WorldWideScience

Sample records for probabilistic two-stage model

  1. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Science.gov (United States)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  2. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Directory of Open Access Journals (Sweden)

    J. Chardon

    2018-01-01

    Full Text Available Statistical downscaling models (SDMs are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  3. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty.

    Science.gov (United States)

    Lv, Y; Huang, G H; Li, Y P; Yang, Z F; Sun, W

    2011-03-01

    A two-stage inexact joint-probabilistic programming (TIJP) method is developed for planning a regional air quality management system with multiple pollutants and multiple sources. The TIJP method incorporates the techniques of two-stage stochastic programming, joint-probabilistic constraint programming and interval mathematical programming, where uncertainties expressed as probability distributions and interval values can be addressed. Moreover, it can not only examine the risk of violating joint-probability constraints, but also account for economic penalties as corrective measures against any infeasibility. The developed TIJP method is applied to a case study of a regional air pollution control problem, where the air quality index (AQI) is introduced for evaluation of the integrated air quality management system associated with multiple pollutants. The joint-probability exists in the environmental constraints for AQI, such that individual probabilistic constraints for each pollutant can be efficiently incorporated within the TIJP model. The results indicate that useful solutions for air quality management practices have been generated; they can help decision makers to identify desired pollution abatement strategies with minimized system cost and maximized environmental efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. APPLICATION AND EVALUATION OF AN AGGREGATE PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL FOR QUANTIFYING CHILDREN'S RESIDENTIAL EXPOSURE AND DOSE TO CHLORPYRIFOS

    Science.gov (United States)

    Critical voids in exposure data and models lead risk assessors to rely on conservative assumptions. Risk assessors and managers need improved tools beyond the screening level analysis to address aggregate exposures to pesticides as required by the Food Quality Protection Act o...

  5. Short term load forecasting: two stage modelling

    Directory of Open Access Journals (Sweden)

    SOARES, L. J.

    2009-06-01

    Full Text Available This paper studies the hourly electricity load demand in the area covered by a utility situated in the Seattle, USA, called Puget Sound Power and Light Company. Our proposal is put into proof with the famous dataset from this company. We propose a stochastic model which employs ANN (Artificial Neural Networks to model short-run dynamics and the dependence among adjacent hours. The model proposed treats each hour's load separately as individual single series. This approach avoids modeling the intricate intra-day pattern (load profile displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is evaluated in similiar mode a TLSAR (Two-Level Seasonal Autoregressive model proposed by Soares (2003 using the years of 1995 and 1996 as the holdout sample. Moreover, we conclude that non linearity is present in some series of these data. The model results are analyzed. The experiment shows that our tool can be used to produce load forecasting in tropical climate places.

  6. Two-step two-stage fission gas release model

    International Nuclear Information System (INIS)

    Kim, Yong-soo; Lee, Chan-bock

    2006-01-01

    Based on the recent theoretical model, two-step two-stage model is developed which incorporates two stage diffusion processes, grain lattice and grain boundary diffusion, coupled with the two step burn-up factor in the low and high burn-up regime. FRAPCON-3 code and its in-pile data sets have been used for the benchmarking and validation of this model. Results reveals that its prediction is in better agreement with the experimental measurements than that by any model contained in the FRAPCON-3 code such as ANS 5.4, modified ANS5.4, and Forsberg-Massih model over whole burn-up range up to 70,000 MWd/MTU. (author)

  7. Energy demand in Portuguese manufacturing: a two-stage model

    International Nuclear Information System (INIS)

    Borges, A.M.; Pereira, A.M.

    1992-01-01

    We use a two-stage model of factor demand to estimate the parameters determining energy demand in Portuguese manufacturing. In the first stage, a capital-labor-energy-materials framework is used to analyze the substitutability between energy as a whole and other factors of production. In the second stage, total energy demand is decomposed into oil, coal and electricity demands. The two stages are fully integrated since the energy composite used in the first stage and its price are obtained from the second stage energy sub-model. The estimates obtained indicate that energy demand in manufacturing responds significantly to price changes. In addition, estimation results suggest that there are important substitution possibilities among energy forms and between energy and other factors of production. The role of price changes in energy-demand forecasting, as well as in energy policy in general, is clearly established. (author)

  8. Analytic Bayesian solution of the two-stage poisson-type problem in probabilistic risk analysis

    International Nuclear Information System (INIS)

    Frohner, F.H.

    1985-01-01

    The basic purpose of probabilistic risk analysis is to make inferences about the probabilities of various postulated events, with an account of all relevant information such as prior knowledge and operating experience with the specific system under study, as well as experience with other similar systems. Estimation of the failure rate of a Poisson-type system leads to an especially simple Bayesian solution in closed form if the prior probabilty implied by the invariance properties of the problem is properly taken into account. This basic simplicity persists if a more realistic prior, representing order of magnitude knowledge of the rate parameter, is employed instead. Moreover, the more realistic prior allows direct incorporation of experience gained from other similar systems, without need to postulate a statistical model for an underlying ensemble. The analytic formalism is applied to actual nuclear reactor data

  9. GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING

    Directory of Open Access Journals (Sweden)

    Christopher Ouma Onyango

    2010-09-01

    Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.

  10. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  11. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A two stage data envelopment analysis model with undesirable output

    Science.gov (United States)

    Shariff Adli Aminuddin, Adam; Izzati Jaini, Nur; Mat Kasim, Maznah; Nawawi, Mohd Kamal Mohd

    2017-09-01

    The dependent relationship among the decision making units (DMU) is usually assumed to be non-existent in the development of Data Envelopment Analysis (DEA) model. The dependency can be represented by the multi-stage DEA model, where the outputs from the precedent stage will be the inputs for the latter stage. The multi-stage DEA model evaluate both the efficiency score for each stages and the overall efficiency of the whole process. The existing multi stage DEA models do not focus on the integration with the undesirable output, in which the higher input will generate lower output unlike the normal desirable output. This research attempts to address the inclusion of such undesirable output and investigate the theoretical implication and potential application towards the development of multi-stage DEA model.

  13. A TWO-STAGE MODEL OF RADIOLOGICAL INSPECTION: SPENDING TIME

    International Nuclear Information System (INIS)

    BROWN, W.S.

    2000-01-01

    The paper describes a model that visually portrays radiological survey performance as basic parameters (surveyor efficiency and criteria, duration of pause, and probe speed) are varied; field and laboratory tests provided typical parameter values. The model is used to illustrate how practical constraints on the time allotted to the task can affect radiological inspection performance. Similar analyses are applicable to a variety of other tasks (airport baggage inspection, and certain types of non-destructive testing) with similar characteristics and constraints

  14. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  15. Learning Probabilistic Logic Models from Probabilistic Examples.

    Science.gov (United States)

    Chen, Jianzhong; Muggleton, Stephen; Santos, José

    2008-10-01

    We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.

  16. Transitive probabilistic CLIR models.

    NARCIS (Netherlands)

    Kraaij, W.; de Jong, Franciska M.G.

    2004-01-01

    Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The

  17. Numerical simulation of brain tumor growth model using two-stage ...

    African Journals Online (AJOL)

    In the recent years, the study of glioma growth to be an active field of research Mathematical models that describe the proliferation and diffusion properties of the growth have been developed by many researchers. In this work, the performance analysis of two-stage Gauss-Seidel (TSGS) method to solve the glioma growth ...

  18. On A Two-Stage Supply Chain Model In The Manufacturing Industry ...

    African Journals Online (AJOL)

    We model a two-stage supply chain where the upstream stage (stage 2) always meet demand from the downstream stage (stage 1).Demand is stochastic hence shortages will occasionally occur at stage 2. Stage 2 must fill these shortages by expediting using overtime production and/or backordering. We derive optimal ...

  19. Probabilistic Model Development

    Science.gov (United States)

    Adam, James H., Jr.

    2010-01-01

    Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.

  20. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    OpenAIRE

    He, Xinhua; Hu, Wenfa

    2017-01-01

    Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total c...

  1. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling.

    Science.gov (United States)

    Terza, Joseph V; Basu, Anirban; Rathouz, Paul J

    2008-05-01

    The paper focuses on two estimation methods that have been widely used to address endogeneity in empirical research in health economics and health services research-two-stage predictor substitution (2SPS) and two-stage residual inclusion (2SRI). 2SPS is the rote extension (to nonlinear models) of the popular linear two-stage least squares estimator. The 2SRI estimator is similar except that in the second-stage regression, the endogenous variables are not replaced by first-stage predictors. Instead, first-stage residuals are included as additional regressors. In a generic parametric framework, we show that 2SRI is consistent and 2SPS is not. Results from a simulation study and an illustrative example also recommend against 2SPS and favor 2SRI. Our findings are important given that there are many prominent examples of the application of inconsistent 2SPS in the recent literature. This study can be used as a guide by future researchers in health economics who are confronted with endogeneity in their empirical work.

  2. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    Science.gov (United States)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  3. Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua; Hsu, Yu-Ju

    2016-01-01

    Traditional electricity supply planning models regard the electricity demand as a deterministic parameter and require the total power output to satisfy the aggregate electricity demand. But in today's world, the electric system planners are facing tremendously complex environments full of uncertainties, where electricity demand is a key source of uncertainty. In addition, electricity demand patterns are considerably different for different regions. This paper developed a multi-region optimization model based on two-stage stochastic programming framework to incorporate the demand uncertainty. Furthermore, the decision tree method and Monte Carlo simulation approach are integrated into the model to simplify electricity demands in the form of nodes and determine the values and probabilities. The proposed model was successfully applied to a real case study (i.e. Taiwan's electricity sector) to show its applicability. Detail simulation results were presented and compared with those generated by a deterministic model. Finally, the long-term electricity development roadmap at a regional level could be provided on the basis of our simulation results. - Highlights: • A multi-region, two-stage stochastic programming model has been developed. • The decision tree and Monte Carlo simulation are integrated into the framework. • Taiwan's electricity sector is used to illustrate the applicability of the model. • The results under deterministic and stochastic cases are shown for comparison. • Optimal portfolios of regional generation technologies can be identified.

  4. Probabilistic escalation modelling

    Energy Technology Data Exchange (ETDEWEB)

    Korneliussen, G.; Eknes, M.L.; Haugen, K.; Selmer-Olsen, S. [Det Norske Veritas, Oslo (Norway)

    1997-12-31

    This paper describes how structural reliability methods may successfully be applied within quantitative risk assessment (QRA) as an alternative to traditional event tree analysis. The emphasis is on fire escalation in hydrocarbon production and processing facilities. This choice was made due to potential improvements over current QRA practice associated with both the probabilistic approach and more detailed modelling of the dynamics of escalating events. The physical phenomena important for the events of interest are explicitly modelled as functions of time. Uncertainties are represented through probability distributions. The uncertainty modelling enables the analysis to be simple when possible and detailed when necessary. The methodology features several advantages compared with traditional risk calculations based on event trees. (Author)

  5. A two-stage stochastic programming model for the optimal design of distributed energy systems

    International Nuclear Information System (INIS)

    Zhou, Zhe; Zhang, Jianyun; Liu, Pei; Li, Zheng; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.

    2013-01-01

    Highlights: ► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and grid connection. -- Abstract: A distributed energy system is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. The optimal design of such a complex system under energy demand and supply uncertainty poses significant challenges in terms of both modelling and corresponding solution strategies. This paper proposes a two-stage stochastic programming model for the optimal design of distributed energy systems. A two-stage decomposition based solution strategy is used to solve the optimization problem with genetic algorithm performing the search on the first stage variables and a Monte Carlo method dealing with uncertainty in the second stage. The model is applied to the planning of a distributed energy system in a hotel. Detailed computational results are presented and compared with those generated by a deterministic model. The impacts of demand and supply uncertainty on the optimal design of distributed energy systems are systematically investigated using proposed modelling framework and solution approach.

  6. Maximum likelihood estimation of signal detection model parameters for the assessment of two-stage diagnostic strategies.

    Science.gov (United States)

    Lirio, R B; Dondériz, I C; Pérez Abalo, M C

    1992-08-01

    The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.

  7. A two-stage stochastic rule-based model to determine pre-assembly buffer content

    Science.gov (United States)

    Gunay, Elif Elcin; Kula, Ufuk

    2018-01-01

    This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.

  8. Two-stage model of development of heterogeneous uranium-lead systems in zircon

    International Nuclear Information System (INIS)

    Mel'nikov, N.N.; Zevchenkov, O.A.

    1985-01-01

    Behaviour of isotope systems of multiphase zircons at their two-stage distortion is considered. The results of calculations testify to the fact that linear correlations on the diagram with concordance can be explained including two-stage discovery of U-Pb systems of cogenetic zircons if zircon is considered physically heterogeneous and losing in its different part different ratios of accumulated radiogenic lead. ''Metamorphism ages'' obtained by these two-stage opening zircons are intermediate, and they not have geochronological significance while ''crystallization ages'' remain rather close to real ones. Two-stage opening zircons in some cases can be diagnosed by discordance of their crystal component

  9. A two-stage storage routing model for green roof runoff detention.

    Science.gov (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  10. Adaptive Urban Stormwater Management Using a Two-stage Stochastic Optimization Model

    Science.gov (United States)

    Hung, F.; Hobbs, B. F.; McGarity, A. E.

    2014-12-01

    In many older cities, stormwater results in combined sewer overflows (CSOs) and consequent water quality impairments. Because of the expense of traditional approaches for controlling CSOs, cities are considering the use of green infrastructure (GI) to reduce runoff and pollutants. Examples of GI include tree trenches, rain gardens, green roofs, and rain barrels. However, the cost and effectiveness of GI are uncertain, especially at the watershed scale. We present a two-stage stochastic extension of the Stormwater Investment Strategy Evaluation (StormWISE) model (A. McGarity, JWRPM, 2012, 111-24) to explicitly model and optimize these uncertainties in an adaptive management framework. A two-stage model represents the immediate commitment of resources ("here & now") followed by later investment and adaptation decisions ("wait & see"). A case study is presented for Philadelphia, which intends to extensively deploy GI over the next two decades (PWD, "Green City, Clean Water - Implementation and Adaptive Management Plan," 2011). After first-stage decisions are made, the model updates the stochastic objective and constraints (learning). We model two types of "learning" about GI cost and performance. One assumes that learning occurs over time, is automatic, and does not depend on what has been done in stage one (basic model). The other considers learning resulting from active experimentation and learning-by-doing (advanced model). Both require expert probability elicitations, and learning from research and monitoring is modelled by Bayesian updating (as in S. Jacobi et al., JWRPM, 2013, 534-43). The model allocates limited financial resources to GI investments over time to achieve multiple objectives with a given reliability. Objectives include minimizing construction and O&M costs; achieving nutrient, sediment, and runoff volume targets; and community concerns, such as aesthetics, CO2 emissions, heat islands, and recreational values. CVaR (Conditional Value at Risk) and

  11. Probabilistic modeling of timber structures

    DEFF Research Database (Denmark)

    Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2007-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...

  12. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process

    Directory of Open Access Journals (Sweden)

    Konrad Krysiak-Baltyn

    2018-04-01

    Full Text Available Cost effective and scalable methods for phage production are required to meet an increasing demand for phage, as an alternative to antibiotics. Computational models can assist the optimization of such production processes. A model is developed here that can simulate the dynamics of phage population growth and production in a two-stage, self-cycling process. The model incorporates variable infection parameters as a function of bacterial growth rate and employs ordinary differential equations, allowing application to a setup with multiple reactors. The model provides simple cost estimates as a function of key operational parameters including substrate concentration, feed volume and cycling times. For the phage and bacteria pairing examined, costs and productivity varied by three orders of magnitude, with the lowest cost found to be most sensitive to the influent substrate concentration and low level setting in the first vessel. An example case study of phage production is also presented, showing how parameter values affect the production costs and estimating production times. The approach presented is flexible and can be used to optimize phage production at laboratory or factory scale by minimizing costs or maximizing productivity.

  13. A cooperation model based on CVaR measure for a two-stage supply chain

    Science.gov (United States)

    Xu, Xinsheng; Meng, Zhiqing; Shen, Rui

    2015-07-01

    In this paper, we introduce a cooperation model (CM) for the two-stage supply chain consisting of a manufacturer and a retailer. In this model, it is supposed that the objective of the manufacturer is to maximise his/her profit while the objective of the retailer is to minimise his/her CVaR while controlling the risk originating from fluctuation in market demand. In reality, the manufacturer and the retailer would like to choose their own decisions as to wholesale price and order quantity to optimise their own objectives, resulting the fact that the expected decision of the manufacturer and that of the retailer may conflict with each other. Then, to achieve cooperation, the manufacturer and the retailer both need to give some concessions. The proposed model aims to coordinate the decisions of the manufacturer and the retailer, and balance the concessions of the two in their cooperation. We introduce an s* - optimal equilibrium solution in this model, which can decide the minimum concession that the manufacturer and the retailer need to give for their cooperation, and prove that the s* - optimal equilibrium solution can be obtained by solving a goal programming problem. Further, the case of different concessions made by the manufacturer and the retailer is also discussed. Numerical results show that the CM is efficient in dealing with the cooperations between the supplier and the retailer.

  14. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    Directory of Open Access Journals (Sweden)

    Xinhua He

    2017-01-01

    Full Text Available Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total cost of construction and operation and overall sojourn time of stormwater. An improved genetic algorithm is redesigned to solve this complex nondeterministic problem, which incorporates with stochastic and fuzzy characteristics in whole drainage process. A numerical example in Shanghai illustrates how to implement the model, and comparisons with alternative algorithms show its performance in computational flexibility and efficiency. Discussions on sensitivity of four main parameters, that is, quantity of pump stations, drainage pipe diameter, rainstorm precipitation intensity, and confidence levels, are also presented to provide guidance for designing urban drainage system.

  15. Two-stage collaborative global optimization design model of the CHPG microgrid

    Science.gov (United States)

    Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng

    2017-06-01

    With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.

  16. Evaluation of carcinogenic potential of diuron in a rat mammary two-stage carcinogenesis model.

    Science.gov (United States)

    Grassi, Tony Fernando; Rodrigues, Maria Aparecida Marchesan; de Camargo, João Lauro Viana; Barbisan, Luís Fernando

    2011-04-01

    This study aimed to evaluate the carcinogenic potential of the herbicide Diuron in a two-stage rat medium-term mammary carcinogenesis model initiated by 7,12-dimethylbenz(a)anthracene (DMBA). Female seven-week-old Sprague-Dawley (SD) rats were allocated to six groups: groups G1 to G4 received intragastrically (i.g.) a single 50 mg/kg dose of DMBA; groups G5 and G6 received single administration of canola oil (vehicle of DMBA). Groups G1 and G5 received a basal diet, and groups G2, G3, G4, and G6 were fed the basal diet with the addition of Diuron at 250, 1250, 2500, and 2500 ppm, respectively. After twenty-five weeks, the animals were euthanized and mammary tumors were histologically confirmed and quantified. Tumor samples were also processed for immunohistochemical evaluation of the expressions of proliferating cell nuclear antigen (PCNA), cleaved caspase-3, estrogen receptor-α (ER-α), p63, bcl-2, and bak. Diuron treatment did not increase the incidence or multiplicity of mammary tumors (groups G2 to G4 versus Group G1). Also, exposure to Diuron did not alter tumor growth (cell proliferation and apoptosis indexes) or immunoreactivity to ER-α, p63 (myoephitelial marker), or bcl-2 and bak (apoptosis regulatory proteins). These findings indicate that Diuron does not have a promoting potential on mammary carcinogenesis in female SD rats initiated with DMBA.

  17. Implications of the two stage clonal expansion model to radiation risk estimation

    International Nuclear Information System (INIS)

    Curtis, S.B.; Hazelton, W.D.; Luebeck, E.G.; Moolgavkar, S.H.

    2003-01-01

    The Two Stage Clonal Expansion Model of carcinogenesis has been applied to the analysis of several cohorts of persons exposed to chronic exposures of high and low LET radiation. The results of these analyses are: (1) the importance of radiation-induced initiation is small and, if present at all, contributes to cancers only late in life and only if exposure begins early in life, (2) radiation-induced promotion dominates and produces the majority of cancers by accelerating proliferation of already-initiated cells, and (3) radiation-induced malignant conversion is important only during and immediately after exposure ceases and tends to dominate only late in life, acting on already initiated and promoted cells. Two populations, the Colorado Plateau miners (high-LET, radon exposed) and the Canadian radiation workers (low-LET, gamma ray exposed) are used as examples to show the time dependence of the hazard function and the relative importance of the three hypothesized processes (initiation, promotion and malignant conversion) for each radiation quality

  18. Modeling two-stage bunch compression with wakefields: Macroscopic properties and microbunching instability

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2008-09-01

    Full Text Available In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in the bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.

  19. Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation

    International Nuclear Information System (INIS)

    Bailey, Nicole D.; Basu, Shantanu

    2014-01-01

    We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, so that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.

  20. Two-Stage orders sequencing system for mixed-model assembly

    Science.gov (United States)

    Zemczak, M.; Skolud, B.; Krenczyk, D.

    2015-11-01

    In the paper, the authors focus on the NP-hard problem of orders sequencing, formulated similarly to Car Sequencing Problem (CSP). The object of the research is the assembly line in an automotive industry company, on which few different models of products, each in a certain number of versions, are assembled on the shared resources, set in a line. Such production type is usually determined as a mixed-model production, and arose from the necessity of manufacturing customized products on the basis of very specific orders from single clients. The producers are nowadays obliged to provide each client the possibility to determine a huge amount of the features of the product they are willing to buy, as the competition in the automotive market is large. Due to the previously mentioned nature of the problem (NP-hard), in the given time period only satisfactory solutions are sought, as the optimal solution method has not yet been found. Most of the researchers that implemented inaccurate methods (e.g. evolutionary algorithms) to solving sequencing problems dropped the research after testing phase, as they were not able to obtain reproducible results, and met problems while determining the quality of the received solutions. Therefore a new approach to solving the problem, presented in this paper as a sequencing system is being developed. The sequencing system consists of a set of determined rules, implemented into computer environment. The system itself works in two stages. First of them is connected with the determination of a place in the storage buffer to which certain production orders should be sent. In the second stage of functioning, precise sets of sequences are determined and evaluated for certain parts of the storage buffer under certain criteria.

  1. An experimental two-stage rat model of lung carcinoma initiated by radon exposure

    International Nuclear Information System (INIS)

    Poncy, J.L.; Laroque, P.; Fritsch, P.; Monchaux, G.; Masse, R.; Chameaud, J.

    1992-01-01

    We present the results of a two-stage biological model of lung carcinogenesis in rats. The histogenesis of these tumors was examined, and DNA content of lung cells was measured by flow cytometry during the evolving neoplastic stage. Tumors were induced in rat lungs after radon inhalation (1600 WLM) followed by a promoter treatment; six intramuscular injections of 5,6-benzoflavone (25 mg/kg of body weight/injection) every 2 wk. Less than 3 mo after the first injection of benzoflavone, squamous cell carcinoma was observed in the lungs of all rats exposed to radon. The preneoplastic lesions gradually developed as follows: hyperplastic bronchiolar-type cells migrated to the alveoli from cells that proliferated in bronchioles and alveolar ducts; initial lesions were observed in almost all respiratory bronchioles. From some hyperplasias, epidermoid metaplasias arose distally, forming nodular epidermoid lesions in alveoli, which progressed to form squamous papilloma and, finally, epidermoid carcinomas. The histogenesis of these experimentally induced epidermoid carcinomas showed the bronchioloalveolar origin of the tumor. This factor must be considered when comparing these with human lesions; in humans, lung epidermoid carcinomas are thought to arise mainly in the first bronchial generations. The labeling index of pulmonary tissue after incorporation of 3 H-thymidine by the cells was 0.2% in control rats. This index reached a value of 1 to 2% in the hyperplastic area of the bronchioles and 10 to 15% in epidermoid nodules and epidermoid tumors, respectively. DNA cytometric analysis was performed on cell suspensions obtained after enzymatic treatment of paraffin sections of lungs from rats sacrificed during different stags of neoplastic transformations. Data showed the early appearance of a triploid cell population that grew during the evolution of nodular epidermoid lesions to epidermoid carcinomas

  2. Probabilistic Modeling of Timber Structures

    DEFF Research Database (Denmark)

    Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2005-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...... proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for components and connections. The recommended...

  3. Modelling of an air-cooled two-stage Rankine cycle for electricity production

    International Nuclear Information System (INIS)

    Liu, Bo

    2014-01-01

    This work considers a two stage Rankine cycle architecture slightly different from a standard Rankine cycle for electricity generation. Instead of expanding the steam to extremely low pressure, the vapor leaves the turbine at a higher pressure then having a much smaller specific volume. It is thus possible to greatly reduce the size of the steam turbine. The remaining energy is recovered by a bottoming cycle using a working fluid which has a much higher density than the water steam. Thus, the turbines and heat exchangers are more compact; the turbine exhaust velocity loss is lower. This configuration enables to largely reduce the global size of the steam water turbine and facilitate the use of a dry cooling system. The main advantage of such an air cooled two stage Rankine cycle is the possibility to choose the installation site of a large or medium power plant without the need of a large and constantly available water source; in addition, as compared to water cooled cycles, the risk regarding future operations is reduced (climate conditions may affect water availability or temperature, and imply changes in the water supply regulatory rules). The concept has been investigated by EDF R and D. A 22 MW prototype was developed in the 1970's using ammonia as the working fluid of the bottoming cycle for its high density and high latent heat. However, this fluid is toxic. In order to search more suitable working fluids for the two stage Rankine cycle application and to identify the optimal cycle configuration, we have established a working fluid selection methodology. Some potential candidates have been identified. We have evaluated the performances of the two stage Rankine cycles operating with different working fluids in both design and off design conditions. For the most acceptable working fluids, components of the cycle have been sized. The power plant concept can then be evaluated on a life cycle cost basis. (author)

  4. Actuator Fault Diagnosis in a Boeing 747 Model via Adaptive Modified Two-Stage Kalman Filter

    Directory of Open Access Journals (Sweden)

    Fikret Caliskan

    2014-01-01

    Full Text Available An adaptive modified two-stage linear Kalman filtering algorithm is utilized to identify the loss of control effectiveness and the magnitude of low degree of stuck faults in a closed-loop nonlinear B747 aircraft. Control effectiveness factors and stuck magnitudes are used to quantify faults entering control systems through actuators. Pseudorandom excitation inputs are used to help distinguish partial loss and stuck faults. The partial loss and stuck faults in the stabilizer are isolated and identified successfully.

  5. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu; Kuti, Olawole Abiola; Naser, Nimal; Chung, Suk-Ho; Sarathy, Mani

    2016-01-01

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate

  6. A coupling model for the two-stage core calculation method with subchannel analysis for boiling water reactors

    International Nuclear Information System (INIS)

    Mitsuyasu, Takeshi; Aoyama, Motoo; Yamamoto, Akio

    2017-01-01

    Highlights: • A coupling model of the two-stage core calculation with subchannel analysis. • BWR fuel assembly parameters are assumed and verified. • The model was evaluated for heterogeneous problems. - Abstract: The two-stage core analysis method is widely used for BWR core analysis. The purpose of this study is to develop a core analysis model coupled with subchannel analysis within the two-stage calculation scheme using an assembly-based thermal-hydraulics calculation in the core analysis. The model changes the 2D lattice physics scheme, and couples with 3D subchannel analysis which evaluates the thermal-hydraulics characteristics within the coolant flow area divided as some subchannel regions. In order to couple with these two analyses, some BWR fuel assembly parameters are assumed and verified. The developed model is evaluated for the heterogeneous problem with and without a control rod. The present model is especially effective for the control rod inserted condition. The present model can incorporate the subchannel effect into the current two-stage core calculation method.

  7. A two-stage method for microcalcification cluster segmentation in mammography by deformable models

    International Nuclear Information System (INIS)

    Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.; Karahaliou, A.; Costaridou, L.; Vassiou, K.

    2015-01-01

    Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods are applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST cluster , average of minimum distance—AMINDIST cluster ) and the area overlap measure (AOM cluster ). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross

  8. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    Science.gov (United States)

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  9. Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Climent, H.; Varnier, O.

    2010-01-01

    Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed.

  10. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models

    International Nuclear Information System (INIS)

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-01-01

    Highlights: • Two-stage dispersion models can estimate exposures to hazardous air pollutants. • Spatial distribution of V levels is derived for sources without known emission rates. • A distance-to-source gradient is found for V levels from a petrochemical complex. • Two-stage dispersion is useful for modeling air pollution in resource-limited areas. - Abstract: The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM 10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040–0.1063) and 0.1368 (0.0398–0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents’ addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources

  11. A Smoothing Algorithm for a New Two-Stage Stochastic Model of Supply Chain Based on Sample Average Approximation

    OpenAIRE

    Liu Yang; Yao Xiong; Xiao-jiao Tong

    2017-01-01

    We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD) constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA) method to approximate the expected values of the underlying r...

  12. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  13. A two-stage preventive maintenance optimization model incorporating two-dimensional extended warranty

    International Nuclear Information System (INIS)

    Su, Chun; Wang, Xiaolin

    2016-01-01

    In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.

  14. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  15. Probabilistic dietary exposure models

    NARCIS (Netherlands)

    Boon, Polly E.; Voet, van der H.

    2015-01-01

    Exposure models are used to calculate the amount of potential harmful chemicals ingested by a human population. Examples of harmful chemicals are residues of pesticides, chemicals entering food from the environment (such as dioxins, cadmium, lead, mercury), and chemicals that are generated via

  16. A two-stage value chain model for vegetable marketing chain efficiency evaluation: A transaction cost approach

    OpenAIRE

    Lu Hualiang

    2006-01-01

    We applied a two-stage value chain model to investigate the effects of input application and occasional transaction costs on vegetable marketing chain efficiencies with a farm household-level data set. In the first stage, the production efficiencies with the combination of resource endowments, capital and managerial inputs, and production techniques were evaluated; then at the second stage, the marketing technical efficiencies were determined under the marketing value of the vegetables for th...

  17. Estimating radiation-induced cancer risk using MVK two-stage model for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, M.; Kusama, T.; Aoki, Y.

    1993-01-01

    Based on the carcinogenesis model as proposed by Moolgavkar et al., time-dependent relative risk models were derived for projecting the time variation in excess relative risk. If it is assumed that each process is described by time-independent linear dose-response relationship, the time variation in excess relative risk is influenced by the parameter related with the promotion process. The risk model based carcinogenesis theory would play a marked role in estimating radiation-induced cancer risk in constructing a projection model or transfer model

  18. A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic

    Science.gov (United States)

    Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan

    2016-01-01

    This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.

  19. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    Science.gov (United States)

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  20. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15 and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data...... was 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10 d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation...

  1. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...

  2. Probabilistic Survivability Versus Time Modeling

    Science.gov (United States)

    Joyner, James J., Sr.

    2016-01-01

    This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.

