoveries in that set. POFIGs are easily combined across studies and are immune to multiple testing and selection bias. We illustrate an application of POFIG method via analysis of GWAS associations with Crohn's disease.
Assessing the present and future probability of Hurricane Harvey’s rainfall
Emanuel, Kerry
2017-01-01
Significance Natural disasters such as the recent Hurricanes Harvey, Irma, and Maria highlight the need for quantitative estimates of the risk of such disasters. Statistically based risk assessment suffers from short records of often poor quality, and in the case of meteorological hazards, from the fact that the underlying climate is changing. This study shows how a recently developed physics-based risk assessment method can be applied to assessing the probabilities of extreme hurricane rainf...
Future fire probability modeling with climate change data and physical chemistry
Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey
2014-01-01
Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...
International Nuclear Information System (INIS)
Susilowati, E.
2015-01-01
In the near future Indonesia, the fourth most populous country, plans to build a small size power plant most probably a Pebble Bed Modular Reactor PBMR. This first nuclear power plant (NPP) is aimed to provide clear picture to the society in regard to performance and safety of nuclear power plant operation. Selection to the PBMR based on several factor including the combination of small size of the reactor and type of fuel allowing the use of passive safety systems, resulting in essential advantages in nuclear plant design and less dependence on plant operators for safety. In the light of safeguards perspective this typical reactor is also quite difference with previous light water reactor (LWR) design. From the fact that there are a small size large number of elements present in the reactor produced without individual serial numbers combine to on-line refueling same as the CANDU reactor, enforcing a new challenge to safeguards approach for this typical reactor. This paper discusses a bunch of safeguards measures have to be prepared by facility operator to support successfully international nuclear material and facility verification including elements of design relevant to safeguards need to be accomplished in consultation to the regulatory body, supplier or designer and the Agency/IAEA such as nuclear material balance area and key measurement point; possible diversion scenarios and safeguards strategy; and design features relevant to the IAEA equipment have to be installed at the reactor facility. It is deemed that result of discussion will alleviate and support the Agency approaching safeguards measure that may be applied to the purpose Indonesian first power plant of PBMR construction and operation. (author)
The future of large old trees in urban landscapes.
Le Roux, Darren S; Ikin, Karen; Lindenmayer, David B; Manning, Adrian D; Gibbons, Philip
2014-01-01
Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha(-1); and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.
Detection probability of least tern and piping plover chicks in a large river system
Roche, Erin A.; Shaffer, Terry L.; Anteau, Michael J.; Sherfy, Mark H.; Stucker, Jennifer H.; Wiltermuth, Mark T.; Dovichin, Colin M.
2014-01-01
Monitoring the abundance and stability of populations of conservation concern is often complicated by an inability to perfectly detect all members of the population. Mark-recapture offers a flexible framework in which one may identify factors contributing to imperfect detection, while at the same time estimating demographic parameters such as abundance or survival. We individually color-marked, recaptured, and re-sighted 1,635 federally listed interior least tern (Sternula antillarum; endangered) chicks and 1,318 piping plover (Charadrius melodus; threatened) chicks from 2006 to 2009 at 4 study areas along the Missouri River and investigated effects of observer-, subject-, and site-level covariates suspected of influencing detection. Increasing the time spent searching and crew size increased the probability of detecting both species regardless of study area and detection methods were not associated with decreased survival. However, associations between detection probability and the investigated covariates were highly variable by study area and species combinations, indicating that a universal mark-recapture design may not be appropriate.
Land use planning and wildfire: development policies influence future probability of housing loss
Syphard, Alexandra D.; Massada, Avi Bar; Butsic, Van; Keeley, Jon E.
2013-01-01
Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to them through the informed placement of new residential structures. For land use planning to be effective, it needs to be based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-prone region in southern California. We based all future development on an econometric subdivision model, but we varied the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development. These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires. Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land use planning should be considered an important component to fire risk management and that consistently applied policies based on residential pattern may provide substantial benefits for
Optimism as a prior belief about the probability of future reward.
Directory of Open Access Journals (Sweden)
Aistis Stankevicius
2014-05-01
Full Text Available Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori beliefs can be overcome by experience. However, optimistic beliefs can at times appear surprisingly resistant to evidence, suggesting that optimism might also influence how new information is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a normative framework, to directly assess how trait optimism, as classically measured using self-report questionnaires, influences choices between visual targets, by learning about their association with reward progresses. We find that trait optimism relates to an a priori belief about the likelihood of rewards, but not losses, in our task. Critically, this positive belief behaves like a probabilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iterative learning process directly.
Optimism as a Prior Belief about the Probability of Future Reward
Kalra, Aditi; Seriès, Peggy
2014-01-01
Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori beliefs can be overcome by experience. However, optimistic beliefs can at times appear surprisingly resistant to evidence, suggesting that optimism might also influence how new information is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a normative framework, to directly assess how trait optimism, as classically measured using self-report questionnaires, influences choices between visual targets, by learning about their association with reward progresses. We find that trait optimism relates to an a priori belief about the likelihood of rewards, but not losses, in our task. Critically, this positive belief behaves like a probabilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iterative learning process directly. PMID:24853098
A future large-aperture UVOIR space observatory: reference designs
Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice
2015-09-01
Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.
The future of the Large Hadron Collider and CERN.
Heuer, Rolf-Dieter
2012-02-28
This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.
Status and Future Developments in Large Accelerator Control Systems
International Nuclear Information System (INIS)
Karen S. White
2006-01-01
Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries
Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
Energy Technology Data Exchange (ETDEWEB)
Fatalov, Vadim R [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2011-08-31
We prove results on exact asymptotics as n{yields}{infinity} for the expectations E{sub a} exp{l_brace}-{theta}{Sigma}{sub k=0}{sup n-1}g(X{sub k}){r_brace} and probabilities P{sub a}{l_brace}(1/n {Sigma}{sub k=0}{sup n-1}g(X{sub k})
Conclusion: probable and possible futures. MRI with ultra high magnetic field
International Nuclear Information System (INIS)
Le Bihan, D.
2009-01-01
MR neuroimaging does not interfere with brain function. Because it is safe, it can be used to study the brains of both patients and healthy volunteers. The tasks performed by neurons depend largely on their precise location, and high-field magnets have the potential to provide a 5- to 10-fold increase in spatio-temporal resolution. This should allow brain function to be studied on a scale of only a few thousand neurons, possibly at the intermediate scale of the 'neural code'. NeuroSpin, a new CEA research center, is dedicated to neuro-MRI at high magnetic field strengths. As a forum for dialogue between those developing and those using these instruments, it brings together researchers and engineers, technicians and medical doctors. NeuroSpin is one of the few institutions in Europe, if not the world, where these experts can come together in one place to design, construct and use machines equipped with ultra-strong magnets. The strongest 'routine' MR device currently operates at 3 Tesla (60 000 times the earth's magnetic field), whereas a first French system operating at 7 Tesla (140 000 times the earth's field) is now available for human studies, and another system operating at 11.7 Tesla (world record) should be delivered in 2011. Preclinical studies are also being conducted with magnets operating at 7 Tesla and, soon, 17.6 Tesla. (author)
Timpanaro, André M.; Prado, Carmen P. C.
2014-05-01
We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.
Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology
International Nuclear Information System (INIS)
Zare, Kazem; Moghaddam, Mohsen Parsa; Sheikh El Eslami, Mohammad Kazem
2010-01-01
This paper provides a technique to derive the bidding strategy in the day-ahead market for a large consumer that procures its electricity demand in both day-ahead market and a subsequent adjustment market. It is considered that hourly market prices are normally distributed and this correlation is modeled by variance-covariance matrix. The uncertainty of procurement cost is modeled using concepts derived from information gap decision theory which allows deriving robust bidding strategies with respect to price volatility. First Order Reliability Method is applied to construct the robust bidding curve. The proposed technique is illustrated through a realistic case study. (author)
Rendering Future Vegetation Change across Large Regions of the US
Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg
2015-04-01
We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for
Large scale scenario analysis of future low carbon energy options
International Nuclear Information System (INIS)
Olaleye, Olaitan; Baker, Erin
2015-01-01
In this study, we use a multi-model framework to examine a set of possible future energy scenarios resulting from R&D investments in Solar, Nuclear, Carbon Capture and Storage (CCS), Bio-fuels, Bio-electricity, and Batteries for Electric Transportation. Based on a global scenario analysis, we examine the impact on the economy of advancement in energy technologies, considering both individual technologies and the interactions between pairs of technologies, with a focus on the role of uncertainty. Nuclear and CCS have the most impact on abatement costs, with CCS mostly important at high levels of abatement. We show that CCS and Bio-electricity are complements, while most of the other energy technology pairs are substitutes. We also examine for stochastic dominance between R&D portfolios: given the uncertainty in R&D outcomes, we examine which portfolios would be preferred by all decision-makers, regardless of their attitude toward risk. We observe that portfolios with CCS tend to stochastically dominate those without CCS; and portfolios lacking CCS and Nuclear tend to be stochastically dominated by others. We find that the dominance of CCS becomes even stronger as uncertainty in climate damages increases. Finally, we show that there is significant value in carefully choosing a portfolio, as relatively small portfolios can dominate large portfolios. - Highlights: • We examine future energy scenarios in the face of R&D and climate uncertainty. • We examine the impact of advancement in energy technologies and pairs of technologies. • CCS complements Bio-electricity while most technology pairs are substitutes. • R&D portfolios without CCS are stochastically dominated by portfolios with CCS. • Higher damage uncertainty favors R&D development of CCS and Bio-electricity
Directory of Open Access Journals (Sweden)
F. sakhi
2016-03-01
.5 respectively. Multinomial Logit model estimation results for the probability of participation in the future and option markets showed that variables of the level of education, farm ownership, cotton acreage, and non-farm income, work experience in agriculture, the index of willing to use new technologies, the index of risk perception cotton market and risk aversion index are statistically significant. The variables of farm ownership, non-farm income and work experience in agriculture, showed negative effects and the other variables showed positive effects on the probability of participation in these markets. The results are in line with previous studies. Conclusion: The purpose of the current study was to look at the possibility of farmers participations in the future and option markets that presented as a means to reduce the cotton prices volatility. The dependent variable for this purpose, have four categories: participation in both market, and future market, participation in option market and participation in both future and option markets. Multinomial Legit Regression Model was used for data analysis. Results indicated that during the period of 2014 -2015 and the sample under study 35% of cotton growers unwilling to participate in the future and option markets. Farmers willingness to participate in the future and option market was 19% and %21.5, respectively. Multinomial Legit model estimation results for the probability of participation in the future and option markets showed that the variables of the level of education, farm ownership, cotton acreage, and non-farm income, work experience in agriculture, the index of willing to use new technologies, the index of risk perception cotton market and risk aversion index were statistically significant. The variables of farm ownership, non-farm income and work experience in agriculture, showed negative effects and the other variables positive effects on the probability of participation in these markets. The results are in line
Directory of Open Access Journals (Sweden)
D. Nijssen
2009-08-01
Full Text Available As a result of the severe floods in Europe at the turn of the millennium, the ongoing shift from safety oriented flood control towards flood risk management was accelerated. With regard to technical flood control measures it became evident that the effectiveness of flood control measures depends on many different factors, which cannot be considered with single events used as design floods for planning. The multivariate characteristics of the hydrological loads have to be considered to evaluate complex flood control measures. The effectiveness of spatially distributed flood control systems differs for varying flood events. Event-based characteristics such as the spatial distribution of precipitation, the shape and volume of the resulting flood waves or the interactions of flood waves with the technical elements, e.g. reservoirs and flood polders, result in varying efficiency of these systems. Considering these aspects a flood control system should be evaluated with a broad range of hydrological loads to get a realistic assessment of its performance under different conditions. The consideration of this variety in flood control planning design was one particular aim of this study. Hydrological loads were described by multiple criteria. A statistical characterization of these criteria is difficult, since the data base is often not sufficient to analyze the variety of possible events. Hydrological simulations were used to solve this problem. Here a deterministic-stochastic flood generator was developed and applied to produce a large quantity of flood events which can be used as scenarios of possible hydrological loads. However, these simulations imply many uncertainties. The results will be biased by the basic assumptions of the modeling tools. In flood control planning probabilities are applied to characterize uncertainties. The probabilities of the simulated flood scenarios differ from probabilities which would be derived from long time series
Precise lim sup behavior of probabilities of large deviations for sums of i.i.d. random variables
Directory of Open Access Journals (Sweden)
Andrew Rosalsky
2004-12-01
Full Text Available Let {X,Xn;nÃ¢Â‰Â¥1} be a sequence of real-valued i.i.d. random variables and let Sn=Ã¢ÂˆÂ‘i=1nXi, nÃ¢Â‰Â¥1. In this paper, we study the probabilities of large deviations of the form P(Sn>tn1/p, P(Sntn1/p, where t>0 and 0x1/p/ÃÂ•(x=1, then for every t>0, limsupnÃ¢Â†Â’Ã¢ÂˆÂžP(|Sn|>tn1/p/(nÃÂ•(n=tpÃŽÂ±.
Phenomenology of future neutrino experiments with large θ13
International Nuclear Information System (INIS)
Minakata, Hisakazu
2013-01-01
The question “how small is the lepton mixing angle θ 13 ?” had a convincing answer in a surprisingly short time, θ 13 ≃9 ° , a large value comparable to the Chooz limit. It defines a new epoch in the program of determining the lepton mixing parameters, opening the door to search for lepton CP violation of the Kobayashi-Maskawa-type. I discuss influences of the large value of θ 13 to search for CP violation and determination of the neutrino mass hierarchy, the remaining unknowns in the standard three-flavor mixing scheme of neutrinos. I emphasize the following two points: (1) Large θ 13 makes determination of the mass hierarchy easier. It stimulates to invent new ideas and necessitates quantitative reexamination of practical ways to explore it. (2) However, large θ 13 does not quite make CP measurement easier so that we do need a “guaranteeing machine” to measure CP phase δ
Anticipating future innovation pathways through large data analysis
Chiavetta, Denise; Porter, Alan; Saritas, Ozcan
2016-01-01
This book aims to identify promising future developmental opportunities and applications for Tech Mining. Specifically, the enclosed contributions will pursue three converging themes: The increasing availability of electronic text data resources relating to Science, Technology & Innovation (ST&I) The multiple methods that are able to treat this data effectively and incorporate means to tap into human expertise and interests Translating those analyses to provide useful intelligence on likely future developments of particular emerging S&T targets. Tech Mining can be defined as text analyses of ST&I information resources to generate Competitive Technical Intelligence (CTI). It combines bibliometrics and advanced text analytic, drawing on specialized knowledge pertaining to ST&I. Tech Mining may also be viewed as a special form of “Big Data” analytics because it searches on a target emerging technology (or key organization) of interest in global databases. One then downloads, typically, th...
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Directory of Open Access Journals (Sweden)
Adrián Regos
Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be
International Nuclear Information System (INIS)
Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi
2012-01-01
Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))
Future hydrogen markets for large-scale hydrogen production systems
International Nuclear Information System (INIS)
Forsberg, Charles W.
2007-01-01
The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)
Assessing the role of large hydro in Canada's electricity future
International Nuclear Information System (INIS)
Lee Pochih
1992-01-01
Electric power in Canada was first generated by steam in the 1880s. The use of hydroelectricity spread rapidly due to abundant water resources and the nationalization of power companies by the provinces; by 1920, 97% of Canadian electricity production came from hydroelectric plants. Thermal generation became competitive by the 1960s, when most of the best hydro sites had been developed, and nuclear generation also started gaining a share of the market. By 1991, hydroelectricity's share of Canadian power production had declined to around 60%. Hydroelectric power has long been used as an instrument of Canadian industrial policy. Given the amount and importance of utility capital expenditures, it was recognized that hydropower development could serve such policy objectives as job creation, industrial development, and macroeconomic stabilization. Creation of provincially owned utilities led to construction of large hydroelectric projects, notably in Quebec, British Columbia, Manitoba, and Newfoundland. The 20 largest hydroelectric power plants in Canada have a total installed capacity of 35,704 MW, representing ca 59% of Canada's total 1991 hydro capacity. The construction of such large projects is not expected to proceed as quickly as in the past because of environmental concerns. However, a number of factors favor continuation of development of hydro resources: a remaining potential estimated at ca 44,000 MW; simplification of electricity export regulations; more stringent air pollution standards that favor non-polluting energy sources; and a moratorium on nuclear power plants in Ontario. 4 tabs
Shiryaev, Albert N
2016-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.
Ideas for future large single dish radio telescopes
Kärcher, Hans J.; Baars, Jacob W. M.
2014-07-01
The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.
Large-Scale Sequencing: The Future of Genomic Sciences Colloquium
Energy Technology Data Exchange (ETDEWEB)
Margaret Riley; Merry Buckley
2009-01-01
Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin
Quantum Probabilities as Behavioral Probabilities
Directory of Open Access Journals (Sweden)
Vyacheslav I. Yukalov
2017-03-01
Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.
Bellemare, C.; Kroger, S.; van Soest, A.H.O.
2005-01-01
We combine the choice data of proposers and responders in the ultimatum game, their expectations elicited in the form of subjective probability questions, and the choice data of proposers ("dictator") in a dictator game to estimate a structural model of decision making under uncertainty.We use a
Electric vehicles to support large wind power penetration in future danish power systems
DEFF Research Database (Denmark)
Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul
2012-01-01
Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....
Vafeiadis, M.; Spachos, Th.; Zampetoglou, K.; Soupilas, Th.
2012-04-01
The test site of Aravissos is located at 70 Km to the West (W-NW) of Thessaloniki at the south banks of mount Païko, in the north part of Central Macedonia The karstic Aravissos springs supply 40% of total volume needed for the water supply of Thessaloniki, Greece. As the water is of excellent quality, it is feed directly in the distribution network without any previous treatment. The availability of this source is therefore of high importance for the sustainable water supply of this area with almost 1000000 inhabitants. The water system of Aravissos is developed in a karstic limestone with an age of about Late Cretaceous that covers almost the entire western part of the big-anticline of Païko Mountain. The climate in this area and the water consumption area, Thessaloniki, is a typical Mediterranean climate with mild and humid winters and hot and dry summers. The total annual number of rainy days is around 110. The production of the Aravissos springs depends mostly from the annual precipitations. As the feeding catchement and the karst aquifer are not well defined, a practical empirical balance model, that contains only well known relevant terms, is applied for the simulation of the operation of the springs under normal water extraction for water supply in present time. The estimation of future weather conditions are based on GCM and RCM simulation data and the extension of trend lines of the actual data. The future evolution of the availability of adequate water quantities from the springs is finally estimated from the balance model and the simulated future climatic data. This study has been realised within the project CC-WaterS, funded by the SEE program of the European Regional Development Fund (http://www.ccwaters.eu/).
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Sloth, Martin Snoager
2008-01-01
We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter epsilon (> 0.001), a positive detection of trans......-Planckian ripples can be made even if the amplitude is as low as 10^-4. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound...
Directory of Open Access Journals (Sweden)
Y. Dzierma
2010-10-01
Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.
Tadini, A.; Bevilacqua, A.; Neri, A.; Cioni, R.; Aspinall, W. P.; Bisson, M.; Isaia, R.; Mazzarini, F.; Valentine, G. A.; Vitale, S.; Baxter, P. J.; Bertagnini, A.; Cerminara, M.; de Michieli Vitturi, M.; Di Roberto, A.; Engwell, S.; Esposti Ongaro, T.; Flandoli, F.; Pistolesi, M.
2017-06-01
In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6-10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera.
High-Energy Physics Strategies and Future Large-Scale Projects
Zimmermann, F
2015-01-01
We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.
Future changes in large-scale transport and stratosphere-troposphere exchange
Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.
2017-12-01
Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.
Toda, Shinji; Stein, Ross S.
2013-01-01
1] The Kanto seismic corridor surrounding Tokyo has hosted four to five M ≥ 7 earthquakes in the past 400 years. Immediately after the Tohoku earthquake, the seismicity rate in the corridor jumped 10-fold, while the rate of normal focal mechanisms dropped in half. The seismicity rate decayed for 6–12 months, after which it steadied at three times the pre-Tohoku rate. The seismicity rate jump and decay to a new rate, as well as the focal mechanism change, can be explained by the static stress imparted by the Tohoku rupture and postseismic creep to Kanto faults. We therefore fit the seismicity observations to a rate/state Coulomb model, which we use to forecast the time-dependent probability of large earthquakes in the Kanto seismic corridor. We estimate a 17% probability of a M ≥ 7.0 shock over the 5 year prospective period 11 March 2013 to 10 March 2018, two-and-a-half times the probability had the Tohoku earthquake not struck
Expected Future Conditions for Secure Power Operation with Large Scale of RES Integration
International Nuclear Information System (INIS)
Majstrovic, G.; Majstrovic, M.; Sutlovic, E.
2015-01-01
EU energy strategy is strongly focused on the large scale integration of renewable energy sources. The most dominant part here is taken by variable sources - wind power plants. Grid integration of intermittent sources along with keeping the system stable and secure is one of the biggest challenges for the TSOs. This part is often neglected by the energy policy makers, so this paper deals with expected future conditions for secure power system operation with large scale wind integration. It gives an overview of expected wind integration development in EU, as well as expected P/f regulation and control needs. The paper is concluded with several recommendations. (author).
Energy Technology Data Exchange (ETDEWEB)
Nakamura, T.; Kondo, Y.
2016-06-01
Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.
West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.
2016-01-01
Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.
Assessment of present and future large-scale semiconductor detector systems
International Nuclear Information System (INIS)
Spieler, H.G.; Haller, E.E.
1984-11-01
The performance of large-scale semiconductor detector systems is assessed with respect to their theoretical potential and to the practical limitations imposed by processing techniques, readout electronics and radiation damage. In addition to devices which detect reaction products directly, the analysis includes photodetectors for scintillator arrays. Beyond present technology we also examine currently evolving structures and techniques which show potential for producing practical devices in the foreseeable future
Sun, J.; Shen, Z.; Burgmann, R.; Liang, F.
2012-12-01
We develop a three-step Maximum-A-Posterior probability (MAP) method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic solutions of earthquake rupture. The method originates from the Fully Bayesian Inversion (FBI) and the Mixed linear-nonlinear Bayesian inversion (MBI) methods , shares the same a posterior PDF with them and keeps most of their merits, while overcoming its convergence difficulty when large numbers of low quality data are used and improving the convergence rate greatly using optimization procedures. A highly efficient global optimization algorithm, Adaptive Simulated Annealing (ASA), is used to search for the maximum posterior probability in the first step. The non-slip parameters are determined by the global optimization method, and the slip parameters are inverted for using the least squares method without positivity constraint initially, and then damped to physically reasonable range. This step MAP inversion brings the inversion close to 'true' solution quickly and jumps over local maximum regions in high-dimensional parameter space. The second step inversion approaches the 'true' solution further with positivity constraints subsequently applied on slip parameters using the Monte Carlo Inversion (MCI) technique, with all parameters obtained from step one as the initial solution. Then the slip artifacts are eliminated from slip models in the third step MAP inversion with fault geometry parameters fixed. We first used a designed model with 45 degree dipping angle and oblique slip, and corresponding synthetic InSAR data sets to validate the efficiency and accuracy of method. We then applied the method on four recent large earthquakes in Asia, namely the 2010 Yushu, China earthquake, the 2011 Burma earthquake, the 2011 New Zealand earthquake and the 2008 Qinghai, China earthquake, and compared our results with those results from other groups. Our results show the effectiveness of
DEFF Research Database (Denmark)
Asmussen, Søren; Albrecher, Hansjörg
The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....
Generalized Probability-Probability Plots
Mushkudiani, N.A.; Einmahl, J.H.J.
2004-01-01
We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P
Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...
FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report
Energy Technology Data Exchange (ETDEWEB)
Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)
2016-04-01
The primary objectives of the FutureGen 2.0 CO_{2} Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO_{2} compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO_{2} capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO_{2} Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO_{2} captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO_{2} Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will
Freund, John E
1993-01-01
Thorough, lucid coverage of permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, binomial distribution, geometric distribution, standard deviation, law of large numbers, and much more. Exercises with some solutions. Summary. Bibliography. Includes 42 black-and-white illustrations. 1973 edition.