  3. Effects of Risk Aversion on Market Outcomes: A Stochastic Two-Stage Equilibrium Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    This paper evaluates how different risk preferences of electricity producers alter the market-clearing outcomes. Toward this goal, we propose a stochastic equilibrium model for electricity markets with two settlements, i.e., day-ahead and balancing, in which a number of conventional and stochastic...... by its optimality conditions, resulting in a mixed complementarity problem. Numerical results from a case study based on the IEEE one-area reliability test system are derived and discussed....

  4. Two-stage dissipation in a superconducting microbridge: experiment and modeling

    International Nuclear Information System (INIS)

    Del Rio, L; Altshuler, E; Niratisairak, S; Haugen, Oe; Johansen, T H; Davidson, B A; Testa, G; Sarnelli, E

    2010-01-01

    Using fluorescent microthermal imaging we have investigated the origin of 'two-step' behavior in I-V curves for a current-carrying YBa 2 Cu 3 O x superconducting bridge. High resolution temperature maps reveal that as the applied current increases the first step in the voltage corresponds to local dissipation (hot spot), whereas the second step is associated with the onset of global dissipation throughout the entire bridge. A quantitative explanation of the experimental results is provided by a simple model for an inhomogeneous superconductor, assuming that the hot spot nucleates at a location with slightly depressed superconducting properties.

  5. A GRASP model in network design for two-stage supply chain

    Directory of Open Access Journals (Sweden)

    Hassan Javanshir

    2011-04-01

    Full Text Available We consider a capacitated facility location problem (CFLP which contains a production facility and distribution centers (DCs supplying retailers' demand. The primary purpose is to locate distribution centres in the network and the objective is the minimization of the sum of fixed facility location, pipeline inventory, safety stock and lost sales. We use Greedy randomized adaptive search procedures (GRASP to solve the model. The preliminary results indicate that the proposed method of this paper could provide competitive results in reasonable amount time.

  6. Two-Stage Hidden Markov Model in Gesture Recognition for Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Nhan Nguyen-Duc-Thanh

    2012-07-01

    Full Text Available Hidden Markov Model (HMM is very rich in mathematical structure and hence can form the theoretical basis for use in a wide range of applications including gesture representation. Most research in this field, however, uses only HMM for recognizing simple gestures, while HMM can definitely be applied for whole gesture meaning recognition. This is very effectively applicable in Human-Robot Interaction (HRI. In this paper, we introduce an approach for HRI in which not only the human can naturally control the robot by hand gesture, but also the robot can recognize what kind of task it is executing. The main idea behind this method is the 2-stages Hidden Markov Model. The 1st HMM is to recognize the prime command-like gestures. Based on the sequence of prime gestures that are recognized from the 1st stage and which represent the whole action, the 2nd HMM plays a role in task recognition. Another contribution of this paper is that we use the output Mixed Gaussian distribution in HMM to improve the recognition rate. In the experiment, we also complete a comparison of the different number of hidden states and mixture components to obtain the optimal one, and compare to other methods to evaluate this performance.

  7. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    International Nuclear Information System (INIS)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-01-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS registered . Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project ''APT P ACK'' (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging)

  8. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    Science.gov (United States)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-05-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS®. Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).

  9. Multicriteria two-stage model of assessment of museums' business strategies

    Directory of Open Access Journals (Sweden)

    Mimović Predrag

    2017-01-01

    Full Text Available This paper analyzes and evaluates the museum activities in the current social, economic and political context, in order to prove the need for the identification and evaluation of business strategy for the cultural sector in general. In addition, the paper also studies methodological issues related to the model of evaluation and assessment of the strategy in the case of The 'Kragujevački Oktobar' Memorial Park. By applying the SWOT analysis and Analytic network process (ANP as an expert method for the support to decision making, critical success factors have been identified and their evaluation performed, in order to create optimum conditions for formulating business strategies and sustainable development of the Memorial Park.

  10. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects.

    Science.gov (United States)

    Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam

    2016-01-01

    Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.

  11. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  12. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    Science.gov (United States)

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  13. A Decision-making Model for a Two-stage Production-delivery System in SCM Environment

    Science.gov (United States)

    Feng, Ding-Zhong; Yamashiro, Mitsuo

    A decision-making model is developed for an optimal production policy in a two-stage production-delivery system that incorporates a fixed quantity supply of finished goods to a buyer at a fixed interval of time. First, a general cost model is formulated considering both supplier (of raw materials) and buyer (of finished products) sides. Then an optimal solution to the problem is derived on basis of the cost model. Using the proposed model and its optimal solution, one can determine optimal production lot size for each stage, optimal number of transportation for semi-finished goods, and optimal quantity of semi-finished goods transported each time to meet the lumpy demand of consumers. Also, we examine the sensitivity of raw materials ordering and production lot size to changes in ordering cost, transportation cost and manufacturing setup cost. A pragmatic computation approach for operational situations is proposed to solve integer approximation solution. Finally, we give some numerical examples.

  14. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  15. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  16. A Smoothing Algorithm for a New Two-Stage Stochastic Model of Supply Chain Based on Sample Average Approximation

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2017-01-01

    Full Text Available We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA method to approximate the expected values of the underlying random functions. A smoothing approach is proposed with which we can get the global solution and avoid introducing new variables and constraints. Meanwhile, we investigate the convergence of an optimal value from solving the transformed model and show that, with probability approaching one at exponential rate, the optimal value converges to its counterpart as the sample size increases. Numerical results show the effectiveness of the proposed algorithm and analysis.

  17. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  18. Probabilistic reasoning with graphical security models

    NARCIS (Netherlands)

    Kordy, Barbara; Pouly, Marc; Schweitzer, Patrick

    This work provides a computational framework for meaningful probabilistic evaluation of attack–defense scenarios involving dependent actions. We combine the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. In order

  19. Two-Stage Method Based on Local Polynomial Fitting for a Linear Heteroscedastic Regression Model and Its Application in Economics

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2012-01-01

    Full Text Available We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to nonparametric technique of local polynomial estimation, we do not need to know the heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters based on numerical simulations. Finally, this approach is applied to a case of economics, and it indicates that our method is surely effective in finite-sample situations.

  20. THE MATHEMATICAL MODEL DEVELOPMENT OF THE ETHYLBENZENE DEHYDROGENATION PROCESS KINETICS IN A TWO-STAGE ADIABATIC CONTINUOUS REACTOR

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.

  1. A production planning model considering uncertain demand using two-stage stochastic programming in a fresh vegetable supply chain context.

    Science.gov (United States)

    Mateo, Jordi; Pla, Lluis M; Solsona, Francesc; Pagès, Adela

    2016-01-01

    Production planning models are achieving more interest for being used in the primary sector of the economy. The proposed model relies on the formulation of a location model representing a set of farms susceptible of being selected by a grocery shop brand to supply local fresh products under seasonal contracts. The main aim is to minimize overall procurement costs and meet future demand. This kind of problem is rather common in fresh vegetable supply chains where producers are located in proximity either to processing plants or retailers. The proposed two-stage stochastic model determines which suppliers should be selected for production contracts to ensure high quality products and minimal time from farm-to-table. Moreover, Lagrangian relaxation and parallel computing algorithms are proposed to solve these instances efficiently in a reasonable computational time. The results obtained show computational gains from our algorithmic proposals in front of the usage of plain CPLEX solver. Furthermore, the results ensure the competitive advantages of using the proposed model by purchase managers in the fresh vegetables industry.

  2. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    Science.gov (United States)

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  3. A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.

    Science.gov (United States)

    Fang, Yun; Wu, Hulin; Zhu, Li-Xing

    2011-07-01

    We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.

  4. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  5. Building fast well-balanced two-stage numerical schemes for a model of two-phase flows

    Science.gov (United States)

    Thanh, Mai Duc

    2014-06-01

    We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.

  6. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  7. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  8. Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions.

    Science.gov (United States)

    Blangiardo, Marta; Finazzi, Francesco; Cameletti, Michela

    2016-08-01

    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter

    Directory of Open Access Journals (Sweden)

    V. R. N. Pauwels

    2013-09-01

    Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  10. PROBABILISTIC RELATIONAL MODELS OF COMPLETE IL-SEMIRINGS

    OpenAIRE

    Tsumagari, Norihiro

    2012-01-01

    This paper studies basic properties of probabilistic multirelations which are generalized the semantic domain of probabilistic systems and then provides two probabilistic models of complete IL-semirings using probabilistic multirelations. Also it is shown that these models need not be models of complete idempotentsemirings.

  11. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model.

    Directory of Open Access Journals (Sweden)

    Mingjun Wang

    Full Text Available Single amino acid variants (SAVs are the most abundant form of known genetic variations associated with human disease. Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality structural dataset that contained 679 high-quality protein structures with 2,048 SAVs by collecting the human genetic variant data from multiple resources and dividing them into two categories, i.e., disease-associated and neutral variants. We built a two-stage random forest (RF model, termed as FunSAV, to predict the functional effect of SAVs by combining sequence, structure and residue-contact network features with other additional features that were not explored in previous studies. Importantly, a two-step feature selection procedure was proposed to select the most important and informative features that contribute to the prediction of disease association of SAVs. In cross-validation experiments on the benchmark dataset, FunSAV achieved a good prediction performance with the area under the curve (AUC of 0.882, which is competitive with and in some cases better than other existing tools including SIFT, SNAP, Polyphen2, PANTHER, nsSNPAnalyzer and PhD-SNP. The sourcecodes of FunSAV and the datasets can be downloaded at http://sunflower.kuicr.kyoto-u.ac.jp/sjn/FunSAV.

  12. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2004-12-01

    Full Text Available Abstract Background An increasing number of studies have profiled tumor specimens using distinct microarray platforms and analysis techniques. With the accumulating amount of microarray data, one of the most intriguing yet challenging tasks is to develop robust statistical models to integrate the findings. Results By applying a two-stage Bayesian mixture modeling strategy, we were able to assimilate and analyze four independent microarray studies to derive an inter-study validated "meta-signature" associated with breast cancer prognosis. Combining multiple studies (n = 305 samples on a common probability scale, we developed a 90-gene meta-signature, which strongly associated with survival in breast cancer patients. Given the set of independent studies using different microarray platforms which included spotted cDNAs, Affymetrix GeneChip, and inkjet oligonucleotides, the individually identified classifiers yielded gene sets predictive of survival in each study cohort. The study-specific gene signatures, however, had minimal overlap with each other, and performed poorly in pairwise cross-validation. The meta-signature, on the other hand, accommodated such heterogeneity and achieved comparable or better prognostic performance when compared with the individual signatures. Further by comparing to a global standardization method, the mixture model based data transformation demonstrated superior properties for data integration and provided solid basis for building classifiers at the second stage. Functional annotation revealed that genes involved in cell cycle and signal transduction activities were over-represented in the meta-signature. Conclusion The mixture modeling approach unifies disparate gene expression data on a common probability scale allowing for robust, inter-study validated prognostic signatures to be obtained. With the emerging utility of microarrays for cancer prognosis, it will be important to establish paradigms to meta

  13. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate the ignition delay of n-dodecane and n-heptane in a constant volume combustion chamber (CVCC), which is archived in the engine combustion network (ECN) library (http://www.ca.sandia.gov/ecn). A detailed chemical kinetic model for gasoline surrogates from the Lawrence Livermore National Laboratory (LLNL) was utilized for the simulation of n-heptane and isooctane. Additional simulations were performed using an optimized gasoline surrogate mechanism from RWTH Aachen University. Validations of the simulated data were also performed with experimental results from an IQT at KAUST. For simulation of n-dodecane in the CVCC, two n-dodecane kinetic models from the literature were utilized. The primary aim of this study is to test the ability of TSL to replicate ignition timings in the IQT and the CVCC. The agreement between the model and the experiment is acceptable except for isooctane in the IQT and n-heptane and n-dodecane in the CVCC. The ability of the simulations to replicate observable trends in ignition delay times with regard to changes in ambient temperature and pressure allows the model to provide insights into the reactions contributing towards ignition. Thus, the TSL model was further employed to investigate the physical and chemical processes responsible for controlling the overall ignition under various conditions. The effects of exothermicity, ambient pressure, and ambient oxygen concentration on first stage ignition were also studied. Increasing ambient pressure and oxygen concentration was found to shorten the overall ignition delay time, but does not affect the timing of the first stage ignition. Additionally, the temperature at the end of the first stage ignition was found to increase at higher ambient pressure

  14. Two-stage robust UC including a novel scenario-based uncertainty model for wind power applications

    International Nuclear Information System (INIS)

    Álvarez-Miranda, Eduardo; Campos-Valdés, Camilo; Rahmann, Claudia

    2015-01-01

    Highlights: • Methodological framework for obtaining Robust Unit Commitment (UC) policies. • Wind-power forecast using a revisited bootstrap predictive inference approach. • Novel scenario-based model for wind-power uncertainty. • Efficient modeling framework for obtaining nearly optimal UC policies in reasonable time. • Effective incorporation of wind-power uncertainty in the UC modeling. - Abstract: The complex processes involved in the determination of the availability of power from renewable energy sources, such as wind power, impose great challenges in the forecasting processes carried out by transmission system operators (TSOs). Nowadays, many of these TSOs use operation planning tools that take into account the uncertainty of the wind-power. However, most of these methods typically require strict assumptions about the probabilistic behavior of the forecast error, and usually ignore the dynamic nature of the forecasting process. In this paper a methodological framework to obtain Robust Unit Commitment (UC) policies is presented; such methodology considers a novel scenario-based uncertainty model for wind power applications. The proposed method is composed by three main phases. The first two phases generate a sound wind-power forecast using a bootstrap predictive inference approach. The third phase corresponds to modeling and solving a one-day ahead Robust UC considering the output of the first phase. The performance of proposed approach is evaluated using as case study a new wind farm to be incorporated into the Northern Interconnected System (NIS) of Chile. A projection of wind-based power installation, as well as different characteristic of the uncertain data, are considered in this study

  15. Association between floods and infectious diarrhea and their effect modifiers in Hunan province, China: A two-stage model.

    Science.gov (United States)

    Liu, Zhidong; Zhang, Feifei; Zhang, Ying; Li, Jing; Liu, Xuena; Ding, Guoyong; Zhang, Caixia; Liu, Qiyong; Jiang, Baofa

    2018-06-01

    Understanding the potential links between floods and infectious diarrhea is important under the context of climate change. However, little is known about the risk of infectious diarrhea after floods and what factors could modify these effects in China. This study aims to quantitatively examine the relationship between floods and infectious diarrhea and their effect modifiers. Weekly number of infectious diarrhea cases from 2004 to 2011 during flood season in Hunan province were supplied by the National Notifiable Disease Surveillance System. Flood and meteorological data over the same period were obtained. A two-stage model was used to estimate a provincial average association and their effect modifiers between floods and infectious diarrhea, accounting for other confounders. A total of 134,571 cases of infectious diarrhea were notified from 2004 to 2011. After controlling for seasonality, long-term trends, and meteorological factors, floods were significantly associated with infectious diarrhea in the provincial level with a cumulative RR of 1.22 (95% CI: 1.05, 1.43) with a lagged effect of 0-1 week. Geographic locations and economic levels were identified as effect modifiers, with a higher impact of floods on infectious diarrhea in the western and regions with a low economic level of Hunan. Our study provides strong evidence of a positive association between floods and infectious diarrhea in the study area. Local control strategies for public health should be taken in time to prevent and reduce the risk of infectious diarrhea after floods, especially for the vulnerable regions identified. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Mastering probabilistic graphical models using Python

    CERN Document Server

    Ankan, Ankur

    2015-01-01

    If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

  17. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  18. Financial Markets Analysis by Probabilistic Fuzzy Modelling

    NARCIS (Netherlands)

    J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)

    2003-01-01

    textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno

  19. Financial markets analysis by probabilistic fuzzy modelling

    NARCIS (Netherlands)

    Berg, van den J.; Kaymak, U.; Bergh, van den W.M.

    2003-01-01

    For successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (TS)

  20. Probabilistic modeling of children's handwriting

    Science.gov (United States)

    Puri, Mukta; Srihari, Sargur N.; Hanson, Lisa

    2013-12-01

    There is little work done in the analysis of children's handwriting, which can be useful in developing automatic evaluation systems and in quantifying handwriting individuality. We consider the statistical analysis of children's handwriting in early grades. Samples of handwriting of children in Grades 2-4 who were taught the Zaner-Bloser style were considered. The commonly occurring word "and" written in cursive style as well as hand-print were extracted from extended writing. The samples were assigned feature values by human examiners using a truthing tool. The human examiners looked at how the children constructed letter formations in their writing, looking for similarities and differences from the instructions taught in the handwriting copy book. These similarities and differences were measured using a feature space distance measure. Results indicate that the handwriting develops towards more conformity with the class characteristics of the Zaner-Bloser copybook which, with practice, is the expected result. Bayesian networks were learnt from the data to enable answering various probabilistic queries, such as determining students who may continue to produce letter formations as taught during lessons in school and determining the students who will develop a different and/or variation of the those letter formations and the number of different types of letter formations.

  1. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  2. Probabilistic Models for Solar Particle Events

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.

  3. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  4. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  5. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D......, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows......The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...

  6. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    Science.gov (United States)

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  7. Modeling and Implementing Two-Stage AdaBoost for Real-Time Vehicle License Plate Detection

    Directory of Open Access Journals (Sweden)

    Moon Kyou Song

    2014-01-01

    Full Text Available License plate (LP detection is the most imperative part of the automatic LP recognition system. In previous years, different methods, techniques, and algorithms have been developed for LP detection (LPD systems. This paper proposes to automatical detection of car LPs via image processing techniques based on classifier or machine learning algorithms. In this paper, we propose a real-time and robust method for LPD systems using the two-stage adaptive boosting (AdaBoost algorithm combined with different image preprocessing techniques. Haar-like features are used to compute and select features from LP images. The AdaBoost algorithm is used to classify parts of an image within a search window by a trained strong classifier as either LP or non-LP. Adaptive thresholding is used for the image preprocessing method applied to those images that are of insufficient quality for LPD. This method is of a faster speed and higher accuracy than most of the existing methods used in LPD. Experimental results demonstrate that the average LPD rate is 98.38% and the computational time is approximately 49 ms.

  8. Failure probabilistic model of CNC lathes

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Yu Junyi; Zheng Yuhua; Yi Shangfeng

    1999-01-01

    A field failure analysis of computerized numerical control (CNC) lathes is described. Field failure data was collected over a period of two years on approximately 80 CNC lathes. A coding system to code failure data was devised and a failure analysis data bank of CNC lathes was established. The failure position and subsystem, failure mode and cause were analyzed to indicate the weak subsystem of a CNC lathe. Also, failure probabilistic model of CNC lathes was analyzed by fuzzy multicriteria comprehensive evaluation

  9. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  10. A Simple Probabilistic Combat Model

    Science.gov (United States)

    2016-06-13

    Government may violate any copyrights that exist in this work. This page intentionally left blank. ABSTRACT The Lanchester ...page intentionally left blank. TABLE OF CONTENTS Page No.Abstract iii List of Illustrations vii 1. INTRODUCTION 1 2. DETERMINISTIC LANCHESTER MODEL...This page intentionally left blank. 1. INTRODUCTION The Lanchester combat model1 is a simple way to assess the effects of quantity and quality

  11. Probabilistic Solar Energetic Particle Models

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.

  12. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    , the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows...... conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation of RNA structure and dynamics in atomic detail.......The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...

  13. Probabilistically modeling lava flows with MOLASSES

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  14. Bayesian uncertainty analyses of probabilistic risk models

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1989-01-01

    Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed

  15. Probabilistic model for sterilization of food

    International Nuclear Information System (INIS)

    Chepurko, V.V.; Malinovskij, O.V.

    1986-01-01

    The probabilistic model for radiation sterilization is proposed based on the followng suppositions: (1) initial contamination of a volume unit of the sterilized product m is described by the distribution of the probabilities q(m), (2) inactivation of the population from m of microorganisms is approximated by Bernoulli test scheme, and (3) contamination of unit of the sterilized product is independent. The possibility of approximation q(m) by Poisson distribution is demonstrated. The diagrams are presented permitting to evaluate the dose which provides the defined reliability of sterilization of food for chicken-gnotobionts

  16. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  17. Structured model of bacterial growth and tests with activated sludge in a one-stage and two-stage chemostat

    NARCIS (Netherlands)

    Harder, A.

    1979-01-01

    A kinetic model for a growing culture of micro-organisms was developed that correlated the biochemical structure of cells with quantitative physiological behaviour. The three-compartment model was adequate for simulation of continuous, batch and transient experiments with activated sludge fed on

  18. Probabilistic Role Models and the Guarded Fragment

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2004-01-01

    We propose a uniform semantic framework for interpreting probabilistic concept subsumption and probabilistic role quantification through statistical sampling distributions. This general semantic principle serves as the foundation for the development of a probabilistic version of the guarded fragm...... fragment of first-order logic. A characterization of equivalence in that logic in terms of bisimulations is given....

  19. Probabilistic role models and the guarded fragment

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2006-01-01

    We propose a uniform semantic framework for interpreting probabilistic concept subsumption and probabilistic role quantification through statistical sampling distributions. This general semantic principle serves as the foundation for the development of a probabilistic version of the guarded fragm...... fragment of first-order logic. A characterization of equivalence in that logic in terms of bisimulations is given....

  20. A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature

    Science.gov (United States)

    Zhu, Luobei; He, Jianli; Zhang, Ying

    2018-02-01

    In order to clarify the competition between work hardening (WH) caused by dislocation movements and the dynamic softening result from dynamic recovery (DRV) and dynamic recrystallization (DRX), a new two-stage flow stress model of X12CrMoWVNbN10-1-1 (X12) ferrite heat-resistant steel was established to describe the whole hot deformation behavior. And the parameters were determined by the experimental data operated on a Gleeble-3800 thermo- mechanical simulation. In this constitutive model, a single internal variable dislocation density evolution model is used to describe the influence of WH and DRV to flow stress. The DRX kinetic dynamic model can express accurately the contribution of DRX to the decline of flow stress, which was established on the Avrami equation. Furthermore, The established new model was compared with Fields-Bachofen (F-B) model and experimental data. The results indicate the new two-stage flow stress model can more accurately represent the hot deformation behavior of X12 ferrite heat-resistant steel, and the average error is only 0.0995.

  1. Probabilistic Radiological Performance Assessment Modeling and Uncertainty

    Science.gov (United States)

    Tauxe, J.

    2004-12-01

    A generic probabilistic radiological Performance Assessment (PA) model is presented. The model, built using the GoldSim systems simulation software platform, concerns contaminant transport and dose estimation in support of decision making with uncertainty. Both the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE) require assessments of potential future risk to human receptors of disposal of LLW. Commercially operated LLW disposal facilities are licensed by the NRC (or agreement states), and the DOE operates such facilities for disposal of DOE-generated LLW. The type of PA model presented is probabilistic in nature, and hence reflects the current state of knowledge about the site by using probability distributions to capture what is expected (central tendency or average) and the uncertainty (e.g., standard deviation) associated with input parameters, and propagating through the model to arrive at output distributions that reflect expected performance and the overall uncertainty in the system. Estimates of contaminant release rates, concentrations in environmental media, and resulting doses to human receptors well into the future are made by running the model in Monte Carlo fashion, with each realization representing a possible combination of input parameter values. Statistical summaries of the results can be compared to regulatory performance objectives, and decision makers are better informed of the inherently uncertain aspects of the model which supports their decision-making. While this information may make some regulators uncomfortable, they must realize that uncertainties which were hidden in a deterministic analysis are revealed in a probabilistic analysis, and the chance of making a correct decision is now known rather than hoped for. The model includes many typical features and processes that would be part of a PA, but is entirely fictitious. This does not represent any particular site and is meant to be a generic example. A

  2. Statistical study of clone survival curves after irradiation in one or two stages. Comparison and generalization of different models

    International Nuclear Information System (INIS)

    Lachet, Bernard.

    1975-01-01

    A statistical study was carried out on 208 survival curves for chlorella subjected to γ or particle radiations. The computing programmes used were written in Fortran. The different experimental causes contributing to the variance of a survival rate are analyzed and consequently the experiments can be planned. Each curve was fitted to four models by the weighted least squares method applied to non-linear functions. The validity of the fits obtained can be checked by the F test. It was possible to define the confidence and prediction zones around an adjusted curve by weighting of the residual variance, in spite of error on the doses delivered; the confidence limits can them be fixed for a dose estimated from an exact or measured survival. The four models adopted were compared for the precision of their fit (by a non-parametric simultaneous comparison test) and the scattering of their adjusted parameters: Wideroe's model gives a very good fit with the experimental points in return for a scattering of its parameters, which robs them of their presumed meaning. The principal component analysis showed the statistical equivalence of the 1 and 2 hit target models. Division of the irradiation into two doses, the first fixed by the investigator, leads to families of curves for which the equation was established from that of any basic model expressing the dose survival relationship in one-stage irradiation [fr

  3. Illicit drug use and abuse/dependence: modeling of two-stage variables using the CCC approach.

    Science.gov (United States)

    Agrawal, A; Neale, M C; Jacobson, K C; Prescott, C A; Kendler, K S

    2005-06-01

    Drug use and abuse/dependence are stages of a complex drug habit. Most genetically informative models that are fit to twin data examine drug use and abuse/dependence independent of each other. This poses an interesting question: for a multistage process, how can we partition the factors influencing each stage specifically from the factors that are common to both stages? We used a causal-common-contingent (CCC) model to partition the common and specific influences on drug use and abuse/dependence. Data on use and abuse/dependence of cannabis, cocaine, sedatives, stimulants and any illicit drug was obtained from male and female twin pairs. CCC models were tested individually for each sex and in a sex-equal model. Our results suggest that there is evidence for additive genetic, shared environmental and unique environmental influences that are common to illicit drug use and abuse/dependence. Furthermore, we found substantial evidence for factors that were specific to abuse/dependence. Finally, sexes could be equated for all illicit drugs. The findings of this study emphasize the need for models that can partition the sources of individual differences into common and stage-specific influences.

  4. Probabilistic Modeling of Graded Timber Material Properties

    DEFF Research Database (Denmark)

    Faber, M. H.; Köhler, J.; Sørensen, John Dalsgaard

    2004-01-01

    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for quality grading in the production line. It is shown how statistical models may be established...... on the basis of the same type of information which is normally collected as a part of the quality control procedures and furthermore, how the efficiency of different control procedures may be quantified and compared. The tail behavior of the probability distributions of timber material characteristics plays...... such that they may readily be applied in structural reliability analysis and their format appears to be appropriate for codification purposes of quality control and selection for grading procedures....

  5. Probabilistic Modelling of Timber Material Properties

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber; Köhler, Jochen; Sørensen, John Dalsgaard

    2001-01-01

    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for grading of timber in the production line. It is shown how statistical models may be established...... on the basis of the same type of information which is normally collected as a part of the quality control procedures and furthermore, how the efficiency of different control procedures may be compared. The tail behavior of the probability distributions of timber material characteristics play an important role...... such that they may readily be applied in structural reliability analysis and the format appears to be appropriate for codification purposes of quality control and selection for grading procedures...

  6. Mathematical modeling of sustainability of porous Al2O3 growth during two-stage anodization process

    Science.gov (United States)

    Aryslanova, Elizaveta M.; Alfimov, Anton V.; Chivilikhin, Sergey A.

    2015-06-01

    Currently, due to the development of nanotechnology and metamaterials, it has become important to obtain regular nanoporous structures with different parameters, such as porous anodic alumina films that are used for synthesis of various nanocomposites. In this work we consider the motion of the interfaces between electrolyte and alumina layers, and between alumina and aluminum layers. We also took into account the dynamics of moving boundaries and the change of small perturbations of these boundaries. Each area under Laplace's equation is solved for the potential of the electric field. The growth of porous alumina is described with the theory of small perturbations. Small perturbations of the interface are considered, which lead to small changes in potential and current in the boundaries. As a result of the developed model we obtained the minimum distance between centers of aluminum oxide pores in the beginning of anodizing process and the wavelength of porous structure irregularities.

  7. A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company

    International Nuclear Information System (INIS)

    Ahmadi, Abdollah; Charwand, Mansour; Siano, Pierluigi; Nezhad, Ali Esmaeel; Sarno, Debora; Gitizadeh, Mohsen; Raeisi, Fatima

    2016-01-01

    In order to supply the demands of the end users in a competitive market, a distribution company purchases energy from the wholesale market while other options would be in access in the case of possessing distributed generation units and interruptible loads. In this regard, this study presents a two-stage stochastic programming model for a distribution company energy acquisition market model to manage the involvement of different electric energy resources characterized by uncertainties with the minimum cost. In particular, the distribution company operations planning over a day-ahead horizon is modeled as a stochastic mathematical optimization, with the objective of minimizing costs. By this, distribution company decisions on grid purchase, owned distributed generation units and interruptible load scheduling are determined. Then, these decisions are considered as boundary constraints to a second step, which deals with distribution company's operations in the hour-ahead market with the objective of minimizing the short-term cost. The uncertainties in spot market prices and wind speed are modeled by means of probability distribution functions of their forecast errors and the roulette wheel mechanism and lattice Monte Carlo simulation are used to generate scenarios. Numerical results show the capability of the proposed method. - Highlights: • Proposing a new a stochastic-based two-stage operations framework in retail competitive markets. • Proposing a Mixed Integer Non-Linear stochastic programming. • Employing roulette wheel mechanism and Lattice Monte Carlo Simulation.

  8. A Probabilistic Typhoon Risk Model for Vietnam

    Science.gov (United States)

    Haseemkunju, A.; Smith, D. F.; Brolley, J. M.

    2017-12-01

    Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.

  9. Bank Mergers Performance and the Determinants of Singaporean Banks’ Efficiency: An Application of Two-Stage Banking Models

    Directory of Open Access Journals (Sweden)

    Fadzlan Sufian

    2007-01-01

    Full Text Available An event study window analysis of Data Envelopment Analysis (DEA is employed in this study to investigate the effect of mergers and acquisitions on Singaporean domestic banking groups’ efficiency. The results suggest that the mergers have resulted in a higher post-merger mean overall efficiency of Singaporean banking groups. However, from the scale efficiency perspective, our findings do not support further consolidation in the Singaporean banking sector. We find mixed evidence of the efficiency characteristics of the acquirers and targets banks. Hence, the findings do not fully support the hypothesis that a more (less efficient bank becomes the acquirer (target. In most cases, our results further confirm the hypothesis that the acquiring bank’s mean overall efficiency improves (deteriorates post-merger resulted from the merger with a more (less efficient bank. Tobit regression model is employed to determine factors affecting bank performance, and the results suggest that bank profitability has a significantly positive impact on bank efficiency, whereas poor loan quality has a significantly negative influence on bank performance.

  10. Fatigue modelling according to the JCSS Probabilistic model code

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2007-01-01

    The Joint Committee on Structural Safety is working on a Model Code for full probabilistic design. The code consists out of three major parts: Basis of design, Load Models and Models for Material and Structural Properties. The code is intended as the operational counter part of codes like ISO,

  11. Two stages of economic development

    OpenAIRE

    Gong, Gang

    2016-01-01

    This study suggests that the development process of a less-developed country can be divided into two stages, which demonstrate significantly different properties in areas such as structural endowments, production modes, income distribution, and the forces that drive economic growth. The two stages of economic development have been indicated in the growth theory of macroeconomics and in the various "turning point" theories in development economics, including Lewis's dual economy theory, Kuznet...