Blaas, Harry; Kroeze, Carolien
2014-10-15
Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed. To this end, scenarios for the year 2050 are analysed, assuming that in the 27 countries of the European Union fossil diesel will be replaced by biodiesel from algae. Estimates are made for the required fertiliser inputs to algae parks, and how this may increase concentrations of nitrogen and phosphorus in coastal waters, potentially leading to eutrophication. The Global NEWS (Nutrient Export from WaterSheds) model has been used to estimate the transport of nitrogen and phosphorus to the European coastal waters. The results indicate that the amount of nitrogen and phosphorus in the coastal waters may increase considerably in the future as a result of large-scale production of algae for the production of biodiesel, even in scenarios assuming effective waste water treatment and recycling of waste water in algae production. To ensure sustainable production of biodiesel from micro-algae, it is important to develop cultivation systems with low nutrient losses to the environment. Copyright © 2014 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Rojas-Nandayapa, Leonardo
Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...
International Nuclear Information System (INIS)
Jean Jacques, M.; Maurel, J.J.; Maillet, J.
1994-01-01
Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs
Nuclear fusion and its large potential for the future world energy supply
Directory of Open Access Journals (Sweden)
Ongena Jef
2016-12-01
Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.
Ash, Robert B; Lukacs, E
1972-01-01
Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory.Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of var
How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites
International Nuclear Information System (INIS)
Phinney, Nan
2001-01-01
A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, trouble shooting and repair. Experience from existing accelerators confirms that most of these activities are already performed remotely. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems
Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders
Lebrun, Philippe; Tavian, Laurent
Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.
Measuring CP nature of top-Higgs couplings at the future Large Hadron electron Collider
Directory of Open Access Journals (Sweden)
Baradhwaj Coleppa
2017-07-01
Full Text Available We investigate the sensitivity of top-Higgs coupling by considering the associated vertex as CP phase (ζt dependent through the process pe−→t¯hνe in the future Large Hadron electron Collider. In particular the decay modes are taken to be h→bb¯ and t¯ → leptonic mode. Several distinct ζt dependent features are demonstrated by considering observables like cross sections, top-quark polarisation, rapidity difference between h and t¯ and different angular asymmetries. Luminosity (L dependent exclusion limits are obtained for ζt by considering significance based on fiducial cross sections at different σ-levels. For electron and proton beam-energies of 60 GeV and 7 TeV respectively, at L=100 fb−1, the regions above π/5<ζt≤π are excluded at 2σ confidence level, which reflects better sensitivity expected at the Large Hadron Collider. With appropriate error fitting methodology we find that the accuracy of SM top-Higgs coupling could be measured to be κ=1.00±0.17(0.08 at s=1.3(1.8 TeV for an ultimate L=1ab−1.
How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites
Energy Technology Data Exchange (ETDEWEB)
Phinney, Nan
2001-12-07
A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, troubleshooting and repair. Experience from existing accelerators confirms that most of these activities are already performed 'remotely'. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems.
An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory
Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip
2016-01-01
From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.
Grinstead, Charles M; Snell, J Laurie
2011-01-01
This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
Kim, Jeonglae; Pope, Stephen B.
2014-05-01
A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.
Scenarios to explore the futures of the emerging technology of organic and large area electronics
Parandian, Alireza; Rip, Arie
2013-01-01
Emerging technologies pose challenges for futures research because of their uncertainties combined with promises. Actors are anticipating and acting strategically. Sociotechnical scenarios building on endogenous futures support and enlighten actors. Such scenarios contribute to “strategic
Energy Technology Data Exchange (ETDEWEB)
Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)
1982-06-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.
International Nuclear Information System (INIS)
Kashiwagi, H.
1982-01-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)
The future of primordial features with large-scale structure surveys
International Nuclear Information System (INIS)
Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia
2016-01-01
Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.
The future of primordial features with large-scale structure surveys
Energy Technology Data Exchange (ETDEWEB)
Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)
2016-11-01
Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.
Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories
International Nuclear Information System (INIS)
Volpe, C.; Welzel, J.
2007-01-01
We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)
Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories
Energy Technology Data Exchange (ETDEWEB)
Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)
2007-07-01
We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)
Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe
Directory of Open Access Journals (Sweden)
Fei Teng
2018-01-01
Full Text Available This paper analyses the impacts and benefits of the pumped storage plant (PSP and its upgrade to variable speed on generation and transmission capacity requirements, capital costs, system operating costs and carbon emissions in the future European electricity system. The combination of a deterministic system planning tool, Whole-electricity System Investment Model (WeSIM, and a stochastic system operation optimisation tool, Advanced Stochastic Unit Commitment (ASUC, is used to analyse the whole-system value of PSP technology and to quantify the impact of European balancing market integration and other competing flexible technologies on the value of the PSP. Case studies on the Pan-European system demonstrate that PSPs can reduce the total system cost by up to €13 billion per annum by 2050 in a scenario with a high share of renewables. Upgrading the PSP to variable-speed drive enhances its long-term benefits by 10–20%. On the other hand, balancing market integration across Europe may potentially reduce the overall value of the variable-speed PSP, although the effect can vary across different European regions. The results also suggest that large-scale deployment of demand-side response (DSR leads to a significant reduction in the value of PSPs, while the value of PSPs increases by circa 18% when the total European interconnection capacity is halved. The benefit of PSPs in reducing emissions is relatively negligible by 2030 but constitutes around 6–10% of total annual carbon emissions from the European power sector by 2050.
Large area thinned planar sensors for future high-luminosity-LHC upgrades
International Nuclear Information System (INIS)
Wittig, T.; Lawerenz, A.; Röder, R.
2016-01-01
Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2⋅ 10 16 n eq /cm 2 . For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ∼ 4 × 4 cm 2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.
Large area thinned planar sensors for future high-luminosity-LHC upgrades
Wittig, T.; Lawerenz, A.; Röder, R.
2016-12-01
Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2ṡ 1016 neq/cm2. For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ~ 4 × 4 cm2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.
Strange, P.
2012-01-01
In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…
Grimmett, Geoffrey
2014-01-01
Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit th...
Large natural draught cooling towers of reinforced concrete - present state and future developments
International Nuclear Information System (INIS)
Kraetzig, W.B.
1975-01-01
The paper attempts to give a survey of the present state of safety theory as well as of construction and erection of reinforced-concrete natural draught cooling towers. Today these constructions have reached heights of over 150 m and may be built still higher. From the point of view of safety and relibility this is undoubtedly possible. From an economical point of view, new constructional elements will probably have to be introduced into the design. (orig./AK) [de
Collision Probability Analysis
DEFF Research Database (Denmark)
Hansen, Peter Friis; Pedersen, Preben Terndrup
1998-01-01
It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...
Blaas, H.; Kroeze, C.
2014-01-01
Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed.
Haberlandt, Uwe; Wallner, Markus; Radtke, Imke
2013-04-01
Derived flood frequency analysis based on continuous hydrological modelling is very demanding regarding the required length and temporal resolution of precipitation input data. Often such flood predictions are obtained using long precipitation time series from stochastic approaches or from regional climate models as input. However, the calibration of the hydrological model is usually done using short time series of observed data. This inconsistent employment of different data types for calibration and application of a hydrological model increases its uncertainty. Here, it is proposed to calibrate a hydrological model directly on probability distributions of observed peak flows using model based rainfall in line with its later application. Two examples are given to illustrate the idea. The first one deals with classical derived flood frequency analysis using input data from an hourly stochastic rainfall model. The second one concerns a climate impact analysis using hourly precipitation from a regional climate model. The results show that: (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated on extreme conditions works quite well for average conditions but not vice versa, (III) the calibration of the hydrological model using regional climate model data works as an implicit bias correction method and (IV) the best performance for flood estimation is usually obtained when model based precipitation and observed probability distribution of peak flows are used for model calibration.
Directory of Open Access Journals (Sweden)
Zamkotsian Frederic
2015-01-01
Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.
DEFF Research Database (Denmark)
Galili, Michael; Kamchevska, Valerija; Fagertun, Anna Manolova
2015-01-01
This talk will present the work of the EU project COSIGN targeting the development of optical data plane solutions for future high-capacity datacenter networks (DCNs). Optical data planes with high capacity and high flexibility through software control are developed in order to enable a coherent...
Classic Problems of Probability
Gorroochurn, Prakash
2012-01-01
"A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin
DEFF Research Database (Denmark)
Pedersen, Michael Haldrup
2017-01-01
Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...
Akita, Tomoyuki; Tanaka, Junko; Ohisa, Masayuki; Sugiyama, Aya; Nishida, Kazuo; Inoue, Shingo; Shirasaka, Takuma
2016-11-01
Simulation studies were performed to predict the future supply and demand for blood donations, and future shortfalls. Using data from all donations in 2006 to 2009, the Markov model was applied to estimate future blood donations until 2050. Based on data concerning the actual use of blood products, the number of blood products needed was estimated based on future population projections. We estimated that the number of blood donations increased from 5,020,000 in 2008 to 5,260,000 in 2012, but will decrease to 4,770,000 units by 2025. In particular, the number of donors in their 20s and 30s decreased every year. Moreover, the number of donations required to supply blood products would have been increased from 5,390,000 in 2012 to 5,660,000 units in 2025. Thus, the estimated shortfall of blood donations is expected to increase each year from 140,000 in 2012 to 890,000 in 2025 and then more than double to 1,670,000 in 2050. If the current blood donation behaviors continue, a shortfall of blood availability is likely to occur in Japan. Insufficient blood donations are mainly related to a projected reduction in population of 20 to 30 year olds, a significant group of donors. Thus, it is crucial to recruit and retain new donors and to develop recommendations for proper use of blood products to minimize unnecessary use. This study provides useful information that can be used by governments to help ensure the adequacy of the blood supply through promoting donations and conserving blood resources. © 2016 AABB.
Probability and stochastic modeling
Rotar, Vladimir I
2012-01-01
Basic NotionsSample Space and EventsProbabilitiesCounting TechniquesIndependence and Conditional ProbabilityIndependenceConditioningThe Borel-Cantelli TheoremDiscrete Random VariablesRandom Variables and VectorsExpected ValueVariance and Other Moments. Inequalities for DeviationsSome Basic DistributionsConvergence of Random Variables. The Law of Large NumbersConditional ExpectationGenerating Functions. Branching Processes. Random Walk RevisitedBranching Processes Generating Functions Branching Processes Revisited More on Random WalkMarkov ChainsDefinitions and Examples. Probability Distributions of Markov ChainsThe First Step Analysis. Passage TimesVariables Defined on a Markov ChainErgodicity and Stationary DistributionsA Classification of States and ErgodicityContinuous Random VariablesContinuous DistributionsSome Basic Distributions Continuous Multivariate Distributions Sums of Independent Random Variables Conditional Distributions and ExpectationsDistributions in the General Case. SimulationDistribution F...
Large-scale computer networks and the future of legal knowledge-based systems
Leenes, R.E.; Svensson, Jorgen S.; Hage, J.C.; Bench-Capon, T.J.M.; Cohen, M.J.; van den Herik, H.J.
1995-01-01
In this paper we investigate the relation between legal knowledge-based systems and large-scale computer networks such as the Internet. On the one hand, researchers of legal knowledge-based systems have claimed huge possibilities, but despite the efforts over the last twenty years, the number of
Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions
Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.
2012-07-01
This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.
International Nuclear Information System (INIS)
Hoefert, M.; Stevenson, G.R.; Vojtyla, P.; Wittekind, D.
1998-01-01
The present radiological impact of CERN on the environment is negligible. It is assessed that this will also be the case after the Large Hadron Collider starts operation in 2005. Nevertheless, the environmental monitoring programme at CERN will be further extended, so as to demonstrate that the Organization fully complies with standards and limits for environmental impact of nuclear installations as laid down by authorities in the CERN host countries. (P.A.)
Enabling Future Large Searches for Exoplanet Auroral Emission with the EPIC Correlator Architecture
Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.
2017-05-01
Extrasolar planets are expected to emit strong ``auroral'' emission at radio frequencies generated by the interaction of the host star's stellar winds with the planet's magnetosphere through electron-cyclotron maser emission. This transient emission lasts a few seconds to days and is almost fully circularly polarized. Detecting this emission in exoplanets is a critical probe of their magnetospheres and thus their interior compositions and habitability. The intensity and detectability of the emission depends on the suitability of many factors to the observing parameters such as the strength of the stellar wind power, the planetary magnetosphere cross-section, the highly beamed and coherent nature of electron-cyclotron emission, and narrow ranges of the planet's orbital phase. Large areas of sky must be surveyed continuously to high sensitivity to detect auroral emission. Next-generation radio telescopes with wide fields of view, large collecting areas and high efficiency are needed for these searches. This poses challenges to traditional correlator architectures whose computational cost scales as the square of the number of antennas. I will present a novel radio aperture synthesis imaging architecture - E-field Parallel Imaging Correlator (EPIC) - whose all-sky and full Stokes imaging capabilities will not only address the aforementioned factors preventing detection but also solve the computational challenges posed by large arrays. Compared to traditional imaging, EPIC is inherently fast and thus presents the unique advantage of probing transient timescales ranging orders of magnitude from tens of microseconds to days at no additional cost.
Large-Scale medical image analytics: Recent methodologies, applications and Future directions.
Zhang, Shaoting; Metaxas, Dimitris
2016-10-01
Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.
Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A
2017-03-01
Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10 μ m tall artificial capillaries, and a 66 μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.
Future IBM-BNL large-area superconducting inductive monopole detectors
International Nuclear Information System (INIS)
Bermon, S.; Chi, C.C.; Tsuei, C.C.; Chaudhari, P.; Ketchen, M.; Tesche, C.D.; Prodell, A.
1986-01-01
The observation of massive moving magnetic monopoles would have extremely important implications for grand unification theories and cosmological models for the creation of the universe. Among detection methods, the superconducting induction technique is unique in that it directly and unambiguously measures the sole property of the monopole of which the authors are certain--its magnetic charge--the detector response being independent of all other characteristics such as the monopole mass, its velocity, the presence of a companion electric charge, or the detailed nature of its interaction with matter. Described herein are plans for constructing an induction detector sufficiently large to reach the Parker bound in several years of operation
Probability Aggregates in Probability Answer Set Programming
Saad, Emad
2013-01-01
Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...
Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories
Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud
2011-10-01
Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.
Large-scale computation at PSI scientific achievements and future requirements
International Nuclear Information System (INIS)
Adelmann, A.; Markushin, V.
2008-11-01
' (SNSP-HPCN) is discussing this complex. Scientific results which are made possible by PSI's engagement at CSCS (named Horizon) are summarised and PSI's future high-performance computing requirements are evaluated. The data collected shows the current situation and a 5 year extrapolation of the users' needs with respect to HPC resources is made. In consequence this report can serve as a basis for future strategic decisions with respect to a non-existing HPC road-map for PSI. PSI's institutional HPC area started hardware-wise approximately in 1999 with the assembly of a 32-processor LINUX cluster called Merlin. Merlin was upgraded several times, lastly in 2007. The Merlin cluster at PSI is used for small scale parallel jobs, and is the only general purpose computing system at PSI. Several dedicated small scale clusters followed the Merlin scheme. Many of the clusters are used to analyse data from experiments at PSI or CERN, because dedicated clusters are most efficient. The intellectual and financial involvement of the procurement (including a machine update in 2007) results in a PSI share of 25 % of the available computing resources at CSCS. The (over) usage of available computing resources by PSI scientists is demonstrated. We actually get more computing cycles than we have paid for. The reason is the fair share policy that is implemented on the Horizon machine. This policy allows us to get cycles, with a low priority, even when our bi-monthly share is used. Five important observations can be drawn from the analysis of the scientific output and the survey of future requirements of main PSI HPC users: (1) High Performance Computing is a main pillar in many important PSI research areas; (2) there is a lack in the order of 10 times the current computing resources (measured in available core-hours per year); (3) there is a trend to use in the order of 600 processors per average production run; (4) the disk and tape storage growth is dramatic; (5) small HPC clusters located
Large-scale computation at PSI scientific achievements and future requirements
Energy Technology Data Exchange (ETDEWEB)
Adelmann, A.; Markushin, V
2008-11-15
and Networking' (SNSP-HPCN) is discussing this complex. Scientific results which are made possible by PSI's engagement at CSCS (named Horizon) are summarised and PSI's future high-performance computing requirements are evaluated. The data collected shows the current situation and a 5 year extrapolation of the users' needs with respect to HPC resources is made. In consequence this report can serve as a basis for future strategic decisions with respect to a non-existing HPC road-map for PSI. PSI's institutional HPC area started hardware-wise approximately in 1999 with the assembly of a 32-processor LINUX cluster called Merlin. Merlin was upgraded several times, lastly in 2007. The Merlin cluster at PSI is used for small scale parallel jobs, and is the only general purpose computing system at PSI. Several dedicated small scale clusters followed the Merlin scheme. Many of the clusters are used to analyse data from experiments at PSI or CERN, because dedicated clusters are most efficient. The intellectual and financial involvement of the procurement (including a machine update in 2007) results in a PSI share of 25 % of the available computing resources at CSCS. The (over) usage of available computing resources by PSI scientists is demonstrated. We actually get more computing cycles than we have paid for. The reason is the fair share policy that is implemented on the Horizon machine. This policy allows us to get cycles, with a low priority, even when our bi-monthly share is used. Five important observations can be drawn from the analysis of the scientific output and the survey of future requirements of main PSI HPC users: (1) High Performance Computing is a main pillar in many important PSI research areas; (2) there is a lack in the order of 10 times the current computing resources (measured in available core-hours per year); (3) there is a trend to use in the order of 600 processors per average production run; (4) the disk and tape storage growth
Large-scale water projects in the developing world: Revisiting the past and looking to the future
Sivakumar, Bellie; Chen, Ji
2014-05-01
During the past half a century or so, the developing world has been witnessing a significant increase in freshwater demands due to a combination of factors, including population growth, increased food demand, improved living standards, and water quality degradation. Since there exists significant variability in rainfall and river flow in both space and time, large-scale storage and distribution of water has become a key means to meet these increasing demands. In this regard, large dams and water transfer schemes (including river-linking schemes and virtual water trades) have been playing a key role. While the benefits of such large-scale projects in supplying water for domestic, irrigation, industrial, hydropower, recreational, and other uses both in the countries of their development and in other countries are undeniable, concerns on their negative impacts, such as high initial costs and damages to our ecosystems (e.g. river environment and species) and socio-economic fabric (e.g. relocation and socio-economic changes of affected people) have also been increasing in recent years. These have led to serious debates on the role of large-scale water projects in the developing world and on their future, but the often one-sided nature of such debates have inevitably failed to yield fruitful outcomes thus far. The present study aims to offer a far more balanced perspective on this issue. First, it recognizes and emphasizes the need for still additional large-scale water structures in the developing world in the future, due to the continuing increase in water demands, inefficiency in water use (especially in the agricultural sector), and absence of equivalent and reliable alternatives. Next, it reviews a few important success and failure stories of large-scale water projects in the developing world (and in the developed world), in an effort to arrive at a balanced view on the future role of such projects. Then, it discusses some major challenges in future water planning
Prediction and probability in sciences
International Nuclear Information System (INIS)
Klein, E.; Sacquin, Y.
1998-01-01
This book reports the 7 presentations made at the third meeting 'physics and fundamental questions' whose theme was probability and prediction. The concept of probability that was invented to apprehend random phenomena has become an important branch of mathematics and its application range spreads from radioactivity to species evolution via cosmology or the management of very weak risks. The notion of probability is the basis of quantum mechanics and then is bound to the very nature of matter. The 7 topics are: - radioactivity and probability, - statistical and quantum fluctuations, - quantum mechanics as a generalized probability theory, - probability and the irrational efficiency of mathematics, - can we foresee the future of the universe?, - chance, eventuality and necessity in biology, - how to manage weak risks? (A.C.)
A large set of potential past, present and future hydro-meteorological time series for the UK
Directory of Open Access Journals (Sweden)
B. P. Guillod
2018-01-01
Full Text Available Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM driven by observed or projected sea surface temperature (SST and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM. Sets of 100 time series are generated for each of (i a historical baseline (1900–2006, (ii five near-future scenarios (2020–2049 and (iii five far-future scenarios (2070–2099. The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5 and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5 models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months and shorter-duration high precipitation (1–30 days, the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09 but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and
A large set of potential past, present and future hydro-meteorological time series for the UK
Guillod, Benoit P.; Jones, Richard G.; Dadson, Simon J.; Coxon, Gemma; Bussi, Gianbattista; Freer, James; Kay, Alison L.; Massey, Neil R.; Sparrow, Sarah N.; Wallom, David C. H.; Allen, Myles R.; Hall, Jim W.
2018-01-01
Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM) driven by observed or projected sea surface temperature (SST) and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM). Sets of 100 time series are generated for each of (i) a historical baseline (1900-2006), (ii) five near-future scenarios (2020-2049) and (iii) five far-future scenarios (2070-2099). The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5) models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months) and shorter-duration high precipitation (1-30 days), the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09) but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and intensity in most regions
Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.
Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn
2016-09-05
Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected
International Nuclear Information System (INIS)
Wichmann, K.
2009-01-01
Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)
Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA
International Nuclear Information System (INIS)
Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J
2008-01-01
The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.
Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA
Energy Technology Data Exchange (ETDEWEB)
Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)
2008-11-01
The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.
A Large Array of Small Antennas to Support Future NASA Missions
Jones, D. L.; Weinreb, S.; Preston, R. A.
2001-01-01
A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.
Optimally managing water resources in large river basins for an uncertain future
Edwin A. Roehl, Jr.; Conrads, Paul
2014-01-01
Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the
Scaling Qualitative Probability
Burgin, Mark
2017-01-01
There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...
Propensity, Probability, and Quantum Theory
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke
2018-03-01
The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.
Probability for Weather and Climate
Smith, L. A.
2013-12-01
Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of
Briggs, William M.
2012-01-01
The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.
The role of large scale storage in a GB low carbon energy future: Issues and policy challenges
International Nuclear Information System (INIS)
Gruenewald, Philipp; Cockerill, Tim; Contestabile, Marcello; Pearson, Peter
2011-01-01
Large scale storage offers the prospect of capturing and using excess electricity within a low carbon energy system, which otherwise might have to be wasted. Incorporating the role of storage into current scenario tools is challenging, because it requires high temporal resolution to reflect the effects of intermittent sources on system balancing. This study draws on results from a model with such resolution. It concludes that large scale storage could become economically viable for scenarios with high penetration of renewables. As the proportion of intermittent sources increases, the optimal type of storage shifts towards solutions with low energy related costs, even at the expense of efficiency. However, a range of uncertainties have been identified, concerning storage technology development, the regulatory environment, alternatives to storage and the stochastic uncertainty of year-on-year revenues. All of these negatively affect the cost of finance and the chances of successful market uptake. We argue, therefore, that, if the possible wider system and social benefits from the presence of storage are to be achieved, stronger and more strategic policy support may be necessary. More work on the social and system benefits of storage is needed to gauge the appropriate extent of support measures. - Highlights: → Time resolved modelling shows future potential for large scale power storage in GB. → The value of storage is highly sensitive to a range of parameters. → Uncertainty over the revenue from storage could pose a barrier to investment. → To realise wider system benefits stronger and more strategic policy support may be necessary.
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
Goldberg, Samuel
1960-01-01
Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.