  12. Biological sequence analysis: probabilistic models of proteins and nucleic acids

    National Research Council Canada - National Science Library

    Durbin, Richard

    1998-01-01

    ... analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference...

  13. Efficient probabilistic model checking on general purpose graphic processors

    NARCIS (Netherlands)

    Bosnacki, D.; Edelkamp, S.; Sulewski, D.; Pasareanu, C.S.

    2009-01-01

    We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). For this purpose we exploit the fact that some of the basic algorithms for probabilistic model checking rely on matrix vector multiplication. Since this kind of linear algebraic

  14. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  15. PROBABILISTIC MODEL FOR AIRPORT RUNWAY SAFETY AREAS

    Directory of Open Access Journals (Sweden)

    Stanislav SZABO

    2017-06-01

    Full Text Available The Laboratory of Aviation Safety and Security at CTU in Prague has recently started a project aimed at runway protection zones. The probability of exceeding by a certain distance from the runway in common incident/accident scenarios (take-off/landing overrun/veer-off, landing undershoot is being identified relative to the runway for any airport. As a result, the size and position of safety areas around runways are defined for the chosen probability. The basis for probability calculation is a probabilistic model using statistics from more than 1400 real-world cases where jet airplanes have been involved over the last few decades. Other scientific studies have contributed to understanding the issue and supported the model’s application to different conditions.

  16. A Two-Stage Algorithm for the Closed-Loop Location-Inventory Problem Model Considering Returns in E-Commerce

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available Facility location and inventory control are critical and highly related problems in the design of logistics system for e-commerce. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Focusing on the existing problem in e-commerce logistics system, we formulate a closed-loop location-inventory problem model considering returned merchandise to minimize the total cost which is produced in both forward and reverse logistics networks. To solve this nonlinear mixed programming model, an effective two-stage heuristic algorithm named LRCAC is designed by combining Lagrangian relaxation with ant colony algorithm (AC. Results of numerical examples show that LRCAC outperforms ant colony algorithm (AC on optimal solution and computing stability. The proposed model is able to help managers make the right decisions under e-commerce environment.

  17. Probabilistic forward model for electroencephalography source analysis

    International Nuclear Information System (INIS)

    Plis, Sergey M; George, John S; Jun, Sung C; Ranken, Doug M; Volegov, Petr L; Schmidt, David M

    2007-01-01

    Source localization by electroencephalography (EEG) requires an accurate model of head geometry and tissue conductivity. The estimation of source time courses from EEG or from EEG in conjunction with magnetoencephalography (MEG) requires a forward model consistent with true activity for the best outcome. Although MRI provides an excellent description of soft tissue anatomy, a high resolution model of the skull (the dominant resistive component of the head) requires CT, which is not justified for routine physiological studies. Although a number of techniques have been employed to estimate tissue conductivity, no present techniques provide the noninvasive 3D tomographic mapping of conductivity that would be desirable. We introduce a formalism for probabilistic forward modeling that allows the propagation of uncertainties in model parameters into possible errors in source localization. We consider uncertainties in the conductivity profile of the skull, but the approach is general and can be extended to other kinds of uncertainties in the forward model. We and others have previously suggested the possibility of extracting conductivity of the skull from measured electroencephalography data by simultaneously optimizing over dipole parameters and the conductivity values required by the forward model. Using Cramer-Rao bounds, we demonstrate that this approach does not improve localization results nor does it produce reliable conductivity estimates. We conclude that the conductivity of the skull has to be either accurately measured by an independent technique, or that the uncertainties in the conductivity values should be reflected in uncertainty in the source location estimates

  18. MODELING PROBABILISTIC CONFLICT OF TECHNOLOGICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. B. Desyatov

    2015-01-01

    Full Text Available Recently for the study of conflict increasingly used method of mathematical optical modeling. Its importance stems from the fact that experimental research such conflicts rather time-consuming and complex. However, existing approaches to the study of conflict do not take into account the stochastic nature of the systems, suffers from conceptual incompleteness. There is a need to develop models, algorithms and principles, in order to assess the conflict, to choose conflict resolution to ensure that not the worst of conditions. For stochastic technological systems as a utility function, we consider the probability of achieving a given objective. We assume that some system S1 is in conflict with the system S2, (SR2R К SR1R, if q(SR1R,SR2Rprobabilistic conflict of the first kind (А К1 B, if P(A/Bprobabilistic conflict of the second kind (А К2 B, if P(A/B

  19. A Probabilistic Asteroid Impact Risk Model

    Science.gov (United States)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  20. Measuring demand for flat water recreation using a two-stage/disequilibrium travel cost model with adjustment for overdispersion and self-selection

    Science.gov (United States)

    McKean, John R.; Johnson, Donn; Taylor, R. Garth

    2003-04-01

    An alternate travel cost model is applied to an on-site sample to estimate the value of flat water recreation on the impounded lower Snake River. Four contiguous reservoirs would be eliminated if the dams are breached to protect endangered Pacific salmon and steelhead trout. The empirical method applies truncated negative binomial regression with adjustment for endogenous stratification. The two-stage decision model assumes that recreationists allocate their time among work and leisure prior to deciding among consumer goods. The allocation of time and money among goods in the second stage is conditional on the predetermined work time and income. The second stage is a disequilibrium labor market which also applies if employers set work hours or if recreationists are not in the labor force. When work time is either predetermined, fixed by contract, or nonexistent, recreationists must consider separate prices and budgets for time and money.

  1. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  2. Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments

    Directory of Open Access Journals (Sweden)

    Fei Jin

    2013-05-01

    Full Text Available This paper studies the generalized spatial two stage least squares (GS2SLS estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.

  3. Probabilistic Model for Fatigue Crack Growth in Welded Bridge Details

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Yalamas, Thierry

    2013-01-01

    In the present paper a probabilistic model for fatigue crack growth in welded steel details in road bridges is presented. The probabilistic model takes the influence of bending stresses in the joints into account. The bending stresses can either be introduced by e.g. misalignment or redistribution...... of stresses in the structure. The fatigue stress ranges are estimated from traffic measurements and a generic bridge model. Based on the probabilistic models for the resistance and load the reliability is estimated for a typical welded steel detail. The results show that large misalignments in the joints can...

  4. Using Structured Knowledge Representation for Context-Sensitive Probabilistic Modeling

    National Research Council Canada - National Science Library

    Sakhanenko, Nikita A; Luger, George F

    2008-01-01

    We propose a context-sensitive probabilistic modeling system (COSMOS) that reasons about a complex, dynamic environment through a series of applications of smaller, knowledge-focused models representing contextually relevant information...

  5. A methodology for acquiring qualitative knowledge for probabilistic graphical models

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders L.

    2004-01-01

    We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model...

  6. Transitions in a probabilistic interface growth model

    International Nuclear Information System (INIS)

    Alves, S G; Moreira, J G

    2011-01-01

    We study a generalization of the Wolf–Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number n i of bindings of the site i: p i ∝n i ν . Through extensive simulations, in (1 + 1) dimensions, we find three behaviors depending on the ν value: (i) if ν is small, a crossover from the Mullins–Herring to the Edwards–Wilkinson (EW) universality class; (ii) for intermediate values of ν, a crossover from the EW to the Kardar–Parisi–Zhang (KPZ) universality class; and, finally, (iii) for large ν values, the system is always in the KPZ class. In (2 + 1) dimensions, we obtain three different behaviors: (i) a crossover from the Villain–Lai–Das Sarma to the EW universality class for small ν values; (ii) the EW class is always present for intermediate ν values; and (iii) a deviation from the EW class is observed for large ν values

  7. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  8. A two-stage model in a Bayesian framework to estimate a survival endpoint in the presence of confounding by indication.

    Science.gov (United States)

    Bellera, Carine; Proust-Lima, Cécile; Joseph, Lawrence; Richaud, Pierre; Taylor, Jeremy; Sandler, Howard; Hanley, James; Mathoulin-Pélissier, Simone

    2018-04-01

    Background Biomarker series can indicate disease progression and predict clinical endpoints. When a treatment is prescribed depending on the biomarker, confounding by indication might be introduced if the treatment modifies the marker profile and risk of failure. Objective Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte Carlo framework. For this purpose, we monitored the prostate-specific antigens in prostate cancer patients treated with external beam radiation therapy. In the presence of rising prostate-specific antigens after external beam radiation therapy, salvage hormone therapy can be prescribed to reduce both the prostate-specific antigens concentration and the risk of clinical failure, an illustration of confounding by indication. We focused on the assessment of the prognostic value of hormone therapy and prostate-specific antigens trajectory on the risk of failure. Methods We used a two-stage model within a Bayesian framework to assess the role of the prostate-specific antigens profile on clinical failure while accounting for a secondary treatment prescribed by indication. We modeled prostate-specific antigens using a hierarchical piecewise linear trajectory with a random changepoint. Residual prostate-specific antigens variability was expressed as a function of prostate-specific antigens concentration. Covariates in the survival model included hormone therapy, baseline characteristics, and individual predictions of the prostate-specific antigens nadir and timing and prostate-specific antigens slopes before and after the nadir as provided by the longitudinal process. Results We showed positive associations between an increased prostate-specific antigens nadir, an earlier changepoint and a steeper post-nadir slope with an increased risk of failure. Importantly, we highlighted a significant benefit of hormone therapy, an effect that was not observed when the prostate-specific antigens trajectory was

  9. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  10. Sensitivity Analysis in Two-Stage DEA

    Directory of Open Access Journals (Sweden)

    Athena Forghani

    2015-07-01

    Full Text Available Data envelopment analysis (DEA is a method for measuring the efficiency of peer decision making units (DMUs which uses a set of inputs to produce a set of outputs. In some cases, DMUs have a two-stage structure, in which the first stage utilizes inputs to produce outputs used as the inputs of the second stage to produce final outputs. One important issue in two-stage DEA is the sensitivity of the results of an analysis to perturbations in the data. The current paper looks into combined model for two-stage DEA and applies the sensitivity analysis to DMUs on the entire frontier. In fact, necessary and sufficient conditions for preserving a DMU's efficiency classiffication are developed when various data changes are applied to all DMUs.

  11. Sensitivity Analysis in Two-Stage DEA

    Directory of Open Access Journals (Sweden)

    Athena Forghani

    2015-12-01

    Full Text Available Data envelopment analysis (DEA is a method for measuring the efficiency of peer decision making units (DMUs which uses a set of inputs to produce a set of outputs. In some cases, DMUs have a two-stage structure, in which the first stage utilizes inputs to produce outputs used as the inputs of the second stage to produce final outputs. One important issue in two-stage DEA is the sensitivity of the results of an analysis to perturbations in the data. The current paper looks into combined model for two-stage DEA and applies the sensitivity analysis to DMUs on the entire frontier. In fact, necessary and sufficient conditions for preserving a DMU's efficiency classiffication are developed when various data changes are applied to all DMUs.

  12. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas

    2009-01-01

    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  13. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail

    2012-04-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  14. Probabilistic Modeling and Visualization for Bankruptcy Prediction

    DEFF Research Database (Denmark)

    Antunes, Francisco; Ribeiro, Bernardete; Pereira, Francisco Camara

    2017-01-01

    In accounting and finance domains, bankruptcy prediction is of great utility for all of the economic stakeholders. The challenge of accurate assessment of business failure prediction, specially under scenarios of financial crisis, is known to be complicated. Although there have been many successful...... studies on bankruptcy detection, seldom probabilistic approaches were carried out. In this paper we assume a probabilistic point-of-view by applying Gaussian Processes (GP) in the context of bankruptcy prediction, comparing it against the Support Vector Machines (SVM) and the Logistic Regression (LR......). Using real-world bankruptcy data, an in-depth analysis is conducted showing that, in addition to a probabilistic interpretation, the GP can effectively improve the bankruptcy prediction performance with high accuracy when compared to the other approaches. We additionally generate a complete graphical...

  15. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  16. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  17. Cross-orientation masking in human color vision: application of a two-stage model to assess dichoptic and monocular sources of suppression.

    Science.gov (United States)

    Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T

    2013-05-28

    Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.

  18. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    International Nuclear Information System (INIS)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-01-01

    Highlights: ► We investigate sulphur during MSW gasification within a fluid bed-plasma process. ► We review the literature on the feed, sulphur and process principles therein. ► The need for research in this area was identified. ► We perform thermodynamic modelling of the fluid bed stage. ► Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H 2 S) – Na and K based species in particular. Work is underway to further investigate and validate this.

  19. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Lo

    2016-08-01

    Full Text Available Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor neural circuit mechanism with discrimination in perception.

  20. Site-dependent modulating effects of conjugated fatty acids from safflower oil in a rat two-stage carcinogenesis model in female Sprague-Dawley rats.

    Science.gov (United States)

    Kimoto, N; Hirose, M; Futakuchi, M; Iwata, T; Kasai, M; Shirai, T

    2001-07-10

    Modifying effects of dietary administration of conjugated fatty acids from safflower oil (CFA-S), rich in conjugated linoleic acid, on major organs were examined in the post-initiation stage of a two-stage carcinogenesis model in female rats. Groups of 21 or 22 F344 female rats were treated sequentially with 2,2'-dihydroxy-di-n-propylnitosamine (intragastrically, i.g.), 7,12-dimethylbenz[a]anthracene (i.g.), 1,2-dimethylhydrazine (subcutaneously) and N-butyl-N-(4-hydroxybutyl)nitrosamine (in drinking water) during the first 3 weeks for initiation, and then administered diet containing 1 or 0.1% CFA-S for 33 weeks. Further groups of animals were treated with carcinogens or 1% CFA-S alone, or maintained as non-treated controls. All surviving animals were killed at week 36, and major organs were examined histopathologically for development of pre-neoplastic and neoplastic lesions. The 1 and 0.1% CFA-S treatment significantly decreased the incidence and multiplicity of mammary carcinomas, though a clear dose response was not observed. In the urinary bladder, the incidence of papillary or nodular hyperplasia but not tumors was significantly increased in the 1% CFA-S-treated group. The results indicate that low dose CFA-S may find application as a potent chemopreventor of mammary carcinogenesis.

  1. A probabilistic model for snow avalanche occurrence

    Science.gov (United States)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  2. Probabilistic modeling of discourse-aware sentence processing.

    Science.gov (United States)

    Dubey, Amit; Keller, Frank; Sturt, Patrick

    2013-07-01

    Probabilistic models of sentence comprehension are increasingly relevant to questions concerning human language processing. However, such models are often limited to syntactic factors. This restriction is unrealistic in light of experimental results suggesting interactions between syntax and other forms of linguistic information in human sentence processing. To address this limitation, this article introduces two sentence processing models that augment a syntactic component with information about discourse co-reference. The novel combination of probabilistic syntactic components with co-reference classifiers permits them to more closely mimic human behavior than existing models. The first model uses a deep model of linguistics, based in part on probabilistic logic, allowing it to make qualitative predictions on experimental data; the second model uses shallow processing to make quantitative predictions on a broad-coverage reading-time corpus. Copyright © 2013 Cognitive Science Society, Inc.

  3. Potential effects of the herbicide Diuron on mammary and urinary bladder two-stage carcinogenesis in a female Swiss mouse model.

    Science.gov (United States)

    de Moura, Nelci Antunes; Grassi, Tony Fernando; Rodrigues, Maria Aparecida Marchesan; Barbisan, Luís Fernando

    2010-02-01

    The potential promoting effect of Diuron was investigated in a mouse model of mammary and urinary bladder carcinogenesis induced by 7,12-dimethylbenz(a)anthracene (DMBA) and N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). Four-week old female Swiss mice were allocated to five groups: Groups G1-G3 received DMBA (5 x 1.5 mg/mouse) and BBN (8 x 7.5 mg/mouse) and G4 and G5 groups received only vehicles during the first 6 weeks. At week 7, G1 and G5 groups received basal diet and G2, G3 and G4 groups were fed a diet containing Diuron at 1,250, 2,500 and 2,500 ppm, respectively, during 13 weeks. At week 20, the animals were euthanized and the gross tumors were registered. Mammary glands and urinary bladder were processed for histopathological analysis. Samples from non-tumor areas were evaluated for cell proliferation by 5-bromodeoxyuridine labeling index (BrdU-LI%) and apoptosis. Dietary treatment with Diuron at 1,250 and 2,500 ppm significantly increased BrdU-LI% (P Diuron 2,500 ppm (G3). In contrast, in the mammary gland, Diuron feeding for 13 weeks did not significantly alter cell proliferation and apoptosis indexes or the incidence of hyperplastic lesions or neoplasms in the DMBA/BBN-initiated groups. These findings suggest that Diuron is a promoting agent to the urinary bladder but not to the mammary gland in female Swiss mice submitted to a medium-term two-stage carcinogenesis bioassay.

  4. Probabilistic language models in cognitive neuroscience: Promises and pitfalls.

    Science.gov (United States)

    Armeni, Kristijan; Willems, Roel M; Frank, Stefan L

    2017-12-01

    Cognitive neuroscientists of language comprehension study how neural computations relate to cognitive computations during comprehension. On the cognitive part of the equation, it is important that the computations and processing complexity are explicitly defined. Probabilistic language models can be used to give a computationally explicit account of language complexity during comprehension. Whereas such models have so far predominantly been evaluated against behavioral data, only recently have the models been used to explain neurobiological signals. Measures obtained from these models emphasize the probabilistic, information-processing view of language understanding and provide a set of tools that can be used for testing neural hypotheses about language comprehension. Here, we provide a cursory review of the theoretical foundations and example neuroimaging studies employing probabilistic language models. We highlight the advantages and potential pitfalls of this approach and indicate avenues for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CAD Parts-Based Assembly Modeling by Probabilistic Reasoning

    KAUST Repository

    Zhang, Kai-Ke; Hu, Kai-Mo; Yin, Li-Cheng; Yan, Dongming; Wang, Bin

    2016-01-01

    Nowadays, increasing amount of parts and sub-assemblies are publicly available, which can be used directly for product development instead of creating from scratch. In this paper, we propose an interactive design framework for efficient and smart assembly modeling, in order to improve the design efficiency. Our approach is based on a probabilistic reasoning. Given a collection of industrial assemblies, we learn a probabilistic graphical model from the relationships between the parts of assemblies. Then in the modeling stage, this probabilistic model is used to suggest the most likely used parts compatible with the current assembly. Finally, the parts are assembled under certain geometric constraints. We demonstrate the effectiveness of our framework through a variety of assembly models produced by our prototype system. © 2015 IEEE.

  6. CAD Parts-Based Assembly Modeling by Probabilistic Reasoning

    KAUST Repository

    Zhang, Kai-Ke

    2016-04-11

    Nowadays, increasing amount of parts and sub-assemblies are publicly available, which can be used directly for product development instead of creating from scratch. In this paper, we propose an interactive design framework for efficient and smart assembly modeling, in order to improve the design efficiency. Our approach is based on a probabilistic reasoning. Given a collection of industrial assemblies, we learn a probabilistic graphical model from the relationships between the parts of assemblies. Then in the modeling stage, this probabilistic model is used to suggest the most likely used parts compatible with the current assembly. Finally, the parts are assembled under certain geometric constraints. We demonstrate the effectiveness of our framework through a variety of assembly models produced by our prototype system. © 2015 IEEE.

  7. HMM_Model-Checker pour la vérification probabiliste HMM_Model ...

    African Journals Online (AJOL)

    ASSIA

    probabiliste –Télescope Hubble. Abstract. Probabilistic verification for embedded systems continues to attract more and more followers in the research community. Given a probabilistic model, a formula of temporal logic, describing a property of a system and an exploration algorithm to check whether the property is satisfied ...

  8. Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors

    Directory of Open Access Journals (Sweden)

    Claudio Monteiro

    2018-04-01

    Full Text Available This article presents original probabilistic price forecasting meta-models (PPFMCP models, by aggregation of competitive predictors, for day-ahead hourly probabilistic price forecasting. The best twenty predictors of the EEM2016 EPF competition are used to create ensembles of hourly spot price forecasts. For each hour, the parameter values of the probability density function (PDF of a Beta distribution for the output variable (hourly price can be directly obtained from the expected and variance values associated to the ensemble for such hour, using three aggregation strategies of predictor forecasts corresponding to three PPFMCP models. A Reliability Indicator (RI and a Loss function Indicator (LI are also introduced to give a measure of uncertainty of probabilistic price forecasts. The three PPFMCP models were satisfactorily applied to the real-world case study of the Iberian Electricity Market (MIBEL. Results from PPFMCP models showed that PPFMCP model 2, which uses aggregation by weight values according to daily ranks of predictors, was the best probabilistic meta-model from a point of view of mean absolute errors, as well as of RI and LI. PPFMCP model 1, which uses the averaging of predictor forecasts, was the second best meta-model. PPFMCP models allow evaluations of risk decisions based on the price to be made.

  9. Undecidability of model-checking branching-time properties of stateless probabilistic pushdown process

    OpenAIRE

    Lin, T.

    2014-01-01

    In this paper, we settle a problem in probabilistic verification of infinite--state process (specifically, {\\it probabilistic pushdown process}). We show that model checking {\\it stateless probabilistic pushdown process} (pBPA) against {\\it probabilistic computational tree logic} (PCTL) is undecidable.

  10. Generative probabilistic models extend the scope of inferential structure determination

    DEFF Research Database (Denmark)

    Olsson, Simon; Boomsma, Wouter; Frellsen, Jes

    2011-01-01

    demonstrate that the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for the use of sophisticated probabilistic models of biomolecular structure......Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretically...

  11. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  12. Approximating methods for intractable probabilistic models: Applications in neuroscience

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro

    2002-01-01

    This thesis investigates various methods for carrying out approximate inference in intractable probabilistic models. By capturing the relationships between random variables, the framework of graphical models hints at which sets of random variables pose a problem to the inferential step. The appro...

  13. Probabilistic Load Models for Simulating the Impact of Load Management

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    . It is concluded that the AR(12) model is favored with limited measurement data and that the joint-normal model may provide better results with a large data set. Both models can be applied in general to model load time series and used in time-sequential simulation of distribution system planning.......This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density, probabilistic distribution and quantile value. Two probabilistic load models, i.e. the joint-normal model and the autoregressive model of order 12 (AR(12)), are proposed...... to simulate the impact of load management. The joint-normal model is superior in modeling the tail region of the hourly load distribution and implementing the change of hourly standard deviation. Whereas the AR(12) model requires much less parameter and is superior in modeling the autocorrelation...

  14. Review of probabilistic models of the strength of composite materials

    International Nuclear Information System (INIS)

    Sutherland, L.S.; Guedes Soares, C.

    1997-01-01

    The available literature concerning probabilistic models describing the strength of composite materials has been reviewed to highlight the important aspects of this behaviour which will be of interest to the modelling and analysis of a complex system. The success with which these theories have been used to predict experimental results has been discussed. Since the brittle reinforcement phase largely controls the strength of composites, the probabilistic theories used to describe the strength of brittle materials, fibres and bundles of fibres have been detailed. The use of these theories to predict the strength of composite materials has been considered, along with further developments incorporating the damage accumulation observed in the failure of such materials. Probabilistic theories of the strength of short-fibre composites have been outlined. Emphasis has been placed throughout on straightforward engineering explanations of these theories and how they may be used, rather than providing comprehensive statistical descriptions

  15. Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage?

    Science.gov (United States)

    Morris, Tim P; Fisher, David J; Kenward, Michael G; Carpenter, James R

    2018-04-30

    Quantitative evidence synthesis through meta-analysis is central to evidence-based medicine. For well-documented reasons, the meta-analysis of individual patient data is held in higher regard than aggregate data. With access to individual patient data, the analysis is not restricted to a "two-stage" approach (combining estimates and standard errors) but can estimate parameters of interest by fitting a single model to all of the data, a so-called "one-stage" analysis. There has been debate about the merits of one- and two-stage analysis. Arguments for one-stage analysis have typically noted that a wider range of models can be fitted and overall estimates may be more precise. The two-stage side has emphasised that the models that can be fitted in two stages are sufficient to answer the relevant questions, with less scope for mistakes because there are fewer modelling choices to be made in the two-stage approach. For Gaussian data, we consider the statistical arguments for flexibility and precision in small-sample settings. Regarding flexibility, several of the models that can be fitted only in one stage may not be of serious interest to most meta-analysis practitioners. Regarding precision, we consider fixed- and random-effects meta-analysis and see that, for a model making certain assumptions, the number of stages used to fit this model is irrelevant; the precision will be approximately equal. Meta-analysts should choose modelling assumptions carefully. Sometimes relevant models can only be fitted in one stage. Otherwise, meta-analysts are free to use whichever procedure is most convenient to fit the identified model. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  16. A Two Stage Solution Procedure for Production Planning System with Advance Demand Information

    Science.gov (United States)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Hasuike, Takashi; Okuhara, Koji

    We model for ‘Naiji System’ which is a unique corporation technique between a manufacturer and suppliers in Japan. We propose a two stage solution procedure for a production planning problem with advance demand information, which is called ‘Naiji’. Under demand uncertainty, this model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to a probabilistic constraint and some linear production constraints. By the convexity and the special structure of correlation matrix in the problem where inventory for different periods is not independent, we propose a solution procedure with two stages which are named Mass Customization Production Planning & Management System (MCPS) and Variable Mesh Neighborhood Search (VMNS) based on meta-heuristics. It is shown that the proposed solution procedure is available to get a near optimal solution efficiently and practical for making a good master production schedule in the suppliers.

  17. Probabilistic Modelling of Robustness and Resilience of Power Grid Systems

    DEFF Research Database (Denmark)

    Qin, Jianjun; Sansavini, Giovanni; Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper proposes a framework for the modeling and analysis of resilience of networked power grid systems. A probabilistic systems model is proposed based on the JCSS Probabilistic Model Code (JCSS, 2001) and deterministic engineering systems modeling techniques such as the DC flow model...... cascading failure event scenarios (Nan and Sansavini, 2017). The concept of direct and indirect consequences proposed by the Joint Committee on Structural Safety (JCSS, 2008) is utilized to model the associated consequences. To facilitate a holistic modeling of robustness and resilience, and to identify how...... these characteristics may be optimized these characteristics, the power grid system is finally interlinked with its fundamental interdependent systems, i.e. a societal model, a regulatory system and control feedback loops. The proposed framework is exemplified with reference to optimal decision support for resilience...

  18. On the logical specification of probabilistic transition models

    CSIR Research Space (South Africa)

    Rens, G

    2013-05-01

    Full Text Available We investigate the requirements for specifying the behaviors of actions in a stochastic domain. That is, we propose how to write sentences in a logical language to capture a model of probabilistic transitions due to the execution of actions of some...

  19. Probabilistic predictive modelling of carbon nanocomposites for medical implants design.

    Science.gov (United States)

    Chua, Matthew; Chui, Chee-Kong

    2015-04-01

    Modelling of the mechanical properties of carbon nanocomposites based on input variables like percentage weight of Carbon Nanotubes (CNT) inclusions is important for the design of medical implants and other structural scaffolds. Current constitutive models for the mechanical properties of nanocomposites may not predict well due to differences in conditions, fabrication techniques and inconsistencies in reagents properties used across industries and laboratories. Furthermore, the mechanical properties of the designed products are not deterministic, but exist as a probabilistic range. A predictive model based on a modified probabilistic surface response algorithm is proposed in this paper to address this issue. Tensile testing of three groups of different CNT weight fractions of carbon nanocomposite samples displays scattered stress-strain curves, with the instantaneous stresses assumed to vary according to a normal distribution at a specific strain. From the probabilistic density function of the experimental data, a two factors Central Composite Design (CCD) experimental matrix based on strain and CNT weight fraction input with their corresponding stress distribution was established. Monte Carlo simulation was carried out on this design matrix to generate a predictive probabilistic polynomial equation. The equation and method was subsequently validated with more tensile experiments and Finite Element (FE) studies. The method was subsequently demonstrated in the design of an artificial tracheal implant. Our algorithm provides an effective way to accurately model the mechanical properties in implants of various compositions based on experimental data of samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. ISSUES ASSOCIATED WITH PROBABILISTIC FAILURE MODELING OF DIGITAL SYSTEMS

    International Nuclear Information System (INIS)

    CHU, T.L.; MARTINEZ-GURIDI, G.; LIHNER, J.; OVERLAND, D.

    2004-01-01

    The current U.S. Nuclear Regulatory Commission (NRC) licensing process of instrumentation and control (I and C) systems is based on deterministic requirements, e.g., single failure criteria, and defense in depth and diversity. Probabilistic considerations can be used as supplements to the deterministic process. The National Research Council has recommended development of methods for estimating failure probabilities of digital systems, including commercial off-the-shelf (COTS) equipment, for use in probabilistic risk assessment (PRA). NRC staff has developed informal qualitative and quantitative requirements for PRA modeling of digital systems. Brookhaven National Laboratory (BNL) has performed a review of the-state-of-the-art of the methods and tools that can potentially be used to model digital systems. The objectives of this paper are to summarize the review, discuss the issues associated with probabilistic modeling of digital systems, and identify potential areas of research that would enhance the state of the art toward a satisfactory modeling method that could be integrated with a typical probabilistic risk assessment

  1. Probabilistic finite element modeling of waste rollover

    International Nuclear Information System (INIS)

    Khaleel, M.A.; Cofer, W.F.; Al-fouqaha, A.A.

    1995-09-01

    Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ''rolls over'' and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described

  2. Modelling fog in probabilistic consequence assessment

    International Nuclear Information System (INIS)

    Underwood, B.Y.

    1993-02-01

    Earlier work examined the potential influence of foggy weather conditions on the probabilistic assessment of the consequences of accidental releases of radioactive material to the atmosphere (PCA), in particular the impact of a fraction of the released aerosol becoming incorporated into droplets. A major uncertainty emerging from the initial scoping study concerned estimation of the fraction of the released material that would be taken up into droplets. An objective is to construct a method for handling in a PCA context the effect of fog on deposition, basing the method on the experience gained from prior investigations. There are two aspects to explicitly including the effect of fog in PCA: estimating the probability of occurrence of various types of foggy condition and calculating the impact on the conventional end-points of consequence assessment. For the first, a brief outline is given of the use of meteorological data by PCA computer codes, followed by a discussion of some routinely-recorded meteorological parameters that are pertinent to fog, such as the presentweather code and horizontal visibility. Four stylized scenarios are defined to cover a wide range of situations in which particle growth by uptake of water may have an important impact on deposition. A description is then given of the way in which routine meteorological data could be used to flag the presence of each of these conditions in the meteorological data file used by the PCA code. The approach developed to calculate the impact on deposition is pitched at a level of complexity appropriate to the PCA context and reflects the physical constraints of the system and accounts for the specific characteristics of the released aerosol. (Author)

  3. An Individual-based Probabilistic Model for Fish Stock Simulation

    Directory of Open Access Journals (Sweden)

    Federico Buti

    2010-08-01

    Full Text Available We define an individual-based probabilistic model of a sole (Solea solea behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA, a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.