International Nuclear Information System (INIS)
Rouëné, Jérémy
2013-01-01
The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9×9 cm 2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5×5 mm 2 . This prototype enters its construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R and D goal of 10:1
A new proposed approach for future large-scale de-carbonization coal-fired power plants
International Nuclear Information System (INIS)
Xu, Gang; Liang, Feifei; Wu, Ying; Yang, Yongping; Zhang, Kai; Liu, Wenyi
2015-01-01
The post-combustion CO 2 capture technology provides a feasible and promising method for large-scale CO 2 capture in coal-fired power plants. However, the large-scale CO 2 capture in conventionally designed coal-fired power plants is confronted with various problems, such as the selection of the steam extraction point and steam parameter mismatch. To resolve these problems, an improved design idea for the future coal-fired power plant with large-scale de-carbonization is proposed. A main characteristic of the proposed design is the adoption of a back-pressure steam turbine, which extracts the suitable steam for CO 2 capture and ensures the stability of the integrated system. A new let-down steam turbine generator is introduced to retrieve the surplus energy from the exhaust steam of the back-pressure steam turbine when CO 2 capture is cut off. Results show that the net plant efficiency of the improved design is 2.56% points higher than that of the conventional one when CO 2 capture ratio reaches 80%. Meanwhile, the net plant efficiency of the improved design maintains the same level to that of the conventional design when CO 2 capture is cut off. Finally, the match between the extracted steam and the heat demand of the reboiler is significantly increased, which solves the steam parameter mismatch problem. The techno-economic analysis indicates that the proposed design is a cost-effective approach for the large-scale CO 2 capture in coal-fired power plants. - Highlights: • Problems caused by CO 2 capture in the power plant are deeply analyzed. • An improved design idea for coal-fired power plants with CO 2 capture is proposed. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the proposed coal-fired power plant design idea
Quantum probability measures and tomographic probability densities
Amosov, GG; Man'ko, [No Value
2004-01-01
Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the
Introduction to probability with Mathematica
Hastings, Kevin J
2009-01-01
Discrete ProbabilityThe Cast of Characters Properties of Probability Simulation Random SamplingConditional ProbabilityIndependenceDiscrete DistributionsDiscrete Random Variables, Distributions, and ExpectationsBernoulli and Binomial Random VariablesGeometric and Negative Binomial Random Variables Poisson DistributionJoint, Marginal, and Conditional Distributions More on ExpectationContinuous ProbabilityFrom the Finite to the (Very) Infinite Continuous Random Variables and DistributionsContinuous ExpectationContinuous DistributionsThe Normal Distribution Bivariate Normal DistributionNew Random Variables from OldOrder Statistics Gamma DistributionsChi-Square, Student's t, and F-DistributionsTransformations of Normal Random VariablesAsymptotic TheoryStrong and Weak Laws of Large Numbers Central Limit TheoremStochastic Processes and ApplicationsMarkov ChainsPoisson Processes QueuesBrownian MotionFinancial MathematicsAppendixIntroduction to Mathematica Glossary of Mathematica Commands for Probability Short Answers...
Free probability and random matrices
Mingo, James A
2017-01-01
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.
Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.
2017-12-01
Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate
Qi, Sen; Mitchell, Ross E
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the validity and reliability of using the Stanford for this special student population still require extensive scrutiny. Recent shifts in educational policy environment, which require that schools enable all children to achieve proficiency through accountability testing, warrants a close examination of the adequacy and relevance of the current large-scale testing of deaf and hard-of-hearing students. This study has three objectives: (a) it will summarize the historical data over the last three decades to indicate trends in academic achievement for this special population, (b) it will analyze the current federal laws and regulations related to educational testing and special education, thereby identifying gaps between policy and practice in the field, especially identifying the limitations of current testing programs in assessing what deaf and hard-of-hearing students know, and (c) it will offer some insights and suggestions for future testing programs for deaf and hard-of-hearing students.
Probability and rational choice
Directory of Open Access Journals (Sweden)
David Botting
2014-05-01
Full Text Available http://dx.doi.org/10.5007/1808-1711.2014v18n1p1 In this paper I will discuss the rationality of reasoning about the future. There are two things that we might like to know about the future: which hypotheses are true and what will happen next. To put it in philosophical language, I aim to show that there are methods by which inferring to a generalization (selecting a hypothesis and inferring to the next instance (singular predictive inference can be shown to be normative and the method itself shown to be rational, where this is due in part to being based on evidence (although not in the same way and in part on a prior rational choice. I will also argue that these two inferences have been confused, being distinct not only conceptually (as nobody disputes but also in their results (the value given to the probability of the hypothesis being not in general that given to the next instance and that methods that are adequate for one are not by themselves adequate for the other. A number of debates over method founder on this confusion and do not show what the debaters think they show.
Probability mapping of contaminants
Energy Technology Data Exchange (ETDEWEB)
Rautman, C.A.; Kaplan, P.G. [Sandia National Labs., Albuquerque, NM (United States); McGraw, M.A. [Univ. of California, Berkeley, CA (United States); Istok, J.D. [Oregon State Univ., Corvallis, OR (United States); Sigda, J.M. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)
1994-04-01
Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).
Probability mapping of contaminants
International Nuclear Information System (INIS)
Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.
1994-01-01
Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds)
Toward a generalized probability theory: conditional probabilities
International Nuclear Information System (INIS)
Cassinelli, G.
1979-01-01
The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)
Psychophysics of the probability weighting function
Takahashi, Taiki
2011-03-01
A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (01e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.
Probability and Statistics: 5 Questions
DEFF Research Database (Denmark)
Probability and Statistics: 5 Questions is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in probability and statistics. We hear their views on the fields, aims, scopes, the future direction of research and how their work fits...... in these respects. Interviews with Nick Bingham, Luc Bovens, Terrence L. Fine, Haim Gaifman, Donald Gillies, James Hawthorne, Carl Hoefer, James M. Joyce, Joseph B. Kadane Isaac Levi, D.H. Mellor, Patrick Suppes, Jan von Plato, Carl Wagner, Sandy Zabell...
Philosophical theories of probability
Gillies, Donald
2000-01-01
The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia
We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned
Interpretations of probability
Khrennikov, Andrei
2009-01-01
This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.
Is probability of frequency too narrow?
International Nuclear Information System (INIS)
Martz, H.F.
1993-01-01
Modern methods of statistical data analysis, such as empirical and hierarchical Bayesian methods, should find increasing use in future Probabilistic Risk Assessment (PRA) applications. In addition, there will be a more formalized use of expert judgment in future PRAs. These methods require an extension of the probabilistic framework of PRA, in particular, the popular notion of probability of frequency, to consideration of frequency of frequency, frequency of probability, and probability of probability. The genesis, interpretation, and examples of these three extended notions are discussed
Failure probability under parameter uncertainty.
Gerrard, R; Tsanakas, A
2011-05-01
In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.
Probability and containment of turbine missiles
International Nuclear Information System (INIS)
Yeh, G.C.K.
1976-01-01
With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)
International Nuclear Information System (INIS)
Fraassen, B.C. van
1979-01-01
The interpretation of probabilities in physical theories are considered, whether quantum or classical. The following points are discussed 1) the functions P(μ, Q) in terms of which states and propositions can be represented, are classical (Kolmogoroff) probabilities, formally speaking, 2) these probabilities are generally interpreted as themselves conditional, and the conditions are mutually incompatible where the observables are maximal and 3) testing of the theory typically takes the form of confronting the expectation values of observable Q calculated with probability measures P(μ, Q) for states μ; hence, of comparing the probabilities P(μ, Q)(E) with the frequencies of occurrence of the corresponding events. It seems that even the interpretation of quantum mechanics, in so far as it concerns what the theory says about the empirical (i.e. actual, observable) phenomena, deals with the confrontation of classical probability measures with observable frequencies. This confrontation is studied. (Auth./C.F.)
Dynamic SEP event probability forecasts
Kahler, S. W.; Ling, A.
2015-10-01
The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.
The quantum probability calculus
International Nuclear Information System (INIS)
Jauch, J.M.
1976-01-01
The Wigner anomaly (1932) for the joint distribution of noncompatible observables is an indication that the classical probability calculus is not applicable for quantum probabilities. It should, therefore, be replaced by another, more general calculus, which is specifically adapted to quantal systems. In this article this calculus is exhibited and its mathematical axioms and the definitions of the basic concepts such as probability field, random variable, and expectation values are given. (B.R.H)
Choice Probability Generating Functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel
This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications....
Falcone, Abe
In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and
Probability of satellite collision
Mccarter, J. W.
1972-01-01
A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.
Choice probability generating functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel
2013-01-01
This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended...
Florescu, Ionut
2013-01-01
THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio
Probability, Nondeterminism and Concurrency
DEFF Research Database (Denmark)
Varacca, Daniele
Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particula...
Rocchi, Paolo
2014-01-01
The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do not come into opposition and can be used in different contexts. The goal here is to clarify the multifold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.
Billingsley, Patrick
2012-01-01
Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this
International Nuclear Information System (INIS)
Bitsakis, E.I.; Nicolaides, C.A.
1989-01-01
The concept of probability is now, and always has been, central to the debate on the interpretation of quantum mechanics. Furthermore, probability permeates all of science, as well as our every day life. The papers included in this volume, written by leading proponents of the ideas expressed, embrace a broad spectrum of thought and results: mathematical, physical epistemological, and experimental, both specific and general. The contributions are arranged in parts under the following headings: Following Schroedinger's thoughts; Probability and quantum mechanics; Aspects of the arguments on nonlocality; Bell's theorem and EPR correlations; Real or Gedanken experiments and their interpretation; Questions about irreversibility and stochasticity; and Epistemology, interpretation and culture. (author). refs.; figs.; tabs
International Nuclear Information System (INIS)
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America
Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; Eupen, van Michiel; Bloh, von Werner; Clara Zemp, Delphine; Thonicke, Kirsten
2016-01-01
Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a
Shorack, Galen R
2017-01-01
This 2nd edition textbook offers a rigorous introduction to measure theoretic probability with particular attention to topics of interest to mathematical statisticians—a textbook for courses in probability for students in mathematical statistics. It is recommended to anyone interested in the probability underlying modern statistics, providing a solid grounding in the probabilistic tools and techniques necessary to do theoretical research in statistics. For the teaching of probability theory to post graduate statistics students, this is one of the most attractive books available. Of particular interest is a presentation of the major central limit theorems via Stein's method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function. The bootstrap and trimming are both presented. Martingale coverage includes coverage of censored data martingales. The text includes measure theoretic...
Concepts of probability theory
Pfeiffer, Paul E
1979-01-01
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Probability and Bayesian statistics
1987-01-01
This book contains selected and refereed contributions to the "Inter national Symposium on Probability and Bayesian Statistics" which was orga nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...
Probability and Statistical Inference
Prosper, Harrison B.
2006-01-01
These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.
Hartmann, Stephan
2011-01-01
Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...
Hemmo, Meir
2012-01-01
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
Quantum computing and probability
International Nuclear Information System (INIS)
Ferry, David K
2009-01-01
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction. (viewpoint)
The perception of probability.
Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E
2014-01-01
We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
The probability and the management of human error
International Nuclear Information System (INIS)
Dufey, R.B.; Saull, J.W.
2004-01-01
Embedded within modern technological systems, human error is the largest, and indeed dominant contributor to accident cause. The consequences dominate the risk profiles for nuclear power and for many other technologies. We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for actual events. We also need to provide a means to manage and effectively reduce the failure (error) rate. The fact that humans learn from their mistakes allows a new determination of the dynamic probability and human failure (error) rate in technological systems. The result is consistent with and derived from the available world data for modern technological systems. Comparisons are made to actual data from large technological systems and recent catastrophes. Best estimate values and relationships can be derived for both the human error rate, and for the probability. We describe the potential for new approaches to the management of human error and safety indicators, based on the principles of error state exclusion and of the systematic effect of learning. A new equation is given for the probability of human error (λ) that combines the influences of early inexperience, learning from experience (ε) and stochastic occurrences with having a finite minimum rate, this equation is λ 5.10 -5 + ((1/ε) - 5.10 -5 ) exp(-3*ε). The future failure rate is entirely determined by the experience: thus the past defines the future
Irreversibility and conditional probability
International Nuclear Information System (INIS)
Stuart, C.I.J.M.
1989-01-01
The mathematical entropy - unlike physical entropy - is simply a measure of uniformity for probability distributions in general. So understood, conditional entropies have the same logical structure as conditional probabilities. If, as is sometimes supposed, conditional probabilities are time-reversible, then so are conditional entropies and, paradoxically, both then share this symmetry with physical equations of motion. The paradox is, of course that probabilities yield a direction to time both in statistical mechanics and quantum mechanics, while the equations of motion do not. The supposed time-reversibility of both conditionals seems also to involve a form of retrocausality that is related to, but possibly not the same as, that described by Costa de Beaurgard. The retrocausality is paradoxically at odds with the generally presumed irreversibility of the quantum mechanical measurement process. Further paradox emerges if the supposed time-reversibility of the conditionals is linked with the idea that the thermodynamic entropy is the same thing as 'missing information' since this confounds the thermodynamic and mathematical entropies. However, it is shown that irreversibility is a formal consequence of conditional entropies and, hence, of conditional probabilities also. 8 refs. (Author)
Isaac, Richard
1995-01-01
The ideas of probability are all around us. Lotteries, casino gambling, the al most non-stop polling which seems to mold public policy more and more these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairl...
International Nuclear Information System (INIS)
Shimada, Yoshio
2000-01-01
It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)
Experimental Probability in Elementary School
Andrew, Lane
2009-01-01
Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.
Qi, Sen; Mitchell, Ross E.
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the…
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
Choice probability generating functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel
2010-01-01
This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications....... The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models....
Estimating Subjective Probabilities
DEFF Research Database (Denmark)
Andersen, Steffen; Fountain, John; Harrison, Glenn W.
2014-01-01
either construct elicitation mechanisms that control for risk aversion, or construct elicitation mechanisms which undertake 'calibrating adjustments' to elicited reports. We illustrate how the joint estimation of risk attitudes and subjective probabilities can provide the calibration adjustments...... that theory calls for. We illustrate this approach using data from a controlled experiment with real monetary consequences to the subjects. This allows the observer to make inferences about the latent subjective probability, under virtually any well-specified model of choice under subjective risk, while still...
Introduction to imprecise probabilities
Augustin, Thomas; de Cooman, Gert; Troffaes, Matthias C M
2014-01-01
In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, includin
Theory including future not excluded
DEFF Research Database (Denmark)
Nagao, K.; Nielsen, H.B.
2013-01-01
We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...
Counterexamples in probability
Stoyanov, Jordan M
2013-01-01
While most mathematical examples illustrate the truth of a statement, counterexamples demonstrate a statement's falsity. Enjoyable topics of study, counterexamples are valuable tools for teaching and learning. The definitive book on the subject in regards to probability, this third edition features the author's revisions and corrections plus a substantial new appendix.
Plotnitsky, Arkady
2010-01-01
Offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schrodinger; in quantum mechanics; and in modern physics. This book considers the implications of these relationships and of quantum theory for our understanding of the nature of thinking and knowledge in general
Transition probabilities for atoms
International Nuclear Information System (INIS)
Kim, Y.K.
1980-01-01
Current status of advanced theoretical methods for transition probabilities for atoms and ions is discussed. An experiment on the f values of the resonance transitions of the Kr and Xe isoelectronic sequences is suggested as a test for the theoretical methods
VULCANO: a large scale U O2 program to study corium behaviour and cooling for future reactors
International Nuclear Information System (INIS)
Cognet, G.; Bouchter, J.C.
1994-01-01
The CEA has launched the VULCANO project, a large experimental facility whose objectives are the understanding of corium behaviour from core melting up to vessel melt-through, and the qualification of core-catcher concepts. This paper deals with the strategy adopted to overcome the difficulties of such experiments (use of real materials such as U O 2 , controlled temperature and flowrate...); in particular, it describes the feasibility studies undertaken on corium production, and on sustained heating within the melt (micro-waves). Some indications are also given on scaling studies for experiments devoted to vessel integrity. 7 figs., 3 refs
Kubota, Ken J; Chen, Jason A; Little, Max A
2016-09-01
For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, "wearable," sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that "learn" from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Negative probability in the framework of combined probability
Burgin, Mark
2013-01-01
Negative probability has found diverse applications in theoretical physics. Thus, construction of sound and rigorous mathematical foundations for negative probability is important for physics. There are different axiomatizations of conventional probability. So, it is natural that negative probability also has different axiomatic frameworks. In the previous publications (Burgin, 2009; 2010), negative probability was mathematically formalized and rigorously interpreted in the context of extende...
Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.
Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten
2016-11-01
Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.
Chiarelli, Davide Danilo; Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo
2016-08-01
Pressure on agricultural land has markedly increased since the start of the century, driven by demographic growth, changes in diet, increasing biofuel demand, and globalization. To better ensure access to adequate land and water resources, many investors and countries began leasing large areas of agricultural land in the global South, a phenomenon often termed "large-scale land acquisition" (LSLA). To date, this global land rush has resulted in the appropriation of 41million hectares and about 490 km3 of freshwater resources, affecting rural livelihoods and local environments. It remains unclear to what extent land and water acquisitions contribute to the emergence of water-stress conditions in acquired areas, and how these demands for water may be impacted by climate change. Here we analyze 18 African countries - 20 Mha (or 80%) of LSLA for the continent - and estimate that under present climate 210 km3 year-1of water would be appropriated if all acquired areas were actively under production. We also find that consumptive use of irrigation water is disproportionately contributed by water-intensive biofuel crops. Using the IPCCA1B scenario, we find only small changes in green (-1.6%) and blue (+2.0%) water demand in targeted areas. With a 3 °C temperature increase, crop yields are expected to decrease up to 20% with a consequent increase in the water footprint. When the effect of increasing atmospheric CO2concentrations is accounted for, crop yields increase by as much as 40% with a decrease in water footprint up to 29%. The relative importance of CO2 fertilization and warming will therefore determine water appropriations and changes in water footprint under climate change scenarios.
Tjiputra, J. F.; Grini, A.; Lee, H.
2016-01-01
Using an Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In the aggressive scenario, the model projects a cooling trend toward 2100 despite warming that persists in the high latitudes. Following SAI termination in 2100, a rapid global warming of 0.35 K yr-1 is simulated in the subsequent 10 years, and the global mean temperature returns to levels close to the reference state, though roughly 0.5 K cooler. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. In the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area.
Contributions to quantum probability
International Nuclear Information System (INIS)
Fritz, Tobias
2010-01-01
Chapter 1: On the existence of quantum representations for two dichotomic measurements. Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories. Chapter 2: Possibilistic Physics. I try to outline a framework for fundamental physics where the concept of probability gets replaced by the concept of possibility. Whereas a probabilistic theory assigns a state-dependent probability value to each outcome of each measurement, a possibilistic theory merely assigns one of the state-dependent labels ''possible to occur'' or ''impossible to occur'' to each outcome of each measurement. It is argued that Spekkens' combinatorial toy theory of quantum mechanics is inconsistent in a probabilistic framework, but can be regarded as possibilistic. Then, I introduce the concept of possibilistic local hidden variable models and derive a class of possibilistic Bell inequalities which are violated for the possibilistic Popescu-Rohrlich boxes. The chapter ends with a philosophical discussion on possibilistic vs. probabilistic. It can be argued that, due to better falsifiability properties, a possibilistic theory has higher predictive power than a probabilistic one. Chapter 3: The quantum region for von Neumann measurements with postselection. It is determined under which conditions a probability distribution on a finite set can occur as the outcome
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Contributions to quantum probability
Energy Technology Data Exchange (ETDEWEB)
Fritz, Tobias
2010-06-25
Chapter 1: On the existence of quantum representations for two dichotomic measurements. Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories. Chapter 2: Possibilistic Physics. I try to outline a framework for fundamental physics where the concept of probability gets replaced by the concept of possibility. Whereas a probabilistic theory assigns a state-dependent probability value to each outcome of each measurement, a possibilistic theory merely assigns one of the state-dependent labels ''possible to occur'' or ''impossible to occur'' to each outcome of each measurement. It is argued that Spekkens' combinatorial toy theory of quantum mechanics is inconsistent in a probabilistic framework, but can be regarded as possibilistic. Then, I introduce the concept of possibilistic local hidden variable models and derive a class of possibilistic Bell inequalities which are violated for the possibilistic Popescu-Rohrlich boxes. The chapter ends with a philosophical discussion on possibilistic vs. probabilistic. It can be argued that, due to better falsifiability properties, a possibilistic theory has higher predictive power than a probabilistic one. Chapter 3: The quantum region for von Neumann measurements with postselection. It is determined under which conditions a probability distribution on a
Waste Package Misload Probability
International Nuclear Information System (INIS)
Knudsen, J.K.
2001-01-01
The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a
Probability theory and applications
Hsu, Elton P
1999-01-01
This volume, with contributions by leading experts in the field, is a collection of lecture notes of the six minicourses given at the IAS/Park City Summer Mathematics Institute. It introduces advanced graduates and researchers in probability theory to several of the currently active research areas in the field. Each course is self-contained with references and contains basic materials and recent results. Topics include interacting particle systems, percolation theory, analysis on path and loop spaces, and mathematical finance. The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.
Paradoxes in probability theory
Eckhardt, William
2013-01-01
Paradoxes provide a vehicle for exposing misinterpretations and misapplications of accepted principles. This book discusses seven paradoxes surrounding probability theory. Some remain the focus of controversy; others have allegedly been solved, however the accepted solutions are demonstrably incorrect. Each paradox is shown to rest on one or more fallacies. Instead of the esoteric, idiosyncratic, and untested methods that have been brought to bear on these problems, the book invokes uncontroversial probability principles, acceptable both to frequentists and subjectivists. The philosophical disputation inspired by these paradoxes is shown to be misguided and unnecessary; for instance, startling claims concerning human destiny and the nature of reality are directly related to fallacious reasoning in a betting paradox, and a problem analyzed in philosophy journals is resolved by means of a computer program.
Measurement uncertainty and probability
Willink, Robin
2013-01-01
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
Khan, M.; Abdul-Aziz, O. I.
2017-12-01
Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.
Spatial probability aids visual stimulus discrimination
Directory of Open Access Journals (Sweden)
Michael Druker
2010-08-01
Full Text Available We investigated whether the statistical predictability of a target's location would influence how quickly and accurately it was classified. Recent results have suggested that spatial probability can be a cue for the allocation of attention in visual search. One explanation for probability cuing is spatial repetition priming. In our two experiments we used probability distributions that were continuous across the display rather than relying on a few arbitrary screen locations. This produced fewer spatial repeats and allowed us to dissociate the effect of a high probability location from that of short-term spatial repetition. The task required participants to quickly judge the color of a single dot presented on a computer screen. In Experiment 1, targets were more probable in an off-center hotspot of high probability that gradually declined to a background rate. Targets garnered faster responses if they were near earlier target locations (priming and if they were near the high probability hotspot (probability cuing. In Experiment 2, target locations were chosen on three concentric circles around fixation. One circle contained 80% of targets. The value of this ring distribution is that it allowed for a spatially restricted high probability zone in which sequentially repeated trials were not likely to be physically close. Participant performance was sensitive to the high-probability circle in addition to the expected effects of eccentricity and the distance to recent targets. These two experiments suggest that inhomogeneities in spatial probability can be learned and used by participants on-line and without prompting as an aid for visual stimulus discrimination and that spatial repetition priming is not a sufficient explanation for this effect. Future models of attention should consider explicitly incorporating the probabilities of targets locations and features.
Model uncertainty and probability
International Nuclear Information System (INIS)
Parry, G.W.
1994-01-01
This paper discusses the issue of model uncertainty. The use of probability as a measure of an analyst's uncertainty as well as a means of describing random processes has caused some confusion, even though the two uses are representing different types of uncertainty with respect to modeling a system. The importance of maintaining the distinction between the two types is illustrated with a simple example
Retrocausality and conditional probability
International Nuclear Information System (INIS)
Stuart, C.I.J.M.
1989-01-01
Costa de Beauregard has proposed that physical causality be identified with conditional probability. The proposal is shown to be vulnerable on two accounts. The first, though mathematically trivial, seems to be decisive so far as the current formulation of the proposal is concerned. The second lies in a physical inconsistency which seems to have its source in a Copenhagenlike disavowal of realism in quantum mechanics. 6 refs. (Author)
Whittle, Peter
1992-01-01
This book is a complete revision of the earlier work Probability which ap peared in 1970. While revised so radically and incorporating so much new material as to amount to a new text, it preserves both the aim and the approach of the original. That aim was stated as the provision of a 'first text in probability, de manding a reasonable but not extensive knowledge of mathematics, and taking the reader to what one might describe as a good intermediate level'. In doing so it attempted to break away from stereotyped applications, and consider applications of a more novel and significant character. The particular novelty of the approach was that expectation was taken as the prime concept, and the concept of expectation axiomatized rather than that of a probability measure. In the preface to the original text of 1970 (reproduced below, together with that to the Russian edition of 1982) I listed what I saw as the advantages of the approach in as unlaboured a fashion as I could. I also took the view that the text...
International Nuclear Information System (INIS)
Sugino, Yoshinori
2002-01-01
CT colonography is a new imaging technique using helical CT. We studied the efficacy of CT colonoscopy in the detection of small polyps and depiction of superficial lesions. Concerning the detection of small polyps, we studied 54 patients with abnormality checked by barium enema. Conventional colonoscopy revealed 79 lesions (5 advanced carcinomas, 4 superficial-type adenomas and 70 polyps). CT colonography identified all 5 carcinomas, 3 of the 4 superficial lesions and 43 of the 45 polyps that were 0.5 cm or smaller in diameter, 18 of 22 polyps that were 0.6 to 0.9 cm, and all 3 polyps that were 1.0 cm or more in diameter. There were 92 false positive polyps that were 0.5 cm or smaller in diameter. On a superficial lesion, we could depict a superficial depressive type early colonic carcinoma 1.0 cm in diameter, using very thin-slice CT equipment. In conclusion, CT colonography has a high sensitivity for detection of small polyps and sufficient capability for depiction of superficial lesions. CT colonography may be suitable for screening examinations of the large intestine. (author)
De Vooght-Johnson, Ryan
2011-03-01
An evening symposium was held at the Museu de Historia de Catalunya (Barcelona, Spain) as a precursor to the European Bioanalysis Forum meeting, as part of the Waters Corporation Bioanalysis World Tour. The symposium was chaired by Robert Plumb and Jing Lin (Waters Corporation, MA, USA) with a focus on the future of the DMPK laboratory and its role in addressing large-molecule therapeutics and biomarkers. Lieve Dillen (Johnson and Johnson, Belgium) spoke on ultra-sensitive peptide quantification, Richard Kay (Quotient Bioresearch, UK) discussed quantifying proteins and peptides in plasma, Ian Wilson (AstraZeneca, UK) covered metabolic biomarkers and Robert Plumb concluded the evening with a presentation on the future of MS in DMPK studies. Following the presentations, all the speakers took questions from the audience and continued lively discussion over a cocktails and canapés reception.
Pollard, David; DeConto, Robert; Gomez, Natalya
2016-04-01
To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.
Probability of causation approach
International Nuclear Information System (INIS)
Jose, D.E.
1988-01-01
Probability of causation (PC) is sometimes viewed as a great improvement by those persons who are not happy with the present rulings of courts in radiation cases. The author does not share that hope and expects that PC will not play a significant role in these issues for at least the next decade. If it is ever adopted in a legislative compensation scheme, it will be used in a way that is unlikely to please most scientists. Consequently, PC is a false hope for radiation scientists, and its best contribution may well lie in some of the spin-off effects, such as an influence on medical practice
Generalized Probability Functions
Directory of Open Access Journals (Sweden)
Alexandre Souto Martinez
2009-01-01
Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.
2014-06-30
precisely the content of the following result. The price we pay is that the assumption that A is a packing in (F, k ·k1) is too weak to make this happen...Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint- Flour , IV-1974, pp. 1–96. Lecture Notes in...Lectures on probability theory and statistics (Saint- Flour , 1994), Lecture Notes in Math., vol. 1648, pp. 165–294. Springer, Berlin (1996) 50. Ledoux
International Nuclear Information System (INIS)
Figueroa-Feliciano, E.; Bandler, S.R.; Chervenak, J.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S.; Saab, T.; Sadleir, J.; White, J.
2006-01-01
We have designed, modeled, fabricated and tested a 600μm high-fill-fraction microcalorimeter array that will be a good match to the requirements of future X-ray missions. Our devices use transition-edge sensors coupled to overhanging bismuth/copper absorbers to produce arrays with 97% or higher fill fraction. An extensive modeling effort was undertaken in order to accommodate large pixel sizes (500-1000μm) and maintain the best energy resolution possible. The finite thermalization time of the large absorber and the associated position dependence of the pulse shape on absorption position constrain the time constants of the system given a desired energy-resolution performance. We show the results of our analysis and our new pixel design, consisting of a novel TES-on-the-side architecture which creates a controllable TES-absorber conductance
International Nuclear Information System (INIS)
Snoeijs, P.
1994-01-01
This report presents the Biotest basin at Forsmark (Sweden) as an instrument for experimental environmental research, and indicates possibilities for its future use. the basin consists of a 1 km 2 artificial enclosure in the Baltic Sea that receives cooling water discharge from the Forsmark nuclear power plant. Cooling water discharge was initiated in 1980, and since then the basin has been serving as the main Swedish instrument for field studies on the effects of enhanced temperature and low-dose radioactivity on aquatic ecosystems. Environmental effects of large cooling water discharges from power plants to the sea have been studied at other sites in Sweden too, and for the sake of completeness of background information this report provides a survey and an extensive bibliography of all previous research on cooling water discharges in Sweden during the last 25 years. The aim of scientific research in the Biotest basin is to provide an independent academically-based assessment of the effects of the discharges of heat to the aquatic environment and of the pathways of pollutants through the ecosystems. Until now the research has mainly been describing the ecological effects of the cooling water flow through the basin under normal operation of the power plant. In the future it will be possible to manipulate the basin for large field experiments. An important perspective for the future is that of climatic change; the Forsmark Biotest basin provides excellent conditions for field studies on possible biological effects. This includes e.g. temperature effects on basic biological processes (growth, metabolism, reproduction etc.), population genetics, and combination effects of heat and toxic substances. 60 refs, 3 figs, 6 tabs
Probable maximum flood control
International Nuclear Information System (INIS)
DeGabriele, C.E.; Wu, C.L.
1991-11-01
This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility
Directory of Open Access Journals (Sweden)
Y. Sun
2013-07-01
Full Text Available The mid-Pliocene warm period (~ 3.3–3.0 Ma is often considered as the last sustained warm period with close enough geographic configurations compared to the present one associated with atmospheric CO2 concentration (405 ± 50 ppm higher than the modern level. For this reason, this period is often considered as a potential analogue for the future climate warming, with the important advantage that for mid-Pliocene many marine and continental data are available. To investigate this issue, we selected the RCP4.5 scenario, one of the current available future projections, to compare the pattern of tropical atmospheric response with the past warm mid-Pliocene climate. We use three Atmosphere-Ocean General Circulation Model (AOGCM simulations (RCP4.5 scenario, mid-Pliocene and present-day simulation carried out with the IPSL-CM5A model and investigate atmospheric tropical dynamics through Hadley and Walker cell responses to warmer conditions, considering that the analysis can provide some assessment of how these circulations will change in the future. Our results show that there is a damping of the Hadley cell intensity in the northern tropics and an increase in both subtropics. Moreover, northern and southern Hadley cells expand poleward. The response of the Hadley cells is stronger for the RCP4.5 scenario than for the mid-Pliocene, but in very good agreement with the fact that the atmospheric CO2 concentration is higher in the future scenario than in the mid-Pliocene (543 versus 405 ppm. Concerning the response of the Walker cell, we show that despite very large similarities, there are also some differences. Common features to both scenarios are: weakening of the ascending branch, leading to a suppression of the precipitation over the western tropical Pacific. The response of the Walker cell is stronger in the RCP4.5 scenario than in the mid-Pliocene but also depicts some major differences, as an eastward shift of its rising branch in the future
Probability theory a comprehensive course
Klenke, Achim
2014-01-01
This second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms. To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the c...
Assessing the clinical probability of pulmonary embolism
International Nuclear Information System (INIS)
Miniati, M.; Pistolesi, M.
2001-01-01
% in those with low probability. The prevalence of PE in patients with intermediate clinical probability was 41%. These results underscore the importance of incorporating the standardized reading of the electrocardiogram and of the chest radiograph into the clinical evaluation of patients with suspected PE. The interpretation of these laboratory data, however, requires experience. Future research is needed to develop standardized models, of varying degree of complexity, which may find application in different clinical settings to predict the probability of PE
COVAL, Compound Probability Distribution for Function of Probability Distribution
International Nuclear Information System (INIS)
Astolfi, M.; Elbaz, J.
1979-01-01
1 - Nature of the physical problem solved: Computation of the probability distribution of a function of variables, given the probability distribution of the variables themselves. 'COVAL' has been applied to reliability analysis of a structure subject to random loads. 2 - Method of solution: Numerical transformation of probability distributions
Failure probability analysis of optical grid
Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng
2008-11-01
Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.
Encounter Probability of Individual Wave Height
DEFF Research Database (Denmark)
Liu, Z.; Burcharth, H. F.
1998-01-01
wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....
Characteristic length of the knotting probability revisited
International Nuclear Information System (INIS)
Uehara, Erica; Deguchi, Tetsuo
2015-01-01
We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(−N/N K ), where the estimates of parameter N K are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius r ex , i.e. the screening length of double-stranded DNA. (paper)
Pre-Aggregation with Probability Distributions
DEFF Research Database (Denmark)
Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach
2006-01-01
Motivated by the increasing need to analyze complex, uncertain multidimensional data this paper proposes probabilistic OLAP queries that are computed using probability distributions rather than atomic values. The paper describes how to create probability distributions from base data, and how...... the distributions can be subsequently used in pre-aggregation. Since the probability distributions can become large, we show how to achieve good time and space efficiency by approximating the distributions. We present the results of several experiments that demonstrate the effectiveness of our methods. The work...... is motivated with a real-world case study, based on our collaboration with a leading Danish vendor of location-based services. This paper is the first to consider the approximate processing of probabilistic OLAP queries over probability distributions....
Probability of spent fuel transportation accidents
International Nuclear Information System (INIS)
McClure, J.D.
1981-07-01
The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile
Falk, Ruma; Kendig, Keith
2013-01-01
Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.
Economic choices reveal probability distortion in macaque monkeys.
Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram
2015-02-18
Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.
Introduction to probability with R
Baclawski, Kenneth
2008-01-01
FOREWORD PREFACE Sets, Events, and Probability The Algebra of Sets The Bernoulli Sample Space The Algebra of Multisets The Concept of Probability Properties of Probability Measures Independent Events The Bernoulli Process The R Language Finite Processes The Basic Models Counting Rules Computing Factorials The Second Rule of Counting Computing Probabilities Discrete Random Variables The Bernoulli Process: Tossing a Coin The Bernoulli Process: Random Walk Independence and Joint Distributions Expectations The Inclusion-Exclusion Principle General Random Variable
THE BLACK HOLE FORMATION PROBABILITY
Energy Technology Data Exchange (ETDEWEB)
Clausen, Drew; Piro, Anthony L.; Ott, Christian D., E-mail: dclausen@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)
2015-02-01
A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.
THE BLACK HOLE FORMATION PROBABILITY
International Nuclear Information System (INIS)
Clausen, Drew; Piro, Anthony L.; Ott, Christian D.
2015-01-01
A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH (M ZAMS ). Although we find that it is difficult to derive a unique P BH (M ZAMS ) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH (M ZAMS ) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH (M ZAMS ) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment
The Black Hole Formation Probability
Clausen, Drew; Piro, Anthony L.; Ott, Christian D.
2015-02-01
A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.
Ross, Sheldon
2014-01-01
A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.
Applied probability models with optimization applications
Ross, Sheldon M
1992-01-01
Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.
A brief introduction to probability.
Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio
2018-02-01
The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.
McClure, Meredith L; Dickson, Brett G; Nicholson, Kerry L
2017-06-01
This study sought to identify critical areas for puma ( Puma concolor ) movement across the state of Arizona in the American Southwest and to identify those most likely to be impacted by current and future human land uses, particularly expanding urban development and associated increases in traffic volume. Human populations in this region are expanding rapidly, with the potential for urban centers and busy roads to increasingly act as barriers to demographic and genetic connectivity of large-bodied, wide-ranging carnivores such as pumas, whose long-distance movements are likely to bring them into contact with human land uses and whose low tolerance both for and from humans may put them at risk unless opportunities for safe passage through or around human-modified landscapes are present. Brownian bridge movement models based on global positioning system collar data collected during bouts of active movement and linear mixed models were used to model habitat quality for puma movement; then, a wall-to-wall application of circuit theory models was used to produce a continuous statewide estimate of connectivity for puma movement and to identify pinch points, or bottlenecks, that may be most at risk of impacts from current and future traffic volume and expanding development. Rugged, shrub- and scrub-dominated regions were highlighted as those offering high quality movement habitat for pumas, and pinch points with the greatest potential impacts from expanding development and traffic, although widely distributed, were particularly prominent to the north and east of the city of Phoenix and along interstate highways in the western portion of the state. These pinch points likely constitute important conservation opportunities, where barriers to movement may cause disproportionate loss of connectivity, but also where actions such as placement of wildlife crossing structures or conservation easements could enhance connectivity and prevent detrimental impacts before they occur.
Directory of Open Access Journals (Sweden)
Petra Skolilova
2017-12-01
Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.
Market-implied risk-neutral probabilities, actual probabilities, credit risk and news
Directory of Open Access Journals (Sweden)
Shashidhar Murthy
2011-09-01
Full Text Available Motivated by the credit crisis, this paper investigates links between risk-neutral probabilities of default implied by markets (e.g. from yield spreads and their actual counterparts (e.g. from ratings. It discusses differences between the two and clarifies underlying economic intuition using simple representations of credit risk pricing. Observed large differences across bonds in the ratio of the two probabilities are shown to imply that apparently safer securities can be more sensitive to news.
Applied probability and stochastic processes
Sumita, Ushio
1999-01-01
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...
Direct probability mapping of contaminants
International Nuclear Information System (INIS)
Rautman, C.A.
1993-01-01
Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. Geostatistical simulation provides powerful tools for investigating contaminant levels, and in particular, for identifying and using the spatial interrelationships among a set of isolated sample values. This additional information can be used to assess the likelihood of encountering contamination at unsampled locations and to evaluate the risk associated with decisions to remediate or not to remediate specific regions within a site. Past operation of the DOE Feed Materials Production Center has contaminated a site near Fernald, Ohio, with natural uranium. Soil geochemical data have been collected as part of the Uranium-in-Soils Integrated Demonstration Project. These data have been used to construct a number of stochastic images of potential contamination for parcels approximately the size of a selective remediation unit. Each such image accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely, statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination. Evaluation of the geostatistical simulations can yield maps representing the expected magnitude of the contamination for various regions and other information that may be important in determining a suitable remediation process or in sizing equipment to accomplish the restoration
Poisson Processes in Free Probability
An, Guimei; Gao, Mingchu
2015-01-01
We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...
PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT
We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...
Recent Developments and Probable Future Scenarios Concerning Seafarer Labour Markets
DEFF Research Database (Denmark)
Wagtmann, Maria Anne; Poulsen, René Taudal
2009-01-01
During the past 25 years, demand for seafarers has changed a great deal, due to the creation of second registers in Western Europe as well as ship register adjustments in other flag states. Concurrently, supply patterns have shifted, with new supply centres emerging in especially Asia and Easte...
Varadhan, S R S
2016-01-01
The theory of large deviations deals with rates at which probabilities of certain events decay as a natural parameter in the problem varies. This book, which is based on a graduate course on large deviations at the Courant Institute, focuses on three concrete sets of examples: (i) diffusions with small noise and the exit problem, (ii) large time behavior of Markov processes and their connection to the Feynman-Kac formula and the related large deviation behavior of the number of distinct sites visited by a random walk, and (iii) interacting particle systems, their scaling limits, and large deviations from their expected limits. For the most part the examples are worked out in detail, and in the process the subject of large deviations is developed. The book will give the reader a flavor of how large deviation theory can help in problems that are not posed directly in terms of large deviations. The reader is assumed to have some familiarity with probability, Markov processes, and interacting particle systems.
A basic course in probability theory
Bhattacharya, Rabi
2016-01-01
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of thei...
Probability inequalities for decomposition integrals
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mesiar, Radko
2017-01-01
Roč. 315, č. 1 (2017), s. 240-248 ISSN 0377-0427 Institutional support: RVO:67985556 Keywords : Decomposition integral * Superdecomposition integral * Probability inequalities Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0470959.pdf
Expected utility with lower probabilities
DEFF Research Database (Denmark)
Hendon, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte
1994-01-01
An uncertain and not just risky situation may be modeled using so-called belief functions assigning lower probabilities to subsets of outcomes. In this article we extend the von Neumann-Morgenstern expected utility theory from probability measures to belief functions. We use this theory...
Invariant probabilities of transition functions
Zaharopol, Radu
2014-01-01
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of t...
Linear positivity and virtual probability
International Nuclear Information System (INIS)
Hartle, James B.
2004-01-01
We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of Goldstein and Page. The objective of any quantum theory of a closed system, most generally the universe, is the prediction of probabilities for the individual members of sets of alternative coarse-grained histories of the system. Quantum interference between members of a set of alternative histories is an obstacle to assigning probabilities that are consistent with the rules of probability theory. A quantum theory of closed systems therefore requires two elements: (1) a condition specifying which sets of histories may be assigned probabilities and (2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent subsystems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility of extending the notion of probability to include values outside the range of 0-1 is described. Alternatives with such virtual probabilities cannot be measured or recorded, but can be used in the intermediate steps of calculations of real probabilities. Extended probabilities give a simple and general way of formulating quantum theory. The various decoherence conditions are compared in terms of their utility for characterizing classicality and the role they might play in further generalizations of quantum mechanics
Zhou, Botao; Xu, Ying; Shi, Ying
2018-01-01
The summer Asian-Pacific oscillation (APO), one of the major modes of climate variability over the Asian-Pacific sector, has a pronounced effect on variations of large-scale atmospheric circulations and climate. This study evaluated the capability of 30 state-of-the-art climate models among the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating its association with the atmospheric circulations over the Asian-Pacific region and the precipitation over East Asia. Furthermore, their future connections under the RCP8.5 scenario were examined. The evaluation results show that 5 out of 30 climate models can well capture the observed APO-related features in a comprehensive way, including the strengthened South Asian high (SAH), deepened North Pacific trough (NPT) and northward East Asian jet (EAJ) in the upper troposphere; an intensification of the Asian low and the North Pacific subtropical high (NPSH) as well as a northward shift of the western Pacific subtropical high (WPSH) in the lower troposphere; and a decrease in East Asian summer rainfall (EASR) under the positive APO phase. Based on the five CMIP5 models' simulations, the dynamic linkages of the APO to the SAH, NPT, AL, and NPSH are projected to maintain during the second half of the twenty-first century. However, its connection with the EASR tends to reduce significantly. Such a reduction might result from the weakening of the linkage of the APO to the meridional displacement of the EAJ and WPSH as a response to the warming scenario.
Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines
Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.
2011-01-01
Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433
Probable Inference and Quantum Mechanics
International Nuclear Information System (INIS)
Grandy, W. T. Jr.
2009-01-01
In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.
Probability with applications and R
Dobrow, Robert P
2013-01-01
An introduction to probability at the undergraduate level Chance and randomness are encountered on a daily basis. Authored by a highly qualified professor in the field, Probability: With Applications and R delves into the theories and applications essential to obtaining a thorough understanding of probability. With real-life examples and thoughtful exercises from fields as diverse as biology, computer science, cryptology, ecology, public health, and sports, the book is accessible for a variety of readers. The book's emphasis on simulation through the use of the popular R software language c
A philosophical essay on probabilities
Laplace, Marquis de
1996-01-01
A classic of science, this famous essay by ""the Newton of France"" introduces lay readers to the concepts and uses of probability theory. It is of especial interest today as an application of mathematical techniques to problems in social and biological sciences.Generally recognized as the founder of the modern phase of probability theory, Laplace here applies the principles and general results of his theory ""to the most important questions of life, which are, in effect, for the most part, problems in probability."" Thus, without the use of higher mathematics, he demonstrates the application
International Nuclear Information System (INIS)
La Croce, A.
1991-01-01
According to George Woodwell, founder of the Woods Hole Research Center, due the combustion of fossil fuels, deforestation and accelerated respiration, the net annual increase of carbon, in the form of carbon dioxide, to the 750 billion tonnes already present in the earth's atmosphere, is in the order of 3 to 5 billion tonnes. Around the world, scientists, investigating the probable effects of this increase on the earth's future climate, are now formulating coupled air and ocean current models which take account of water temperature and salinity dependent carbon dioxide exchange mechanisms acting between the atmosphere and deep layers of ocean waters
A probability of synthesis of the superheavy element Z = 124
Energy Technology Data Exchange (ETDEWEB)
Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)
2017-10-15
We have studied the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P{sub CN}) and survival probability (P{sub sur}) of different projectile target combinations to synthesize the superheavy element Z=124. Hence, we have identified the most probable projectile-target combination to synthesize the superheavy element Z = 124. To synthesize the superheavy element Z=124, the most probable projectile target combinations are Kr+Ra, Ni+Cm, Se+Th, Ge+U and Zn+Pu. We hope that our predictions may be a guide for the future experiments in the synthesis of superheavy nuclei Z = 124. (orig.)
School and conference on probability theory
International Nuclear Information System (INIS)
Lawler, G.F.
2004-01-01
This volume includes expanded lecture notes from the School and Conference in Probability Theory held at ICTP in May, 2001. Probability theory is a very large area, too large for a single school and conference. The organizers, G. Lawler, C. Newman, and S. Varadhan chose to focus on a number of active research areas that have their roots in statistical physics. The pervasive theme in these lectures is trying to find the large time or large space behaviour of models defined on discrete lattices. Usually the definition of the model is relatively simple: either assigning a particular weight to each possible configuration (equilibrium statistical mechanics) or specifying the rules under which the system evolves (nonequilibrium statistical mechanics). Interacting particle systems is the area of probability that studies the evolution of particles (either finite or infinite in number) under random motions. The evolution of particles depends on the positions of the other particles; often one assumes that it depends only on the particles that are close to the particular particle. Thomas Liggett's lectures give an introduction to this very large area. Claudio Landim's follows up by discussing hydrodynamic limits of particle systems. The goal of this area is to describe the long time, large system size dynamics in terms of partial differential equations. The area of random media is concerned with the properties of materials or environments that are not homogeneous. Percolation theory studies one of the simplest stated models for impurities - taking a lattice and removing some of the vertices or bonds. Luiz Renato G. Fontes and Vladas Sidoravicius give a detailed introduction to this area. Random walk in random environment combines two sources of randomness - a particle performing stochastic motion in which the transition probabilities depend on position and have been chosen from some probability distribution. Alain-Sol Sznitman gives a survey of recent developments in this
Logic, probability, and human reasoning.
Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P
2015-04-01
This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Introduction to probability and measure
Parthasarathy, K R
2005-01-01
According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.
Joint probabilities and quantum cognition
International Nuclear Information System (INIS)
Acacio de Barros, J.
2012-01-01
In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.
Joint probabilities and quantum cognition
Energy Technology Data Exchange (ETDEWEB)
Acacio de Barros, J. [Liberal Studies, 1600 Holloway Ave., San Francisco State University, San Francisco, CA 94132 (United States)
2012-12-18
In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.
Default probabilities and default correlations
Erlenmaier, Ulrich; Gersbach, Hans
2001-01-01
Starting from the Merton framework for firm defaults, we provide the analytics and robustness of the relationship between default correlations. We show that loans with higher default probabilities will not only have higher variances but also higher correlations between loans. As a consequence, portfolio standard deviation can increase substantially when loan default probabilities rise. This result has two important implications. First, relative prices of loans with different default probabili...
The Probabilities of Unique Events
2012-08-30
Washington, DC USA Max Lotstein and Phil Johnson-Laird Department of Psychology Princeton University Princeton, NJ USA August 30th 2012...social justice and also participated in antinuclear demonstrations. The participants ranked the probability that Linda is a feminist bank teller as...retorted that such a flagrant violation of the probability calculus was a result of a psychological experiment that obscured the rationality of the
Probability Matching, Fast and Slow
Koehler, Derek J.; James, Greta
2014-01-01
A prominent point of contention among researchers regarding the interpretation of probability-matching behavior is whether it represents a cognitively sophisticated, adaptive response to the inherent uncertainty of the tasks or settings in which it is observed, or whether instead it represents a fundamental shortcoming in the heuristics that support and guide human decision making. Put crudely, researchers disagree on whether probability matching is "smart" or "dumb." Here, we consider eviden...
International Nuclear Information System (INIS)
Henderson, S.