  4. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method

    DEFF Research Database (Denmark)

    Valentin, Jan B.; Andreetta, Christian; Boomsma, Wouter

    2014-01-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length s....... The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. © 2013 Wiley Periodicals, Inc....

  5. Systems analysis approach to probabilistic modeling of fault trees

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Qualls, C.R.

    1985-01-01

    A method of probabilistic modeling of fault tree logic combined with stochastic process theory (Markov modeling) has been developed. Systems are then quantitatively analyzed probabilistically in terms of their failure mechanisms including common cause/common mode effects and time dependent failure and/or repair rate effects that include synergistic and propagational mechanisms. The modeling procedure results in a state vector set of first order, linear, inhomogeneous, differential equations describing the time dependent probabilities of failure described by the fault tree. The solutions of this Failure Mode State Variable (FMSV) model are cumulative probability distribution functions of the system. A method of appropriate synthesis of subsystems to form larger systems is developed and applied to practical nuclear power safety systems

  6. Reasoning with probabilistic and deterministic graphical models exact algorithms

    CERN Document Server

    Dechter, Rina

    2013-01-01

    Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well

  7. Probabilistic Compositional Models: solution of an equivalence problem

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Václav

    2013-01-01

    Roč. 54, č. 5 (2013), s. 590-601 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Probabilistic model * Compositional model * Independence * Equivalence Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kratochvil-0391079.pdf

  8. Probabilistic evaluation of process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2016-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  9. Optimization and evaluation of probabilistic-logic sequence models

    DEFF Research Database (Denmark)

    Christiansen, Henning; Lassen, Ole Torp

    to, in principle, Turing complete languages. In general, such models are computationally far to complex for direct use, so optimization by pruning and approximation are needed. % The first steps are made towards a methodology for optimizing such models by approximations using auxiliary models......Analysis of biological sequence data demands more and more sophisticated and fine-grained models, but these in turn introduce hard computational problems. A class of probabilistic-logic models is considered, which increases the expressibility from HMM's and SCFG's regular and context-free languages...

  10. Probabilistic Modeling and Risk Assessment of Cable Icing

    DEFF Research Database (Denmark)

    Roldsgaard, Joan Hee

    This dissertation addresses the issues related to icing of structures with special emphasis on bridge cables. Cable supported bridges in cold climate suffers for ice accreting on the cables, this poses three different undesirable situations. Firstly the changed shape of the cable due to ice...... preliminary framework is modified for assessing the probability of occurrence of in-cloud and precipitation icing and its duration. Different probabilistic models are utilized for the representation of the meteorological variables and their appropriateness is evaluated both through goodness-of-fit tests...... are influencing the two icing mechanisms and their duration. The model is found to be more sensitive to changes in the discretization levels of the input variables. Thirdly the developed operational probabilistic framework for the assessment of the expected number of occurrences of ice/snow accretion on bridge...

  11. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  12. Probabilistic Model-based Background Subtraction

    DEFF Research Database (Denmark)

    Krüger, Volker; Anderson, Jakob; Prehn, Thomas

    2005-01-01

    is the correlation between pixels. In this paper we introduce a model-based background subtraction approach which facilitates prior knowledge of pixel correlations for clearer and better results. Model knowledge is being learned from good training video data, the data is stored for fast access in a hierarchical...

  13. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  14. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  15. A Probabilistic Model for Uncertain Problem Solving

    National Research Council Canada - National Science Library

    Farley, Arthur M

    1981-01-01

    ... and provide pragmatic focusing. Search methods are generalized to produce tree-structured plans incorporating the use of such operators. Several application domains for the model also are discussed.

  16. Probabilistic mixture-based image modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Havlíček, Vojtěch; Grim, Jiří

    2011-01-01

    Roč. 47, č. 3 (2011), s. 482-500 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; GA MŠk(CZ) 2C06019; GA ČR(CZ) GA103/11/0335 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF texture modelling * discrete distribution mixtures * Bernoulli mixture * Gaussian mixture * multi-spectral texture modelling Subject RIV: BD - Theory of Information Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/RO/haindl-0360244.pdf

  17. Building probabilistic graphical models with Python

    CERN Document Server

    Karkera, Kiran R

    2014-01-01

    This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

  18. A Probabilistic Model of Cross-Categorization

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Mansinghka, Vikash; Tenenbaum, Joshua B.

    2011-01-01

    Most natural domains can be represented in multiple ways: we can categorize foods in terms of their nutritional content or social role, animals in terms of their taxonomic groupings or their ecological niches, and musical instruments in terms of their taxonomic categories or social uses. Previous approaches to modeling human categorization have…

  19. Probabilistic Reachability for Parametric Markov Models

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

    2011-01-01

    Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...

  20. Towards port sustainability through probabilistic models: Bayesian networks

    Directory of Open Access Journals (Sweden)

    B. Molina

    2018-04-01

    Full Text Available It is necessary that a manager of an infrastructure knows relations between variables. Using Bayesian networks, variables can be classified, predicted and diagnosed, being able to estimate posterior probability of the unknown ones based on known ones. The proposed methodology has generated a database with port variables, which have been classified as economic, social, environmental and institutional, as addressed in of smart ports studies made in all Spanish Port System. Network has been developed using an acyclic directed graph, which have let us know relationships in terms of parents and sons. In probabilistic terms, it can be concluded from the constructed network that the most decisive variables for port sustainability are those that are part of the institutional dimension. It has been concluded that Bayesian networks allow modeling uncertainty probabilistically even when the number of variables is high as it occurs in port planning and exploitation.

  1. Probabilistic flood damage modelling at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  2. Probabilistic error bounds for reduced order modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, M.G.; Wang, C.; Abdel-Khalik, H.S., E-mail: abdo@purdue.edu, E-mail: wang1730@purdue.edu, E-mail: abdelkhalik@purdue.edu [Purdue Univ., School of Nuclear Engineering, West Lafayette, IN (United States)

    2015-07-01

    Reduced order modeling has proven to be an effective tool when repeated execution of reactor analysis codes is required. ROM operates on the assumption that the intrinsic dimensionality of the associated reactor physics models is sufficiently small when compared to the nominal dimensionality of the input and output data streams. By employing a truncation technique with roots in linear algebra matrix decomposition theory, ROM effectively discards all components of the input and output data that have negligible impact on reactor attributes of interest. This manuscript introduces a mathematical approach to quantify the errors resulting from the discarded ROM components. As supported by numerical experiments, the introduced analysis proves that the contribution of the discarded components could be upper-bounded with an overwhelmingly high probability. The reverse of this statement implies that the ROM algorithm can self-adapt to determine the level of the reduction needed such that the maximum resulting reduction error is below a given tolerance limit that is set by the user. (author)

  3. Probabilistic Modeling of the Renal Stone Formation Module

    Science.gov (United States)

    Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.

    2013-01-01

    The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously

  4. A probabilistic model of brittle crack formation

    Science.gov (United States)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  5. Can model weighting improve probabilistic projections of climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni; Ylhaeisi, Jussi S. [Department of Physics, P.O. Box 48, University of Helsinki (Finland)

    2012-10-15

    Recently, Raeisaenen and co-authors proposed a weighting scheme in which the relationship between observable climate and climate change within a multi-model ensemble determines to what extent agreement with observations affects model weights in climate change projection. Within the Third Coupled Model Intercomparison Project (CMIP3) dataset, this scheme slightly improved the cross-validated accuracy of deterministic projections of temperature change. Here the same scheme is applied to probabilistic temperature change projection, under the strong limiting assumption that the CMIP3 ensemble spans the actual modeling uncertainty. Cross-validation suggests that probabilistic temperature change projections may also be improved by this weighting scheme. However, the improvement relative to uniform weighting is smaller in the tail-sensitive logarithmic score than in the continuous ranked probability score. The impact of the weighting on projection of real-world twenty-first century temperature change is modest in most parts of the world. However, in some areas mainly over the high-latitude oceans, the mean of the distribution is substantially changed and/or the distribution is considerably narrowed. The weights of individual models vary strongly with location, so that a model that receives nearly zero weight in some area may still get a large weight elsewhere. Although the details of this variation are method-specific, it suggests that the relative strengths of different models may be difficult to harness by weighting schemes that use spatially uniform model weights. (orig.)

  6. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  7. A Probabilistic Model of Meter Perception: Simulating Enculturation

    Directory of Open Access Journals (Sweden)

    Bastiaan van der Weij

    2017-05-01

    Full Text Available Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  8. A deterministic-probabilistic model for contaminant transport. User manual

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, F W; Crowe, A

    1980-08-01

    This manual describes a deterministic-probabilistic contaminant transport (DPCT) computer model designed to simulate mass transfer by ground-water movement in a vertical section of the earth's crust. The model can account for convection, dispersion, radioactive decay, and cation exchange for a single component. A velocity is calculated from the convective transport of the ground water for each reference particle in the modeled region; dispersion is accounted for in the particle motion by adding a readorn component to the deterministic motion. The model is sufficiently general to enable the user to specify virtually any type of water table or geologic configuration, and a variety of boundary conditions. A major emphasis in the model development has been placed on making the model simple to use, and information provided in the User Manual will permit changes to the computer code to be made relatively easily for those that might be required for specific applications. (author)

  9. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...

  10. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  11. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...... are discussed in this paper. A probabilistic fatigue model for a RCSF is established which makes a rational treatment of the uncertainties involved in the complex interaction between fatigue cyclic loads and reinforced concrete. Design and limit state equations are established considering concrete shear...

  12. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    Science.gov (United States)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  13. The role of outside-school factors in science education: a two-stage theoretical model linking Bourdieu and Sen, with a case study

    Science.gov (United States)

    Gokpinar, Tuba; Reiss, Michael

    2016-05-01

    The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and social capital, and field with Sen's capability approach, we develop a model of students' science-related capability development. Our model proposes that the role of outside-school factors is twofold, first, in providing an initial set of science-related resources (i.e. habitus, cultural and social capital), and then in conversion of these resources to science-related capabilities. The model also highlights the distinction between science-related functionings (outcomes achieved by individuals) and science-related capabilities (ability to achieve desired functionings), and argues that it is necessary to consider science-related capability development in evaluating the effectiveness of science education. We then test our theoretical model with an account of three Turkish immigrant students' science-related capabilities and the role of outside-school factors in forming and extending these capabilities. We use student and parent interviews, student questionnaires and in-class observations to provide an analysis of how outside-school factors influence these students' attitudes, aspirations and attainment in science.

  14. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  15. Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models

    Energy Technology Data Exchange (ETDEWEB)

    Galan, S.F. [Dpto. de Inteligencia Artificial, E.T.S.I. Informatica (UNED), Juan del Rosal, 16, 28040 Madrid (Spain)]. E-mail: seve@dia.uned.es; Mosleh, A. [2100A Marie Mount Hall, Materials and Nuclear Engineering Department, University of Maryland, College Park, MD 20742 (United States)]. E-mail: mosleh@umd.edu; Izquierdo, J.M. [Area de Modelado y Simulacion, Consejo de Seguridad Nuclear, Justo Dorado, 11, 28040 Madrid (Spain)]. E-mail: jmir@csn.es

    2007-08-15

    The {omega}-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the {omega}-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the {omega}-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents.

  16. Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models

    International Nuclear Information System (INIS)

    Galan, S.F.; Mosleh, A.; Izquierdo, J.M.

    2007-01-01

    The ω-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the ω-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the ω-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents

  17. Probabilistic models of population evolution scaling limits, genealogies and interactions

    CERN Document Server

    Pardoux, Étienne

    2016-01-01

    This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtai...

  18. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  19. Probabilistic modeling of crack networks in thermal fatigue

    International Nuclear Information System (INIS)

    Malesys, N.

    2007-11-01

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  20. Methane and Environmental Change during the Paleocene-Eocene Thermal Maximum (PETM): Modeling the PETM Onset as a Two-stage Event

    Science.gov (United States)

    Carozza, David A.; Mysak, Lawrence A.; Schmidt, Gavin A.

    2011-01-01

    An atmospheric CH4 box model coupled to a global carbon cycle box model is used to constrain the carbon emission associated with the PETM and assess the role of CH4 during this event. A range of atmospheric and oceanic emission scenarios representing different amounts, rates, and isotopic signatures of emitted carbon are used to model the PETM onset. The first 3 kyr of the onset, a pre-isotope excursion stage, is simulated by the atmospheric release of 900 to 1100 Pg C CH4 with a delta C-13 of -22 to - 30 %. For a global average warming of 3 deg C, a release of CO2 to the ocean and CH4 to the atmosphere totalling 900 to 1400 Pg C, with a delta C-13 of -50 to -60%, simulates the subsequent 1 -kyr isotope excursion stage. To explain the observations, the carbon must have been released over at most 500 years. The first stage results cannot be associated with any known PETM hypothesis. However, the second stage results are consistent with a methane hydrate source. More than a single source of carbon is required to explain the PETM onset.

  1. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process: Laboratory scale studies modelling and technical assessment. Final report, [October 1, 1988--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Popper, G.A.; Smith, T.O.

    1993-06-01

    Reported herein are the details and results of Laboratory-Scale experiments using sub-bituminous and bituminous coal concluded at Hydrocarbon Research, Inc., under DOE Contract No. AC22-88PCB8818 during the period October 1, 1988 to June 30, 1993. The work described in this report is primarily concerned with tests on a Laboratory Scale primarily using microautoclaves. Experiments were conducted evaluating coal, solvents, start-up oils, catalysts, thermal treatments, C0{sub 2} addition and sulfur compound effects. Other microautoclave tests are included in the companion topical reports for this contract, DE-88818-TOP-01 & 02 on Sub-Bituminous and Bituminous Bench-Scale and PDU activities. In addition to the Laboratory Scale Studies, kinetic data and modelling results from Bench-Scale and Microautoclave tests are interpreted and presented along with some economic updates and sensitivity studies.

  2. A probabilistic model for US nuclear power construction times

    International Nuclear Information System (INIS)

    Shash, A.A.H.

    1988-01-01

    Construction time for nuclear power plants is an important element in planning for resources to meet future load demands. Analysis of actual versus estimated construction times for past US nuclear power plants indicates that utilities have continuously underestimated their power plants' construction durations. The analysis also indicates that the actual average construction time has been increasing upward, and the actual durations of power plants permitted to construct in the same year varied substantially. This study presents two probabilistic models for nuclear power construction time for use by the nuclear industry as estimating tool. The study also presents a detailed explanation of the factors that are responsible for increasing and varying nuclear power construction times. Observations on 91 complete nuclear units were involved in three interdependent analyses in the process of explanation and derivation of the probabilistic models. The historical data was first utilized in the data envelopment analysis (DEA) for the purpose of obtaining frontier index measures for project management achievement in building nuclear power plants

  3. A Probabilistic Graphical Model to Detect Chromosomal Domains

    Science.gov (United States)

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  4. Probabilistic delay differential equation modeling of event-related potentials.

    Science.gov (United States)

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    Science.gov (United States)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  6. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  7. Applying Probabilistic Decision Models to Clinical Trial Design

    Science.gov (United States)

    Smith, Wade P; Phillips, Mark H

    2018-01-01

    Clinical trial design most often focuses on a single or several related outcomes with corresponding calculations of statistical power. We consider a clinical trial to be a decision problem, often with competing outcomes. Using a current controversy in the treatment of HPV-positive head and neck cancer, we apply several different probabilistic methods to help define the range of outcomes given different possible trial designs. Our model incorporates the uncertainties in the disease process and treatment response and the inhomogeneities in the patient population. Instead of expected utility, we have used a Markov model to calculate quality adjusted life expectancy as a maximization objective. Monte Carlo simulations over realistic ranges of parameters are used to explore different trial scenarios given the possible ranges of parameters. This modeling approach can be used to better inform the initial trial design so that it will more likely achieve clinical relevance.

  8. Does a more sophisticated storm erosion model improve probabilistic erosion estimates?

    NARCIS (Netherlands)

    Ranasinghe, R.W.M.R.J.B.; Callaghan, D.; Roelvink, D.

    2013-01-01

    The dependency between the accuracy/uncertainty of storm erosion exceedance estimates obtained via a probabilistic model and the level of sophistication of the structural function (storm erosion model) embedded in the probabilistic model is assessed via the application of Callaghan et al.'s (2008)

  9. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  10. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  11. Probabilistic modeling of caprock leakage from seismic reflection data

    DEFF Research Database (Denmark)

    Zunino, Andrea; Hansen, Thomas Mejer; Bergjofd-Kitterød, Ingjerd

    We illustrate a methodology which helps to perform a leakage risk analysis for a CO2 reservoir based on a consistent, probabilistic approach to geophysical and geostatistical inversion. Generally, risk assessments of storage complexes are based on geological models and simulations of CO2 movement...... within the storage complexes. The geological models are built on top of geophysical data such as seismic surveys, geological information and well logs from the reservoir or nearby regions. The risk assessment of CO2 storage requires a careful analysis which accounts for all sources of uncertainty....... However, at present, no well-defined and consistent method for mapping the true uncertainty related to the geophysical data and how that uncertainty affects the overall risk assessment for the potential storage site is available. To properly quantify the uncertainties and to avoid unrealistic...

  12. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  13. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen

    2015-01-01

    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  14. Application of a probabilistic model of rainfall-induced shallow landslides to complex hollows

    NARCIS (Netherlands)

    Talebi, A.; Uijlenhoet, R.; Troch, P.A.

    2008-01-01

    Recently, D'Odorico and Fagherazzi (2003) proposed "A probabilistic model of rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39, 2003). Their model describes the long-term evolution of colluvial deposits through a probabilistic soil mass balance at a point. Further building

  15. Two-Stage Series-Resonant Inverter

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.

  16. Engineering analysis of the two-stage trifluoride precipitation process

    International Nuclear Information System (INIS)

    Luerkens, D.w.W.

    1984-06-01

    An engineering analysis of two-stage trifluoride precipitation processes is developed. Precipitation kinetics are modeled using consecutive reactions to represent fluoride complexation. Material balances across the precipitators are used to model the time dependent concentration profiles of the main chemical species. The results of the engineering analysis are correlated with previous experimental work on plutonium trifluoride and cerium trifluoride

  17. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  18. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study.

    Science.gov (United States)

    Tîrnăucă, Cristina; Montaña, José L; Ontañón, Santiago; González, Avelino J; Pardo, Luis M

    2016-06-24

    Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent's actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.

  19. Risk Management Technologies With Logic and Probabilistic Models

    CERN Document Server

    Solozhentsev, E D

    2012-01-01

    This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology.  The volume describes the following components of risk management technologies: LP-calculus; classes of LP-models of risk and efficiency; procedures for different classes; special software for different classes; examples of applications; methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are: LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the  discussed  procedures of I3-technologies  are the construction of  LP-models,...

  20. Probabilistic Modeling of the Fatigue Crack Growth Rate for Ni-base Alloy X-750

    International Nuclear Information System (INIS)

    Yoon, J.Y.; Nam, H.O.; Hwang, I.S.; Lee, T.H.

    2012-01-01

    Extending the operating life of existing nuclear power plants (NPP's) beyond 60 years. Many aging problems of passive components such as PWSCC, IASCC, FAC and Corrosion Fatigue; Safety analysis: Deterministic analysis + Probabilistic analysis; Many uncertainties of parameters or relationship in general probabilistic analysis such as probabilistic safety assessment (PSA); Bayesian inference: Decreasing uncertainties by updating unknown parameter; Ensuring the reliability of passive components (e.g. pipes) as well as active components (e.g. valve, pump) in NPP's; Developing probabilistic model for failures; Updating the fatigue crack growth rate (FCGR)

  1. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    Science.gov (United States)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  2. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  3. E-Area LLWF Vadose Zone Model: Probabilistic Model for Estimating Subsided-Area Infiltration Rates

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    A probabilistic model employing a Monte Carlo sampling technique was developed in Python to generate statistical distributions of the upslope-intact-area to subsided-area ratio (AreaUAi/AreaSAi) for closure cap subsidence scenarios that differ in assumed percent subsidence and the total number of intact plus subsided compartments. The plan is to use this model as a component in the probabilistic system model for the E-Area Performance Assessment (PA), contributing uncertainty in infiltration estimates.

  4. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  5. From sub-source to source: Interpreting results of biological trace investigations using probabilistic models

    NARCIS (Netherlands)

    Oosterman, W.T.; Kokshoorn, B.; Maaskant-van Wijk, P.A.; de Zoete, J.

    2015-01-01

    The current method of reporting a putative cell type is based on a non-probabilistic assessment of test results by the forensic practitioner. Additionally, the association between donor and cell type in mixed DNA profiles can be exceedingly complex. We present a probabilistic model for

  6. Performance analysis of chi models using discrete-time probabilistic reward graphs

    NARCIS (Netherlands)

    Trcka, N.; Georgievska, S.; Markovski, J.; Andova, S.; Vink, de E.P.

    2008-01-01

    We propose the model of discrete-time probabilistic reward graphs (DTPRGs) for performance analysis of systems exhibiting discrete deterministic time delays and probabilistic behavior, via their interpretation as discrete-time Markov reward chains, full-fledged platform for qualitative and

  7. Two-stage nonrecursive filter/decimator

    International Nuclear Information System (INIS)

    Yoder, J.R.; Richard, B.D.

    1980-08-01

    A two-stage digital filter/decimator has been designed and implemented to reduce the sampling rate associated with the long-term computer storage of certain digital waveforms. This report describes the design selection and implementation process and serves as documentation for the system actually installed. A filter design with finite-impulse response (nonrecursive) was chosen for implementation via direct convolution. A newly-developed system-test statistic validates the system under different computer-operating environments

  8. Two stage-type railgun accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    The present invention provides a two stage-type railgun accelerator capable of spiking a flying body (ice pellet) formed by solidifying a gaseous hydrogen isotope as a fuel to a thermonuclear reactor at a higher speed into a central portion of plasmas. Namely, the two stage-type railgun accelerator accelerates the flying body spiked from a initial stage accelerator to a portion between rails by Lorentz force generated when electric current is supplied to the two rails by way of a plasma armature. In this case, two sets of solenoids are disposed for compressing the plasma armature in the longitudinal direction of the rails. The first and the second sets of solenoid coils are previously supplied with electric current. After passing of the flying body, the armature formed into plasmas by a gas laser disposed at the back of the flying body is compressed in the longitudinal direction of the rails by a magnetic force of the first and the second sets of solenoid coils to increase the plasma density. A current density is also increased simultaneously. Then, the first solenoid coil current is turned OFF to accelerate the flying body in two stages by the compressed plasma armature. (I.S.)

  9. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  10. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  11. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio

    2012-01-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general

  12. Evaluation of seismic reliability of steel moment resisting frames rehabilitated by concentric braces with probabilistic models

    Directory of Open Access Journals (Sweden)

    Fateme Rezaei

    2017-08-01

    Full Text Available Probability of structure failure which has been designed by "deterministic methods" can be more than the one which has been designed in similar situation using probabilistic methods and models considering "uncertainties". The main purpose of this research was to evaluate the seismic reliability of steel moment resisting frames rehabilitated with concentric braces by probabilistic models. To do so, three-story and nine-story steel moment resisting frames were designed based on resistant criteria of Iranian code and then they were rehabilitated based on controlling drift limitations by concentric braces. Probability of frames failure was evaluated by probabilistic models of magnitude, location of earthquake, ground shaking intensity in the area of the structure, probabilistic model of building response (based on maximum lateral roof displacement and probabilistic methods. These frames were analyzed under subcrustal source by sampling probabilistic method "Risk Tools" (RT. Comparing the exceedance probability of building response curves (or selected points on it of the three-story and nine-story model frames (before and after rehabilitation, seismic response of rehabilitated frames, was reduced and their reliability was improved. Also the main effective variables in reducing the probability of frames failure were determined using sensitivity analysis by FORM probabilistic method. The most effective variables reducing the probability of frames failure are  in the magnitude model, ground shaking intensity model error and magnitude model error

  13. Quantitative Analysis of Probabilistic Models of Software Product Lines with Statistical Model Checking

    DEFF Research Database (Denmark)

    ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto

    2015-01-01

    We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLAN with action rates, which specify the likelihood of exhibiting pa...

  14. The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes

    Science.gov (United States)

    Robusto, Egidio; Stefanutti, Luca; Anselmi, Pasquale

    2010-01-01

    Within the theoretical framework of knowledge space theory, a probabilistic skill multimap model for assessing learning processes is proposed. The learning process of a student is modeled as a function of the student's knowledge and of an educational intervention on the attainment of specific skills required to solve problems in a knowledge…

  15. A Probabilistic Palimpsest Model of Visual Short-term Memory

    Science.gov (United States)

    Matthey, Loic; Bays, Paul M.; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204

  16. Probabilistic consequence model of accidenal or intentional chemical releases.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-S.; Samsa, M. E.; Folga, S. M.; Hartmann, H. M.

    2008-06-02

    In this work, general methodologies for evaluating the impacts of large-scale toxic chemical releases are proposed. The potential numbers of injuries and fatalities, the numbers of hospital beds, and the geographical areas rendered unusable during and some time after the occurrence and passage of a toxic plume are estimated on a probabilistic basis. To arrive at these estimates, historical accidental release data, maximum stored volumes, and meteorological data were used as inputs into the SLAB accidental chemical release model. Toxic gas footprints from the model were overlaid onto detailed population and hospital distribution data for a given region to estimate potential impacts. Output results are in the form of a generic statistical distribution of injuries and fatalities associated with specific toxic chemicals and regions of the United States. In addition, indoor hazards were estimated, so the model can provide contingency plans for either shelter-in-place or evacuation when an accident occurs. The stochastic distributions of injuries and fatalities are being used in a U.S. Department of Homeland Security-sponsored decision support system as source terms for a Monte Carlo simulation that evaluates potential measures for mitigating terrorist threats. This information can also be used to support the formulation of evacuation plans and to estimate damage and cleanup costs.

  17. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  18. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos; Chaudhuri, Siddhartha; Koller, Daphne; Koltun, Vladlen

    2012-01-01

    represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation

  19. A study of probabilistic fatigue crack propagation models in Mg Al Zn alloys under different specimen thickness conditions by using the residual of a random variable

    International Nuclear Information System (INIS)

    Choi, Seon Soon

    2012-01-01

    The primary aim of this paper was to evaluate several probabilistic fatigue crack propagation models using the residual of a random variable, and to present the model fit for probabilistic fatigue behavior in Mg Al Zn alloys. The proposed probabilistic models are the probabilistic Paris Erdogan model, probabilistic Walker model, probabilistic Forman model, and probabilistic modified Forman models. These models were prepared by applying a random variable to the empirical fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models vor describing fatigue crack propagation behavior in Mg Al Zn alloys were generally the probabilistic Paris Erdogan and probabilistic Walker models. The probabilistic Forman model was a good model only for a specimen with a thickness of 9.45mm

  20. From equilibrium spin models to probabilistic cellular automata

    International Nuclear Information System (INIS)

    Georges, A.; Le Doussal, P.

    1989-01-01

    The general equivalence between D-dimensional probabilistic cellular automata (PCA) and (D + 1)-dimensional equilibrium spin models satisfying a disorder condition is first described in a pedagogical way and then used to analyze the phase diagrams, the critical behavior, and the universality classes of some automato. Diagrammatic representations of time-dependent correlation functions PCA are introduced. Two important classes of PCA are singled out for which these correlation functions simplify: (1) Quasi-Hamiltonian automata, which have a current-carrying steady state, and for which some correlation functions are those of a D-dimensional static model PCA satisfying the detailed balance condition appear as a particular case of these rules for which the current vanishes. (2) Linear (and more generally affine) PCA for which the diagrammatics reduces to a random walk problem closely related to (D + 1)-dimensional directed SAWs: both problems display a critical behavior with mean-field exponents in any dimension. The correlation length and effective velocity of propagation of excitations can be calculated for affine PCA, as is shown on an explicit D = 1 example. The authors conclude with some remarks on nonlinear PCA, for which the diagrammatics is related to reaction-diffusion processes, and which belong in some cases to the universality class of Reggeon field theory

  1. A probabilistic model for cell population phenotyping using HCS data.

    Directory of Open Access Journals (Sweden)

    Edouard Pauwels

    Full Text Available High Content Screening (HCS platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.

  2. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  3. Statistical physics of medical diagnostics: Study of a probabilistic model.

    Science.gov (United States)

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  4. A Probabilistic Recommendation Method Inspired by Latent Dirichlet Allocation Model

    Directory of Open Access Journals (Sweden)

    WenBo Xie

    2014-01-01

    Full Text Available The recent decade has witnessed an increasing popularity of recommendation systems, which help users acquire relevant knowledge, commodities, and services from an overwhelming information ocean on the Internet. Latent Dirichlet Allocation (LDA, originally presented as a graphical model for text topic discovery, now has found its application in many other disciplines. In this paper, we propose an LDA-inspired probabilistic recommendation method by taking the user-item collecting behavior as a two-step process: every user first becomes a member of one latent user-group at a certain probability and each user-group will then collect various items with different probabilities. Gibbs sampling is employed to approximate all the probabilities in the two-step process. The experiment results on three real-world data sets MovieLens, Netflix, and Last.fm show that our method exhibits a competitive performance on precision, coverage, and diversity in comparison with the other four typical recommendation methods. Moreover, we present an approximate strategy to reduce the computing complexity of our method with a slight degradation of the performance.

  5. Statistical physics of medical diagnostics: Study of a probabilistic model

    Science.gov (United States)

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  6. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.

    Science.gov (United States)

    Sun, Tian Yin; Gottschalk, Fadri; Hungerbühler, Konrad; Nowack, Bernd

    2014-02-01

    Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Human-Guided Learning for Probabilistic Logic Models

    Directory of Open Access Journals (Sweden)

    Phillip Odom

    2018-06-01

    Full Text Available Advice-giving has been long explored in the artificial intelligence community to build robust learning algorithms when the data is noisy, incorrect or even insufficient. While logic based systems were effectively used in building expert systems, the role of the human has been restricted to being a “mere labeler” in recent times. We hypothesize and demonstrate that probabilistic logic can provide an effective and natural way for the expert to specify domain advice. Specifically, we consider different types of advice-giving in relational domains where noise could arise due to systematic errors or class-imbalance inherent in the domains. The advice is provided as logical statements or privileged features that are thenexplicitly considered by an iterative learning algorithm at every update. Our empirical evidence shows that human advice can effectively accelerate learning in noisy, structured domains where so far humans have been merely used as labelers or as designers of the (initial or final structure of the model.