1998-01-01
The large oil reserves of Iraq make it an important player in the long-term political energy world. This article briefly reviews the oil industry''s development and current status in Iraq and discusses the planned oil and gas field development. Finally there is a political discussion regarding the future of Iraq in terms of religion, race and neighbouring countries. (UK)
Introduction to probability and statistics for science, engineering, and finance
Rosenkrantz, Walter A
2008-01-01
Data Analysis Orientation The Role and Scope of Statistics in Science and Engineering Types of Data: Examples from Engineering, Public Health, and Finance The Frequency Distribution of a Variable Defined on a Population Quantiles of a Distribution Measures of Location (Central Value) and Variability Covariance, Correlation, and Regression: Computing a Stock's Beta Mathematical Details and Derivations Large Data Sets Probability Theory Orientation Sample Space, Events, Axioms of Probability Theory Mathematical Models of Random Sampling Conditional Probability and Baye
Deuschel, Jean-Dominique; Deuschel, Jean-Dominique
2001-01-01
This is the second printing of the book first published in 1988. The first four chapters of the volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allow
Escape probabilities for fluorescent x-rays
International Nuclear Information System (INIS)
Dance, D.R.; Day, G.J.
1985-01-01
Computation of the energy absorption efficiency of an x-ray photon detector involves consideration of the histories of the secondary particles produced in any initial or secondary interaction which may occur within the detector. In particular, the K or higher shell fluorescent x-rays which may be emitted following a photoelectric interaction can carry away a large fraction of the energy of the incident photon, especially if this energy is just above an absorption edge. The effects of such photons cannot be ignored and a correction term, depending upon the probability that the fluorescent x-rays will escape from the detector, must be applied to the energy absorption efficiency. For detectors such as x-ray intensifying screens, it has been usual to calculate this probability by numerical integration. In this note analytic expressions are derived for the escape probability of fluorescent photons from planar detectors in terms of exponential integral functions. Rational approximations for these functions are readily available and these analytic expressions therefore facilitate the computation of photon absorption efficiencies. A table is presented which should obviate the need for calculating the escape probability for most cases of interest. (author)
Normal probability plots with confidence.
Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang
2015-01-01
Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios
DEFF Research Database (Denmark)
Sun, Shu; Thomas, Timothy; Rappaport, Theodore S.
2015-01-01
This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro-cellular (UMa) scenarios, using the data obtained from propagation...... measurements in Austin, US, and Aalborg, Denmark, at 2, 10, 18, and 38 GHz. A comparison of different LOS probability models is performed for the Aalborg environment. Both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors...
Probability theory a foundational course
Pakshirajan, R P
2013-01-01
This book shares the dictum of J. L. Doob in treating Probability Theory as a branch of Measure Theory and establishes this relation early. Probability measures in product spaces are introduced right at the start by way of laying the ground work to later claim the existence of stochastic processes with prescribed finite dimensional distributions. Other topics analysed in the book include supports of probability measures, zero-one laws in product measure spaces, Erdos-Kac invariance principle, functional central limit theorem and functional law of the iterated logarithm for independent variables, Skorohod embedding, and the use of analytic functions of a complex variable in the study of geometric ergodicity in Markov chains. This book is offered as a text book for students pursuing graduate programs in Mathematics and or Statistics. The book aims to help the teacher present the theory with ease, and to help the student sustain his interest and joy in learning the subject.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Model uncertainty: Probabilities for models?
International Nuclear Information System (INIS)
Winkler, R.L.
1994-01-01
Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising
Knowledge typology for imprecise probabilities.
Energy Technology Data Exchange (ETDEWEB)
Wilson, G. D. (Gregory D.); Zucker, L. J. (Lauren J.)
2002-01-01
When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2011-01-01
A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d
Statistical probability tables CALENDF program
International Nuclear Information System (INIS)
Ribon, P.
1989-01-01
The purpose of the probability tables is: - to obtain dense data representation - to calculate integrals by quadratures. They are mainly used in the USA for calculations by Monte Carlo and in the USSR and Europe for self-shielding calculations by the sub-group method. The moment probability tables, in addition to providing a more substantial mathematical basis and calculation methods, are adapted for condensation and mixture calculations, which are the crucial operations for reactor physics specialists. However, their extension is limited by the statistical hypothesis they imply. Efforts are being made to remove this obstacle, at the cost, it must be said, of greater complexity
Probability, statistics, and queueing theory
Allen, Arnold O
1990-01-01
This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edit
Probability and statistics for particle physics
Mana, Carlos
2017-01-01
This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian me...
Yates, Justin R; Breitenstein, Kerry A; Gunkel, Benjamin T; Hughes, Mallory N; Johnson, Anthony B; Rogers, Katherine K; Shape, Sara M
Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Brouwer, A. S.; van den Broek, M.; Seebregts, A.; Faaij, A. P. C.
2013-01-01
This paper investigates flexibility issues of future low-carbon power systems. The short-term power system impacts of intermittent renewables are identified and roughly quantified based on a review of wind integration studies. Next, the flexibility parameters of three types of power plants with CO2
Convergence of Transition Probability Matrix in CLVMarkov Models
Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.
2018-04-01
A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.
Conditional Independence in Applied Probability.
Pfeiffer, Paul E.
This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…
Stretching Probability Explorations with Geoboards
Wheeler, Ann; Champion, Joe
2016-01-01
Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Swedish earthquakes and acceleration probabilities
International Nuclear Information System (INIS)
Slunga, R.
1979-03-01
A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)
DECOFF Probabilities of Failed Operations
DEFF Research Database (Denmark)
Gintautas, Tomas
2015-01-01
A statistical procedure of estimation of Probabilities of Failed Operations is described and exemplified using ECMWF weather forecasts and SIMO output from Rotor Lift test case models. Also safety factor influence is investigated. DECOFF statistical method is benchmarked against standard Alpha-factor...
Risk estimation using probability machines
2014-01-01
Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306
Probability and statistics: A reminder
International Nuclear Information System (INIS)
Clement, B.
2013-01-01
The main purpose of these lectures is to provide the reader with the tools needed to data analysis in the framework of physics experiments. Basic concepts are introduced together with examples of application in experimental physics. The lecture is divided into two parts: probability and statistics. It is build on the introduction from 'data analysis in experimental sciences' given in [1]. (authors)
Nash equilibrium with lower probabilities
DEFF Research Database (Denmark)
Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte
1998-01-01
We generalize the concept of Nash equilibrium in mixed strategies for strategic form games to allow for ambiguity in the players' expectations. In contrast to other contributions, we model ambiguity by means of so-called lower probability measures or belief functions, which makes it possible...
On probability-possibility transformations
Klir, George J.; Parviz, Behzad
1992-01-01
Several probability-possibility transformations are compared in terms of the closeness of preserving second-order properties. The comparison is based on experimental results obtained by computer simulation. Two second-order properties are involved in this study: noninteraction of two distributions and projections of a joint distribution.
Monte Carlo methods to calculate impact probabilities
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
Confidence intervals for the lognormal probability distribution
International Nuclear Information System (INIS)
Smith, D.L.; Naberejnev, D.G.
2004-01-01
The present communication addresses the topic of symmetric confidence intervals for the lognormal probability distribution. This distribution is frequently utilized to characterize inherently positive, continuous random variables that are selected to represent many physical quantities in applied nuclear science and technology. The basic formalism is outlined herein and a conjured numerical example is provided for illustration. It is demonstrated that when the uncertainty reflected in a lognormal probability distribution is large, the use of a confidence interval provides much more useful information about the variable used to represent a particular physical quantity than can be had by adhering to the notion that the mean value and standard deviation of the distribution ought to be interpreted as best value and corresponding error, respectively. Furthermore, it is shown that if the uncertainty is very large a disturbing anomaly can arise when one insists on interpreting the mean value and standard deviation as the best value and corresponding error, respectively. Reliance on using the mode and median as alternative parameters to represent the best available knowledge of a variable with large uncertainties is also shown to entail limitations. Finally, a realistic physical example involving the decay of radioactivity over a time period that spans many half-lives is presented and analyzed to further illustrate the concepts discussed in this communication
Stochastics introduction to probability and statistics
Georgii, Hans-Otto
2012-01-01
This second revised and extended edition presents the fundamental ideas and results of both, probability theory and statistics, and comprises the material of a one-year course. It is addressed to students with an interest in the mathematical side of stochastics. Stochastic concepts, models and methods are motivated by examples and developed and analysed systematically. Some measure theory is included, but this is done at an elementary level that is in accordance with the introductory character of the book. A large number of problems offer applications and supplements to the text.
Probability biases as Bayesian inference
Directory of Open Access Journals (Sweden)
Andre; C. R. Martins
2006-11-01
Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.
Probability matching and strategy availability.
Koehler, Derek J; James, Greta
2010-09-01
Findings from two experiments indicate that probability matching in sequential choice arises from an asymmetry in strategy availability: The matching strategy comes readily to mind, whereas a superior alternative strategy, maximizing, does not. First, compared with the minority who spontaneously engage in maximizing, the majority of participants endorse maximizing as superior to matching in a direct comparison when both strategies are described. Second, when the maximizing strategy is brought to their attention, more participants subsequently engage in maximizing. Third, matchers are more likely than maximizers to base decisions in other tasks on their initial intuitions, suggesting that they are more inclined to use a choice strategy that comes to mind quickly. These results indicate that a substantial subset of probability matchers are victims of "underthinking" rather than "overthinking": They fail to engage in sufficient deliberation to generate a superior alternative to the matching strategy that comes so readily to mind.
Probability as a Physical Motive
Directory of Open Access Journals (Sweden)
Peter Martin
2007-04-01
Full Text Available Recent theoretical progress in nonequilibrium thermodynamics, linking thephysical principle of Maximum Entropy Production (Ã¢Â€ÂœMEPÃ¢Â€Â to the information-theoreticalÃ¢Â€ÂœMaxEntÃ¢Â€Â principle of scientific inference, together with conjectures from theoreticalphysics that there may be no fundamental causal laws but only probabilities for physicalprocesses, and from evolutionary theory that biological systems expand Ã¢Â€Âœthe adjacentpossibleÃ¢Â€Â as rapidly as possible, all lend credence to the proposition that probability shouldbe recognized as a fundamental physical motive. It is further proposed that spatial order andtemporal order are two aspects of the same thing, and that this is the essence of the secondlaw of thermodynamics.
Logic, Probability, and Human Reasoning
2015-01-01
accordingly suggest a way to integrate probability and deduction. The nature of deductive reasoning To be rational is to be able to make deductions...3–6] and they underlie mathematics, science, and tech- nology [7–10]. Plato claimed that emotions upset reason- ing. However, individuals in the grip...fundamental to human rationality . So, if counterexamples to its principal predictions occur, the theory will at least explain its own refutation
Probability Measures on Groups IX
1989-01-01
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.
Probability matching and strategy availability
J. Koehler, Derek; Koehler, Derek J.; James, Greta
2010-01-01
Findings from two experiments indicate that probability matching in sequential choice arises from an asymmetry in strategy availability: The matching strategy comes readily to mind, whereas a superior alternative strategy, maximizing, does not. First, compared with the minority who spontaneously engage in maximizing, the majority of participants endorse maximizing as superior to matching in a direct comparison when both strategies are described. Second, when the maximizing strategy is brought...
Consistent probabilities in loop quantum cosmology
International Nuclear Information System (INIS)
Craig, David A; Singh, Parampreet
2013-01-01
A fundamental issue for any quantum cosmological theory is to specify how probabilities can be assigned to various quantum events or sequences of events such as the occurrence of singularities or bounces. In previous work, we have demonstrated how this issue can be successfully addressed within the consistent histories approach to quantum theory for Wheeler–DeWitt-quantized cosmological models. In this work, we generalize that analysis to the exactly solvable loop quantization of a spatially flat, homogeneous and isotropic cosmology sourced with a massless, minimally coupled scalar field known as sLQC. We provide an explicit, rigorous and complete decoherent-histories formulation for this model and compute the probabilities for the occurrence of a quantum bounce versus a singularity. Using the scalar field as an emergent internal time, we show for generic states that the probability for a singularity to occur in this model is zero, and that of a bounce is unity, complementing earlier studies of the expectation values of the volume and matter density in this theory. We also show from the consistent histories point of view that all states in this model, whether quantum or classical, achieve arbitrarily large volume in the limit of infinite ‘past’ or ‘future’ scalar ‘time’, in the sense that the wave function evaluated at any arbitrary fixed value of the volume vanishes in that limit. Finally, we briefly discuss certain misconceptions concerning the utility of the consistent histories approach in these models. (paper)
Expected Signal Observability at Future Experiments
Bartsch, Valeria
2005-01-01
Several methods to quantify the ''significance'' of an expected signal at future experiments have been used or suggested in literature. In this note, comparisons are presented with a method based on the likelihood ratio of the ''background hypothesis'' and the ''signal-plus-background hypothesis''. A large number of Monte Carlo experiments are performed to investigate the properties of the various methods and to check whether the probability of a background fluctuation having produced the claimed significance of the discovery is properly described. In addition, the best possible separation between the two hypotheses should be provided, in other words, the discovery potential of a future experiment be maximal. Finally, a practical method to apply a likelihood-based definition of the significance is suggested in this note. Signal and background contributions are determined from a likelihoo d fit based on shapes only, and the probability density distributions of the significance thus determined are found to be o...
Probable damage to tundra biota through sulphur dioxide destruction of lichens
Energy Technology Data Exchange (ETDEWEB)
Schofield, E; Hamilton, W L
1970-01-01
Lichens, which are important components of many Arctic ecosystems, are extremely sensitive to SO/sub 2/ pollution. Recent oilfield development in Arctic North America seems likely to eliminate lichens from large areas because of a unique combination of biological and meteorological factors. Probable future oilfield development in Greenland and the Soviet Union indicates that SO/sub 2/ pollution will become an increasingly serious threat to Arctic ecosystems. Therefore, uncontrolled burning of crude oil, fuel oil, and natural gas, should be avoided, and adequate sulphur-extraction facilities should be installed.
O'Loughlin, Valerie Dean; Kearns, Katherine; Sherwood-Laughlin, Catherine; Robinson, Jennifer Meta
2017-01-01
This study examines and documents graduate pedagogy courses offered at a large Midwestern research university. Thirty-three graduate pedagogy course instructors from 32 departments (a majority of those offering courses) completed an online survey. We report on enrollment demographics, preparation of faculty to teach such a course, and how a…
Directory of Open Access Journals (Sweden)
Giuseppe Scarpa
2016-01-01
Full Text Available Aims. The study aimed to present the experience of a screening programme for early detection of diabetic retinopathy (DR using a nonmydriatic fundus camera, evaluating the feasibility in terms of validity, resources absorption, and future advantages of a potential application, in an Italian local health authority. Methods. Diabetic patients living in the town of Ponzano, Veneto Region (Northern Italy, were invited to be enrolled in the screening programme. The “no prevention strategy” with the inclusion of the estimation of blindness related costs was compared with screening costs in order to evaluate a future extensive and feasible implementation of the procedure, through a budget impact approach. Results. Out of 498 diabetic patients eligible, 80% was enrolled in the screening programme. 115 patients (34% were referred to an ophthalmologist and 9 cases required prompt treatment for either proliferative DR or macular edema. Based on the pilot data, it emerged that an extensive use of the investigated screening programme, within the Greater Treviso area, could prevent 6 cases of blindness every year, resulting in a saving of €271,543.32 (−13.71%. Conclusions. Fundus images obtained with a nonmydriatic fundus camera could be considered an effective, cost-sparing, and feasible screening tool for the early detection of DR, preventing blindness as a result of diabetes.
Trending in Probability of Collision Measurements
Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.
2015-01-01
A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.
[Biometric bases: basic concepts of probability calculation].
Dinya, E
1998-04-26
The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.
Murphy, Gerald B.; Lonngren, Karl E.
1986-01-01
The discoveries and experiments of the Plasma Diagnostic Package (PDP) on the OSS 1 and Spacelab 2 missions are reviewed, these results are compared with those of other space and laboratory experiments, and the implications for the understanding of large body interactions in a low Earth orbit (LEO) plasma environment are discussed. First a brief review of the PDP investigation, its instrumentation and experiments is presented. Next a summary of PDP results along with a comparison of those results with similar space or laboratory experiments is given. Last of all the implications of these results in terms of understanding fundamental physical processes that take place with large bodies in LEO is discussed and experiments to deal with these vital questions are suggested.
Directory of Open Access Journals (Sweden)
Daoxin Dai
2012-03-01
Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2012-01-01
This book provides a unique and balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
Sensitivity analysis using probability bounding
International Nuclear Information System (INIS)
Ferson, Scott; Troy Tucker, W.
2006-01-01
Probability bounds analysis (PBA) provides analysts a convenient means to characterize the neighborhood of possible results that would be obtained from plausible alternative inputs in probabilistic calculations. We show the relationship between PBA and the methods of interval analysis and probabilistic uncertainty analysis from which it is jointly derived, and indicate how the method can be used to assess the quality of probabilistic models such as those developed in Monte Carlo simulations for risk analyses. We also illustrate how a sensitivity analysis can be conducted within a PBA by pinching inputs to precise distributions or real values
Greek paideia and terms of probability
Directory of Open Access Journals (Sweden)
Fernando Leon Parada
2016-06-01
Full Text Available This paper addresses three aspects of the conceptual framework for a doctoral dissertation research in process in the field of Mathematics Education, in particular, in the subfield of teaching and learning basic concepts of Probability Theory at the College level. It intends to contrast, sustain and elucidate the central statement that the meanings of some of these basic terms used in Probability Theory were not formally defined by any specific theory but relate to primordial ideas developed in Western culture from Ancient Greek myths. The first aspect deals with the notion of uncertainty, with that Greek thinkers described several archaic gods and goddesses of Destiny, like Parcas and Moiras, often personified in the goddess Tyche—Fortuna for the Romans—, as regarded in Werner Jaeger’s “Paideia”. The second aspect treats the idea of hazard from two different approaches: the first approach deals with hazard, denoted by Plato with the already demythologized term ‘tyche’ from the viewpoint of innate knowledge, as Jaeger points out. The second approach deals with hazard from a perspective that could be called “phenomenological”, from which Aristotle attempted to articulate uncertainty with a discourse based on the hypothesis of causality. The term ‘causal’ was opposed both to ‘casual’ and to ‘spontaneous’ (as used in the expression “spontaneous generation”, attributing uncertainty to ignorance of the future, thus respecting causal flow. The third aspect treated in the paper refers to some definitions and etymologies of some other modern words that have become technical terms in current Probability Theory, confirming the above-mentioned main proposition of this paper.
Probability and uncertainty in nuclear safety decisions
International Nuclear Information System (INIS)
Pate-Cornell, M.E.
1986-01-01
In this paper, we examine some problems posed by the use of probabilities in Nuclear Safety decisions. We discuss some of the theoretical difficulties due to the collective nature of regulatory decisions, and, in particular, the calibration and the aggregation of risk information (e.g., experts opinions). We argue that, if one chooses numerical safety goals as a regulatory basis, one can reduce the constraints to an individual safety goal and a cost-benefit criterion. We show the relevance of risk uncertainties in this kind of regulatory framework. We conclude that, whereas expected values of future failure frequencies are adequate to show compliance with economic constraints, the use of a fractile (e.g., 95%) to be specified by the regulatory agency is justified to treat hazard uncertainties for the individual safety goal. (orig.)
PROBABLE FORECASTING IN THE COURSE OF INTERPRETING
Directory of Open Access Journals (Sweden)
Ye. B. Kagan
2017-01-01
Full Text Available Introduction. Translation practice has a heuristic nature and involves cognitive structures of consciousness of any interpreter. When preparing translators, special attention is paid to the development of their skill of probable forecasting.The aim of the present publication is to understand the process of anticipation from the position of the cognitive model of translation, development of exercises aimed at the development of prognostic abilities of students and interpreters when working with newspaper articles, containing metaphorical headlines.Methodology and research methods. The study is based on the competence approach to the training of students-translators, the complex of interrelated scientific methods, the main of which is the psycholinguistic experiment. With the use of quantitative data the features of the perception of newspaper texts on their metaphorical titles are characterized.Results and scientific novelty. On the basis of the conducted experiment to predict the content of newspaper articles with metaphorical headlines it is concluded that the main condition of predictability is the expectation. Probable forecasting as a professional competence of a future translator is formed in the process of training activities by integrating efforts of various departments of any language university. Specific exercises for the development of anticipation of students while studying the course of translation and interpretation are offered.Practical significance. The results of the study can be used by foreign language teachers of both language and non-language universities in teaching students of different specialties to translate foreign texts.
Lectures on probability and statistics
International Nuclear Information System (INIS)
Yost, G.P.
1984-09-01
These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another
Silber, Armin; Gonzalez, Christian; Pino, Francisco; Escarate, Patricio; Gairing, Stefan
2014-08-01
With expanding sizes and increasing complexity of large astronomical observatories on remote observing sites, the call for an efficient and recourses saving maintenance concept becomes louder. The increasing number of subsystems on telescopes and instruments forces large observatories, like in industries, to rethink conventional maintenance strategies for reaching this demanding goal. The implementation of full-, or semi-automatic processes for standard service activities can help to keep the number of operating staff on an efficient level and to reduce significantly the consumption of valuable consumables or equipment. In this contribution we will demonstrate on the example of the 80 Cryogenic subsystems of the ALMA Front End instrument, how an implemented automatic service process increases the availability of spare parts and Line Replaceable Units. Furthermore how valuable staff recourses can be freed from continuous repetitive maintenance activities, to allow focusing more on system diagnostic tasks, troubleshooting and the interchanging of line replaceable units. The required service activities are decoupled from the day-to-day work, eliminating dependencies on workload peaks or logistic constrains. The automatic refurbishing processes running in parallel to the operational tasks with constant quality and without compromising the performance of the serviced system components. Consequentially that results in an efficiency increase, less down time and keeps the observing schedule on track. Automatic service processes in combination with proactive maintenance concepts are providing the necessary flexibility for the complex operational work structures of large observatories. The gained planning flexibility is allowing an optimization of operational procedures and sequences by considering the required cost efficiency.
Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C. W.; Blanc, E.; Monier, E.; Sokolov, A. P.; Paltsev, S.; Arndt, C.; Prinn, R. G.; Reilly, J. M.; Jacoby, H.
2013-12-01
The fate of natural and managed water resources is controlled to varying degrees by interlinked energy, agricultural, and environmental systems, as well as the hydro-climate cycles. The need for risk-based assessments of impacts and adaptation to regional change calls for likelihood quantification of outcomes via the representation of uncertainty - to the fullest extent possible. A hybrid approach of the MIT Integrated Global System Model (IGSM) framework provides probabilistic projections of regional climate change - generated in tandem with consistent socio-economic projections. A Water Resources System (WRS) then tracks water allocation and availability across these competing demands. As such, the IGSM-WRS is an integrated tool that provides quantitative insights on the risks and sustainability of water resources over large river basins. This pilot project focuses the IGSM-WRS on Southeast Asia (Figure 1). This region presents exceptional challenges toward sustainable water resources given its texture of basins that traverse and interconnect developing nations as well as large, ascending economies and populations - such as China and India. We employ the IGSM-WRS in a large ensemble of outcomes spanning hydro-climatic, economic, and policy uncertainties. For computational efficiency, a Gaussian Quadrature procedure sub-samples these outcomes (Figure 2). The IGSM-WRS impacts are quantified through frequency distributions of water stress changes. The results allow for interpretation of: the effects of policy measures; impacts on food production; and the value of design flexibility of infrastructure/institutions. An area of model development and exploration is the feedback of water-stress shocks to economic activity (i.e. GDP and land use). We discuss these further results (where possible) as well as other efforts to refine: uncertainty methods, greater basin-level and climate detail, and process-level representation glacial melt-water sources. Figure 1 Figure 2
Probability intervals for the top event unavailability of fault trees
International Nuclear Information System (INIS)
Lee, Y.T.; Apostolakis, G.E.
1976-06-01
The evaluation of probabilities of rare events is of major importance in the quantitative assessment of the risk from large technological systems. In particular, for nuclear power plants the complexity of the systems, their high reliability and the lack of significant statistical records have led to the extensive use of logic diagrams in the estimation of low probabilities. The estimation of probability intervals for the probability of existence of the top event of a fault tree is examined. Given the uncertainties of the primary input data, a method is described for the evaluation of the first four moments of the top event occurrence probability. These moments are then used to estimate confidence bounds by several approaches which are based on standard inequalities (e.g., Tchebycheff, Cantelli, etc.) or on empirical distributions (the Johnson family). Several examples indicate that the Johnson family of distributions yields results which are in good agreement with those produced by Monte Carlo simulation
Probability evolution method for exit location distribution
Zhu, Jinjie; Chen, Zhen; Liu, Xianbin
2018-03-01
The exit problem in the framework of the large deviation theory has been a hot topic in the past few decades. The most probable escape path in the weak-noise limit has been clarified by the Freidlin-Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will take exponentially large time as noise approaches zero. The majority of the time is wasted on the uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease the escape simulation time by an exponentially large factor by introducing a series of interfaces and by applying the reinjection on them. This method can be used to calculate the exit location distribution. It is verified by examining two classical examples and is compared with theoretical predictions. The results show that the method performs well for weak noise while may induce certain deviations for large noise. Finally, some possible ways to improve our method are discussed.
Correia Rodrigues, H.; Tavian, L.
2017-12-01
The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.
Focus in High School Mathematics: Statistics and Probability
National Council of Teachers of Mathematics, 2009
2009-01-01
Reasoning about and making sense of statistics and probability are essential to students' future success. This volume belongs to a series that supports National Council of Teachers of Mathematics' (NCTM's) "Focus in High School Mathematics: Reasoning and Sense Making" by providing additional guidance for making reasoning and sense making part of…
Measures, Probability and Holography in Cosmology
Phillips, Daniel
This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We
Failure frequencies and probabilities applicable to BWR and PWR piping
International Nuclear Information System (INIS)
Bush, S.H.; Chockie, A.D.
1996-03-01
This report deals with failure probabilities and failure frequencies of nuclear plant piping and the failure frequencies of flanges and bellows. Piping failure probabilities are derived from Piping Reliability Analysis Including Seismic Events (PRAISE) computer code calculations based on fatigue and intergranular stress corrosion as failure mechanisms. Values for both failure probabilities and failure frequencies are cited from several sources to yield a better evaluation of the spread in mean and median values as well as the widths of the uncertainty bands. A general conclusion is that the numbers from WASH-1400 often used in PRAs are unduly conservative. Failure frequencies for both leaks and large breaks tend to be higher than would be calculated using the failure probabilities, primarily because the frequencies are based on a relatively small number of operating years. Also, failure probabilities are substantially lower because of the probability distributions used in PRAISE calculations. A general conclusion is that large LOCA probability values calculated using PRAISE will be quite small, on the order of less than 1E-8 per year (<1E-8/year). The values in this report should be recognized as having inherent limitations and should be considered as estimates and not absolute values. 24 refs 24 refs
International Nuclear Information System (INIS)
Kim, Jae D.; Rahimi, Mansour
2014-01-01
Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of PEVs on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region's energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio. - Highlights: • Future energy load from PEV charging in the city of Los Angeles is modeled. • Changes in the marginal carbon intensity of the region's electric grid are modeled. • In the short run, offpeak charging results in higher marginal carbon intensity. • There is a mismatch between emissions and economic incentives for charging
Excluding joint probabilities from quantum theory
Allahverdyan, Armen E.; Danageozian, Arshag
2018-03-01
Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.
Qubit-qutrit separability-probability ratios
International Nuclear Information System (INIS)
Slater, Paul B.
2005-01-01
Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N 2 -1)-dimensional volume and (N 2 -2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10 9 well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases
Wahlqvist, Mark L
2016-12-01
Food systems have changed markedly with human settlement and agriculture, industrialisation, trade, migration and now the digital age. Throughout these transitions, there has been a progressive population explosion and net ecosystem loss and degradation. Climate change now gathers pace, exacerbated by ecological dysfunction. Our health status has been challenged by a developing people-environment mismatch. We have regarded ecological conquest and innovative technology as solutions, but have not understood how ecologically dependent and integrated we are. We are ecological creatures interfaced by our sensoriness, microbiomes, shared regulatory (endocrine) mechanisms, immune system, biorhythms and nutritional pathways. Many of us are 'nature-deprived'. We now suffer what might be termed ecological health disorders (EHD). If there were less of us, nature's resilience might cope, but more than 9 billion people by 2050 is probably an intolerable demand on the planet. Future food must increasingly take into account the pressures on ecosystem-dependent food systems, with foods probably less biodiverse, although eating in this way allows optimal health; energy dysequilibrium with less physical activity and foods inappropriately energy dense; and less socially-conducive food habits. 'Personalised Nutrition', with extensive and resource-demanding nutrigenomic, metabolomic and microbiomic data may provide partial health solutions in clinical settings, but not be justified for ethical, risk management or sustainability reasons in public health. The globally prevalent multidimensional malnutritional problems of food insecurity, quality and equity require local, regional and global action to prevent further ecosystem degradation as well as to educate, provide sustainable livelihoods and encourage respectful social discourse and practice about the role of food.
Assessing changes in failure probability of dams in a changing climate
Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.
2017-12-01
Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.
Probability theory and mathematical statistics for engineers
Pugachev, V S
1984-01-01
Probability Theory and Mathematical Statistics for Engineers focuses on the concepts of probability theory and mathematical statistics for finite-dimensional random variables.The publication first underscores the probabilities of events, random variables, and numerical characteristics of random variables. Discussions focus on canonical expansions of random vectors, second-order moments of random vectors, generalization of the density concept, entropy of a distribution, direct evaluation of probabilities, and conditional probabilities. The text then examines projections of random vector
Introduction to probability theory with contemporary applications
Helms, Lester L
2010-01-01
This introduction to probability theory transforms a highly abstract subject into a series of coherent concepts. Its extensive discussions and clear examples, written in plain language, expose students to the rules and methods of probability. Suitable for an introductory probability course, this volume requires abstract and conceptual thinking skills and a background in calculus.Topics include classical probability, set theory, axioms, probability functions, random and independent random variables, expected values, and covariance and correlations. Additional subjects include stochastic process
Energy Technology Data Exchange (ETDEWEB)
NONE
1982-03-01
Tasks to be subjected to research and development under the large-scale industrial technology research and development system are discussed. Mentioned in the fields of resources and foods are a submarine metal sulfide mining system, a submarine oil development system for ice-covered sea areas, an all-weather type useful vegetable automatic production system, etc. Mentioned in the fields of social development, security, and disaster prevention are a construction work robot, shelter system technologies, disaster control technologies in case of mega-scale disasters, etc. Mentioned in the fields of health, welfare, and education are biomimetics, biosystems, cancer diagnosis and treatment systems, etc. Mentioned in the field of commodity distribution, service, and software are a computer security system, an unmanned collection and distribution system, etc. Mentioned in the field of process conversion are aluminum refining, synzyme technologies for precise synthesis, etc. Mentioned in the field of data processing are optical computers, bioelectronics, etc. Various tasks are pointed out also in the fields of aviation, space, ocean, and machining. (NEDO)
Collection of offshore human error probability data
International Nuclear Information System (INIS)
Basra, Gurpreet; Kirwan, Barry
1998-01-01
Accidents such as Piper Alpha have increased concern about the effects of human errors in complex systems. Such accidents can in theory be predicted and prevented by risk assessment, and in particular human reliability assessment (HRA), but HRA ideally requires qualitative and quantitative human error data. A research initiative at the University of Birmingham led to the development of CORE-DATA, a Computerised Human Error Data Base. This system currently contains a reasonably large number of human error data points, collected from a variety of mainly nuclear-power related sources. This article outlines a recent offshore data collection study, concerned with collecting lifeboat evacuation data. Data collection methods are outlined and a selection of human error probabilities generated as a result of the study are provided. These data give insights into the type of errors and human failure rates that could be utilised to support offshore risk analyses
Normal tissue complication probability for salivary glands
International Nuclear Information System (INIS)
Rana, B.S.
2008-01-01
The purpose of radiotherapy is to make a profitable balance between the morbidity (due to side effects of radiation) and cure of malignancy. To achieve this, one needs to know the relation between NTCP (normal tissue complication probability) and various treatment variables of a schedule viz. daily dose, duration of treatment, total dose and fractionation along with tissue conditions. Prospective studies require that a large number of patients be treated with varied schedule parameters and a statistically acceptable number of patients develop complications so that a true relation between NTCP and a particular variable is established. In this study Salivary Glands Complications have been considered. The cases treated in 60 Co teletherapy machine during the period 1994 to 2002 were analyzed and the clinicians judgement in ascertaining the end points was the only means of observations. The only end points were early and late xerestomia which were considered for NTCP evaluations for a period of 5 years
System Geometries and Transit/Eclipse Probabilities
Directory of Open Access Journals (Sweden)
Howard A.
2011-02-01
Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.
Bickel, Warren K; George Wilson, A; Franck, Christopher T; Terry Mueller, E; Jarmolowicz, David P; Koffarnus, Mikhail N; Fede, Samantha J
2014-04-01
Previous research comparing obese and non-obese samples on the delayed discounting procedure has produced mixed results. The aim of the current study was to clarify these discrepant findings by comparing a variety of temporal discounting measures in a large sample of internet users (n=1163) obtained from a crowdsourcing service, Amazon Mechanical Turk (AMT). Measures of temporal, social-temporal (a combination of standard and social temporal), and probability discounting were obtained. Significant differences were obtained on all discounting measures except probability discounting, but the obtained effect sizes were small. These data suggest that larger-N studies will be more likely to detect differences between obese and non-obese samples, and may afford the opportunity, in future studies, to decompose a large obese sample into different subgroups to examine the effect of other relevant measures, such as the reinforcing value of food, on discounting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram
2018-03-01
We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.
K-forbidden transition probabilities
International Nuclear Information System (INIS)
Saitoh, T.R.; Sletten, G.; Bark, R.A.; Hagemann, G.B.; Herskind, B.; Saitoh-Hashimoto, N.; Tsukuba Univ., Ibaraki
2000-01-01
Reduced hindrance factors of K-forbidden transitions are compiled for nuclei with A∝180 where γ-vibrational states are observed. Correlations between these reduced hindrance factors and Coriolis forces, statistical level mixing and γ-softness have been studied. It is demonstrated that the K-forbidden transition probabilities are related to γ-softness. The decay of the high-K bandheads has been studied by means of the two-state mixing, which would be induced by the γ-softness, with the use of a number of K-forbidden transitions compiled in the present work, where high-K bandheads are depopulated by both E2 and ΔI=1 transitions. The validity of the two-state mixing scheme has been examined by using the proposed identity of the B(M1)/B(E2) ratios of transitions depopulating high-K bandheads and levels of low-K bands. A break down of the identity might indicate that other levels would mediate transitions between high- and low-K states. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dumon, R
1974-01-01
The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.
International Nuclear Information System (INIS)
Lashof, D.; Schipper, L.
1990-01-01
The future evolution of global change and the atmosphere will depend largely on the paths of economic development and technological change, as well as on the physical, chemical, and biological processes of the Earth-atmosphere system. While we have no control over this system once gases enter the atmosphere, economic and technological change will be influenced by policy choices made at local, national, and international levels. This paper explores some of the paths the world might follow in the decades ahead and provides an indication of the relative climatic consequences under these alternatives. After a discussion of the economic and social factors that determine emissions, four scenarios of economic and technological development are presented. These scenarios cannot capture all the possibilities, of course; rather, they have been developed in order to explore the probable climatic effects under significantly different, but plausible, economic and technological conditions. The climatic implications of these scenarios are analyzed using an integrated framework. The chapter concludes with the results of this analysis and a comparison of these results with other studies
Foundations of the theory of probability
Kolmogorov, AN
2018-01-01
This famous little book remains a foundational text for the understanding of probability theory, important both to students beginning a serious study of probability and to historians of modern mathematics. 1956 second edition.
The Probability Distribution for a Biased Spinner
Foster, Colin
2012-01-01
This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)
Conditional Probability Modulates Visual Search Efficiency
Directory of Open Access Journals (Sweden)
Bryan eCort
2013-10-01
Full Text Available We investigated the effects of probability on visual search. Previous work has shown that people can utilize spatial and sequential probability information to improve target detection. We hypothesized that performance improvements from probability information would extend to the efficiency of visual search. Our task was a simple visual search in which the target was always present among a field of distractors, and could take one of two colors. The absolute probability of the target being either color was 0.5; however, the conditional probability – the likelihood of a particular color given a particular combination of two cues – varied from 0.1 to 0.9. We found that participants searched more efficiently for high conditional probability targets and less efficiently for low conditional probability targets, but only when they were explicitly informed of the probability relationship between cues and target color.
Analytic Neutrino Oscillation Probabilities in Matter: Revisited
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT
2018-01-02
We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.
Void probability scaling in hadron nucleus interactions
International Nuclear Information System (INIS)
Ghosh, Dipak; Deb, Argha; Bhattacharyya, Swarnapratim; Ghosh, Jayita; Bandyopadhyay, Prabhat; Das, Rupa; Mukherjee, Sima
2002-01-01
Heygi while investigating with the rapidity gap probability (that measures the chance of finding no particle in the pseudo-rapidity interval Δη) found that a scaling behavior in the rapidity gap probability has a close correspondence with the scaling of a void probability in galaxy correlation study. The main aim in this paper is to study the scaling behavior of the rapidity gap probability
Uncertainty plus Prior Equals Rational Bias: An Intuitive Bayesian Probability Weighting Function
Fennell, John; Baddeley, Roland
2012-01-01
Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several…
Pre-Service Teachers' Conceptions of Probability
Odafe, Victor U.
2011-01-01
Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…
Using Playing Cards to Differentiate Probability Interpretations
López Puga, Jorge
2014-01-01
The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.
Probability judgments under ambiguity and conflict.
Smithson, Michael
2015-01-01
Whether conflict and ambiguity are distinct kinds of uncertainty remains an open question, as does their joint impact on judgments of overall uncertainty. This paper reviews recent advances in our understanding of human judgment and decision making when both ambiguity and conflict are present, and presents two types of testable models of judgments under conflict and ambiguity. The first type concerns estimate-pooling to arrive at "best" probability estimates. The second type is models of subjective assessments of conflict and ambiguity. These models are developed for dealing with both described and experienced information. A framework for testing these models in the described-information setting is presented, including a reanalysis of a multi-nation data-set to test best-estimate models, and a study of participants' assessments of conflict, ambiguity, and overall uncertainty reported by Smithson (2013). A framework for research in the experienced-information setting is then developed, that differs substantially from extant paradigms in the literature. This framework yields new models of "best" estimates and perceived conflict. The paper concludes with specific suggestions for future research on judgment and decision making under conflict and ambiguity.
Dependent Human Error Probability Assessment
International Nuclear Information System (INIS)
Simic, Z.; Mikulicic, V.; Vukovic, I.
2006-01-01
This paper presents an assessment of the dependence between dynamic operator actions modeled in a Nuclear Power Plant (NPP) PRA and estimate the associated impact on Core damage frequency (CDF). This assessment was done improve HEP dependencies implementation inside existing PRA. All of the dynamic operator actions modeled in the NPP PRA are included in this assessment. Determining the level of HEP dependence and the associated influence on CDF are the major steps of this assessment. A decision on how to apply the results, i.e., should permanent HEP model changes be made, is based on the resulting relative CDF increase. Some CDF increase was selected as a threshold based on the NPP base CDF value and acceptance guidelines from the Regulatory Guide 1.174. HEP dependence resulting in a CDF increase of > 5E-07 would be considered potential candidates for specific incorporation into the baseline model. The approach used to judge the level of dependence between operator actions is based on dependency level categories and conditional probabilities developed in the Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications NUREG/CR-1278. To simplify the process, NUREG/CR-1278 identifies five levels of dependence: ZD (zero dependence), LD (low dependence), MD (moderate dependence), HD (high dependence), and CD (complete dependence). NUREG/CR-1278 also identifies several qualitative factors that could be involved in determining the level of dependence. Based on the NUREG/CR-1278 information, Time, Function, and Spatial attributes were judged to be the most important considerations when determining the level of dependence between operator actions within an accident sequence. These attributes were used to develop qualitative criteria (rules) that were used to judge the level of dependence (CD, HD, MD, LD, ZD) between the operator actions. After the level of dependence between the various HEPs is judged, quantitative values associated with the
Fundamentals of applied probability and random processes
Ibe, Oliver
2014-01-01
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability t
Probability of Failure in Random Vibration
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Sørensen, John Dalsgaard
1988-01-01
Close approximations to the first-passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first-passage probability density function and the distribution function for the time interval spent below a barrier before out......-crossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval and thus for the first-passage probability...
An Objective Theory of Probability (Routledge Revivals)
Gillies, Donald
2012-01-01
This reissue of D. A. Gillies highly influential work, first published in 1973, is a philosophical theory of probability which seeks to develop von Mises' views on the subject. In agreement with von Mises, the author regards probability theory as a mathematical science like mechanics or electrodynamics, and probability as an objective, measurable concept like force, mass or charge. On the other hand, Dr Gillies rejects von Mises' definition of probability in terms of limiting frequency and claims that probability should be taken as a primitive or undefined term in accordance with modern axioma
Paraconsistent Probabilities: Consistency, Contradictions and Bayes’ Theorem
Directory of Open Access Journals (Sweden)
Juliana Bueno-Soler
2016-09-01
Full Text Available This paper represents the first steps towards constructing a paraconsistent theory of probability based on the Logics of Formal Inconsistency (LFIs. We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes’ theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.
Talking probabilities: communicating probalistic information with words and numbers
Renooij, S.; Witteman, C.L.M.
1999-01-01
The number of knowledge-based systems that build on Bayesian belief networks is increasing. The construction of such a network however requires a large number of probabilities in numerical form. This is often considered a major obstacle, one of the reasons being that experts are reluctant to provide
Talking probabilities: communicating probabilistic information with words and numbers
Renooij, S.; Witteman, C.L.M.
1999-01-01
The number of knowledge-based systems that build on Bayesian belief networks is increasing. The construction of such a network however requires a large number of probabilities in numerical form. This is often considered a major obstacle, one of the reasons being that experts are reluctant to
Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs
Bermudez, Edgar F.
2012-01-01
of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs
Analysis of Drop Call Probability in Well Established Cellular ...
African Journals Online (AJOL)
Technology in Africa has increased over the past decade. The increase in modern cellular networks requires stringent quality of service (QoS). Drop call probability is one of the most important indices of QoS evaluation in a large scale well-established cellular network. In this work we started from an accurate statistical ...
A Short History of Probability Theory and Its Applications
Debnath, Lokenath; Basu, Kanadpriya
2015-01-01
This paper deals with a brief history of probability theory and its applications to Jacob Bernoulli's famous law of large numbers and theory of errors in observations or measurements. Included are the major contributions of Jacob Bernoulli and Laplace. It is written to pay the tricentennial tribute to Jacob Bernoulli, since the year 2013…
Statistical complexity without explicit reference to underlying probabilities
Pennini, F.; Plastino, A.
2018-06-01
We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.
Estimating the joint survival probabilities of married individuals
Sanders, Lisanne; Melenberg, Bertrand
We estimate the joint survival probability of spouses using a large random sample drawn from a Dutch census. As benchmarks we use two bivariate Weibull models. We consider more flexible models, using a semi-nonparametric approach, by extending the independent Weibull distribution using squared
Defining Baconian Probability for Use in Assurance Argumentation
Graydon, Patrick J.
2016-01-01
The use of assurance cases (e.g., safety cases) in certification raises questions about confidence in assurance argument claims. Some researchers propose to assess confidence in assurance cases using Baconian induction. That is, a writer or analyst (1) identifies defeaters that might rebut or undermine each proposition in the assurance argument and (2) determines whether each defeater can be dismissed or ignored and why. Some researchers also propose denoting confidence using the counts of defeaters identified and eliminated-which they call Baconian probability-and performing arithmetic on these measures. But Baconian probabilities were first defined as ordinal rankings which cannot be manipulated arithmetically. In this paper, we recount noteworthy definitions of Baconian induction, review proposals to assess confidence in assurance claims using Baconian probability, analyze how these comport with or diverge from the original definition, and make recommendations for future practice.
International Nuclear Information System (INIS)
Peskin, A.M.
1978-01-01
The report of a committee to study the questions surrounding possible acquisition of a large mass-storage device is presented. The current computing environment at BNL and justification for an online large mass storage device are briefly discussed. Possible devices to meet the requirements of large mass storage are surveyed, including future devices. The future computing needs of BNL are prognosticated. 2 figures, 4 tables
Imperfection detection probability at ultrasonic testing of reactor vessels
International Nuclear Information System (INIS)
Kazinczy, F. de; Koernvik, L.Aa.
1980-02-01
The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)
Betting on Illusory Patterns: Probability Matching in Habitual Gamblers.
Gaissmaier, Wolfgang; Wilke, Andreas; Scheibehenne, Benjamin; McCanney, Paige; Barrett, H Clark
2016-03-01
Why do people gamble? A large body of research suggests that cognitive distortions play an important role in pathological gambling. Many of these distortions are specific cases of a more general misperception of randomness, specifically of an illusory perception of patterns in random sequences. In this article, we provide further evidence for the assumption that gamblers are particularly prone to perceiving illusory patterns. In particular, we compared habitual gamblers to a matched sample of community members with regard to how much they exhibit the choice anomaly 'probability matching'. Probability matching describes the tendency to match response proportions to outcome probabilities when predicting binary outcomes. It leads to a lower expected accuracy than the maximizing strategy of predicting the most likely event on each trial. Previous research has shown that an illusory perception of patterns in random sequences fuels probability matching. So does impulsivity, which is also reported to be higher in gamblers. We therefore hypothesized that gamblers will exhibit more probability matching than non-gamblers, which was confirmed in a controlled laboratory experiment. Additionally, gamblers scored much lower than community members on the cognitive reflection task, which indicates higher impulsivity. This difference could account for the difference in probability matching between the samples. These results suggest that gamblers are more willing to bet impulsively on perceived illusory patterns.
Probability concepts in quality risk management.
Claycamp, H Gregg
2012-01-01
Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although risk is generally a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management tools are relatively silent on the meaning and uses of "probability." The probability concept is typically applied by risk managers as a combination of frequency-based calculation and a "degree of belief" meaning of probability. Probability as a concept that is crucial for understanding and managing risk is discussed through examples from the most general, scenario-defining and ranking tools that use probability implicitly to more specific probabilistic tools in risk management. A rich history of probability in risk management applied to other fields suggests that high-quality risk management decisions benefit from the implementation of more thoughtful probability concepts in both risk modeling and risk management. Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although "risk" generally describes a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management methodologies and respective tools focus on managing severity but are relatively silent on the in-depth meaning and uses of "probability." Pharmaceutical manufacturers are expanding their use of quality risk management to identify and manage risks to the patient that might occur in phases of the pharmaceutical life cycle from drug development to manufacture, marketing to product discontinuation. A probability concept is typically applied by risk managers as a combination of data-based measures of probability and a subjective "degree of belief" meaning of probability. Probability as
Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models
Spitoni, C.; Verduijn, M.; Putter, H.
2012-01-01
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional
Probability based hydrologic catchments of the Greenland Ice Sheet
Hudson, B. D.
2015-12-01
Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.
Transition probability spaces in loop quantum gravity
Guo, Xiao-Kan
2018-03-01
We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.
Towards a Categorical Account of Conditional Probability
Directory of Open Access Journals (Sweden)
Robert Furber
2015-11-01
Full Text Available This paper presents a categorical account of conditional probability, covering both the classical and the quantum case. Classical conditional probabilities are expressed as a certain "triangle-fill-in" condition, connecting marginal and joint probabilities, in the Kleisli category of the distribution monad. The conditional probabilities are induced by a map together with a predicate (the condition. The latter is a predicate in the logic of effect modules on this Kleisli category. This same approach can be transferred to the category of C*-algebras (with positive unital maps, whose predicate logic is also expressed in terms of effect modules. Conditional probabilities can again be expressed via a triangle-fill-in property. In the literature, there are several proposals for what quantum conditional probability should be, and also there are extra difficulties not present in the classical case. At this stage, we only describe quantum systems with classical parametrization.
UT Biomedical Informatics Lab (BMIL) probability wheel
Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.
A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.
A probability space for quantum models
Lemmens, L. F.
2017-06-01
A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.
Fundamentals of applied probability and random processes
Ibe, Oliver
2005-01-01
This book is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book''s clear writing style and homework problems make it ideal for the classroom or for self-study.* Good and solid introduction to probability theory and stochastic processes * Logically organized; writing is presented in a clear manner * Choice of topics is comprehensive within the area of probability * Ample homework problems are organized into chapter sections
Striatal activity is modulated by target probability.