  8. Hypospadias repair: Byar's two stage operation revisited.

    Science.gov (United States)

    Arshad, A R

    2005-06-01

    Hypospadias is a congenital deformity characterised by an abnormally located urethral opening, that could occur anywhere proximal to its normal location on the ventral surface of glans penis to the perineum. Many operations had been described for the management of this deformity. One hundred and fifteen patients with hypospadias were treated at the Department of Plastic Surgery, Hospital Kuala Lumpur, Malaysia between September 1987 and December 2002, of which 100 had Byar's procedure performed on them. The age of the patients ranged from neonates to 26 years old. Sixty-seven patients had penoscrotal (58%), 20 had proximal penile (18%), 13 had distal penile (11%) and 15 had subcoronal hypospadias (13%). Operations performed were Byar's two-staged (100), Bracka's two-staged (11), flip-flap (2) and MAGPI operation (2). The most common complication encountered following hypospadias surgery was urethral fistula at a rate of 18%. There is a higher incidence of proximal hypospadias in the Malaysian community. Byar's procedure is a very versatile technique and can be used for all types of hypospadias. Fistula rate is 18% in this series.

  9. The Terrestrial Investigation Model: A probabilistic risk assessment model for birds exposed to pesticides

    Science.gov (United States)

    One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....

  10. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method.

    Science.gov (United States)

    Valentin, Jan B; Andreetta, Christian; Boomsma, Wouter; Bottaro, Sandro; Ferkinghoff-Borg, Jesper; Frellsen, Jes; Mardia, Kanti V; Tian, Pengfei; Hamelryck, Thomas

    2014-02-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. Copyright © 2013 Wiley Periodicals, Inc.

  11. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    OpenAIRE

    Chen, Yanju; Wang, Ye

    2015-01-01

    This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the s...

  12. Understanding onsets of rainfall in Southern Africa using temporal probabilistic modelling

    CSIR Research Space (South Africa)

    Cheruiyot, D

    2010-12-01

    Full Text Available This research investigates an alternative approach to automatically evolve the hidden temporal distribution of onset of rainfall directly from multivariate time series (MTS) data in the absence of domain experts. Temporal probabilistic modelling...

  13. Effect of Filmless Imaging on Utilization of Radiologic Services with a Two-stage, Hospital-Wide Implementation of a Picture Archiving and Communication System: Initial Experience of a Fee-for-Service Model

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kuo

    2003-02-01

    Full Text Available A medium-sized general hospital using a fee-for-service model implemented a hospital-wide picture archiving and communication system (PACS in two stages. This study evaluated the reporting time with filmless operation and the effect of filmless imaging on referring physicians' use of the radiologic service before and after completion of the second stage of PACS implementation. The relationship between the total number of hospital patients and the number of radiologic department patients was also evaluated. All sample images were retrieved from the PACS. All corresponding reports except for one for a computerized tomography study were available. The median reporting time for different studies performed during working hours was less than 2 hours. There was a significantly positive and linear relationship (p < 0.01 between the total number of hospital patients and the number of radiologic department patients after hospital-wide implementation of PACS. We conclude that the fee-for-service model had no negative impact on referring physicians' use of radiologic services in a filmless hospital.

  14. Non-probabilistic defect assessment for structures with cracks based on interval model

    International Nuclear Information System (INIS)

    Dai, Qiao; Zhou, Changyu; Peng, Jian; Chen, Xiangwei; He, Xiaohua

    2013-01-01

    Highlights: • Non-probabilistic approach is introduced to defect assessment. • Definition and establishment of IFAC are put forward. • Determination of assessment rectangle is proposed. • Solution of non-probabilistic reliability index is presented. -- Abstract: Traditional defect assessment methods conservatively treat uncertainty of parameters as safety factors, while the probabilistic method is based on the clear understanding of detailed statistical information of parameters. In this paper, the non-probabilistic approach is introduced to the failure assessment diagram (FAD) to propose a non-probabilistic defect assessment method for structures with cracks. This novel defect assessment method contains three critical processes: establishment of the interval failure assessment curve (IFAC), determination of the assessment rectangle, and solution of the non-probabilistic reliability degree. Based on the interval theory, uncertain parameters such as crack sizes, material properties and loads are considered as interval variables. As a result, the failure assessment curve (FAC) will vary in a certain range, which is defined as IFAC. And the assessment point will vary within a rectangle zone which is defined as an assessment rectangle. Based on the interval model, the establishment of IFAC and the determination of the assessment rectangle are presented. Then according to the interval possibility degree method, the non-probabilistic reliability degree of IFAC can be determined. Meanwhile, in order to clearly introduce the non-probabilistic defect assessment method, a numerical example for the assessment of a pipe with crack is given. In addition, the assessment result of the proposed method is compared with that of the traditional probabilistic method, which confirms that this non-probabilistic defect assessment can reasonably resolve the practical problem with interval variables

  15. Non-probabilistic defect assessment for structures with cracks based on interval model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiao; Zhou, Changyu, E-mail: changyu_zhou@163.com; Peng, Jian; Chen, Xiangwei; He, Xiaohua

    2013-09-15

    Highlights: • Non-probabilistic approach is introduced to defect assessment. • Definition and establishment of IFAC are put forward. • Determination of assessment rectangle is proposed. • Solution of non-probabilistic reliability index is presented. -- Abstract: Traditional defect assessment methods conservatively treat uncertainty of parameters as safety factors, while the probabilistic method is based on the clear understanding of detailed statistical information of parameters. In this paper, the non-probabilistic approach is introduced to the failure assessment diagram (FAD) to propose a non-probabilistic defect assessment method for structures with cracks. This novel defect assessment method contains three critical processes: establishment of the interval failure assessment curve (IFAC), determination of the assessment rectangle, and solution of the non-probabilistic reliability degree. Based on the interval theory, uncertain parameters such as crack sizes, material properties and loads are considered as interval variables. As a result, the failure assessment curve (FAC) will vary in a certain range, which is defined as IFAC. And the assessment point will vary within a rectangle zone which is defined as an assessment rectangle. Based on the interval model, the establishment of IFAC and the determination of the assessment rectangle are presented. Then according to the interval possibility degree method, the non-probabilistic reliability degree of IFAC can be determined. Meanwhile, in order to clearly introduce the non-probabilistic defect assessment method, a numerical example for the assessment of a pipe with crack is given. In addition, the assessment result of the proposed method is compared with that of the traditional probabilistic method, which confirms that this non-probabilistic defect assessment can reasonably resolve the practical problem with interval variables.

  16. Probabilistic Mobility Models for Mobile and Wireless Networks

    DEFF Research Database (Denmark)

    Song, Lei; Godskesen, Jens Christian

    2010-01-01

    In this paper we present a probabilistic broadcast calculus for mobile and wireless networks whose connections are unreliable. In our calculus broadcasted messages can be lost with a certain probability, and due to mobility the connection probabilities may change. If a network broadcasts a message...... from a location it will evolve to a network distribution depending on whether nodes at other locations receive the message or not. Mobility of locations is not arbitrary but guarded by a probabilistic mobility function (PMF) and we also define the notion of a weak bisimulation given a PMF...

  17. Individual model evaluation and probabilistic weighting of models

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-01-01

    This note stresses the importance of trying to assess the accuracy of each model individually. Putting a Bayesian probability distribution on a population of models faces conceptual and practical complications, and apparently can come only after the work of evaluating the individual models. Moreover, the primary issue is open-quotes How good is this modelclose quotes? Therefore, the individual evaluations are first in both chronology and importance. They are not easy, but some ideas are given here on how to perform them

  18. Modelos lineares e não lineares inteiros para problemas da mochila bidimensional restrita a 2 estágios Linear and nonlinear integer models for constrained two-stage two-dimensional knapsack problems

    Directory of Open Access Journals (Sweden)

    Horacio Hideki Yanasse

    2013-01-01

    Full Text Available Neste trabalho revemos alguns modelos lineares e não lineares inteiros para gerar padrões de corte bidimensionais guilhotinados de 2 estágios, incluindo os casos exato e não exato e restrito e irrestrito. Esses problemas são casos particulares do problema da mochila bidimensional. Apresentamos também novos modelos para gerar esses padrões de corte, baseados em adaptações ou extensões de modelos para gerar padrões de corte bidimensionais restritos 1-grupo. Padrões 2 estágios aparecem em diferentes processos de corte, como, por exemplo, em indústrias de móveis e de chapas de madeira. Os modelos são úteis para a pesquisa e o desenvolvimento de métodos de solução mais eficientes, explorando estruturas particulares, a decomposição do modelo, relaxações do modelo etc. Eles também são úteis para a avaliação do desempenho de heurísticas, já que permitem (pelo menos para problemas de tamanho moderado uma estimativa do gap de otimalidade de soluções obtidas por heurísticas. Para ilustrar a aplicação dos modelos, analisamos os resultados de alguns experimentos computacionais com exemplos da literatura e outros gerados aleatoriamente. Os resultados foram produzidos usando um software comercial conhecido e mostram que o esforço computacional necessário para resolver os modelos pode ser bastante diferente.In this work we review some linear and nonlinear integer models to generate two stage two-dimensional guillotine cutting patterns, including the constrained, non constrained, exact and non exact cases. These problems are particular cases of the two dimensional knapsack problems. We also present new models to generate these cutting patterns, based on adaptations and extensions of models that generate one-group constrained two dimensional cutting patterns. Two stage patterns arise in different cutting processes like, for instance, in the furniture industry and wooden hardboards. The models are useful for the research and

  19. Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites

    OpenAIRE

    Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu

    2008-01-01

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect...

  20. Convolution product construction of interactions in probabilistic physical models

    International Nuclear Information System (INIS)

    Ratsimbarison, H.M.; Raboanary, R.

    2007-01-01

    This paper aims to give a probabilistic construction of interactions which may be relevant for building physical theories such as interacting quantum field theories. We start with the path integral definition of partition function in quantum field theory which recall us the probabilistic nature of this physical theory. From a Gaussian law considered as free theory, an interacting theory is constructed by nontrivial convolution product between the free theory and an interacting term which is also a probability law. The resulting theory, again a probability law, exhibits two proprieties already present in nowadays theories of interactions such as Gauge theory : the interaction term does not depend on the free term, and two different free theories can be implemented with the same interaction.

  1. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  2. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  3. An Empirical Study of Efficiency and Accuracy of Probabilistic Graphical Models

    DEFF Research Database (Denmark)

    Nielsen, Jens Dalgaard; Jaeger, Manfred

    2006-01-01

    In this paper we compare Na\\ii ve Bayes (NB) models, general Bayes Net (BN) models and Probabilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also measure...

  4. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  5. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  6. Gerenciamento de resultados em bancos com uso de TVM: validação de modelo de dois estágios Securities-based earnings management in nanks: validation of a two-stage model

    Directory of Open Access Journals (Sweden)

    José Alves Dantas

    2013-04-01

    menor porte e nos controlados por capital privado.Studies investigating earnings management in banks have been particularly concerned with the use of Loan Loss Provisions (LLP and mainly use two-stage models to identify discretionary management actions. Another type of record that has received attention from researchers in identifying discretionary management actions is the classification and measurement of the fair value of securities. In this case, however, one-stage models have prevailed. The present study aims to develop and validate a two-stage model for the identification of discretionary management actions using gains obtained from securities. Our model incorporates macroeconomic indicators and specific attributes of the securities portfolios to the traditional parameters used in models previously utilized in the literature. To validate the proposed model, the results are compared with the results from the estimation of a one-stage model - a methodology widely used in the literature. Tests conducted with the two models reveal evidence of income smoothing using securities and the classification of available-for-sale securities among the actions taken by management. The consistency of the results across the two models validates the proposed model, thereby contributing to the development of research on the topic that is not only concerned with determining whether earnings management is practiced but also whether it can be associated with other variables. We also find that securities-based earnings management is more significant in smaller-sized banks and in banks controlled by private capital.

  7. Fleet Planning Decision-Making: Two-Stage Optimization with Slot Purchase

    Directory of Open Access Journals (Sweden)

    Lay Eng Teoh

    2016-01-01

    Full Text Available Essentially, strategic fleet planning is vital for airlines to yield a higher profit margin while providing a desired service frequency to meet stochastic demand. In contrast to most studies that did not consider slot purchase which would affect the service frequency determination of airlines, this paper proposes a novel approach to solve the fleet planning problem subject to various operational constraints. A two-stage fleet planning model is formulated in which the first stage selects the individual operating route that requires slot purchase for network expansions while the second stage, in the form of probabilistic dynamic programming model, determines the quantity and type of aircraft (with the corresponding service frequency to meet the demand profitably. By analyzing an illustrative case study (with 38 international routes, the results show that the incorporation of slot purchase in fleet planning is beneficial to airlines in achieving economic and social sustainability. The developed model is practically viable for airlines not only to provide a better service quality (via a higher service frequency to meet more demand but also to obtain a higher revenue and profit margin, by making an optimal slot purchase and fleet planning decision throughout the long-term planning horizon.

  8. Evaluating damping elements for two-stage suspension vehicles

    Directory of Open Access Journals (Sweden)

    Ronald M. Martinod R.

    2012-01-01

    Full Text Available The technical state of the damping elements for a vehicle having two-stage suspension was evaluated by using numerical models based on the multi-body system theory; a set of virtual tests used the eigenproblem mathematical method. A test was developed based on experimental modal analysis (EMA applied to a physical system as the basis for validating the numerical models. The study focused on evaluating vehicle dynamics to determine the influence of the dampers’ technical state in each suspension state.

  9. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  10. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework

    NARCIS (Netherlands)

    Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D A; Brogaard, Sara; Van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut

    2016-01-01

    We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS

  11. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  12. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    Science.gov (United States)

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  13. A probabilistic model for estimating the waiting time until the simultaneous collapse of two contingencies

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1991-01-01

    The Double Contingency Principle (DCP) is widely applied to criticality safety practice in the United States. Most practitioners base their application of the principle on qualitative, intuitive assessments. The recent trend toward probabilistic safety assessments provides a motive to search for a quantitative, probabilistic foundation for the DCP. A Markov model is tractable and leads to relatively simple results. The model yields estimates of mean time to simultaneous collapse of two contingencies as a function of estimates of mean failure times and mean recovery times of two independent contingencies. The model is a tool that can be used to supplement the qualitative methods now used to assess effectiveness of the DCP. (Author)

  14. Two stage approach to dynamic soil structure interaction

    International Nuclear Information System (INIS)

    Nelson, I.

    1981-01-01

    A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)

  15. Impact of the Early Start Denver Model on the cognitive level of children with autism spectrum disorder: study protocol for a randomised controlled trial using a two-stage Zelen design.

    Science.gov (United States)

    Touzet, Sandrine; Occelli, Pauline; Schröder, Carmen; Manificat, Sabine; Gicquel, Ludovic; Stanciu, Razvana; Schaer, Marie; Oreve, Marie-Joelle; Speranza, Mario; Denis, Angelique; Zelmar, Amelie; Falissard, Bruno; Georgieff, Nicolas; Bahrami, Stephane; Geoffray, Marie-Maude

    2017-03-27

    Early intervention for autism spectrum disorder (ASD) in the European French-speaking countries is heterogeneous and poorly evaluated to date. Early intervention units applying the Early Start Denver Model (ESDM) for toddlers and young children with ASD have been created in France and Belgium to improve this situation. It is essential to evaluate this intervention for the political decision-making process regarding ASD interventions in European French-speaking countries. We will evaluate the effectiveness of 12 hours per week ESDM intervention on the cognitive level of children with ASD, over a 2-year period. The study will be a multicentre, randomised controlled trial, using a two-stage Zelen design. Children aged 15-36 months, diagnosed with ASD and with a developmental quotient (DQ) of 30 or above on the Mullen Scale of Early Learning (MSEL) will be included. We will use a stratified minimisation randomisation at a ratio 1:2 in favour of the control group. The sample size required is 180 children (120 in the control and 60 in the intervention group). The experimental group will receive 12 hours per week ESDM by trained therapists 10 hours per week in the centre and 2 hours in the toddlers' natural environment (alternatively by the therapist and the parent). The control group will receive care available in the community. The primary outcome will be the change in cognitive level measured with the DQ of the MSEL scored at 2 years. Secondary outcomes will include change in autism symptoms, behavioural adaptation, communicative and productive language level, sensory profile and parents' quality of life. The primary analysis will use the intention-to-treat principle. An economic evaluation will be performed. Findings from the study will be disseminated through peer reviewed publications and meetings. NCT02608333 (clinicaltrials.gov); Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  16. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model.

    Science.gov (United States)

    Hara, Shintaro; Morita, Reiko; Ogawa, Takashi; Segawa, Risa; Takimoto, Norifumi; Suzuki, Kazuhiko; Hamadate, Naobumi; Hayashi, Shim-Mo; Odachi, Ayano; Ogiwara, Isao; Shibusawa, Sakae; Yoshida, Toshinori; Shibutani, Makoto

    2014-08-01

    To investigate the protective effect of bilberry extracts (BBE) and enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process involving oxidative stress responses, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and piperonyl butoxide (PBO)-promoted rats. We examined the modifying effect of co-administration with BBE or EMIQ on the liver tissue environment including oxidative stress responses, cell proliferation and apoptosis, and phosphatase and tensin homolog (PTEN)/Akt and transforming growth factor (TGF)-β/Smad signalings on the induction mechanism of preneoplastic lesions during early stages of hepatocellular tumor promotion. PBO increased the numbers and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of Ki-67(+) proliferating cells within GST-P(+) foci. Co-administration of BBE or EMIQ suppressed these effects with the reductions of GST-P(+) foci (area) to 48.9-49.4% and Ki-67(+) cells to 55.5-61.4% of the PBO-promoted cases. Neither BBE nor EMIQ decreased microsomal reactive oxygen species induced by PBO. However, only EMIQ suppressed the level of thiobarbituric acid-reactive substances to 78.4% of the PBO-promoted cases. PBO increased the incidences of phospho-PTEN(-) foci, phospho-Akt substrate(+) foci, phospho-Smad3(-) foci and Smad4(-) foci in GST-P(+) foci. Both BBE and EMIQ decreased the incidences of phospho-PTEN(-) foci in GST-P(+) foci to 59.8-72.2% and Smad4(-) foci to 62.4-71.5% of the PBO-promoted cases, and BBE also suppressed the incidence of phospho-Akt substrate(+) foci in GST-P(+) foci to 75.2-75.7% of the PBO-promoted cases. These results suggest that PBO-induced tumor promotion involves facilitation of PTEN/Akt and disruptive TGF-β/Smad signalings without relation to oxidative stress responses, but this promotion was suppressed by co-treatment with BBE or EMIQ through suppression of cell proliferation activity of preneoplastic liver cells

  17. Probabilistic safety assessment model in consideration of human factors based on object-oriented bayesian networks

    International Nuclear Information System (INIS)

    Zhou Zhongbao; Zhou Jinglun; Sun Quan

    2007-01-01

    Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)

  18. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  19. Experimental studies of two-stage centrifugal dust concentrator

    Science.gov (United States)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  20. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  1. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  2. Probabilistic Data Modeling and Querying for Location-Based Data Warehouses

    DEFF Research Database (Denmark)

    Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach

    Motivated by the increasing need to handle complex, dynamic, uncertain multidimensional data in location-based warehouses, this paper proposes a novel probabilistic data model that can address the complexities of such data. The model provides a foundation for handling complex hierarchical and unc...

  3. Probabilistic Data Modeling and Querying for Location-Based Data Warehouses

    DEFF Research Database (Denmark)

    Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach

    2005-01-01

    Motivated by the increasing need to handle complex, dynamic, uncertain multidimensional data in location-based warehouses, this paper proposes a novel probabilistic data model that can address the complexities of such data. The model provides a foundation for handling complex hierarchical and unc...

  4. Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering structures

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, H.M.G.M.; Vrouwenvelder, A.C.W.M.

    2012-01-01

    This paper presents a probabilistic assessment model for linear elastic fracture mechanics (LEFM). The model allows the determination of the failure probability of a structure subjected to fatigue loading. The distributions of the random variables for civil engineering structures are provided, and

  5. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Science.gov (United States)

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome. Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  6. Using Probabilistic Models to Appraise and Decide on Sovereign Disaster Risk Financing and Insurance

    OpenAIRE

    Ley-Borrás, Roberto; Fox, Benjamin D.

    2015-01-01

    This paper presents an overview of the structure of probabilistic catastrophe risk models, discusses their importance for appraising sovereign disaster risk financing and insurance instruments and strategy, and puts forward a model and a process for improving decision making on the linked disaster risk management strategy and sovereign disaster risk financing and insurance strategy. The pa...

  7. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Science.gov (United States)

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-12-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  8. Probabilistic models for access strategies to dynamic information elements

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Olsen, Rasmus L.; Schwefel, Hans-Peter

    In various network services (e.g., routing and instances of context-sensitive networking) remote access to dynamically changing information elements is a required functionality. Three fundamentally different strategies for such access are investigated in this paper: (1) a reactive approach...... initiated by the requesting entity, and two versions of proactive approaches in which the entity that contains the information element actively propagates its changes to potential requesters, either (2) periodically or (3) triggered by changes of the information element. This paper develops probabilistic...... for information elements spread over a large number of network nodes are provided, which allow to draw conclusions on scalability properties. The impact of different distribution types for the network delays as well as for the time between changes of the information element on the mismatch probability...

  9. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa

    Science.gov (United States)

    2013-01-01

    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316

  10. Two-stage Security Controls Selection

    NARCIS (Netherlands)

    Yevseyeva, I.; Basto, Fernandes V.; Moorsel, van A.; Janicke, H.; Michael, Emmerich T. M.

    2016-01-01

    To protect a system from potential cyber security breaches and attacks, one needs to select efficient security controls, taking into account technical and institutional goals and constraints, such as available budget, enterprise activity, internal and external environment. Here we model the security

  11. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.

    Science.gov (United States)

    Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan

    2017-12-14

    Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.

  12. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  13. Approach to modeling of human performance for purposes of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Swain, A.D.

    1983-01-01

    This paper describes the general approach taken in NUREG/CR-1278 to model human performance in sufficienct detail to permit probabilistic risk assessments of nuclear power plant operations. To show the basis for the more specific models in the above NUREG, a simplified model of the human component in man-machine systems is presented, the role of performance shaping factors is discussed, and special problems in modeling the cognitive aspect of behavior are described

  14. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    Science.gov (United States)

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  15. Probabilistic modeling of dietary intake of substances - The risk management question governs the method

    NARCIS (Netherlands)

    Pieters MN; Ossendorp BC; Bakker MI; Slob W; SIR

    2005-01-01

    In this report the discussion on the use of probabilistic modeling in relation to pesticide use in food crops is analyzed. Due to different policy questions the current discussion is complex and considers safety of an MRL as well as probability of a health risk. The question regarding the use of

  16. A Probabilistic Model of the LMAC Protocol for Concurrent Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R; Zeng, Kebin; Nielsen, Bo Friis

    2011-01-01

    We present a probabilistic model for the network setup phase of the Lightweight Medium Access Protocol (LMAC) for concurrent Wireless Sensor Networks. In the network setup phase, time slots are allocated to the individual sensors through resolution of successive collisions. The setup phase...

  17. Psychological Plausibility of the Theory of Probabilistic Mental Models and the Fast and Frugal Heuristics

    Science.gov (United States)

    Dougherty, Michael R.; Franco-Watkins, Ana M.; Thomas, Rick

    2008-01-01

    The theory of probabilistic mental models (PMM; G. Gigerenzer, U. Hoffrage, & H. Kleinbolting, 1991) has had a major influence on the field of judgment and decision making, with the most recent important modifications to PMM theory being the identification of several fast and frugal heuristics (G. Gigerenzer & D. G. Goldstein, 1996). These…

  18. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude

    2011-01-01

    . The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H

  19. A Probabilistic Model for Diagnosing Misconceptions by a Pattern Classification Approach.

    Science.gov (United States)

    Tatsuoka, Kikumi K.

    A probabilistic approach is introduced to classify and diagnose erroneous rules of operation resulting from a variety of misconceptions ("bugs") in a procedural domain of arithmetic. The model is contrasted with the deterministic approach which has commonly been used in the field of artificial intelligence, and the advantage of treating the…

  20. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape

    Science.gov (United States)

    R. A. Knapp; K.R. Matthews; H. K. Preisler; R. Jellison

    2003-01-01

    Abstract. Human-caused fragmentation of habitats is threatening an increasing number of animal and plant species, making an understanding of the factors influencing patch occupancy ever more important. The overall goal of the current study was to develop probabilistic models of patch occupancy for the mountain yellow-legged frog (Rana muscosa). This once-common species...

  1. Toward a Probabilistic Phenological Model for Wheat Growing Degree Days (GDD)

    Science.gov (United States)

    Rahmani, E.; Hense, A.

    2017-12-01

    Are there deterministic relations between phenological and climate parameters? The answer is surely `No'. This answer motivated us to solve the problem through probabilistic theories. Thus, we developed a probabilistic phenological model which has the advantage of giving additional information in terms of uncertainty. To that aim, we turned to a statistical analysis named survival analysis. Survival analysis deals with death in biological organisms and failure in mechanical systems. In survival analysis literature, death or failure is considered as an event. By event, in this research we mean ripening date of wheat. We will assume only one event in this special case. By time, we mean the growing duration from sowing to ripening as lifetime for wheat which is a function of GDD. To be more precise we will try to perform the probabilistic forecast for wheat ripening. The probability value will change between 0 and 1. Here, the survivor function gives the probability that the not ripened wheat survives longer than a specific time or will survive to the end of its lifetime as a ripened crop. The survival function at each station is determined by fitting a normal distribution to the GDD as the function of growth duration. Verification of the models obtained is done using CRPS skill score (CRPSS). The positive values of CRPSS indicate the large superiority of the probabilistic phonologic survival model to the deterministic models. These results demonstrate that considering uncertainties in modeling are beneficial, meaningful and necessary. We believe that probabilistic phenological models have the potential to help reduce the vulnerability of agricultural production systems to climate change thereby increasing food security.

  2. Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

    Directory of Open Access Journals (Sweden)

    S. Bahram Beheshti Aval

    2016-12-01

    Full Text Available Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

  3. Probabilistic model of random uncertainties in structural dynamics for mis-tuned bladed disks; Modele probabiliste des incertitudes en dynamique des structures pour le desaccordage des roues aubagees

    Energy Technology Data Exchange (ETDEWEB)

    Capiez-Lernout, E.; Soize, Ch. [Universite de Marne la Vallee, Lab. de Mecanique, 77 (France)

    2003-10-01

    The mis-tuning of blades is frequently the cause of spatial localizations for the dynamic forced response in turbomachinery industry. The random character of mis-tuning requires the construction of probabilistic models of random uncertainties. A usual parametric probabilistic description considers the mis-tuning through the Young modulus of each blade. This model consists in mis-tuning blade eigenfrequencies, assuming the blade modal shapes unchanged. Recently a new approach known as a non-parametric model of random uncertainties has been introduced for modelling random uncertainties in elasto-dynamics. This paper proposes the construction of a non-parametric model which is coherent with all the uncertainties which characterize mis-tuning. As mis-tuning is a phenomenon which is independent from one blade to another one, the structure is considered as an assemblage of substructures. The mean reduced matrix model required by the non-parametric approach is thus constructed by dynamic sub-structuring. A comparative approach is also needed to study the influence of the non-parametric approach for a usual parametric model adapted to mis-tuning. A numerical example is presented. (authors)

  4. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha; Kalogerakis, Evangelos; Guibas, Leonidas; Koltun, Vladlen

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling

  5. Use of probabilistic relational model (PRM) for dependability analysis of complex systems

    OpenAIRE

    Medina-Oliva , Gabriela; Weber , Philippe; Levrat , Eric; Iung , Benoît

    2010-01-01

    International audience; This paper proposes a methodology to develop a aided decision-making tool for assessing the dependability and performances (i.e. reliability) of an industrial system. This tool is built on a model based on a new formalism, called the probabilistic relational model (PRM) which is adapted to deal with large and complex systems. The model is formalized from functional, dysfunctional and informational studies of the technical industrial systems. An application of this meth...

  6. Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network

    Science.gov (United States)

    Merrison-Hort, Robert; Soffe, Stephen R; Borisyuk, Roman

    2018-01-01

    Although, in most animals, brain connectivity varies between individuals, behaviour is often similar across a species. What fundamental structural properties are shared across individual networks that define this behaviour? We describe a probabilistic model of connectivity in the hatchling Xenopus tadpole spinal cord which, when combined with a spiking model, reliably produces rhythmic activity corresponding to swimming. The probabilistic model allows calculation of structural characteristics that reflect common network properties, independent of individual network realisations. We use the structural characteristics to study examples of neuronal dynamics, in the complete network and various sub-networks, and this allows us to explain the basis for key experimental findings, and make predictions for experiments. We also study how structural and functional features differ between detailed anatomical connectomes and those generated by our new, simpler, model (meta-model). PMID:29589828

  7. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  8. Unified Probabilistic Models for Face Recognition from a Single Example Image per Person

    Institute of Scientific and Technical Information of China (English)

    Pin Liao; Li Shen

    2004-01-01

    This paper presents a new technique of unified probabilistic models for face recognition from only one single example image per person. The unified models, trained on an obtained training set with multiple samples per person, are used to recognize facial images from another disjoint database with a single sample per person. Variations between facial images are modeled as two unified probabilistic models: within-class variations and between-class variations. Gaussian Mixture Models are used to approximate the distributions of the two variations and exploit a classifier combination method to improve the performance. Extensive experimental results on the ORL face database and the authors' database (the ICT-JDL database) including totally 1,750facial images of 350 individuals demonstrate that the proposed technique, compared with traditional eigenface method and some well-known traditional algorithms, is a significantly more effective and robust approach for face recognition.

  9. Probabilistic linguistics

    NARCIS (Netherlands)

    Bod, R.; Heine, B.; Narrog, H.

    2010-01-01

    Probabilistic linguistics takes all linguistic evidence as positive evidence and lets statistics decide. It allows for accurate modelling of gradient phenomena in production and perception, and suggests that rule-like behaviour is no more than a side effect of maximizing probability. This chapter

  10. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  11. Two-stage decision approach to material accounting

    International Nuclear Information System (INIS)

    Opelka, J.H.; Sutton, W.B.

    1982-01-01

    The validity of the alarm threshold 4sigma has been checked for hypothetical large and small facilities using a two-stage decision model in which the diverter's strategic variable is the quantity diverted, and the defender's strategic variables are the alarm threshold and the effectiveness of the physical security and material control systems in the possible presence of a diverter. For large facilities, the material accounting system inherently appears not to be a particularly useful system for the deterrence of diversions, and essentially no improvement can be made by lowering the alarm threshold below 4sigma. For small facilities, reduction of the threshold to 2sigma or 3sigma is a cost effective change for the accounting system, but is probably less cost effective than making improvements in the material control and physical security systems

  12. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  13. Modeling and analysis of cell membrane systems with probabilistic model checking

    Science.gov (United States)

    2011-01-01

    Background Recently there has been a growing interest in the application of Probabilistic Model Checking (PMC) for the formal specification of biological systems. PMC is able to exhaustively explore all states of a stochastic model and can provide valuable insight into its behavior which are more difficult to see using only traditional methods for system analysis such as deterministic and stochastic simulation. In this work we propose a stochastic modeling for the description and analysis of sodium-potassium exchange pump. The sodium-potassium pump is a membrane transport system presents in all animal cell and capable of moving sodium and potassium ions against their concentration gradient. Results We present a quantitative formal specification of the pump mechanism in the PRISM language, taking into consideration a discrete chemistry approach and the Law of Mass Action aspects. We also present an analysis of the system using quantitative properties in order to verify the pump reversibility and understand the pump behavior using trend labels for the transition rates of the pump reactions. Conclusions Probabilistic model checking can be used along with other well established approaches such as simulation and differential equations to better understand pump behavior. Using PMC we can determine if specific events happen such as the potassium outside the cell ends in all model traces. We can also have a more detailed perspective on its behavior such as determining its reversibility and why its normal operation becomes slow over time. This knowledge can be used to direct experimental research and make it more efficient, leading to faster and more accurate scientific discoveries. PMID:22369714

  14. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature...... disaggregation model that considers the uncertainty in the disaggregation, taking basis in the scaled Dirichlet distribution. The proposed probabilistic disaggregation model is applied to a portfolio of residential buildings in the Canton Bern, Switzerland, subject to flood risk. Thereby, the model is verified...... are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is generally imperfect, uncertainty arises in disaggregation. This paper therefore proposes a probabilistic...

  15. Trait-Dependent Biogeography: (Re)Integrating Biology into Probabilistic Historical Biogeographical Models.

    Science.gov (United States)

    Sukumaran, Jeet; Knowles, L Lacey

    2018-04-20

    The development of process-based probabilistic models for historical biogeography has transformed the field by grounding it in modern statistical hypothesis testing. However, most of these models abstract away biological differences, reducing species to interchangeable lineages. We present here the case for reintegration of biology into probabilistic historical biogeographical models, allowing a broader range of questions about biogeographical processes beyond ancestral range estimation or simple correlation between a trait and a distribution pattern, as well as allowing us to assess how inferences about ancestral ranges themselves might be impacted by differential biological traits. We show how new approaches to inference might cope with the computational challenges resulting from the increased complexity of these trait-based historical biogeographical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Probabilistic Modelling of Information Propagation in Wireless Mobile Ad-Hoc Network

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Hansen, Martin Bøgsted; Schwefel, Hans-Peter

    2005-01-01

    In this paper the dynamics of broadcasting wireless ad-hoc networks is studied through probabilistic modelling. A randomized transmission discipline is assumed in accordance with existing MAC definitions such as WLAN with Decentralized Coordination or IEEE-802.15.4. Message reception is assumed...... to be governed by node power-down policies and is equivalently assumed to be randomized. Altogether randomization facilitates a probabilistic model in the shape of an integro-differential equation governing the propagation of information, where brownian node mobility may be accounted for by including an extra...... diffusion term. The established model is analyzed for transient behaviour and a travelling wave solution facilitates expressions for propagation speed as well as parametrized analysis of network reliability and node power consumption. Applications of the developed models for node localization and network...

  17. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    International Nuclear Information System (INIS)

    Chang, Y.H.J.; Mosleh, A.

    2007-01-01

    This is the last in a series of five papers that discuss the Information Decision and Action in Crew (IDAC) context for human reliability analysis (HRA) and example application. The model is developed to probabilistically predict the responses of the control room operating crew in nuclear power plants during an accident, for use in probabilistic risk assessments (PRA). The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper describes a dynamic PRA computer simulation program, accident dynamics simulator (ADS), developed in part to implement the IDAC model. This paper also provides a detailed example of implementing a simpler version of IDAC, compared with the IDAC model discussed in the first four papers of this series, to demonstrate the practicality of integrating a detailed cognitive HRA model within a dynamic PRA framework

  18. A note on probabilistic models over strings: the linear algebra approach.

    Science.gov (United States)

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  19. Generalized outcome-based strategy classification: comparing deterministic and probabilistic choice models.

    Science.gov (United States)

    Hilbig, Benjamin E; Moshagen, Morten

    2014-12-01

    Model comparisons are a vital tool for disentangling which of several strategies a decision maker may have used--that is, which cognitive processes may have governed observable choice behavior. However, previous methodological approaches have been limited to models (i.e., decision strategies) with deterministic choice rules. As such, psychologically plausible choice models--such as evidence-accumulation and connectionist models--that entail probabilistic choice predictions could not be considered appropriately. To overcome this limitation, we propose a generalization of Bröder and Schiffer's (Journal of Behavioral Decision Making, 19, 361-380, 2003) choice-based classification method, relying on (1) parametric order constraints in the multinomial processing tree framework to implement probabilistic models and (2) minimum description length for model comparison. The advantages of the generalized approach are demonstrated through recovery simulations and an experiment. In explaining previous methods and our generalization, we maintain a nontechnical focus--so as to provide a practical guide for comparing both deterministic and probabilistic choice models.

  20. Two-stage anaerobic digestion of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A two-stage digestion of cheese whey was studied using two anaerobic rotating biological contact reactors. The second-stage reactor receiving partially treated effluent from the first-stage reactor could be operated at a hydraulic retention time of one day. The results indicated that two-stage digestion is a feasible alternative for treating whey. 6 references.

  1. A Stochastic Lagrangian Basis for a Probabilistic Parameterization of Moisture Condensation in Eulerian Models

    OpenAIRE

    Tsang, Yue-Kin; Vallis, Geoffrey K.

    2018-01-01

    In this paper we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained field on a grid cannot properly resolve regions of saturation---in which condensation occurs---that are smaller than the grid boxes. Thus, in the absence of a parameterization scheme, either the grid box must become saturated or condensation will ...

  2. Precise Quantitative Analysis of Probabilistic Business Process Model and Notation Workflows

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    We present a framework for modeling and analysis of real-world business workflows. We present a formalized core subset of the business process modeling and notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... the entire BPMN language, allow for more complex annotations and ultimately to automatically synthesize workflows by composing predefined subprocesses, in order to achieve a configuration that is optimal for parameters of interest....

  3. A probabilistic evaluation procedure for process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2018-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  4. Probabilistic modelling of human exposure to intense sweeteners in Italian teenagers: validation and sensitivity analysis of a probabilistic model including indicators of market share and brand loyalty.

    Science.gov (United States)

    Arcella, D; Soggiu, M E; Leclercq, C

    2003-10-01

    For the assessment of exposure to food-borne chemicals, the most commonly used methods in the European Union follow a deterministic approach based on conservative assumptions. Over the past few years, to get a more realistic view of exposure to food chemicals, risk managers are getting more interested in the probabilistic approach. Within the EU-funded 'Monte Carlo' project, a stochastic model of exposure to chemical substances from the diet and a computer software program were developed. The aim of this paper was to validate the model with respect to the intake of saccharin from table-top sweeteners and cyclamate from soft drinks by Italian teenagers with the use of the software and to evaluate the impact of the inclusion/exclusion of indicators on market share and brand loyalty through a sensitivity analysis. Data on food consumption and the concentration of sweeteners were collected. A food frequency questionnaire aimed at identifying females who were high consumers of sugar-free soft drinks and/or of table top sweeteners was filled in by 3982 teenagers living in the District of Rome. Moreover, 362 subjects participated in a detailed food survey by recording, at brand level, all foods and beverages ingested over 12 days. Producers were asked to provide the intense sweeteners' concentration of sugar-free products. Results showed that consumer behaviour with respect to brands has an impact on exposure assessments. Only probabilistic models that took into account indicators of market share and brand loyalty met the validation criteria.

  5. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  6. Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets.

    Science.gov (United States)

    Chen, Jonathan H; Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B

    2017-05-01

    Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% ( P  sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  7. Developing Pavement Distress Deterioration Models for Pavement Management System Using Markovian Probabilistic Process

    Directory of Open Access Journals (Sweden)

    Promothes Saha

    2017-01-01

    Full Text Available In the state of Colorado, the Colorado Department of Transportation (CDOT utilizes their pavement management system (PMS to manage approximately 9,100 miles of interstate, highways, and low-volume roads. Three types of deterioration models are currently being used in the existing PMS: site-specific, family, and expert opinion curves. These curves are developed using deterministic techniques. In the deterministic technique, the uncertainties of pavement deterioration related to traffic and weather are not considered. Probabilistic models that take into account the uncertainties result in more accurate curves. In this study, probabilistic models using the discrete-time Markov process were developed for five distress indices: transverse, longitudinal, fatigue, rut, and ride indices, as a case study on low-volume roads. Regression techniques were used to develop the deterioration paths using the predicted distribution of indices estimated from the Markov process. Results indicated that longitudinal, fatigue, and rut indices had very slow deterioration over time, whereas transverse and ride indices showed faster deterioration. The developed deterioration models had the coefficient of determination (R2 above 0.84. As probabilistic models provide more accurate results, it is recommended that these models be used as the family curves in the CDOT PMS for low-volume roads.

  8. A two-stage DEA approach for environmental efficiency measurement.

    Science.gov (United States)

    Song, Malin; Wang, Shuhong; Liu, Wei

    2014-05-01

    The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.

  9. A probabilistic model for estimating the waiting time until the simultaneous collapse of two contingencies

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1991-06-01

    The Double Contingency Principle (DCP) is widely applied to criticality safety practice in the United States. Most practitioners base their application of the principle on qualitative, intuitive assessments. The recent trend toward probabilistic safety assessments provides a motive to search for a quantitative, probabilistic foundation for the DCP. A Markov model is tractable and leads to relatively simple results. The model yields estimates of mean time to simultaneous collapse of two contingencies as a function of estimates of mean failure times and mean recovery times of two independent contingencies. The model is a tool that can be used to supplement the qualitative methods now used to assess effectiveness of the DCP. 3 refs., 1 fig

  10. Multiple sequential failure model: A probabilistic approach to quantifying human error dependency

    International Nuclear Information System (INIS)

    Samanta

    1985-01-01

    This paper rpesents a probabilistic approach to quantifying human error dependency when multiple tasks are performed. Dependent human failures are dominant contributors to risks from nuclear power plants. An overview of the Multiple Sequential Failure (MSF) model developed and its use in probabilistic risk assessments (PRAs) depending on the available data are discussed. A small-scale psychological experiment was conducted on the nature of human dependency and the interpretation of the experimental data by the MSF model show remarkable accommodation of the dependent failure data. The model, which provides an unique method for quantification of dependent failures in human reliability analysis, can be used in conjunction with any of the general methods currently used for performing the human reliability aspect in PRAs

  11. A probabilistic model for estimating the waiting time until the simultaneous collapse of two contingencies

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1992-01-01

    The double contingency principle (DCP) is widely applied to criticality safety practice in the United States. Most practitioners base their application of the principle on qualitative and intuitive assessments. The recent trend toward probabilistic safety assessments provides a motive for a search for a quantitative and probabilistic foundation for the DCP. A Markov model is tractable and leads to relatively simple results. The model yields estimates of mean time to simultaneous collapse of two contingencies, as functions of estimates of mean failure times and mean recovery times of two independent contingencies. The model is a tool that can be used to supplement the qualitative methods now used to assess the effectiveness of the DCP. (Author)

  12. A Probabilistic Model for Exteriors of Residential Buildings

    KAUST Repository

    Fan, Lubin

    2016-07-29

    We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available data such as aerial images and street-view images. First, we propose a parametric model to describe the exterior of a building (with a varying number of parameters) and propose a set of attributes as a building representation with fixed dimensionality. Second, we propose a hierarchical graphical model with hidden variables to encode the relationships between building attributes and learn both the structure and parameters of the model from the database. Third, we propose optimization algorithms to generate three-dimensional models based on building attributes sampled from the graphical model. Finally, we demonstrate our framework by synthesizing new building models and completing partially observed building models from photographs.

  13. HIV-specific probabilistic models of protein evolution.

    Directory of Open Access Journals (Sweden)

    David C Nickle

    2007-06-01

    Full Text Available Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1 genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1-the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic

  14. Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models

    Directory of Open Access Journals (Sweden)

    Ludmila N. Turino

    2014-05-01

    Full Text Available Administration of exogenous progesterone is widely used in hormonal protocols for estrous (resynchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.

  15. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  16. The management of subsurface uncertainty using probabilistic modeling of life cycle production forecasts and cash flows

    International Nuclear Information System (INIS)

    Olatunbosun, O. O.

    1998-01-01

    The subject pertains to the implementation of the full range of subsurface uncertainties in life cycle probabilistic forecasting and its extension to project cash flows using the methodology of probabilities. A new tool has been developed in the probabilistic application of Crystal-Ball which can model reservoir volumetrics, life cycle production forecasts and project cash flows in a single environment. The tool is modular such that the volumetrics and cash flow modules are optional. Production forecasts are often generated by applying a decline equation to single best estimate values of input parameters such as initial potential, decline rate, abandonment rate etc -or sometimes by results of reservoir simulation. This new tool provides a means of implementing the full range of uncertainties and interdependencies of the input parameters into the production forecasts by defining the input parameters as probability density functions, PDFs and performing several iterations to generate an expectation curve forecast. Abandonment rate is implemented in each iteration via a link to an OPEX model. The expectation curve forecast is input into a cash flow model to generate a probabilistic NPV. Base case and sensitivity runs from reservoir simulation can likewise form the basis for a probabilistic production forecast from which a probabilistic cash flow can be generated. A good illustration of the application of this tool is in the modelling of the production forecast for a well that encounters its target reservoirs in OUT/ODT situation and thus has significant uncertainties. The uncertainty in presence and size (if present) of gas cap and dependency between ultimate recovery and initial potential amongst other uncertainties can be easily implemented in the production forecast with this tool. From the expectation curve forecast, a probabilistic NPV can be easily generated. Possible applications of this tool include: i. estimation of range of actual recoverable volumes based

  17. Probabilistic model for the simulation of secondary electron emission

    Directory of Open Access Journals (Sweden)

    M. A. Furman

    2002-12-01

    Full Text Available We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary-emission yield and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  18. Chiefly Symmetric: Results on the Scalability of Probabilistic Model Checking for Operating-System Code

    Directory of Open Access Journals (Sweden)

    Marcus Völp

    2012-11-01

    Full Text Available Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.

  19. Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure

    International Nuclear Information System (INIS)

    Praks, Pavel; Kopustinskas, Vytis; Masera, Marcelo

    2015-01-01

    The paper presents a probabilistic model to study security of supply in a gas network. The model is based on Monte-Carlo simulations with graph theory, and is implemented in the software tool ProGasNet. The software allows studying gas networks in various aspects including identification of weakest links and nodes, vulnerability analysis, bottleneck analysis, evaluation of new infrastructure etc. In this paper ProGasNet is applied to a benchmark network based on a real EU gas transmission network of several countries with the purpose of evaluating the security of supply effects of new infrastructure, either under construction, recently completed or under planning. The probabilistic model enables quantitative evaluations by comparing the reliability of gas supply in each consuming node of the network. - Highlights: • A Monte-Carlo algorithm for stochastic flow networks is presented. • Network elements can fail according to a given probabilistic model. • Priority supply pattern of gas transmission networks is assumed. • A real-world EU gas transmission network is presented and analyzed. • A risk ratio is used for security of supply quantification of a new infrastructure.

  20. Financial and Real Sector Leading Indicators of Recessions in Brazil Using Probabilistic Models

    Directory of Open Access Journals (Sweden)

    Fernando Nascimento de Oliveira

    Full Text Available We examine the usefulness of various financial and real sector variables to forecast recessions in Brazil between one and eight quarters ahead. We estimate probabilistic models of recession and select models based on their outof-sample forecasts, using the Receiver Operating Characteristic (ROC function. We find that the predictive out-of-sample ability of several models vary depending on the numbers of quarters ahead to forecast and on the number of regressors used in the model specification. The models selected seem to be relevant to give early warnings of recessions in Brazil.

  1. Two-stage image denoising considering interscale and intrascale dependencies

    Science.gov (United States)

    Shahdoosti, Hamid Reza

    2017-11-01

    A solution to the problem of reducing the noise of grayscale images is presented. To consider the intrascale and interscale dependencies, this study makes use of a model. It is shown that the dependency between a wavelet coefficient and its predecessors can be modeled by the first-order Markov chain, which means that the parent conveys all of the information necessary for efficient estimation. Using this fact, the proposed method employs the Kalman filter in the wavelet domain for image denoising. The proposed method has two stages. The first stage employs a simple denoising algorithm to provide the noise-free image, by which the parameters of the model such as state transition matrix, variance of the process noise, the observation model, and the covariance of the observation noise are estimated. In the second stage, the Kalman filter is applied to the wavelet coefficients of the noisy image to estimate the noise-free coefficients. In fact, the Kalman filter is used to estimate the coefficients of high-frequency subbands from the coefficients of coarser scales and noisy observations of neighboring coefficients. In this way, both the interscale and intrascale dependencies are taken into account. Results are presented and discussed on a set of standard 8-bit grayscale images. The experimental results demonstrate that the proposed method achieves performances competitive with the state-of-the-art denoising methods in terms of both peak-signal-to-noise ratio and subjective visual quality.

  2. A Probabilistic Model for Exteriors of Residential Buildings

    KAUST Repository

    Fan, Lubin; Wonka, Peter

    2016-01-01

    We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available

  3. Scalable learning of probabilistic latent models for collaborative filtering

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2015-01-01

    variational Bayes learning and inference algorithm for these types of models. Empirical results show that the proposed algorithm achieves significantly better accuracy results than other straw-men models evaluated on a collection of well-known data sets. We also demonstrate that the algorithm has a highly...

  4. Proposal of a probabilistic dose-response model

    International Nuclear Information System (INIS)

    Barrachina, M.

    1997-01-01

    A biologically updated dose-response model is presented as an alternative to the linear-quadratic model currently in use for cancer risk assessment. The new model is based on the probability functions for misrepair and/or unrepair of DNA lesions, in terms of the radiation damage production rate in the cell (supposedly, a stem cell) and its repair-rate constant. The model makes use, interpreting it on the basis of misrepair probabilities, of the ''dose and dose-rate effectiveness factor'' of ICRP, and provides the way for a continuous extrapolation between the high and low dose-rate regions, ratifying the ''linear non-threshold hypothesis'' as the main option. Anyhow, the model throws some doubts about the additive property of the dose. (author)

  5. Probabilistic wind power forecasting with online model selection and warped gaussian process

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin

    2014-01-01

    Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms

  6. Probabilistic Modeling of Seismic Risk Based Design for a Dual System Structure

    OpenAIRE

    Sidi, Indra Djati

    2017-01-01

    The dual system structure concept has gained popularity in the construction of high-rise buildings over the last decades. Meanwhile, earthquake engineering design provisions for buildings have moved from the uniform hazard concept to the uniform risk concept upon recognizing the uncertainties involved in the earthquake resistance of concrete structures. In this study, a probabilistic model for the evaluation of such risk is proposed for a dual system structure consisting of shear walls or cor...

  7. An integrated dynamic model for probabilistic risk assessments

    International Nuclear Information System (INIS)

    Hsueh, K.-S.; Wang Kong

    2004-01-01

    The purpose of this dissertation is to develop a simulation based accident sequence analysis program (ADS) for large scale dynamic accident sequence simulation. Human operators, front-line and support systems as well as plant thermal-hydraulic behavior are explicitly modeled as integrated active parts in the development of accident scenarios. To overcome the model size, the proposed methodology employs several techniques including use of 'initial state vector' which decouples time-dependent and time-independent factors, and a depth first integration method in which the computation memory demand increases in a linear order. The computer implementation of the method is capable of simulating up to 500 branch points in sequence development, models system failure during operation, allows for recovery from operator errors and hardware failures, and implements a simple model for operator system interactions. (author)

  8. Probabilistic Modeling and Simulation of Metal Fatigue Life Prediction

    National Research Council Canada - National Science Library

    Heffern, Thomas

    2002-01-01

    ...% FLE The work of this thesis was to investigate the probability distributions of test data taken for aluminum 7050-T745 1, and to attempt to develop a probability based model from the variation...

  9. A Probabilistic Cost Estimation Model for Unexploded Ordnance Removal

    National Research Council Canada - National Science Library

    Poppe, Peter

    1999-01-01

    ...) contaminated sites that the services must decontaminate. Existing models for estimating the cost of UXO removal often require a high level of expertise and provide only a point estimate for the costs...

  10. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2016-02-11

    In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgrid system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.

  11. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI.

    Science.gov (United States)

    Tan, Ping; Tan, Guan-Zheng; Cai, Zi-Xing; Sa, Wei-Ping; Zou, Yi-Qun

    2017-01-01

    Extreme learning machine (ELM) is an effective machine learning technique with simple theory and fast implementation, which has gained increasing interest from various research fields recently. A new method that combines ELM with probabilistic model method is proposed in this paper to classify the electroencephalography (EEG) signals in synchronous brain-computer interface (BCI) system. In the proposed method, the softmax function is used to convert the ELM output to classification probability. The Chernoff error bound, deduced from the Bayesian probabilistic model in the training process, is adopted as the weight to take the discriminant process. Since the proposed method makes use of the knowledge from all preceding training datasets, its discriminating performance improves accumulatively. In the test experiments based on the datasets from BCI competitions, the proposed method is compared with other classification methods, including the linear discriminant analysis, support vector machine, ELM and weighted probabilistic model methods. For comparison, the mutual information, classification accuracy and information transfer rate are considered as the evaluation indicators for these classifiers. The results demonstrate that our method shows competitive performance against other methods.

  12. A probabilistic model for the evolution of RNA structure

    Directory of Open Access Journals (Sweden)

    Holmes Ian

    2004-10-01

    Full Text Available Abstract Background For the purposes of finding and aligning noncoding RNA gene- and cis-regulatory elements in multiple-genome datasets, it is useful to be able to derive multi-sequence stochastic grammars (and hence multiple alignment algorithms systematically, starting from hypotheses about the various kinds of random mutation event and their rates. Results Here, we consider a highly simplified evolutionary model for RNA, called "The TKF91 Structure Tree" (following Thorne, Kishino and Felsenstein's 1991 model of sequence evolution with indels, which we have implemented for pairwise alignment as proof of principle for such an approach. The model, its strengths and its weaknesses are discussed with reference to four examples of functional ncRNA sequences: a riboswitch (guanine, a zipcode (nanos, a splicing factor (U4 and a ribozyme (RNase P. As shown by our visualisations of posterior probability matrices, the selected examples illustrate three different signatures of natural selection that are highly characteristic of ncRNA: (i co-ordinated basepair substitutions, (ii co-ordinated basepair indels and (iii whole-stem indels. Conclusions Although all three types of mutation "event" are built into our model, events of type (i and (ii are found to be better modeled than events of type (iii. Nevertheless, we hypothesise from the model's performance on pairwise alignments that it would form an adequate basis for a prototype multiple alignment and genefinding tool.

  13. Statistical analysis of probabilistic models of software product lines with quantitative constraints

    DEFF Research Database (Denmark)

    Beek, M.H. ter; Legay, A.; Lluch Lafuente, Alberto

    2015-01-01

    We investigate the suitability of statistical model checking for the analysis of probabilistic models of software product lines with complex quantitative constraints and advanced feature installation options. Such models are specified in the feature-oriented language QFLan, a rich process algebra...... of certain behaviour to the expected average cost of products. This is supported by a Maude implementation of QFLan, integrated with the SMT solver Z3 and the distributed statistical model checker MultiVeStA. Our approach is illustrated with a bikes product line case study....

  14. Competing probabilistic models for catch-effort relationships in wildlife censuses

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J.R.; Robson, D.S.; Matsuzaki, C.L.

    1983-01-01

    Two probabilistic models are presented for describing the chance that an animal is captured during a wildlife census, as a function of trapping effort. The models in turn are used to propose relationships between sampling intensity and catch-per-unit-effort (C.P.U.E.) that were field tested on small mammal populations. Capture data suggests a model of diminshing C.P.U.E. with increasing levels of trapping intensity. The catch-effort model is used to illustrate optimization procedures in the design of mark-recapture experiments for censusing wild populations. 14 references, 2 tables.

  15. Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ferson, Scott [Applied Biomathematics, Setauket, NY (United States); Nelsen, Roger B. [Lewis & Clark College, Portland OR (United States); Hajagos, Janos [Applied Biomathematics, Setauket, NY (United States); Berleant, Daniel J. [Iowa State Univ., Ames, IA (United States); Zhang, Jianzhong [Iowa State Univ., Ames, IA (United States); Tucker, W. Troy [Applied Biomathematics, Setauket, NY (United States); Ginzburg, Lev R. [Applied Biomathematics, Setauket, NY (United States); Oberkampf, William L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  16. Probabilistic Model for Integrated Assessment of the Behavior at the T.D.P. Version 2

    International Nuclear Information System (INIS)

    Hurtado, A.; Eguilior, S.; Recreo, F

    2015-01-01

    This report documents the completion of the first phase of the implementation of the methodology ABACO2G (Bayes Application to Geological Storage of CO2) and the final version of the ABACO2G probabilistic model for the injection phase before its future validation in the experimental field of the Technology Development Plant in Hontom (Burgos). The model, which is based on the determination of the probabilistic risk component of a geological storage of CO2 using the formalism of Bayesian networks and Monte Carlo probability yields quantitative probability functions of the total system CO2 storage and of each one of their subsystems (storage subsystem and the primary seal; secondary containment subsystem and dispersion subsystem or tertiary one); the implementation of the stochastic time evolution of the CO2 plume during the injection period, the stochastic time evolution of the drying front, the probabilistic evolution of the pressure front, decoupled from the CO2 plume progress front, and the implementation of submodels and leakage probability functions through major leakage risk elements (fractures / faults and wells / deep boreholes) which together define the space of events to estimate the risks associated with the CO2 geological storage system. The activities included in this report have been to replace the previous qualitative estimation submodels of former ABACO2G version developed during Phase I of the project ALM-10-017, by analytical, semi-analytical or numerical submodels for the main elements of risk (wells and fractures), to obtain an integrated probabilistic model of a CO2 storage complex in carbonate formations that meets the needs of the integrated behavior evaluation of the Technology Development Plant in Hontomín

  17. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling.

    Science.gov (United States)

    Knoops, Paul G M; Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W F; Jeelani, Owase; Dunaway, David J; Schievano, Silvia

    2018-01-01

    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face.

  18. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    Science.gov (United States)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  19. Dynamic probabilistic models and social structure essays on socioeconomic continuity

    CERN Document Server

    Gómez M , Guillermo L

    1992-01-01

    Mathematical models have been very successful in the study of the physical world. Galilei and Newton introduced point particles moving without friction under the action of simple forces as the basis for the description of concrete motions like the ones of the planets. This approach was sustained by appro­ priate mathematical methods, namely infinitesimal calculus, which was being developed at that time. In this way classical analytical mechanics was able to establish some general results, gaining insight through explicit solution of some simple cases and developing various methods of approximation for handling more complicated ones. Special relativity theory can be seen as an extension of this kind of modelling. In the study of electromagnetic phenomena and in general relativity another mathematical model is used, in which the concept of classical field plays the fundamental role. The equations of motion here are partial differential equations, and the methods of study used involve further developments of cl...

  20. Probabilistic logics and probabilistic networks

    CERN Document Server

    Haenni, Rolf; Wheeler, Gregory; Williamson, Jon; Andrews, Jill

    2014-01-01

    Probabilistic Logic and Probabilistic Networks presents a groundbreaking framework within which various approaches to probabilistic logic naturally fit. Additionally, the text shows how to develop computationally feasible methods to mesh with this framework.

  1. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2013-01-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer

  2. Validation of a probabilistic post-fire erosion model

    Science.gov (United States)

    Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller

    2016-01-01

    Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...

  3. Development of a perfect prognosis probabilistic model for ...

    Indian Academy of Sciences (India)

    A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors ...

  4. Computational models for probabilistic neutronic calculation in TADSEA

    International Nuclear Information System (INIS)

    Garcia, Jesus A.R.; Curbelo, Jesus P.; Hernandez, Carlos R.G.; Oliva, Amaury M.; Lira, Carlos A.B.O.

    2013-01-01

    The Very High Temperature Reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed reactors, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite. In order to simulate the TADSEA correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and randomly located TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCNP code. The main reason is that there is a limited number of cells and surfaces to be defined. In this paper a computational tool, which allows to get a new geometrical model for fuel pebble to neutronic calculation with MCNPX, was presented. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. There are also compared several neutronic computational models for TADSEA's fuel pebbles in order to study heterogeneity effects. On the other hand the boundary effect given by the intersection between the pebble surface and the TRISO particles could be significative in the multiplicative properties. A model to study this e ect is also presented. (author)

  5. A Probabilistic Model of Meter Perception: Simulating Enculturation

    NARCIS (Netherlands)

    van der Weij, B.; Pearce, M.T.; Honing, H.

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter

  6. Using statistical compatibility to derive advanced probabilistic fatigue models

    Czech Academy of Sciences Publication Activity Database

    Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models

    DEFF Research Database (Denmark)

    David, M.; Ramahatana, F.; Trombe, Pierre-Julien

    2016-01-01

    Forecasting of the solar irradiance is a key feature in order to increase the penetration rate of solar energy into the energy grids. Indeed, the anticipation of the fluctuations of the solar renewables allows a better management of the production means of electricity and a better operation...... sky index show some similarities with that of financial time series. The aim of this paper is to assess the performances of a commonly used combination of two linear models (ARMA and GARCH) in econometrics in order to provide probabilistic forecasts of solar irradiance. In addition, a recursive...... regarding the statistical distribution of the error, the reliability of the probabilistic forecasts stands in the same order of magnitude as other works done in the field of solar forecasting....

  8. Evidence of two-stage melting of Wigner solids

    Science.gov (United States)

    Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.

    2018-02-01

    Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.

  9. Validation analysis of probabilistic models of dietary exposure to food additives.

    Science.gov (United States)

    Gilsenan, M B; Thompson, R L; Lambe, J; Gibney, M J

    2003-10-01

    The validity of a range of simple conceptual models designed specifically for the estimation of food additive intakes using probabilistic analysis was assessed. Modelled intake estimates that fell below traditional conservative point estimates of intake and above 'true' additive intakes (calculated from a reference database at brand level) were considered to be in a valid region. Models were developed for 10 food additives by combining food intake data, the probability of an additive being present in a food group and additive concentration data. Food intake and additive concentration data were entered as raw data or as a lognormal distribution, and the probability of an additive being present was entered based on the per cent brands or the per cent eating occasions within a food group that contained an additive. Since the three model components assumed two possible modes of input, the validity of eight (2(3)) model combinations was assessed. All model inputs were derived from the reference database. An iterative approach was employed in which the validity of individual model components was assessed first, followed by validation of full conceptual models. While the distribution of intake estimates from models fell below conservative intakes, which assume that the additive is present at maximum permitted levels (MPLs) in all foods in which it is permitted, intake estimates were not consistently above 'true' intakes. These analyses indicate the need for more complex models for the estimation of food additive intakes using probabilistic analysis. Such models should incorporate information on market share and/or brand loyalty.