Hon, Nicholas
2017-06-14
Target probability has well-known neural effects. In the brain, target probability is known to affect frontal activity, with lower probability targets producing more prefrontal activation than those that occur with higher probability. Although the effect of target probability on cortical activity is well specified, its effect on subcortical structures such as the striatum is less well understood. Here, I examined this issue and found that the striatum was highly responsive to target probability. This is consistent with its hypothesized role in the gating of salient information into higher-order task representations. The current data are interpreted in light of that fact that different components of the striatum are sensitive to different types of task-relevant information.
Defining Probability in Sex Offender Risk Assessment.
Elwood, Richard W
2016-12-01
There is ongoing debate and confusion over using actuarial scales to predict individuals' risk of sexual recidivism. Much of the debate comes from not distinguishing Frequentist from Bayesian definitions of probability. Much of the confusion comes from applying Frequentist probability to individuals' risk. By definition, only Bayesian probability can be applied to the single case. The Bayesian concept of probability resolves most of the confusion and much of the debate in sex offender risk assessment. Although Bayesian probability is well accepted in risk assessment generally, it has not been widely used to assess the risk of sex offenders. I review the two concepts of probability and show how the Bayesian view alone provides a coherent scheme to conceptualize individuals' risk of sexual recidivism.
Probability, statistics, and associated computing techniques
International Nuclear Information System (INIS)
James, F.
1983-01-01
This chapter attempts to explore the extent to which it is possible for the experimental physicist to find optimal statistical techniques to provide a unique and unambiguous quantitative measure of the significance of raw data. Discusses statistics as the inverse of probability; normal theory of parameter estimation; normal theory (Gaussian measurements); the universality of the Gaussian distribution; real-life resolution functions; combination and propagation of uncertainties; the sum or difference of 2 variables; local theory, or the propagation of small errors; error on the ratio of 2 discrete variables; the propagation of large errors; confidence intervals; classical theory; Bayesian theory; use of the likelihood function; the second derivative of the log-likelihood function; multiparameter confidence intervals; the method of MINOS; least squares; the Gauss-Markov theorem; maximum likelihood for uniform error distribution; the Chebyshev fit; the parameter uncertainties; the efficiency of the Chebyshev estimator; error symmetrization; robustness vs. efficiency; testing of hypotheses (e.g., the Neyman-Pearson test); goodness-of-fit; distribution-free tests; comparing two one-dimensional distributions; comparing multidimensional distributions; and permutation tests for comparing two point sets
Probability, random processes, and ergodic properties
Gray, Robert M
1988-01-01
This book has been written for several reasons, not all of which are academic. This material was for many years the first half of a book in progress on information and ergodic theory. The intent was and is to provide a reasonably self-contained advanced treatment of measure theory, prob ability theory, and the theory of discrete time random processes with an emphasis on general alphabets and on ergodic and stationary properties of random processes that might be neither ergodic nor stationary. The intended audience was mathematically inc1ined engineering graduate students and visiting scholars who had not had formal courses in measure theoretic probability . Much of the material is familiar stuff for mathematicians, but many of the topics and results have not previously appeared in books. The original project grew too large and the first part contained much that would likely bore mathematicians and dis courage them from the second part. Hence I finally followed the suggestion to separate the material and split...
A fluctuation relation for the probability of energy backscatter
Vela-Martin, Alberto; Jimenez, Javier
2017-11-01
We simulate the large scales of an inviscid turbulent flow in a triply periodic box using a dynamic Smagorinsky model for the sub-grid stresses. The flow, which is forced to constant kinetic energy, is fully reversible and can develop a sustained inverse energy cascade. However, due to the large number of degrees freedom, the probability of spontaneous mean inverse energy flux is negligible. In order to quantify the probability of inverse energy cascades, we test a local fluctuation relation of the form log P(A) = - c(V , t) A , where P(A) = p(| Cs|V,t = A) / p(| Cs|V , t = - A) , p is probability, and | Cs|V,t is the average of the least-squared dynamic model coefficient over volume V and time t. This is confirmed when Cs is averaged over sufficiently large domains and long times, and c is found to depend linearly on V and t. In the limit in which V 1 / 3 is of the order of the integral scale and t is of the order of the eddy-turnover time, we recover a global fluctuation relation that predicts a negligible probability of a sustained inverse energy cascade. For smaller V and t, the local fluctuation relation provides useful predictions on the occurrence of local energy backscatter. Funded by the ERC COTURB project.
Non-equilibrium random matrix theory. Transition probabilities
Energy Technology Data Exchange (ETDEWEB)
Pedro, Francisco Gil [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2016-06-15
In this letter we present an analytic method for calculating the transition probability between two random Gaussian matrices with given eigenvalue spectra in the context of Dyson Brownian motion. We show that in the Coulomb gas language, in large N limit, memory of the initial state is preserved in the form of a universal linear potential acting on the eigenvalues. We compute the likelihood of any given transition as a function of time, showing that as memory of the initial state is lost, transition probabilities converge to those of the static ensemble.
Non-equilibrium random matrix theory. Transition probabilities
International Nuclear Information System (INIS)
Pedro, Francisco Gil; Westphal, Alexander
2016-06-01
In this letter we present an analytic method for calculating the transition probability between two random Gaussian matrices with given eigenvalue spectra in the context of Dyson Brownian motion. We show that in the Coulomb gas language, in large N limit, memory of the initial state is preserved in the form of a universal linear potential acting on the eigenvalues. We compute the likelihood of any given transition as a function of time, showing that as memory of the initial state is lost, transition probabilities converge to those of the static ensemble.
FutureCoast: "Listen to your futures"
Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.
2014-12-01
Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story
Future Integrated Fire Control
National Research Council Canada - National Science Library
Young, Bonnie W
2005-01-01
Future advances in fire control for air and missile defense depend largely on a network-enabled foundation that enables the collaborative use of distributed warfare assets for time-critical operations...
International Nuclear Information System (INIS)
Treat, J.E.
1990-01-01
This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction
Energy Technology Data Exchange (ETDEWEB)
NONE
1986-03-01
A survey was done about projects implemented under the above-named development system inaugurated in fiscal 1966, and studies are made as to how large projects should be in the future. The survey covered the subjects which had been completed by fiscal 1985, that is, the remotely controlled submarine drilling device for oil, seawater desalination and by-product utilization, electric vehicle, technology of comprehensive control of automobiles, pattern information processing system, direct iron making by use of high-temperature reduced gas, manufacture of olefines from heavy oil, aviation jet engine, resources recycling/reuse system, superhigh-performance laser-aided combined manufacturing system, submarine oil production system, and the optics-aided measurement/control system. Answers were heard from corporations concerned. The answers contained some complaints, concerning the shortage of experience on the part of participating corporations, degradation in planning functions, increase in the burden of leading companies, shortage of study or conference about an optimum promotion system, problems in accounting and auditing systems, etc., and suggestions were presented for improvement on large-scale projects. (NEDO)
Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.
2017-12-01
Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of
Futuring for Future Ready Librarians
Figueroa, Miguel A.
2018-01-01
Futurists and foresight professionals offer several guiding principles for thinking about the future. These principles can help people to think about the future and become more powerful players in shaping the preferred futures they want for themselves and their communities. The principles also fit in well as strategies to support the Future Ready…
Efficient simulation of tail probabilities of sums of correlated lognormals
DEFF Research Database (Denmark)
Asmussen, Søren; Blanchet, José; Juneja, Sandeep
We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be eff......We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown...... optimize the scaling parameter of the covariance. The second estimator decomposes the probability of interest in two contributions and takes advantage of the fact that large deviations for a sum of correlated lognormals are (asymptotically) caused by the largest increment. Importance sampling...
Experimental evidence for the reducibility of multifragment emission probabilities
International Nuclear Information System (INIS)
Wozniak, G.J.; Tso, K.; Phair, L.
1995-01-01
Multifragmentation has been studied for 36 Ar-induced reactions on a 197 Au target at E/A = 80 and 110 MeV and for 129 Xe-induced reactions on several targets ( nat Cu, 89 y, 165 ho, 197 Au) and E/A = 40, 50 and 60 MeV. The probability of emitting n intermediate-mass-fragments is shown to be binomial at each transversal energy and reducible to an elementary binary probability p. For each target and at each bombarding energy, this probability p shows a thermal nature by giving linear Arrhenius plots. For the 129 Xe-induced reactions, a nearly universal linear Arrhenius plot is observed at each bombarding energy, indicating a large degree of target independence
On estimating the fracture probability of nuclear graphite components
International Nuclear Information System (INIS)
Srinivasan, Makuteswara
2008-01-01
The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation
Computing exact bundle compliance control charts via probability generating functions.
Chen, Binchao; Matis, Timothy; Benneyan, James
2016-06-01
Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.
Gravity and count probabilities in an expanding universe
Bouchet, Francois R.; Hernquist, Lars
1992-01-01
The time evolution of nonlinear clustering on large scales in cold dark matter, hot dark matter, and white noise models of the universe is investigated using N-body simulations performed with a tree code. Count probabilities in cubic cells are determined as functions of the cell size and the clustering state (redshift), and comparisons are made with various theoretical models. We isolate the features that appear to be the result of gravitational instability, those that depend on the initial conditions, and those that are likely a consequence of numerical limitations. More specifically, we study the development of skewness, kurtosis, and the fifth moment in relation to variance, the dependence of the void probability on time as well as on sparseness of sampling, and the overall shape of the count probability distribution. Implications of our results for theoretical and observational studies are discussed.
Probability of Grounding and Collision Events
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
To quantify the risks involved in ship traffic, rational criteria for collision and grounding accidents are developed. This implies that probabilities as well as inherent consequences can be analysed and assessed. The presnt paper outlines a method for evaluation of the probability of ship...
Probability of Grounding and Collision Events
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
To quantify the risks involved in ship traffic, rational criteria for collision and grounding accidents have to be developed. This implies that probabilities as well as inherent consequences have to be analyzed and assessed.The present notes outline a method for evaluation of the probability...
Introducing Disjoint and Independent Events in Probability.
Kelly, I. W.; Zwiers, F. W.
Two central concepts in probability theory are those of independence and mutually exclusive events. This document is intended to provide suggestions to teachers that can be used to equip students with an intuitive, comprehensive understanding of these basic concepts in probability. The first section of the paper delineates mutually exclusive and…
Selected papers on probability and statistics
2009-01-01
This volume contains translations of papers that originally appeared in the Japanese journal Sūgaku. The papers range over a variety of topics in probability theory, statistics, and applications. This volume is suitable for graduate students and research mathematicians interested in probability and statistics.
Collective probabilities algorithm for surface hopping calculations
International Nuclear Information System (INIS)
Bastida, Adolfo; Cruz, Carlos; Zuniga, Jose; Requena, Alberto
2003-01-01
General equations that transition probabilities of the hopping algorithms in surface hopping calculations must obey to assure the equality between the average quantum and classical populations are derived. These equations are solved for two particular cases. In the first it is assumed that probabilities are the same for all trajectories and that the number of hops is kept to a minimum. These assumptions specify the collective probabilities (CP) algorithm, for which the transition probabilities depend on the average populations for all trajectories. In the second case, the probabilities for each trajectory are supposed to be completely independent of the results from the other trajectories. There is, then, a unique solution of the general equations assuring that the transition probabilities are equal to the quantum population of the target state, which is referred to as the independent probabilities (IP) algorithm. The fewest switches (FS) algorithm developed by Tully is accordingly understood as an approximate hopping algorithm which takes elements from the accurate CP and IP solutions. A numerical test of all these hopping algorithms is carried out for a one-dimensional two-state problem with two avoiding crossings which shows the accuracy and computational efficiency of the collective probabilities algorithm proposed, the limitations of the FS algorithm and the similarity between the results offered by the IP algorithm and those obtained with the Ehrenfest method
Examples of Neutrosophic Probability in Physics
Directory of Open Access Journals (Sweden)
Fu Yuhua
2015-01-01
Full Text Available This paper re-discusses the problems of the so-called “law of nonconservation of parity” and “accelerating expansion of the universe”, and presents the examples of determining Neutrosophic Probability of the experiment of Chien-Shiung Wu et al in 1957, and determining Neutrosophic Probability of accelerating expansion of the partial universe.
Eliciting Subjective Probabilities with Binary Lotteries
DEFF Research Database (Denmark)
Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd
objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...
Probability Issues in without Replacement Sampling
Joarder, A. H.; Al-Sabah, W. S.
2007-01-01
Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…
Some open problems in noncommutative probability
International Nuclear Information System (INIS)
Kruszynski, P.
1981-01-01
A generalization of probability measures to non-Boolean structures is discussed. The starting point of the theory is the Gleason theorem about the form of measures on closed subspaces of a Hilbert space. The problems are formulated in terms of probability on lattices of projections in arbitrary von Neumann algebras. (Auth.)
Probability: A Matter of Life and Death
Hassani, Mehdi; Kippen, Rebecca; Mills, Terence
2016-01-01
Life tables are mathematical tables that document probabilities of dying and life expectancies at different ages in a society. Thus, the life table contains some essential features of the health of a population. Probability is often regarded as a difficult branch of mathematics. Life tables provide an interesting approach to introducing concepts…
Teaching Probability: A Socio-Constructivist Perspective
Sharma, Sashi
2015-01-01
There is a considerable and rich literature on students' misconceptions in probability. However, less attention has been paid to the development of students' probabilistic thinking in the classroom. This paper offers a sequence, grounded in socio-constructivist perspective for teaching probability.
Stimulus Probability Effects in Absolute Identification
Kent, Christopher; Lamberts, Koen
2016-01-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be...
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Against All Odds: When Logic Meets Probability
van Benthem, J.; Katoen, J.-P.; Langerak, R.; Rensink, A.
2017-01-01
This paper is a light walk along interfaces between logic and probability, triggered by a chance encounter with Ed Brinksma. It is not a research paper, or a literature survey, but a pointer to issues. I discuss both direct combinations of logic and probability and structured ways in which logic can
An introduction to probability and stochastic processes
Melsa, James L
2013-01-01
Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
The probability of the false vacuum decay
International Nuclear Information System (INIS)
Kiselev, V.; Selivanov, K.
1983-01-01
The closed expession for the probability of the false vacuum decay in (1+1) dimensions is given. The probability of false vacuum decay is expessed as the product of exponential quasiclassical factor and a functional determinant of the given form. The method for calcutation of this determinant is developed and a complete answer for (1+1) dimensions is given
Probability elements of the mathematical theory
Heathcote, C R
2000-01-01
Designed for students studying mathematical statistics and probability after completing a course in calculus and real variables, this text deals with basic notions of probability spaces, random variables, distribution functions and generating functions, as well as joint distributions and the convergence properties of sequences of random variables. Includes worked examples and over 250 exercises with solutions.
The transition probabilities of the reciprocity model
Snijders, T.A.B.
1999-01-01
The reciprocity model is a continuous-time Markov chain model used for modeling longitudinal network data. A new explicit expression is derived for its transition probability matrix. This expression can be checked relatively easily. Some properties of the transition probabilities are given, as well
Probability numeracy and health insurance purchase
Dillingh, Rik; Kooreman, Peter; Potters, Jan
2016-01-01
This paper provides new field evidence on the role of probability numeracy in health insurance purchase. Our regression results, based on rich survey panel data, indicate that the expenditure on two out of three measures of health insurance first rises with probability numeracy and then falls again.
Time Dependence of Collision Probabilities During Satellite Conjunctions
Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.
2017-01-01
The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.
The enigma of probability and physics
International Nuclear Information System (INIS)
Mayants, L.
1984-01-01
This volume contains a coherent exposition of the elements of two unique sciences: probabilistics (science of probability) and probabilistic physics (application of probabilistics to physics). Proceeding from a key methodological principle, it starts with the disclosure of the true content of probability and the interrelation between probability theory and experimental statistics. This makes is possible to introduce a proper order in all the sciences dealing with probability and, by conceiving the real content of statistical mechanics and quantum mechanics in particular, to construct both as two interconnected domains of probabilistic physics. Consistent theories of kinetics of physical transformations, decay processes, and intramolecular rearrangements are also outlined. The interrelation between the electromagnetic field, photons, and the theoretically discovered subatomic particle 'emon' is considered. Numerous internal imperfections of conventional probability theory, statistical physics, and quantum physics are exposed and removed - quantum physics no longer needs special interpretation. EPR, Bohm, and Bell paradoxes are easily resolved, among others. (Auth.)
Optimizing Probability of Detection Point Estimate Demonstration
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Alternative probability theories for cognitive psychology.
Narens, Louis
2014-01-01
Various proposals for generalizing event spaces for probability functions have been put forth in the mathematical, scientific, and philosophic literatures. In cognitive psychology such generalizations are used for explaining puzzling results in decision theory and for modeling the influence of context effects. This commentary discusses proposals for generalizing probability theory to event spaces that are not necessarily boolean algebras. Two prominent examples are quantum probability theory, which is based on the set of closed subspaces of a Hilbert space, and topological probability theory, which is based on the set of open sets of a topology. Both have been applied to a variety of cognitive situations. This commentary focuses on how event space properties can influence probability concepts and impact cognitive modeling. Copyright © 2013 Cognitive Science Society, Inc.
On the probability of cure for heavy-ion radiotherapy
International Nuclear Information System (INIS)
Hanin, Leonid; Zaider, Marco
2014-01-01
The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule. (paper)
International Nuclear Information System (INIS)
B Bello; M Junker
2006-01-01
Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)
Decision making generalized by a cumulative probability weighting function
dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto
2018-01-01
Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.
Fixation Probability in a Haploid-Diploid Population.
Bessho, Kazuhiro; Otto, Sarah P
2017-01-01
Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright-Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. Copyright © 2017 by the Genetics Society of America.
Use of probabilistic methods for estimating failure probabilities and directing ISI-efforts
Energy Technology Data Exchange (ETDEWEB)
Nilsson, F; Brickstad, B [University of Uppsala, (Switzerland)
1988-12-31
Some general aspects of the role of Non Destructive Testing (NDT) efforts on the resulting probability of core damage is discussed. A simple model for the estimation of the pipe break probability due to IGSCC is discussed. It is partly based on analytical procedures, partly on service experience from the Swedish BWR program. Estimates of the break probabilities indicate that further studies are urgently needed. It is found that the uncertainties about the initial crack configuration are large contributors to the total uncertainty. Some effects of the inservice inspection are studied and it is found that the detection probabilities influence the failure probabilities. (authors).
Moxie matters: associations of future orientation with active life expectancy.
Laditka, Sarah B; Laditka, James N
2017-10-01
Being oriented toward the future has been associated with better future health. We studied associations of future orientation with life expectancy and the percentage of life with disability. We used the Panel Study of Income Dynamics (n = 5249). Participants' average age in 1968 was 33.0. Six questions repeatedly measured future orientation, 1968-1976. Seven waves (1999-2011, 33,331 person-years) measured disability in activities of daily living for the same individuals, whose average age in 1999 was 64.0. We estimated monthly probabilities of disability and death with multinomial logistic Markov models adjusted for age, sex, race/ethnicity, childhood health, and education. Using the probabilities, we created large populations with microsimulation, measuring disability in each month for each individual, age 55 through death. Life expectancy from age 55 for white men with high future orientation was age 77.6 (95% confidence interval 75.5-79.0), 6.9% (4.9-7.2) of those years with disability; results with low future orientation were 73.6 (72.2-75.4) and 9.6% (7.7-10.7). Comparable results for African American men were 74.8 (72.9-75.3), 8.1 (5.6-9.3), 71.0 (69.6-72.8), and 11.3 (9.1-11.7). For women, there were no significant differences associated with levels of future orientation for life expectancy. For white women with high future orientation 9.1% of remaining life from age 55 was disabled (6.3-9.9), compared to 12.4% (10.2-13.2) with low future orientation. Disability results for African American women were similar but statistically significant only at age 80 and over. High future orientation during early to middle adult ages may be associated with better health in older age.
Energy Technology Data Exchange (ETDEWEB)
John Womersley
2003-08-21
I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.
Large electrostatic accelerators
International Nuclear Information System (INIS)
Jones, C.M.
1984-01-01
The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year
Upgrading Probability via Fractions of Events
Directory of Open Access Journals (Sweden)
Frič Roman
2016-08-01
Full Text Available The influence of “Grundbegriffe” by A. N. Kolmogorov (published in 1933 on education in the area of probability and its impact on research in stochastics cannot be overestimated. We would like to point out three aspects of the classical probability theory “calling for” an upgrade: (i classical random events are black-and-white (Boolean; (ii classical random variables do not model quantum phenomena; (iii basic maps (probability measures and observables { dual maps to random variables have very different “mathematical nature”. Accordingly, we propose an upgraded probability theory based on Łukasiewicz operations (multivalued logic on events, elementary category theory, and covering the classical probability theory as a special case. The upgrade can be compared to replacing calculations with integers by calculations with rational (and real numbers. Namely, to avoid the three objections, we embed the classical (Boolean random events (represented by the f0; 1g-valued indicator functions of sets into upgraded random events (represented by measurable {0; 1}-valued functions, the minimal domain of probability containing “fractions” of classical random events, and we upgrade the notions of probability measure and random variable.
Estimating the probability of rare events: addressing zero failure data.
Quigley, John; Revie, Matthew
2011-07-01
Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials. © 2011 Society for Risk Analysis.
Uncertainty about probability: a decision analysis perspective
International Nuclear Information System (INIS)
Howard, R.A.
1988-01-01
The issue of how to think about uncertainty about probability is framed and analyzed from the viewpoint of a decision analyst. The failure of nuclear power plants is used as an example. The key idea is to think of probability as describing a state of information on an uncertain event, and to pose the issue of uncertainty in this quantity as uncertainty about a number that would be definitive: it has the property that you would assign it as the probability if you knew it. Logical consistency requires that the probability to assign to a single occurrence in the absence of further information be the mean of the distribution of this definitive number, not the medium as is sometimes suggested. Any decision that must be made without the benefit of further information must also be made using the mean of the definitive number's distribution. With this formulation, they find further that the probability of r occurrences in n exchangeable trials will depend on the first n moments of the definitive number's distribution. In making decisions, the expected value of clairvoyance on the occurrence of the event must be at least as great as that on the definitive number. If one of the events in question occurs, then the increase in probability of another such event is readily computed. This means, in terms of coin tossing, that unless one is absolutely sure of the fairness of a coin, seeing a head must increase the probability of heads, in distinction to usual thought. A numerical example for nuclear power shows that the failure of one plant of a group with a low probability of failure can significantly increase the probability that must be assigned to failure of a second plant in the group
Scenarios for future agriculture in Finland: a Delphi study among agri-food sector stakeholders
Directory of Open Access Journals (Sweden)
P. RIKKONEN
2008-12-01
Full Text Available This article presents alternative scenarios for future agriculture in Finland up to 2025. These scenarios are the results of a large Delphi study carried out among Finnish agri-food sector stakeholders. The Delphi panel members gave their future view on desirable and probable futures. From these two dimensions, three scenarios were elaborated through the future images the subjective future path and the importance analysis. The scenarios represent a technology optimistic day-dream agriculture, a probable future as industrialised agriculture and an undesirable future path as drifting agriculture. Two mini-scenarios are also presented. They are based on a discontinuity event as an unexpected impact of climate change and an analogy event as an ecological breakdown due to the expansive animal disease epidemics. In both mini-scenarios, the directions of storylines are dramatically changed. The scenarios support strategic planning introducing not only one forecast but alternative outcomes as a basis for future strategy and decisions. In this study the scenarios were constructed to address the opportunities as a desired vision and also the threats as to an undesirable future in the agricultural sector. These results bring to the table a Finnish agri-food expert community view of the future directions of relevant key issues in the agricultural policy agenda.;
Probability an introduction with statistical applications
Kinney, John J
2014-01-01
Praise for the First Edition""This is a well-written and impressively presented introduction to probability and statistics. The text throughout is highly readable, and the author makes liberal use of graphs and diagrams to clarify the theory."" - The StatisticianThoroughly updated, Probability: An Introduction with Statistical Applications, Second Edition features a comprehensive exploration of statistical data analysis as an application of probability. The new edition provides an introduction to statistics with accessible coverage of reliability, acceptance sampling, confidence intervals, h
Dependency models and probability of joint events
International Nuclear Information System (INIS)
Oerjasaeter, O.