  10. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    Science.gov (United States)

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  11. Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model

    Directory of Open Access Journals (Sweden)

    José R. Andrade

    2017-10-01

    Full Text Available Forecasting the hourly spot price of day-ahead and intraday markets is particularly challenging in electric power systems characterized by high installed capacity of renewable energy technologies. In particular, periods with low and high price levels are difficult to predict due to a limited number of representative cases in the historical dataset, which leads to forecast bias problems and wide forecast intervals. Moreover, these markets also require the inclusion of multiple explanatory variables, which increases the complexity of the model without guaranteeing a forecasting skill improvement. This paper explores information from daily futures contract trading and forecast of the daily average spot price to correct point and probabilistic forecasting bias. It also shows that an adequate choice of explanatory variables and use of simple models like linear quantile regression can lead to highly accurate spot price point and probabilistic forecasts. In terms of point forecast, the mean absolute error was 3.03 €/MWh for day-ahead market and a maximum value of 2.53 €/MWh was obtained for intraday session 6. The probabilistic forecast results show sharp forecast intervals and deviations from perfect calibration below 7% for all market sessions.

  12. Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model.

    Science.gov (United States)

    Liu, Xueliang; Wang, Meng; Yin, Bao-Cai; Huet, Benoit; Li, Xuelong

    2015-11-01

    Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.

  13. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Dejan Pecevski

    2011-12-01

    Full Text Available An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away" and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  14. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

    Science.gov (United States)

    Bontempi, M.

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  15. A probabilistic model for x-ray PHA data

    International Nuclear Information System (INIS)

    Diesso, M.; Hill, K.

    1986-01-01

    In this paper, a mathematical model of the data produced by a single-arm x-ray pulse height analyzer (PHA) system is developed. Given an assumption on the electron temperature and density profiles, a maximum likelihood technique is applied to calculate the peak electron temperature and enhancement factor of the plasma. This method is currently being used in the analysis of x-ray data from the tokamak fusion test reactor (TFTR); sample results are presented

  16. The implicit possibility of dualism in quantum probabilistic cognitive modeling.

    Science.gov (United States)

    Mender, Donald

    2013-06-01

    Pothos & Busemeyer (P&B) argue convincingly that quantum probability offers an improvement over classical Bayesian probability in modeling the empirical data of cognitive science. However, a weakness related to restrictions on the dimensionality of incompatible physical observables flows from the authors' "agnosticism" regarding quantum processes in neural substrates underlying cognition. Addressing this problem will require either future research findings validating quantum neurophysics or theoretical expansion of the uncertainty principle as a new, neurocognitively contextualized, "local" symmetry.

  17. Probabilistic object and viewpoint models for active object recognition

    CSIR Research Space (South Africa)

    Govender, N

    2013-09-01

    Full Text Available ,θ′(f occ). V. EXPERIMENTS A. Dataset For our experiments, we use the active recognition dataset introduced by [12]. The training data consists of everyday objects such as cereal boxes, ornaments, spice bottle, etc. Images were captured every 20 degrees... are to be verified TABLE I CONFUSION MATRIX FOR BINARY A MODEL Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Cereal Battery Curry box Elephant Handbag MrMin Salad Bottle Spice Bottle Spray Can Spray Can 1 Cereal 0.9800 0...

  18. Probabilistic image processing by means of the Bethe approximation for the Q-Ising model

    International Nuclear Information System (INIS)

    Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M

    2003-01-01

    The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results

  19. Effects of varying the step particle distribution on a probabilistic transport model

    International Nuclear Information System (INIS)

    Bouzat, S.; Farengo, R.

    2005-01-01

    The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed

  20. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....

  1. Comparison of Microscopic Drivers' Probabilistic Lane-changing Models With Real Traffic Microscopic Data

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadat Hoseini

    2011-07-01

    Full Text Available The difficulties of microscopic-level simulation models to accurately reproduce real traffic phenomena stem not only from the complexity of calibration and validation operations, but also from the structural inadequacies of the sub-models themselves. Both of these drawbacks originate from the scant information available on real phenomena because of the difficulty in gathering accurate field data. This paper studies the traffic behaviour of individual drivers utilizing vehicle trajectory data extracted from digital images collected from freeways in Iran. These data are used to evaluate the four proposed microscopic traffic models. One of the models is based on the traffic regulations in Iran and the three others are probabilistic models that use a decision factor for calculating the probability of choosing a position on the freeway by a driver. The decision factors for three probabilistic models are increasing speed, decreasing risk of collision, and increasing speed combined with decreasing risk of collision. The models are simulated by a cellular automata simulator and compared with the real data. It is shown that the model based on driving regulations is not valid, but that other models appear useful for predicting the driver’s behaviour on freeway segments in Iran during noncongested conditions.

  2. Probabilistic Modeling Of Ocular Biomechanics In VIIP: Risk Stratification

    Science.gov (United States)

    Feola, A.; Myers, J. G.; Raykin, J.; Nelson, E. S.; Mulugeta, L.; Samuels, B.; Ethier, C. R.

    2016-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP. To simulate the effects of different pressures on tissues in the posterior eye, we developed a geometric model of the posterior eye and optic nerve sheath and used a Latin hypercubepartial rank correlation coef-ficient (LHSPRCC) approach to assess the influence of uncertainty in our input parameters (i.e. pressures and material properties) on the peak strains within the retina, lamina cribrosa and optic nerve. The LHSPRCC approach was repeated for three relevant ICP ranges, corresponding to upright and supine posture on earth, and microgravity [1]. At each ICP condition we used intraocular pressure (IOP) and mean arterial pressure (MAP) measurements of in-flight astronauts provided by Lifetime Surveillance of Astronaut Health Program, NASA Johnson Space Center. The lamina cribrosa, optic nerve, retinal vessel and retina were modeled as linear-elastic materials, while other tissues were modeled as a Mooney-Rivlin solid (representing ground substance, stiffness parameter c1) with embedded collagen fibers (stiffness parameters c3, c4 and c5). Geometry creationmesh generation was done in Gmsh [2], while FEBio was used for all FE simulations [3]. The LHSPRCC approach resulted in correlation coefficients in the range of 1. To assess the relative influence of the uncertainty in an input parameter on

  3. Fatigue crack propagation: Probabilistic models and experimental evidence

    International Nuclear Information System (INIS)

    Lucia, A.C.; Jovanovic, A.

    1987-01-01

    The central aim of the LWR Primary Circuit Component Life Prediction Project, going on at JRC-Ispra, is to develop and check a 'procedure' (encompassing monitoring and inspection, data collection and analysis, prediction) allowing the quantitatives estimation of the accumulation of structural damage and of the residual lifetime. The ongoing activity matches theoretical development and experimentation, the latter being at present essentially based on a test-rig for room-temperature fatigue cycling of 1:5 scaled models of pressure vessels. During Phase I of fatigue testing of vessel R2, different pieces of information coming from material characterization, non-destructive inspection, continuous monitoring, stress analysis, have been merged and used to infere the future behaviour of the structure. The prediction of residual lifetime (cycles to failure), based on the outcomes of the ultrasonic continuous monitoring and made by means of the COVASTOL code, was in quite good agreement with experimental evidence. (orig./HP)

  4. Probabilistic Logical Characterization

    DEFF Research Database (Denmark)

    Hermanns, Holger; Parma, Augusto; Segala, Roberto

    2011-01-01

    Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....

  5. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    Science.gov (United States)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  6. Comparison of probabilistic models of the distribution of counts

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1992-01-01

    The binominal, Poisson and modified Poisson models for describing the statistical nature of the distribution of counts are compared theoretically, and conclusions for application are proposed. The validity of the Poisson and the modified Poisson distribution for observing k events in a short time interval is investigated experimentally for various measuring times. The experiments to measure the influence of the significant radioactive decay were performed with 89m Y (T 1/2 =16.06 s), using a multichannel analyser (4096 channels) in the multiscaling mode. According to the results, Poisson distribution describes the counting experiment for short measuring times (up to T=0.5 T 1/2 ) and its application is recommended. However, the analysis of the data demonstrated that for long measurements (T≥1 T 1/2 ) Poisson distribution is not valid and the modified Poisson distribution is preferable. The practical implications in calculating uncertainties and in optimizing the measuring time are discussed. (author) 20 refs.; 7 figs.; 1 tab

  7. A probabilistic approach to the drag-based model

    Science.gov (United States)

    Napoletano, Gianluca; Forte, Roberta; Moro, Dario Del; Pietropaolo, Ermanno; Giovannelli, Luca; Berrilli, Francesco

    2018-02-01

    The forecast of the time of arrival (ToA) of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the ToA using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.

  8. Probabilistic graphical models to deal with age estimation of living persons.

    Science.gov (United States)

    Sironi, Emanuele; Gallidabino, Matteo; Weyermann, Céline; Taroni, Franco

    2016-03-01

    Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.

  9. Probabilistic modelling and analysis of stand-alone hybrid power systems

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2013-01-01

    As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model

  10. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    Science.gov (United States)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  11. Comparative effectiveness of one-stage versus two-stage basilic vein transposition arteriovenous fistulas.

    Science.gov (United States)

    Ghaffarian, Amir A; Griffin, Claire L; Kraiss, Larry W; Sarfati, Mark R; Brooke, Benjamin S

    2018-02-01

    Basilic vein transposition (BVT) fistulas may be performed as either a one-stage or two-stage operation, although there is debate as to which technique is superior. This study was designed to evaluate the comparative clinical efficacy and cost-effectiveness of one-stage vs two-stage BVT. We identified all patients at a single large academic hospital who had undergone creation of either a one-stage or two-stage BVT between January 2007 and January 2015. Data evaluated included patient demographics, comorbidities, medication use, reasons for abandonment, and interventions performed to maintain patency. Costs were derived from the literature, and effectiveness was expressed in quality-adjusted life-years (QALYs). We analyzed primary and secondary functional patency outcomes as well as survival during follow-up between one-stage and two-stage BVT procedures using multivariate Cox proportional hazards models and Kaplan-Meier analysis with log-rank tests. The incremental cost-effectiveness ratio was used to determine cost savings. We identified 131 patients in whom 57 (44%) one-stage BVT and 74 (56%) two-stage BVT fistulas were created among 8 different vascular surgeons during the study period that each performed both procedures. There was no significant difference in the mean age, male gender, white race, diabetes, coronary disease, or medication profile among patients undergoing one- vs two-stage BVT. After fistula transposition, the median follow-up time was 8.3 months (interquartile range, 3-21 months). Primary patency rates of one-stage BVT were 56% at 12-month follow-up, whereas primary patency rates of two-stage BVT were 72% at 12-month follow-up. Patients undergoing two-stage BVT also had significantly higher rates of secondary functional patency at 12 months (57% for one-stage BVT vs 80% for two-stage BVT) and 24 months (44% for one-stage BVT vs 73% for two-stage BVT) of follow-up (P < .001 using log-rank test). However, there was no significant difference

  12. COMPONENT SUPPLY MODEL FOR REPAIR ACTIVITIES NETWORK UNDER CONDITIONS OF PROBABILISTIC INDEFINITENESS.

    Directory of Open Access Journals (Sweden)

    Victor Yurievich Stroganov

    2017-02-01

    Full Text Available This article contains the systematization of the major production functions of repair activities network and the list of planning and control functions, which are described in the form of business processes (BP. Simulation model for analysis of the delivery effectiveness of components under conditions of probabilistic uncertainty was proposed. It has been shown that a significant portion of the total number of business processes is represented by the management and planning of the parts and components movement. Questions of construction of experimental design techniques on the simulation model in the conditions of non-stationarity were considered.

  13. An application of probabilistic safety assessment methods to model aircraft systems and accidents

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1998-08-01

    A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

  14. Abstract probabilistic CNOT gate model based on double encoding: study of the errors and physical realizability

    Science.gov (United States)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2015-03-01

    In this work, we study the error sources standing behind the non-perfect linear optical quantum components composing a non-deterministic quantum CNOT gate model, which performs the CNOT function with a success probability of 4/27 and uses a double encoding technique to represent photonic qubits at the control and the target. We generalize this model to an abstract probabilistic CNOT version and determine the realizability limits depending on a realistic range of the errors. Finally, we discuss physical constraints allowing the implementation of the Asymmetric Partially Polarizing Beam Splitter (APPBS), which is at the heart of correctly realizing the CNOT function.

  15. Probabilistic topic modeling for the analysis and classification of genomic sequences

    Science.gov (United States)

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  16. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    Directory of Open Access Journals (Sweden)

    P.S.A. Cunha

    Full Text Available ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which are then approximately linearized. To deal with the uncertain nature of the item demand levels, we apply a Monte Carlo simulation-based method to generate finite and discrete sets of scenarios. Moreover, the proposed approach does not require restricted assumptions to the behavior of the probabilistic phenomena, as does several existing methods in the literature. Numerical experiments with the proposed approach for randomly generated instances of the problem show results with errors around 1%.

  17. Serious strategy for the makers of fun : Analyzing the option to switch from pay-to-play to free-to-play in a two-stage optimal control model with quadratic costs

    NARCIS (Netherlands)

    Seidl, A.; Caulkins, J.P.; Hartl, R.F.; Kort, Peter

    This paper addresses the problem of a video game producer who starts out with a subscription-based business model but considers when, if ever, to switch to a free-to-play model, which price discriminates between typical users, who play for free, and heavy users who pay for acquiring extra features.

  18. A Probabilistic Model of Social Working Memory for Information Retrieval in Social Interactions.

    Science.gov (United States)

    Li, Liyuan; Xu, Qianli; Gan, Tian; Tan, Cheston; Lim, Joo-Hwee

    2018-05-01

    Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information. Next, we propose a semantic Bayesian network as the SWM, which integrates the cognitive functions of accessibility and self-regulation. One subgraphical model implements the accessibility function to learn the social consensus about IR-based on social information concept, clustering, social context, and similarity between persons. Beyond accessibility, one more layer is added to simulate the function of self-regulation to perform the personal adaptation to the consensus based on human personality. Two learning algorithms are proposed to train the probabilistic SWM model on a raw dataset of high uncertainty and incompleteness. One is an efficient learning algorithm of Newton's method, and the other is a genetic algorithm. Systematic evaluations show that the proposed SWM model is able to learn human social intelligence effectively and outperforms the baseline Bayesian cognitive model. Toward real-world applications, we implement our model on Google Glass as a wearable assistant for social interaction.

  19. Integrating statistical and process-based models to produce probabilistic landslide hazard at regional scale

    Science.gov (United States)

    Strauch, R. L.; Istanbulluoglu, E.

    2017-12-01

    We develop a landslide hazard modeling approach that integrates a data-driven statistical model and a probabilistic process-based shallow landslide model for mapping probability of landslide initiation, transport, and deposition at regional scales. The empirical model integrates the influence of seven site attribute (SA) classes: elevation, slope, curvature, aspect, land use-land cover, lithology, and topographic wetness index, on over 1,600 observed landslides using a frequency ratio (FR) approach. A susceptibility index is calculated by adding FRs for each SA on a grid-cell basis. Using landslide observations we relate susceptibility index to an empirically-derived probability of landslide impact. This probability is combined with results from a physically-based model to produce an integrated probabilistic map. Slope was key in landslide initiation while deposition was linked to lithology and elevation. Vegetation transition from forest to alpine vegetation and barren land cover with lower root cohesion leads to higher frequency of initiation. Aspect effects are likely linked to differences in root cohesion and moisture controlled by solar insulation and snow. We demonstrate the model in the North Cascades of Washington, USA and identify locations of high and low probability of landslide impacts that can be used by land managers in their design, planning, and maintenance.

  20. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    International Nuclear Information System (INIS)

    Coulombe, Sylvain

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f -tilde1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. oxide-contaminated cathode surface). Through an appropriate choice of the local probabilistic displacement rules, the model is able to correctly represent the dynamic behaviours of the type-A cathode spot, including the FPS for the arc elongation (i.e. voltage) and the arc erosion trace formation. The model illustrates that the cathode spot displacements between re-strikes can be seen as a diffusion process with a diffusion constant which depends on the surface structure. A physical interpretation for the jumping probability associated with the re-strike event is given in terms of the electron emission processes across dielectric contaminants present on the cathode surface

  1. Two-stage electrolysis to enrich tritium in environmental water

    International Nuclear Information System (INIS)

    Shima, Nagayoshi; Muranaka, Takeshi

    2007-01-01

    We present a two-stage electrolyzing procedure to enrich tritium in environmental waters. Tritium is first enriched rapidly through a commercially-available electrolyser with a large 50A current, and then through a newly-designed electrolyser that avoids the memory effect, with a 6A current. Tritium recovery factor obtained by such a two-stage electrolysis was greater than that obtained when using the commercially-available device solely. Water samples collected in 2006 in lakes and along the Pacific coast of Aomori prefecture, Japan, were electrolyzed using the two-stage method. Tritium concentrations in these samples ranged from 0.2 to 0.9 Bq/L and were half or less, that in samples collected at the same sites in 1992. (author)

  2. Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification.

    Science.gov (United States)

    Li, Haoxiang; Hua, Gang

    2018-04-01

    Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic part model. We extract local descriptors (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each descriptor with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of the face parts of all face images in the training corpus, namely the probabilistic elastic part (PEP) model. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms, which naturally defines a part. Given one or multiple face images of the same subject, the PEP-model builds its PEP representation by sequentially concatenating descriptors identified by each Gaussian component in a maximum likelihood sense. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that we achieve state-of-the-art face verification accuracy with the proposed representations on the Labeled Face in the Wild (LFW) dataset, the YouTube video face database, and the CMU MultiPIE dataset.

  3. Probabilistic models for steel corrosion loss and pitting of marine infrastructure

    International Nuclear Information System (INIS)

    Melchers, R.E.; Jeffrey, R.J.

    2008-01-01

    With the increasing emphasis on attempting to retain in service ageing infrastructure models for the description and prediction of corrosion losses and for maximum pit depth are of increasing interest. In most cases assessment and prediction will be done in a probabilistic risk assessment framework and this then requires probabilistic corrosion models. Recently, novel models for corrosion loss and maximum pit depth under marine immersion conditions have been developed. The models show that both corrosion loss and pit depth progress in a non-linear fashion with increased exposure time and do so in a non-monotonic manner as a result of the controlling corrosion process changing from oxidation to being influenced by bacterial action. For engineers the importance of this lies in the fact that conventional 'corrosion rates' have no validity, particularly for the long-term corrosion effects as relevant to deteriorated infrastructure. The models are consistent with corrosion science principles as well as current understanding of the considerable influence of bacterial processes on corrosion loss and pitting. The considerable practical implications of this are described

  4. Two-stage thermal/nonthermal waste treatment process

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1993-01-01

    An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report

  5. Tensit - a novel probabilistic simulation tool for safety assessments. Tests and verifications using biosphere models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jakob; Vahlund, Fredrik; Kautsky, Ulrik

    2004-06-01

    This report documents the verification of a new simulation tool for dose assessment put together in a package under the name Tensit (Technical Nuclide Simulation Tool). The tool is developed to solve differential equation systems describing transport and decay of radionuclides. It is capable of handling both deterministic and probabilistic simulations. The verifications undertaken shows good results. Exceptions exist only where the reference results are unclear. Tensit utilise and connects two separate commercial softwares. The equation solving capability is derived from the Matlab/Simulink software environment to which Tensit adds a library of interconnectable building blocks. Probabilistic simulations are provided through a statistical software named at{sub R}isk that communicates with Matlab/Simulink. More information about these softwares can be found at www.palisade.com and www.mathworks.com. The underlying intention of developing this new tool has been to make available a cost efficient and easy to use means for advanced dose assessment simulations. The mentioned benefits are gained both through the graphical user interface provided by Simulink and at{sub R}isk, and the use of numerical equation solving routines in Matlab. To verify Tensit's numerical correctness, an implementation was done of the biosphere modules for dose assessments used in the earlier safety assessment project SR 97. Acquired probabilistic results for deterministic as well as probabilistic simulations have been compared with documented values. Additional verification has been made both with another simulation tool named AMBER and also against the international test case from PSACOIN named Level 1B. This report documents the models used for verification with equations and parameter values so that the results can be recreated. For a background and a more detailed description of the underlying processes in the models, the reader is referred to the original references. Finally, in the

  6. Propagating Water Quality Analysis Uncertainty Into Resource Management Decisions Through Probabilistic Modeling

    Science.gov (United States)

    Gronewold, A. D.; Wolpert, R. L.; Reckhow, K. H.

    2007-12-01

    Most probable number (MPN) and colony-forming-unit (CFU) are two estimates of fecal coliform bacteria concentration commonly used as measures of water quality in United States shellfish harvesting waters. The MPN is the maximum likelihood estimate (or MLE) of the true fecal coliform concentration based on counts of non-sterile tubes in serial dilution of a sample aliquot, indicating bacterial metabolic activity. The CFU is the MLE of the true fecal coliform concentration based on the number of bacteria colonies emerging on a growth plate after inoculation from a sample aliquot. Each estimating procedure has intrinsic variability and is subject to additional uncertainty arising from minor variations in experimental protocol. Several versions of each procedure (using different sized aliquots or different numbers of tubes, for example) are in common use, each with its own levels of probabilistic and experimental error and uncertainty. It has been observed empirically that the MPN procedure is more variable than the CFU procedure, and that MPN estimates are somewhat higher on average than CFU estimates, on split samples from the same water bodies. We construct a probabilistic model that provides a clear theoretical explanation for the observed variability in, and discrepancy between, MPN and CFU measurements. We then explore how this variability and uncertainty might propagate into shellfish harvesting area management decisions through a two-phased modeling strategy. First, we apply our probabilistic model in a simulation-based analysis of future water quality standard violation frequencies under alternative land use scenarios, such as those evaluated under guidelines of the total maximum daily load (TMDL) program. Second, we apply our model to water quality data from shellfish harvesting areas which at present are closed (either conditionally or permanently) to shellfishing, to determine if alternative laboratory analysis procedures might have led to different

  7. Tensit - a novel probabilistic simulation tool for safety assessments. Tests and verifications using biosphere models

    International Nuclear Information System (INIS)

    Jones, Jakob; Vahlund, Fredrik; Kautsky, Ulrik

    2004-06-01

    This report documents the verification of a new simulation tool for dose assessment put together in a package under the name Tensit (Technical Nuclide Simulation Tool). The tool is developed to solve differential equation systems describing transport and decay of radionuclides. It is capable of handling both deterministic and probabilistic simulations. The verifications undertaken shows good results. Exceptions exist only where the reference results are unclear. Tensit utilise and connects two separate commercial softwares. The equation solving capability is derived from the Matlab/Simulink software environment to which Tensit adds a library of interconnectable building blocks. Probabilistic simulations are provided through a statistical software named at R isk that communicates with Matlab/Simulink. More information about these softwares can be found at www.palisade.com and www.mathworks.com. The underlying intention of developing this new tool has been to make available a cost efficient and easy to use means for advanced dose assessment simulations. The mentioned benefits are gained both through the graphical user interface provided by Simulink and at R isk, and the use of numerical equation solving routines in Matlab. To verify Tensit's numerical correctness, an implementation was done of the biosphere modules for dose assessments used in the earlier safety assessment project SR 97. Acquired probabilistic results for deterministic as well as probabilistic simulations have been compared with documented values. Additional verification has been made both with another simulation tool named AMBER and also against the international test case from PSACOIN named Level 1B. This report documents the models used for verification with equations and parameter values so that the results can be recreated. For a background and a more detailed description of the underlying processes in the models, the reader is referred to the original references. Finally, in the perspective of

  8. Probabilistic representation in syllogistic reasoning: A theory to integrate mental models and heuristics.

    Science.gov (United States)

    Hattori, Masasi

    2016-12-01

    This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are probabilistic representations of given signature situations. Instead of conducting an exhaustive search, the model constructs an individual-based "logical" mental representation that expresses the most probable state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics based on informativeness. The model is a unification of previous influential models. Its descriptive validity has been evaluated against existing empirical data and two new experiments, and by qualitative analyses based on previous empirical findings, all of which supported the theory. The model's behavior is also consistent with findings in other areas, including working memory capacity. The results indicate that people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which suggests links between syllogistic reasoning and other areas of cognition. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  10. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  11. Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage

    Science.gov (United States)

    Pintilie, Grigore; Chen, Dong-Hua; Haase-Pettingell, Cameron A.; King, Jonathan A.; Chiu, Wah

    2016-01-01

    CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density. PMID:26743049

  12. From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model

    Science.gov (United States)

    Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.

    2014-12-01

    European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.

  13. Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution.

    Science.gov (United States)

    Francis, Andrew; Moulton, Vincent

    2018-06-07

    Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Multi-Objective Demand Response Model Considering the Probabilistic Characteristic of Price Elastic Load

    Directory of Open Access Journals (Sweden)

    Shengchun Yang

    2016-01-01

    Full Text Available Demand response (DR programs provide an effective approach for dealing with the challenge of wind power output fluctuations. Given that uncertain DR, such as price elastic load (PEL, plays an important role, the uncertainty of demand response behavior must be studied. In this paper, a multi-objective stochastic optimization problem of PEL is proposed on the basis of the analysis of the relationship between price elasticity and probabilistic characteristic, which is about stochastic demand models for consumer loads. The analysis aims to improve the capability of accommodating wind output uncertainty. In our approach, the relationship between the amount of demand response and interaction efficiency is developed by actively participating in power grid interaction. The probabilistic representation and uncertainty range of the PEL demand response amount are formulated differently compared with those of previous research. Based on the aforementioned findings, a stochastic optimization model with the combined uncertainties from the wind power output and the demand response scenario is proposed. The proposed model analyzes the demand response behavior of PEL by maximizing the electricity consumption satisfaction and interaction benefit satisfaction of PEL. Finally, a case simulation on the provincial power grid with a 151-bus system verifies the effectiveness and feasibility of the proposed mechanism and models.

  15. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling

    Science.gov (United States)

    Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.

    2017-04-01

    Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.

  16. Causes for the two stages of the disruption energy quench

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, F.C.; Donne, A.J.H.; Heijnen, S.H.; Rommers, J.R.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Vries, P.C. de; Waidmann, G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik

    1994-12-31

    It is a well-established fact that the energy quench of tokamak disruptions takes place in two stages separated by a plateau period. The total quench duration of typically a few hundred {mu}s is thought to be a combination of Alfven and magnetic diffusion times: Phase 1: a large cold m=1 bubble eats out the hot core within the q=1 surface. Since the normal thermal isolation of the outer layers is still intact this phase means an adiabatic flattening of the inner temperature distribution. Phase 2: after a plateau period the second quench occurs when the edge thermal barrier collapses and a major part of the plasma energy is lost in conjunction with a negative surface voltage spike and a positive spike of the plasma current. In the experimental and theoretical literature on this subject not much attention is given to the evolution of the density distribution during these two phases. This may be caused by the great difficulties one has to keep the fringe counters of multichannel interferometers on track during the very fast changing evolution. The interferometer at TEXTOR can follow this evolution. The spatial resolution after inversion is limited because of the modest number of interferometer channels. In RTP an 18-channel fast interferometer is available next to a 4-channel pulse radar reflectometer which makes it possible to investigate the density profile evolution with both good time (2 {mu}s)- and spatial (0.1a)-resolution. A fast 20-channel ECE-heterodyne radiometer and a 5-camera SXR system allows to follow the temperature profile evolution as well. In this paper theoretical models will be revisited and compared to the new experimental evidence. (author) 9 refs., 3 figs.

  17. Causes for the two stages of the disruption energy quench

    International Nuclear Information System (INIS)

    Schueller, F.C.; Donne, A.J.H.; Heijnen, S.H.; Rommers, J.R.; Tanzi, C.P.; Vries, P.C. de; Waidmann, G.

    1994-01-01

    It is a well-established fact that the energy quench of tokamak disruptions takes place in two stages separated by a plateau period. The total quench duration of typically a few hundred μs is thought to be a combination of Alfven and magnetic diffusion times: Phase 1: a large cold m=1 bubble eats out the hot core within the q=1 surface. Since the normal thermal isolation of the outer layers is still intact this phase means an adiabatic flattening of the inner temperature distribution. Phase 2: after a plateau period the second quench occurs when the edge thermal barrier collapses and a major part of the plasma energy is lost in conjunction with a negative surface voltage spike and a positive spike of the plasma current. In the experimental and theoretical literature on this subject not much attention is given to the evolution of the density distribution during these two phases. This may be caused by the great difficulties one has to keep the fringe counters of multichannel interferometers on track during the very fast changing evolution. The interferometer at TEXTOR can follow this evolution. The spatial resolution after inversion is limited because of the modest number of interferometer channels. In RTP an 18-channel fast interferometer is available next to a 4-channel pulse radar reflectometer which makes it possible to investigate the density profile evolution with both good time (2 μs)- and spatial (0.1a)-resolution. A fast 20-channel ECE-heterodyne radiometer and a 5-camera SXR system allows to follow the temperature profile evolution as well. In this paper theoretical models will be revisited and compared to the new experimental evidence. (author) 9 refs., 3 figs

  18. A probabilistic model-based soft sensor to monitor lactic acid bacteria fermentations

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2018-01-01

    A probabilistic soft sensor based on a mechanistic model was designed to monitor S. thermophilus fermentations, and validated with experimental lab-scale data. It considered uncertainties in the initial conditions, on-line measurements, and model parameters by performing Monte Carlo simulations...... the model parameters that were then used as input to the mechanistic model. The soft sensor predicted both the current state variables, as well as the future course of the fermentation, e.g. with a relative mean error of the biomass concentration of 8 %. This successful implementation of a process...... within the monitoring system. It predicted, therefore, the probability distributions of the unmeasured states, such as biomass, lactose, and lactic acid concentrations. To this end, a mechanistic model was developed first, and a statistical parameter estimation was performed in order to assess parameter...

  19. The Implementation of Vendor Managed Inventory In the Supply Chain with Simple Probabilistic Inventory Model

    Directory of Open Access Journals (Sweden)

    Anna Ika Deefi

    2016-01-01

    Full Text Available Numerous studies show that the implementation of Vendor Managed Inventory (VMI benefits all members of the supply chain. This research develops model to prove the benefits obtained from implementing VMI to supplier-buyer partnership analytically. The model considers a two-level supply chain which consists of a single supplier and a single buyer. The analytical model is developed to supply chain inventory with probabilistic demand which follows normal distribution. The model also incorporates lead time as a decision variable and investigates the impacts of inventory management before and after the implementation of the VMI. The result shows that the analytical model has the ability to reduce the supply chain expected cost, improve the service level and increase the inventory replenishment. Numerical examples are given to prove them.

  20. Development of Explosive Ripper with Two-Stage Combustion

    Science.gov (United States)

    1974-10-01

    inch pipe duct work, the width of this duct proved to be detrimental in marginally rippable material; the duct, instead of the penetrator tip, was...marginally rippable rock. ID. Operating Requirements 2. Fuel The two-stage combustion device is designed to operate using S A 42. the same diesel

  1. Probabilistic, multi-variate flood damage modelling using random forests and Bayesian networks

    Science.gov (United States)

    Kreibich, Heidi; Schröter, Kai

    2015-04-01

    Decisions on flood risk management and adaptation are increasingly based on risk analyses. Such analyses are associated with considerable uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention recently, they are hardly applied in flood damage assessments. Most of the damage models usually applied in standard practice have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. This presentation will show approaches for probabilistic, multi-variate flood damage modelling on the micro- and meso-scale and discuss their potential and limitations. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., Merz, B. (2014): How useful are complex flood damage models? - Water Resources Research, 50, 4, p. 3378-3395.