1982-08-01
Probabilistic dependencies between components/systems are discussed with reference to a broad classification of potential failure mechanisms. Further, a generalized time-dependency model, based on conditional probabilities for estimation of the probability of joint events and event sequences is described. The applicability of this model is clarified/demonstrated by various examples. It is concluded that the described model of dependency is a useful tool for solving a variety of practical problems concerning the probability of joint events and event sequences where common cause and time-dependent failure mechanisms are involved. (Auth.)
Handbook of probability theory and applications
Rudas, Tamas
2008-01-01
""This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines.""-CHOICEProviding cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of vari
Probabilities on Streams and Reflexive Games
Directory of Open Access Journals (Sweden)
Andrew Schumann
2014-01-01
Full Text Available Probability measures on streams (e.g. on hypernumbers and p-adic numbers have been defined. It was shown that these probabilities can be used for simulations of reflexive games. In particular, it can be proved that Aumann's agreement theorem does not hold for these probabilities. Instead of this theorem, there is a statement that is called the reflexion disagreement theorem. Based on this theorem, probabilistic and knowledge conditions can be defined for reflexive games at various reflexion levels up to the infinite level. (original abstract
Concept of probability in statistical physics
Guttmann, Y M
1999-01-01
Foundational issues in statistical mechanics and the more general question of how probability is to be understood in the context of physical theories are both areas that have been neglected by philosophers of physics. This book fills an important gap in the literature by providing a most systematic study of how to interpret probabilistic assertions in the context of statistical mechanics. The book explores both subjectivist and objectivist accounts of probability, and takes full measure of work in the foundations of probability theory, in statistical mechanics, and in mathematical theory. It will be of particular interest to philosophers of science, physicists and mathematicians interested in foundational issues, and also to historians of science.
Computation of the Complex Probability Function
Energy Technology Data Exchange (ETDEWEB)
Trainer, Amelia Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-22
The complex probability function is important in many areas of physics and many techniques have been developed in an attempt to compute it for some z quickly and e ciently. Most prominent are the methods that use Gauss-Hermite quadrature, which uses the roots of the n^{th} degree Hermite polynomial and corresponding weights to approximate the complex probability function. This document serves as an overview and discussion of the use, shortcomings, and potential improvements on the Gauss-Hermite quadrature for the complex probability function.
Pre-aggregation for Probability Distributions
DEFF Research Database (Denmark)
Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach
Motivated by the increasing need to analyze complex uncertain multidimensional data (e.g., in order to optimize and personalize location-based services), this paper proposes novel types of {\\em probabilistic} OLAP queries that operate on aggregate values that are probability distributions...... and the techniques to process these queries. The paper also presents the methods for computing the probability distributions, which enables pre-aggregation, and for using the pre-aggregated distributions for further aggregation. In order to achieve good time and space efficiency, the methods perform approximate...... multidimensional data analysis that is considered in this paper (i.e., approximate processing of probabilistic OLAP queries over probability distributions)....
Comparing linear probability model coefficients across groups
DEFF Research Database (Denmark)
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
Modeling experiments using quantum and Kolmogorov probability
International Nuclear Information System (INIS)
Hess, Karl
2008-01-01
Criteria are presented that permit a straightforward partition of experiments into sets that can be modeled using both quantum probability and the classical probability framework of Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and lead beyond the commonly appreciated partition by relating experiments to commuting and non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In other words the space of experiments that can be understood using classical probability is larger than usually assumed. This knowledge provides advantages for areas such as nanoscience and engineering or quantum computation.
Keren, G.; Teigen, K.H.
2001-01-01
This article presents a framework for lay people's internal representations of probabilities, which supposedly reflect the strength of underlying dispositions, or propensities, associated with the predicted event. From this framework, we derive the probability-outcome correspondence principle, which
Assumed Probability Density Functions for Shallow and Deep Convection
Steven K Krueger; Peter A Bogenschutz; Marat Khairoutdinov
2010-01-01
The assumed joint probability density function (PDF) between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS) parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PD...
Human Inferences about Sequences: A Minimal Transition Probability Model.
Directory of Open Access Journals (Sweden)
Florent Meyniel
2016-12-01
Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.
Kubuschok, Boris; Trepel, Martin
2017-07-01
Despite substantial recent advances, there is still an unmet need for better therapies in B-cell non Hodgkin lymphomas (B-NHL), especially in relapsed or refractory disease. Many novel targeted drugs have been developed based on a better molecular understanding of B-NHL. Areas covered: This article focuses on chronic lymphocytic leukemia (CLL) as a representative for indolent lymphomas and paradigmatic for the tremendous progress in treating B-NHL on the one hand and diffuse large B-cell lymphoma (DLBCL) as a representative for aggressive lymphomas and paradigmatic for many unsolved problems in lymphoma treatment or the other hand. We highlight salient points in current therapies targeting genetic, epigenetic, immunological and microenvironmental alterations. Possible reasons for drug failure in clinical trials like tumor heterogeneity, clonal evolution and drug resistance mechanisms are discussed. Based thereon, some perspectives for further drug discovery are given. Expert opinion: In view of the pathogenetic complexity of lymphomas, therapies targeting exclusively a single alteration may fail because resistance mechanisms are present either initially or evolve during treatment. Therefore, future therapies in B-NHL may have to target the greatest possible number of genetic, immunological or epigenetic alterations still allowing tolerability and to monitor these alterations during therapy.
Modelling the probability of building fires
Directory of Open Access Journals (Sweden)
Vojtěch Barták
2014-12-01
Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.
Predicting binary choices from probability phrase meanings.
Wallsten, Thomas S; Jang, Yoonhee
2008-08-01
The issues of how individuals decide which of two events is more likely and of how they understand probability phrases both involve judging relative likelihoods. In this study, we investigated whether derived scales representing probability phrase meanings could be used within a choice model to predict independently observed binary choices. If they can, this simultaneously provides support for our model and suggests that the phrase meanings are measured meaningfully. The model assumes that, when deciding which of two events is more likely, judges take a single sample from memory regarding each event and respond accordingly. The model predicts choice probabilities by using the scaled meanings of individually selected probability phrases as proxies for confidence distributions associated with sampling from memory. Predictions are sustained for 34 of 41 participants but, nevertheless, are biased slightly low. Sequential sampling models improve the fit. The results have both theoretical and applied implications.
Certainties and probabilities of the IPCC
International Nuclear Information System (INIS)
2004-01-01
Based on an analysis of information about the climate evolution, simulations of a global warming and the snow coverage monitoring of Meteo-France, the IPCC presented its certainties and probabilities concerning the greenhouse effect. (A.L.B.)
The probability factor in establishing causation
International Nuclear Information System (INIS)
Hebert, J.
1988-01-01
This paper discusses the possibilities and limitations of methods using the probability factor in establishing the causal link between bodily injury, whether immediate or delayed, and the nuclear incident presumed to have caused it (NEA) [fr
Bayesian optimization for computationally extensive probability distributions.
Tamura, Ryo; Hukushima, Koji
2018-01-01
An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.
Probability of Survival Decision Aid (PSDA)
National Research Council Canada - National Science Library
Xu, Xiaojiang; Amin, Mitesh; Santee, William R
2008-01-01
A Probability of Survival Decision Aid (PSDA) is developed to predict survival time for hypothermia and dehydration during prolonged exposure at sea in both air and water for a wide range of environmental conditions...
Probability and statistics with integrated software routines
Deep, Ronald
2005-01-01
Probability & Statistics with Integrated Software Routines is a calculus-based treatment of probability concurrent with and integrated with statistics through interactive, tailored software applications designed to enhance the phenomena of probability and statistics. The software programs make the book unique.The book comes with a CD containing the interactive software leading to the Statistical Genie. The student can issue commands repeatedly while making parameter changes to observe the effects. Computer programming is an excellent skill for problem solvers, involving design, prototyping, data gathering, testing, redesign, validating, etc, all wrapped up in the scientific method.See also: CD to accompany Probability and Stats with Integrated Software Routines (0123694698)* Incorporates more than 1,000 engaging problems with answers* Includes more than 300 solved examples* Uses varied problem solving methods
Determining probabilities of geologic events and processes
International Nuclear Information System (INIS)
Hunter, R.L.; Mann, C.J.; Cranwell, R.M.
1985-01-01
The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs
Sampling, Probability Models and Statistical Reasoning Statistical
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...
DEFF Research Database (Denmark)
Olsen, Stig Irving; Borup, Mads; Andersen, Per Dannemand
2018-01-01
LCA is often applied for decision-making that concerns actions reaching near or far into the future. However, traditional life cycle assessment methodology must be adjusted for the prospective and change-oriented purposes, but no standardised way of doing this has emerged yet. In this chapter some...... challenges are described and some learnings are derived. Many of the future-oriented LCAs published so far perform relatively short-term prediction of simple comparisons. But for more long-term time horizons foresight methods can be of help. Scenarios established by qualified experts about future...... technological and economic developments are indispensable in future technology assessments. The uncertainties in future-oriented LCAs are to a large extent qualitative and it is important to emphasise that LCA of future technologies will provide a set of answers and not ‘the’ answer....
Imprecise Probability Methods for Weapons UQ
Energy Technology Data Exchange (ETDEWEB)
Picard, Richard Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vander Wiel, Scott Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-13
Building on recent work in uncertainty quanti cation, we examine the use of imprecise probability methods to better characterize expert knowledge and to improve on misleading aspects of Bayesian analysis with informative prior distributions. Quantitative approaches to incorporate uncertainties in weapons certi cation are subject to rigorous external peer review, and in this regard, certain imprecise probability methods are well established in the literature and attractive. These methods are illustrated using experimental data from LANL detonator impact testing.
Escape and transmission probabilities in cylindrical geometry
International Nuclear Information System (INIS)
Bjerke, M.A.
1980-01-01
An improved technique for the generation of escape and transmission probabilities in cylindrical geometry was applied to the existing resonance cross section processing code ROLAIDS. The algorithm of Hwang and Toppel, [ANL-FRA-TM-118] (with modifications) was employed. The probabilities generated were found to be as accurate as those given by the method previously applied in ROLAIDS, while requiring much less computer core storage and CPU time
Probability and statistics for computer science
Johnson, James L
2011-01-01
Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: ""to present the mathematical analysis underlying probability results"" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcem
Collision Probabilities for Finite Cylinders and Cuboids
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1967-05-15
Analytical formulae have been derived for the collision probabilities of homogeneous finite cylinders and cuboids. The formula for the finite cylinder contains double integrals, and the formula for the cuboid only single integrals. Collision probabilities have been calculated by means of the formulae and compared with values obtained by other authors. It was found that the calculations using the analytical formulae are much quicker and give higher accuracy than Monte Carlo calculations.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
Failure probability estimate of type 304 stainless steel piping
International Nuclear Information System (INIS)
Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Mehta, H.S.; Ranganath, S.
1989-01-01
The primary source of in-service degradation of the SRS production reactor process water piping is intergranular stress corrosion cracking (IGSCC). IGSCC has occurred in a limited number of weld heat affected zones, areas known to be susceptible to IGSCC. A model has been developed to combine crack growth rates, crack size distributions, in-service examination reliability estimates and other considerations to estimate the pipe large-break frequency. This frequency estimates the probability that an IGSCC crack will initiate, escape detection by ultrasonic (UT) examination, and grow to instability prior to extending through-wall and being detected by the sensitive leak detection system. These events are combined as the product of four factors: (1) the probability that a given weld heat affected zone contains IGSCC; (2) the conditional probability, given the presence of IGSCC, that the cracking will escape detection during UT examination; (3) the conditional probability, given a crack escapes detection by UT, that it will not grow through-wall and be detected by leakage; (4) the conditional probability, given a crack is not detected by leakage, that it grows to instability prior to the next UT exam. These four factors estimate the occurrence of several conditions that must coexist in order for a crack to lead to a large break of the process water piping. When evaluated for the SRS production reactors, they produce an extremely low break frequency. The objective of this paper is to present the assumptions, methodology, results and conclusions of a probabilistic evaluation for the direct failure of the primary coolant piping resulting from normal operation and seismic loads. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break
Conditional probability of the tornado missile impact given a tornado occurrence
International Nuclear Information System (INIS)
Goodman, J.; Koch, J.E.
1982-01-01
Using an approach based on statistical mechanics, an expression for the probability of the first missile strike is developed. The expression depends on two generic parameters (injection probability eta(F) and height distribution psi(Z,F)), which are developed in this study, and one plant specific parameter (number of potential missiles N/sub p/). The expression for the joint probability of simultaneous impact of muitiple targets is also developed. This espression is applicable to calculation of the probability of common cause failure due to tornado missiles. It is shown that the probability of the first missile strike can be determined using a uniform missile distribution model. It is also shown that the conditional probability of the second strike, given the first, is underestimated by the uniform model. The probability of the second strike is greatly increased if the missiles are in clusters large enough to cover both targets
Acceptance Probability (P a) Analysis for Process Validation Lifecycle Stages.
Alsmeyer, Daniel; Pazhayattil, Ajay; Chen, Shu; Munaretto, Francesco; Hye, Maksuda; Sanghvi, Pradeep
2016-04-01
This paper introduces an innovative statistical approach towards understanding how variation impacts the acceptance criteria of quality attributes. Because of more complex stage-wise acceptance criteria, traditional process capability measures are inadequate for general application in the pharmaceutical industry. The probability of acceptance concept provides a clear measure, derived from specific acceptance criteria for each quality attribute. In line with the 2011 FDA Guidance, this approach systematically evaluates data and scientifically establishes evidence that a process is capable of consistently delivering quality product. The probability of acceptance provides a direct and readily understandable indication of product risk. As with traditional capability indices, the acceptance probability approach assumes that underlying data distributions are normal. The computational solutions for dosage uniformity and dissolution acceptance criteria are readily applicable. For dosage uniformity, the expected AV range may be determined using the s lo and s hi values along with the worst case estimates of the mean. This approach permits a risk-based assessment of future batch performance of the critical quality attributes. The concept is also readily applicable to sterile/non sterile liquid dose products. Quality attributes such as deliverable volume and assay per spray have stage-wise acceptance that can be converted into an acceptance probability. Accepted statistical guidelines indicate processes with C pk > 1.33 as performing well within statistical control and those with C pk 1.33 is associated with a centered process that will statistically produce less than 63 defective units per million. This is equivalent to an acceptance probability of >99.99%.
Exact probability distribution function for the volatility of cumulative production
Zadourian, Rubina; Klümper, Andreas
2018-04-01
In this paper we study the volatility and its probability distribution function for the cumulative production based on the experience curve hypothesis. This work presents a generalization of the study of volatility in Lafond et al. (2017), which addressed the effects of normally distributed noise in the production process. Due to its wide applicability in industrial and technological activities we present here the mathematical foundation for an arbitrary distribution function of the process, which we expect will pave the future research on forecasting of the production process.
Scale-invariant transition probabilities in free word association trajectories
Directory of Open Access Journals (Sweden)
Martin Elias Costa
2009-09-01
Full Text Available Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16 % of order-2 cycles implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼ 7 steps which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution.
Heads or tails an introduction to limit theorems in probability
Lesigne, Emmanuel
2005-01-01
Everyone knows some of the basics of probability, perhaps enough to play cards. Beyond the introductory ideas, there are many wonderful results that are unfamiliar to the layman, but which are well within our grasp to understand and appreciate. Some of the most remarkable results in probability are those that are related to limit theorems--statements about what happens when the trial is repeated many times. The most famous of these is the Law of Large Numbers, which mathematicians, engineers, economists, and many others use every day. In this book, Lesigne has made these limit theorems accessible by stating everything in terms of a game of tossing of a coin: heads or tails. In this way, the analysis becomes much clearer, helping establish the reader's intuition about probability. Moreover, very little generality is lost, as many situations can be modelled from combinations of coin tosses. This book is suitable for anyone who would like to learn more about mathematical probability and has had a one-year underg...
Boslough, M.
2011-12-01
global temperature anomaly data published by NASS GISS. Typical climate contracts predict the probability of a specified future temperature, but not the probability density or best estimate. One way to generate a probability distribution would be to create a family of contracts over a range of specified temperatures and interpret the price of each contract as its exceedance probability. The resulting plot of probability vs. anomaly is the market-based cumulative density function. The best estimate can be determined by interpolation, and the market-based uncertainty estimate can be based on the spread. One requirement for an effective prediction market is liquidity. Climate contracts are currently considered somewhat of a novelty and often lack sufficient liquidity, but climate change has the potential to generate both tremendous losses for some (e.g. agricultural collapse and extreme weather events) and wealth for others (access to natural resources and trading routes). Use of climate markets by large stakeholders has the potential to generate the liquidity necessary to make them viable. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's NNSA under contract DE-AC04-94AL85000.
Understanding the Role of Reservoir Size on Probable Maximum Precipitation
Woldemichael, A. T.; Hossain, F.
2011-12-01
This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the
Inoue, N.
2017-12-01
The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source
Causal inference, probability theory, and graphical insights.
Baker, Stuart G
2013-11-10
Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.
DEFF Research Database (Denmark)
Hansen, Anne-Louise Degn; Jensen, Hanne Troels Fusvad; Hansen, Martin
2011-01-01
Magasinet Future Textiles samler resultaterne fra projektet Future Textiles, der markedsfører området intelligente tekstiler. I magasinet kan man læse om trends, drivkræfter, udfordringer samt få ideer til nye produkter inden for intelligente tekstiler. Områder som bæredygtighed og kundetilpasning...
Compact baby universe model in ten dimension and probability function of quantum gravity
International Nuclear Information System (INIS)
Yan Jun; Hu Shike
1991-01-01
The quantum probability functions are calculated for ten-dimensional compact baby universe model. The authors find that the probability for the Yang-Mills baby universe to undergo a spontaneous compactification down to a four-dimensional spacetime is greater than that to remain in the original homogeneous multidimensional state. Some questions about large-wormhole catastrophe are also discussed
On the Possibility of Assigning Probabilities to Singular Cases, or: Probability Is Subjective Too!
Directory of Open Access Journals (Sweden)
Mark R. Crovelli
2009-06-01
Full Text Available Both Ludwig von Mises and Richard von Mises claimed that numerical probability could not be legitimately applied to singular cases. This paper challenges this aspect of the von Mises brothers’ theory of probability. It is argued that their denial that numerical probability could be applied to singular cases was based solely upon Richard von Mises’ exceptionally restrictive definition of probability. This paper challenges Richard von Mises’ definition of probability by arguing that the definition of probability necessarily depends upon whether the world is governed by time-invariant causal laws. It is argued that if the world is governed by time-invariant causal laws, a subjective definition of probability must be adopted. It is further argued that both the nature of human action and the relative frequency method for calculating numerical probabilities both presuppose that the world is indeed governed by time-invariant causal laws. It is finally argued that the subjective definition of probability undercuts the von Mises claim that numerical probability cannot legitimately be applied to singular, non-replicable cases.
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in
Exoplanet Biosignatures: Future Directions
Walker, Sara I.; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; Moore, William; Schwieterman, Edward W.; Shkolnik, Evgenya L.; Smith, Harrison B.
2017-01-01
Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future di...
DEFF Research Database (Denmark)
Hurst,, Brian; Hua Ooi, Yao; Heje Pedersen, Lasse
2013-01-01
We show that the returns of Managed Futures funds and CTAs can be explained by time series momentum strategies and we discuss the economic intuition behind these strategies. Time series momentum strategies produce large correlations and high R-squares with Managed Futures indices and individual m...... of implementation issues relevant to time series momentum strategies, including risk management, risk allocation across asset classes and trend horizons, portfolio rebalancing frequency, transaction costs, and fees....
Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs
Bermudez, Edgar F.
2012-05-01
Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.
Futures Brokerages Face uncertain Future
Institute of Scientific and Technical Information of China (English)
WANG PEI
2006-01-01
@@ 2005 was a quiet year for China's futures market.After four new trading products, including cotton, fuel oil and corn, were launched on the market in 2004, the development of the market seemed to stagnate. The trade value of the futures market totaled 13.4 trillion yuan (US$ 1.67 trillion) in 2005, down 8.5 percent year-on-year. Although the decrease is quite small and the trade value was still the second highest in the market's history, the majority of futures brokerage firms were running in the red. In some areas, up to 80 percent of futures companies made losses.
Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.
2010-01-01
Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.
Uncertainty relation and probability. Numerical illustration
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Umetsu, Koichiro
2011-01-01
The uncertainty relation and the probability interpretation of quantum mechanics are intrinsically connected, as is evidenced by the evaluation of standard deviations. It is thus natural to ask if one can associate a very small uncertainty product of suitably sampled events with a very small probability. We have shown elsewhere that some examples of the evasion of the uncertainty relation noted in the past are in fact understood in this way. We here numerically illustrate that a very small uncertainty product is realized if one performs a suitable sampling of measured data that occur with a very small probability. We introduce a notion of cyclic measurements. It is also shown that our analysis is consistent with the Landau-Pollak-type uncertainty relation. It is suggested that the present analysis may help reconcile the contradicting views about the 'standard quantum limit' in the detection of gravitational waves. (author)
Scoring Rules for Subjective Probability Distributions
DEFF Research Database (Denmark)
Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd
The theoretical literature has a rich characterization of scoring rules for eliciting the subjective beliefs that an individual has for continuous events, but under the restrictive assumption of risk neutrality. It is well known that risk aversion can dramatically affect the incentives to correctly...... report the true subjective probability of a binary event, even under Subjective Expected Utility. To address this one can “calibrate” inferences about true subjective probabilities from elicited subjective probabilities over binary events, recognizing the incentives that risk averse agents have...... to distort reports. We characterize the comparable implications of the general case of a risk averse agent when facing a popular scoring rule over continuous events, and find that these concerns do not apply with anything like the same force. For empirically plausible levels of risk aversion, one can...
Comparing coefficients of nested nonlinear probability models
DEFF Research Database (Denmark)
Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders
2011-01-01
In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...
Ignition probabilities for Compact Ignition Tokamak designs
International Nuclear Information System (INIS)
Stotler, D.P.; Goldston, R.J.
1989-09-01
A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs
Independent events in elementary probability theory
Csenki, Attila
2011-07-01
In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): quote specific-use="indent"> If the n events E 1, E 2, … , E n are jointly independent then any two events A and B built in finitely many steps from two disjoint subsets of E 1, E 2, … , E n are also independent. The operations 'union', 'intersection' and 'complementation' are permitted only when forming the events A and B. quote>Here we examine this statement from the point of view of elementary probability theory. The approach described here is accessible also to users of probability theory and is believed to be novel.
Pointwise probability reinforcements for robust statistical inference.
Frénay, Benoît; Verleysen, Michel
2014-02-01
Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uncertainty the soul of modeling, probability & statistics
Briggs, William
2016-01-01
This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to as the "Cult of Statistical Significance". The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, suc...
Introduction to probability with statistical applications
Schay, Géza
2016-01-01
Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises
Python for probability, statistics, and machine learning
Unpingco, José
2016-01-01
This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...
EARLY HISTORY OF GEOMETRIC PROBABILITY AND STEREOLOGY
Directory of Open Access Journals (Sweden)
Magdalena Hykšová
2012-03-01
Full Text Available The paper provides an account of the history of geometric probability and stereology from the time of Newton to the early 20th century. It depicts the development of two parallel ways: on one hand, the theory of geometric probability was formed with minor attention paid to other applications than those concerning spatial chance games. On the other hand, practical rules of the estimation of area or volume fraction and other characteristics, easily deducible from geometric probability theory, were proposed without the knowledge of this branch. A special attention is paid to the paper of J.-É. Barbier published in 1860, which contained the fundamental stereological formulas, but remained almost unnoticed both by mathematicians and practicians.
Probability analysis of nuclear power plant hazards
International Nuclear Information System (INIS)
Kovacs, Z.
1985-01-01
The probability analysis of risk is described used for quantifying the risk of complex technological systems, especially of nuclear power plants. Risk is defined as the product of the probability of the occurrence of a dangerous event and the significance of its consequences. The process of the analysis may be divided into the stage of power plant analysis to the point of release of harmful material into the environment (reliability analysis) and the stage of the analysis of the consequences of this release and the assessment of the risk. The sequence of operations is characterized in the individual stages. The tasks are listed which Czechoslovakia faces in the development of the probability analysis of risk, and the composition is recommended of the work team for coping with the task. (J.C.)