  2. Using Bayesian Model Averaging (BMA) to calibrate probabilistic surface temperature forecasts over Iran

    Energy Technology Data Exchange (ETDEWEB)

    Soltanzadeh, I. [Tehran Univ. (Iran, Islamic Republic of). Inst. of Geophysics; Azadi, M.; Vakili, G.A. [Atmospheric Science and Meteorological Research Center (ASMERC), Teheran (Iran, Islamic Republic of)

    2011-07-01

    Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast. (orig.)

  3. Using Bayesian Model Averaging (BMA to calibrate probabilistic surface temperature forecasts over Iran

    Directory of Open Access Journals (Sweden)

    I. Soltanzadeh

    2011-07-01

    Full Text Available Using Bayesian Model Averaging (BMA, an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM, with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP Global Forecast System (GFS and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009 over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  4. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben

    2000-01-01

    This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...

  5. Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette; Michel, Alexander

    This paper looks to address the grand challenge of integrating construction materials engineering research within a multi-scale, inter-disciplinary research and management framework for sustainable concrete infrastructure. The ultimate goal is to drive sustainability-focused innovation and adoption...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...... design, consists of concrete service life models and life cycle assessment (LCA) models. Both types of models (service life and LCA) are formulated stochastically so that the service life and time(s) to repair, as well as total sustainability impact, are described by a probability distribution. A central...

  6. Infrared maritime target detection using a probabilistic single Gaussian model of sea clutter in Fourier domain

    Science.gov (United States)

    Zhou, Anran; Xie, Weixin; Pei, Jihong; Chen, Yapei

    2018-02-01

    For ship targets detection in cluttered infrared image sequences, a robust detection method, based on the probabilistic single Gaussian model of sea background in Fourier domain, is put forward. The amplitude spectrum sequences at each frequency point of the pure seawater images in Fourier domain, being more stable than the gray value sequences of each background pixel in the spatial domain, are regarded as a Gaussian model. Next, a probability weighted matrix is built based on the stability of the pure seawater's total energy spectrum in the row direction, to make the Gaussian model more accurate. Then, the foreground frequency points are separated from the background frequency points by the model. Finally, the false-alarm points are removed utilizing ships' shape features. The performance of the proposed method is tested by visual and quantitative comparisons with others.

  7. Uniform and localized corrosion modelling by means of probabilistic cellular automata

    International Nuclear Information System (INIS)

    Perez-Brokate, Cristian

    2016-01-01

    Numerical modelling is complementary tool for corrosion prediction. The objective of this work is to develop a corrosion model by means of a probabilistic cellular automata approach at a mesoscopic scale. In this work, we study the morphological evolution and kinetics of corrosion. This model couples electrochemical oxidation and reduction reactions. Regarding kinetics, cellular automata models are able to describe current as a function of the applied potential for a redox reaction on an inert electrode. The inclusion of probabilities allows the description of the stochastic nature of anodic and cathodic reactions. Corrosion morphology has been studied in different context: generalised corrosion, pitting corrosion and corrosion in an occluded environment. a general tendency of two regimes is found. a first regime of uniform corrosion where the anodic and cathodic reactions occur homogeneously over the surface. a second regime of localized corrosion when there is a spatial separation of anodic and cathodic zones, with an increase of anodic reaction rate. (author) [fr

  8. Performance of an iterative two-stage bayesian technique for population pharmacokinetic analysis of rich data sets

    NARCIS (Netherlands)

    Proost, Johannes H.; Eleveld, Douglas J.

    2006-01-01

    Purpose. To test the suitability of an Iterative Two-Stage Bayesian (ITSB) technique for population pharmacokinetic analysis of rich data sets, and to compare ITSB with Standard Two-Stage (STS) analysis and nonlinear Mixed Effect Modeling (MEM). Materials and Methods. Data from a clinical study with

  9. Probabilistic modeling of the flows and environmental risks of nano-silica

    International Nuclear Information System (INIS)

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-01-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053–3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg·y in the EU (0.19–12 mg/kg·y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. - Highlights: • We quantify the exposure of nano-silica to technical systems and the environment. • The median concentration in surface waters is predicted to be 0.12 μg/L in the EU. • Probabilistic species sensitivity distributions were computed for surface waters. • The risk assessment suggests that nano-silica poses no risk to aquatic organisms.

  10. A probabilistic topic model for clinical risk stratification from electronic health records.

    Science.gov (United States)

    Huang, Zhengxing; Dong, Wei; Duan, Huilong

    2015-12-01

    Risk stratification aims to provide physicians with the accurate assessment of a patient's clinical risk such that an individualized prevention or management strategy can be developed and delivered. Existing risk stratification techniques mainly focus on predicting the overall risk of an individual patient in a supervised manner, and, at the cohort level, often offer little insight beyond a flat score-based segmentation from the labeled clinical dataset. To this end, in this paper, we propose a new approach for risk stratification by exploring a large volume of electronic health records (EHRs) in an unsupervised fashion. Along this line, this paper proposes a novel probabilistic topic modeling framework called probabilistic risk stratification model (PRSM) based on Latent Dirichlet Allocation (LDA). The proposed PRSM recognizes a patient clinical state as a probabilistic combination of latent sub-profiles, and generates sub-profile-specific risk tiers of patients from their EHRs in a fully unsupervised fashion. The achieved stratification results can be easily recognized as high-, medium- and low-risk, respectively. In addition, we present an extension of PRSM, called weakly supervised PRSM (WS-PRSM) by incorporating minimum prior information into the model, in order to improve the risk stratification accuracy, and to make our models highly portable to risk stratification tasks of various diseases. We verify the effectiveness of the proposed approach on a clinical dataset containing 3463 coronary heart disease (CHD) patient instances. Both PRSM and WS-PRSM were compared with two established supervised risk stratification algorithms, i.e., logistic regression and support vector machine, and showed the effectiveness of our models in risk stratification of CHD in terms of the Area Under the receiver operating characteristic Curve (AUC) analysis. As well, in comparison with PRSM, WS-PRSM has over 2% performance gain, on the experimental dataset, demonstrating that

  11. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  12. Effects of shipping on marine acoustic habitats in Canadian Arctic estimated via probabilistic modeling and mapping.

    Science.gov (United States)

    Aulanier, Florian; Simard, Yvan; Roy, Nathalie; Gervaise, Cédric; Bandet, Marion

    2017-12-15

    Canadian Arctic and Subarctic regions experience a rapid decrease of sea ice accompanied with increasing shipping traffic. The resulting time-space changes in shipping noise are studied for four key regions of this pristine environment, for 2013 traffic conditions and a hypothetical tenfold traffic increase. A probabilistic modeling and mapping framework, called Ramdam, which integrates the intrinsic variability and uncertainties of shipping noise and its effects on marine habitats, is developed and applied. A substantial transformation of soundscapes is observed in areas where shipping noise changes from present occasional-transient contributor to a dominant noise source. Examination of impacts on low-frequency mammals within ecologically and biologically significant areas reveals that shipping noise has the potential to trigger behavioral responses and masking in the future, although no risk of temporary or permanent hearing threshold shifts is noted. Such probabilistic modeling and mapping is strategic in marine spatial planning of this emerging noise issues. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. A Probabilistic Model to Evaluate the Optimal Density of Stations Measuring Snowfall.

    Science.gov (United States)

    Schneebeli, Martin; Laternser, Martin

    2004-05-01

    Daily new snow measurements are very important for avalanche forecasting and tourism. A dense network of manual or automatic stations measuring snowfall is necessary to have spatially reliable data. Snow stations in Switzerland were built at partially subjective locations. A probabilistic model based on the frequency and spatial extent of areas covered by heavy snowfalls was developed to quantify the probability that snowfall events are measured by the stations. Area probability relations were calculated for different thresholds of daily accumulated snowfall. A probabilistic model, including autocorrelation, was used to calculate the optimal spacing of stations based on simulated triangular grids and to compare the capture probability of different networks and snowfall thresholds. The Swiss operational snow-stations network captured snowfall events with high probability, but the distribution of the stations could be optimized. The spatial variability increased with higher thresholds of daily accumulated snowfall, and the capture probability decreased with increasing thresholds. The method can be used for other areas where the area probability relation for threshold values of snow or rain can be calculated.

  14. PBDE exposure from food in Ireland: optimising data exploitation in probabilistic exposure modelling.

    Science.gov (United States)

    Trudel, David; Tlustos, Christina; Von Goetz, Natalie; Scheringer, Martin; Hungerbühler, Konrad

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants added to plastics, polyurethane foam, electronics, textiles, and other products. These products release PBDEs into the indoor and outdoor environment, thus causing human exposure through food and dust. This study models PBDE dose distributions from ingestion of food for Irish adults on congener basis by using two probabilistic and one semi-deterministic method. One of the probabilistic methods was newly developed and is based on summary statistics of food consumption combined with a model generating realistic daily energy supply from food. Median (intermediate) doses of total PBDEs are in the range of 0.4-0.6 ng/kg(bw)/day for Irish adults. The 97.5th percentiles of total PBDE doses lie in a range of 1.7-2.2 ng/kg(bw)/day, which is comparable to doses derived for Belgian and Dutch adults. BDE-47 and BDE-99 were identified as the congeners contributing most to estimated intakes, accounting for more than half of the total doses. The most influential food groups contributing to this intake are lean fish and salmon which together account for about 22-25% of the total doses.

  15. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    Science.gov (United States)

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  16. PROBABILISTIC MODEL OF LASER RANGE FINDER FOR THREE DIMENSIONAL GRID CELL IN CLOSE RANGE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Hafiz b Iman

    2016-04-01

    Full Text Available The probabilistic model of a laser scanner presents an important aspect for simultaneous localization and map-building (SLAM. However, the characteristic of the beam of the laser range finder under extreme incident angles approaching 900 has not been thoroughly investigated. This research paper reports the characteristic of the density of the range value coming from a laser range finder under close range circumstances where the laser is imposed with a high incident angle. The laser was placed in a controlled environment consisting of walls at a close range and 1000 iteration of scans was collected. The assumption of normal density of the metrical data collapses when the beam traverses across sharp edges in this environment. The data collected also shows multimodal density at instances where the range has discontinuity. The standard deviation of the laser range finder is reported to average at 10.54 mm, with 0.96 of accuracy. This significance suggests that under extreme incident angles, a laser range finder reading behaves differently compared to normal distribution. The use of this information is crucial for SLAM activity in enclosed environments such as inside piping grid or other cluttered environments.KEYWORDS:   Hokuyo UTM-30LX; kernel density estimation; probabilistic model  

  17. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis.

    Science.gov (United States)

    Jamshidy, Ladan; Mozaffari, Hamid Reza; Faraji, Payam; Sharifi, Roohollah

    2016-01-01

    Introduction . One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods . A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results . The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion . The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  18. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  19. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor

    2011-02-15

    Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.

  20. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... of the distribution of couplings between the random variables is required, our method adapts to the concrete set of couplings. We show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a wide class of toy models (assuming a nonglassy phase) with given disorder...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  1. A probabilistic degradation model for the estimation of the remaining life distribution of feeders

    International Nuclear Information System (INIS)

    Yuan, X.-X.; Pandey, M.D.; Bickel, G.A.

    2006-01-01

    Wall thinning due to flow accelerated corrosion (FAC) is a pervasive form of degradation in the outlet feeder pipes of the primary heat transport system of CANDU reactors. The prediction of the end-of-life of a feeder from wall thickness measurement data is confounded by the sampling and temporal uncertainties associated with the FAC degradation phenomenon. Traditional regression-based statistical methods deal with only the sampling uncertainties, leaving the temporal uncertainties unresolved. This paper presents an advanced probabilistic model, which is able to integrate the temporal uncertainties into the prediction of lifetime. In particular, a random gamma process model is proposed to model the FAC process and it is calibrated with a set of wall thickness measurements using the method of maximum likelihood. This information can be used to establish an optimum strategy for inspection and replacement of feeders. (author)

  2. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  3. Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2004-01-01

    We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic ...

  4. Two-Stage Variable Sample-Rate Conversion System

    Science.gov (United States)

    Tkacenko, Andre

    2009-01-01

    A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.

  5. Global Stability for a Binge Drinking Model with Two Stages

    Directory of Open Access Journals (Sweden)

    Hai-Feng Huo

    2012-01-01

    are determined by the basic reproduction number, R0. The alcohol-free equilibrium is globally asymptotically stable, and the alcohol problems are eliminated from the population if R01. Numerical simulations are also conducted in the analytic results.

  6. Optimizing electricity distribution using two-stage integer recourse models

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; van der Vlerk, Maarten H.

    2000-01-01

    We consider two planning problems faced by an electricity distributor. Electricity can be ob-tained both from power plants and small generators such as hospitals and greenhouses, whereas the future demand for electricity is uncertain. The price of electricity obtained from the power plants depends

  7. Optimizing electricity distribution using two-stage integer recourse models

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; van der Vlerk, M.H.; Uryasev, SP; Pardalos, PM

    2001-01-01

    We consider two planning problems faced by an electricity distributor. Electricity can be obtained both from power plants and small generators such as hospitals and greenhouses, whereas the future demand for electricity is uncertain. The price of electricity obtained from the power plants depends on

  8. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  9. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.

    Science.gov (United States)

    Dong, X Neil; Guda, Teja; Millwater, Harry R; Wang, Xiaodu

    2009-02-09

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.

  10. A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.

    Science.gov (United States)

    Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang

    2011-07-01

    The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.

  11. Application of probabilistic seismic hazard models with special calculation for the waste storage sites in Egypt

    International Nuclear Information System (INIS)

    Othman, A.A.; El-Hemamy, S.T.

    2000-01-01

    Probabilistic strong motion maps of Egypt are derived by applying Gumbel models and likelihood method to 8 earthquake source zones in Egypt and adjacent regions. Peak horizontal acceleration is mapped. Seismic data are collected from Helwan Catalog (1900-1997), regional catalog of earthquakes from the International Seismological Center (ISC,1910-1993) and earthquake data reports of US Department of International Geological Survey (USCGS, 1900-1994). Iso-seismic maps are also available for some events, which occurred in Egypt. Some earthquake source zones are well defined on the basis of both tectonics and average seismicity rates, but a lack of understanding of the near field effects of the large earthquakes prohibits accurate estimates of ground motion in their vicinity. Some source zones have no large-scale crustal features or zones of weakness that can explain the seismicity and must, therefore, be defined simply as concentrations of seismic activity with no geological or geophysical controls on the boundaries. Other source zones lack information on low-magnitude seismicity that would be representative of longer periods of time. Comparisons of the new probabilistic ground motion estimates in Egypt with equivalent estimates made in 1990 have been done. The new ground motion estimates are used to produce a new peak ground acceleration map to replace the 1990 peak acceleration zoning maps in the Building code of Egypt. (author)

  12. Probabilistic modeling of the flows and environmental risks of nano-silica.

    Science.gov (United States)

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-03-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Probabilistic risk assessment model for allergens in food: sensitivity analysis of the minimum eliciting dose and food consumption

    NARCIS (Netherlands)

    Kruizinga, A.G.; Briggs, D.; Crevel, R.W.R.; Knulst, A.C.; Bosch, L.M.C.v.d.; Houben, G.F.

    2008-01-01

    Previously, TNO developed a probabilistic model to predict the likelihood of an allergic reaction, resulting in a quantitative assessment of the risk associated with unintended exposure to food allergens. The likelihood is estimated by including in the model the proportion of the population who is

  14. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution.

    Directory of Open Access Journals (Sweden)

    Xin He

    2009-03-01

    Full Text Available Cross-species comparison has emerged as a powerful paradigm for predicting cis-regulatory modules (CRMs and understanding their evolution. The comparison requires reliable sequence alignment, which remains a challenging task for less conserved noncoding sequences. Furthermore, the existing models of DNA sequence evolution generally do not explicitly treat the special properties of CRM sequences. To address these limitations, we propose a model of CRM evolution that captures different modes of evolution of functional transcription factor binding sites (TFBSs and the background sequences. A particularly novel aspect of our work is a probabilistic model of gains and losses of TFBSs, a process being recognized as an important part of regulatory sequence evolution. We present a computational framework that uses this model to solve the problems of CRM alignment and prediction. Our alignment method is similar to existing methods of statistical alignment but uses the conserved binding sites to improve alignment. Our CRM prediction method deals with the inherent uncertainties of binding site annotations and sequence alignment in a probabilistic framework. In simulated as well as real data, we demonstrate that our program is able to improve both alignment and prediction of CRM sequences over several state-of-the-art methods. Finally, we used alignments produced by our program to study binding site conservation in genome-wide binding data of key transcription factors in the Drosophila blastoderm, with two intriguing results: (i the factor-bound sequences are under strong evolutionary constraints even if their neighboring genes are not expressed in the blastoderm and (ii binding sites in distal bound sequences (relative to transcription start sites tend to be more conserved than those in proximal regions. Our approach is implemented as software, EMMA (Evolutionary Model-based cis-regulatory Module Analysis, ready to be applied in a broad biological context.

  15. On response time and cycle time distributions in a two-stage cyclic queue

    NARCIS (Netherlands)

    Boxma, O.J.; Donk, P.

    1982-01-01

    We consider a two-stage closed cyclic queueing model. For the case of an exponential server at each queue we derive the joint distribution of the successive response times of a custumer at both queues, using a reversibility argument. This joint distribution turns out to have a product form. The

  16. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...

  17. The Performance of Structure-Controller Coupled Systems Analysis Using Probabilistic Evaluation and Identification Model Approach

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available This study evaluates the performance of passively controlled steel frame building under dynamic loads using time series analysis. A novel application is utilized for the time and frequency domains evaluation to analyze the behavior of controlling systems. In addition, the autoregressive moving average (ARMA neural networks are employed to identify the performance of the controller system. Three passive vibration control devices are utilized in this study, namely, tuned mass damper (TMD, tuned liquid damper (TLD, and tuned liquid column damper (TLCD. The results show that the TMD control system is a more reliable controller than TLD and TLCD systems in terms of vibration mitigation. The probabilistic evaluation and identification model showed that the probability analysis and ARMA neural network model are suitable to evaluate and predict the response of coupled building-controller systems.

  18. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  19. Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Zugno, Marco; Madsen, Henrik

    2016-01-01

    The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known...... that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic-type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state......-dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non-parametric modelling to explore conditional correlation...

  20. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  1. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  2. Probabilistic systems coalgebraically: A survey

    Science.gov (United States)

    Sokolova, Ana

    2011-01-01

    We survey the work on both discrete and continuous-space probabilistic systems as coalgebras, starting with how probabilistic systems are modeled as coalgebras and followed by a discussion of their bisimilarity and behavioral equivalence, mentioning results that follow from the coalgebraic treatment of probabilistic systems. It is interesting to note that, for different reasons, for both discrete and continuous probabilistic systems it may be more convenient to work with behavioral equivalence than with bisimilarity. PMID:21998490

  3. A probabilistic quantitative risk assessment model for the long-term work zone crashes.

    Science.gov (United States)

    Meng, Qiang; Weng, Jinxian; Qu, Xiaobo

    2010-11-01

    Work zones especially long-term work zones increase traffic conflicts and cause safety problems. Proper casualty risk assessment for a work zone is of importance for both traffic safety engineers and travelers. This paper develops a novel probabilistic quantitative risk assessment (QRA) model to evaluate the casualty risk combining frequency and consequence of all accident scenarios triggered by long-term work zone crashes. The casualty risk is measured by the individual risk and societal risk. The individual risk can be interpreted as the frequency of a driver/passenger being killed or injured, and the societal risk describes the relation between frequency and the number of casualties. The proposed probabilistic QRA model consists of the estimation of work zone crash frequency, an event tree and consequence estimation models. There are seven intermediate events--age (A), crash unit (CU), vehicle type (VT), alcohol (AL), light condition (LC), crash type (CT) and severity (S)--in the event tree. Since the estimated value of probability for some intermediate event may have large uncertainty, the uncertainty can thus be characterized by a random variable. The consequence estimation model takes into account the combination effects of speed and emergency medical service response time (ERT) on the consequence of work zone crash. Finally, a numerical example based on the Southeast Michigan work zone crash data is carried out. The numerical results show that there will be a 62% decrease of individual fatality risk and 44% reduction of individual injury risk if the mean travel speed is slowed down by 20%. In addition, there will be a 5% reduction of individual fatality risk and 0.05% reduction of individual injury risk if ERT is reduced by 20%. In other words, slowing down speed is more effective than reducing ERT in the casualty risk mitigation. 2010 Elsevier Ltd. All rights reserved.

  4. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    Science.gov (United States)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  5. Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, T., E-mail: aldemir.1@osu.ed [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Guarro, S. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Mandelli, D. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Kirschenbaum, J. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Mangan, L.A. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Bucci, P. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Yau, M. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Ekici, E. [Ohio State University, Department of Electrical and Computer Engineering, Columbus, OH 43210 (United States); Miller, D.W.; Sun, X. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Arndt, S.A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2010-10-15

    The Markov/cell-to-cell mapping technique (CCMT) and the dynamic flowgraph methodology (DFM) are two system logic modeling methodologies that have been proposed to address the dynamic characteristics of digital instrumentation and control (I and C) systems and provide risk-analytical capabilities that supplement those provided by traditional probabilistic risk assessment (PRA) techniques for nuclear power plants. Both methodologies utilize a discrete state, multi-valued logic representation of the digital I and C system. For probabilistic quantification purposes, both techniques require the estimation of the probabilities of basic system failure modes, including digital I and C software failure modes, that appear in the prime implicants identified as contributors to a given system event of interest. As in any other system modeling process, the accuracy and predictive value of the models produced by the two techniques, depend not only on the intrinsic features of the modeling paradigm, but also and to a considerable extent on information and knowledge available to the analyst, concerning the system behavior and operation rules under normal and off-nominal conditions, and the associated controlled/monitored process dynamics. The application of the two methodologies is illustrated using a digital feedwater control system (DFWCS) similar to that of an operating pressurized water reactor. This application was carried out to demonstrate how the use of either technique, or both, can facilitate the updating of an existing nuclear power plant PRA model following an upgrade of the instrumentation and control system from analog to digital. Because of scope limitations, the focus of the demonstration of the methodologies was intentionally limited to aspects of digital I and C system behavior for which probabilistic data was on hand or could be generated within the existing project bounds of time and resources. The data used in the probabilistic quantification portion of the

  6. Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach

    Directory of Open Access Journals (Sweden)

    S. Raia

    2014-03-01

    Full Text Available Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are based on deterministic laws. These models extend spatially the static stability models adopted in geotechnical engineering, and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the operation of the existing models lays in the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of rainfall-induced shallow landslides. For this purpose, we have modified the transient rainfall infiltration and grid-based regional slope-stability analysis (TRIGRS code. The new code (TRIGRS-P adopts a probabilistic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. The range of variation and the mean value of the parameters can be determined by the usual methods used for preparing the TRIGRS input parameters. The outputs

  7. Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO.

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Merz, Bruno; Schröter, Kai

    2017-04-01

    Flood loss modeling is an important component for risk analyses and decision support in flood risk management. Commonly, flood loss models describe complex damaging processes by simple, deterministic approaches like depth-damage functions and are associated with large uncertainty. To improve flood loss estimation and to provide quantitative information about the uncertainty associated with loss modeling, a probabilistic, multivariable Bagging decision Tree Flood Loss Estimation MOdel (BT-FLEMO) for residential buildings was developed. The application of BT-FLEMO provides a probability distribution of estimated losses to residential buildings per municipality. BT-FLEMO was applied and validated at the mesoscale in 19 municipalities that were affected during the 2002 flood by the River Mulde in Saxony, Germany. Validation was undertaken on the one hand via a comparison with six deterministic loss models, including both depth-damage functions and multivariable models. On the other hand, the results were compared with official loss data. BT-FLEMO outperforms deterministic, univariable, and multivariable models with regard to model accuracy, although the prediction uncertainty remains high. An important advantage of BT-FLEMO is the quantification of prediction uncertainty. The probability distribution of loss estimates by BT-FLEMO well represents the variation range of loss estimates of the other models in the case study. © 2016 Society for Risk Analysis.

  8. ToPS: a framework to manipulate probabilistic models of sequence data.

    Directory of Open Access Journals (Sweden)

    André Yoshiaki Kashiwabara

    Full Text Available Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i independent and identically distributed process; (ii variable-length Markov chain; (iii inhomogeneous Markov chain; (iv hidden Markov model; (v profile hidden Markov model; (vi pair hidden Markov model; (vii generalized hidden Markov model; and (viii similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC. The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.

  9. Application of a probabilistic model of rainfall-induced shallow landslides to complex hollows

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2008-07-01

    Full Text Available Recently, D'Odorico and Fagherazzi (2003 proposed "A probabilistic model of rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39, 2003. Their model describes the long-term evolution of colluvial deposits through a probabilistic soil mass balance at a point. Further building blocks of the model are: an infinite-slope stability analysis; a steady-state kinematic wave model (KW of hollow groundwater hydrology; and a statistical model relating intensity, duration, and frequency of extreme precipitation. Here we extend the work of D'Odorico and Fagherazzi (2003 by incorporating a more realistic description of hollow hydrology (hillslope storage Boussinesq model, HSB such that this model can also be applied to more gentle slopes and hollows with different plan shapes. We show that results obtained using the KW and HSB models are significantly different as in the KW model the diffusion term is ignored. We generalize our results by examining the stability of several hollow types with different plan shapes (different convergence degree. For each hollow type, the minimum value of the landslide-triggering saturated depth corresponding to the triggering precipitation (critical recharge rate is computed for steep and gentle hollows. Long term analysis of shallow landslides by the presented model illustrates that all hollows show a quite different behavior from the stability view point. In hollows with more convergence, landslide occurrence is limited by the supply of deposits (supply limited regime or rainfall events (event limited regime while hollows with low convergence degree are unconditionally stable regardless of the soil thickness or rainfall intensity. Overall, our results show that in addition to the effect of slope angle, plan shape (convergence degree also controls the subsurface flow and this process affects the probability distribution of landslide occurrence in different hollows. Finally, we conclude that

  10. Probabilistic Graphical Models for the Analysis and Synthesis of Musical Audio

    Science.gov (United States)

    Hoffmann, Matthew Douglas

    Content-based Music Information Retrieval (MIR) systems seek to automatically extract meaningful information from musical audio signals. This thesis applies new and existing generative probabilistic models to several content-based MIR tasks: timbral similarity estimation, semantic annotation and retrieval, and latent source discovery and separation. In order to estimate how similar two songs sound to one another, we employ a Hierarchical Dirichlet Process (HDP) mixture model to discover a shared representation of the distribution of timbres in each song. Comparing songs under this shared representation yields better query-by-example retrieval quality and scalability than previous approaches. To predict what tags are likely to apply to a song (e.g., "rap," "happy," or "driving music"), we develop the Codeword Bernoulli Average (CBA) model, a simple and fast mixture-of-experts model. Despite its simplicity, CBA performs at least as well as state-of-the-art approaches at automatically annotating songs and finding to what songs in a database a given tag most applies. Finally, we address the problem of latent source discovery and separation by developing two Bayesian nonparametric models, the Shift-Invariant HDP and Gamma Process NMF. These models allow us to discover what sounds (e.g. bass drums, guitar chords, etc.) are present in a song or set of songs and to isolate or suppress individual source. These models' ability to decide how many latent sources are necessary to model the data is particularly valuable in this application, since it is impossible to guess a priori how many sounds will appear in a given song or set of songs. Once they have been fit to data, probabilistic models can also be used to drive the synthesis of new musical audio, both for creative purposes and to qualitatively diagnose what information a model does and does not capture. We also adapt the SIHDP model to create new versions of input audio with arbitrary sample sets, for example, to create

  11. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  12. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  13. An individual-based probabilistic model for simulating fisheries population dynamics

    Directory of Open Access Journals (Sweden)

    Jie Cao

    2016-12-01

    Full Text Available The purpose of stock assessment is to support managers to provide intelligent decisions regarding removal from fish populations. Errors in assessment models may have devastating impacts on the population fitness and negative impacts on the economy of the resource users. Thus, accuracte estimations of population size, growth rates are critical for success. Evaluating and testing the behavior and performance of stock assessment models and assessing the consequences of model mis-specification and the impact of management strategies requires an operating model that accurately describe the dynamics of the target species, and can resolve spatial and seasonal changes. In addition, the most thorough evaluations of assessment models use an operating model that takes a different form than the assessment model. This paper presents an individual-based probabilistic model used to simulate the complex dynamics of populations and their associated fisheries. Various components of population dynamics are expressed as random Bernoulli trials in the model and detailed life and fishery histories of each individual are tracked over their life span. The simulation model is designed to be flexible so it can be used for different species and fisheries. It can simulate mixing among multiple stocks and link stock-recruit relationships to environmental factors. Furthermore, the model allows for flexibility in sub-models (e.g., growth and recruitment and model assumptions (e.g., age- or size-dependent selectivity. This model enables the user to conduct various simulation studies, including testing the performance of assessment models under different assumptions, assessing the impacts of model mis-specification and evaluating management strategies.

  14. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1997-01-01

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted

  15. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    Science.gov (United States)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  16. Regional probabilistic nuclear risk and vulnerability assessment by integration of mathematical modelling land GIS-analysis

    International Nuclear Information System (INIS)

    Rigina, O.; Baklanov, A.

    2002-01-01

    The Kola Peninsula, Russian Arctic exceeds all other regions in the world in the number of nuclear reactors. The study was aimed at estimating possible radiation risks to the population in the Nordic countries in case of a severe accident in the Kola Peninsula. A new approach based on probabilistic analysis of modelled possible pathways of radionuclide transport and precipitation was developed. For the general population, Finland is at most risk with respect to the Kola NPP, because of: high population density or proximity to the radiation-risk sites and relatively high probability of an airflow trajectory there, and precipitation. After considering the critical group, northern counties in Norway, Finland and Sweden appear to be most vulnerable. (au)

  17. Probabilistic Programming (Invited Talk)

    OpenAIRE

    Yang, Hongseok

    2017-01-01

    Probabilistic programming refers to the idea of using standard programming constructs for specifying probabilistic models from machine learning and statistics, and employing generic inference algorithms for answering various queries on these models, such as posterior inference and estimation of model evidence. Although this idea itself is not new and was, in fact, explored by several programming-language and statistics researchers in the early 2000, it is only in the last few years that proba...

  18. Two-Stage Fan I: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  19. Implementation of equity in resource allocation for regional earthquake risk mitigation using two-stage stochastic programming.

    Science.gov (United States)

    Zolfaghari, Mohammad R; Peyghaleh, Elnaz

    2015-03-01

    This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two-stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user-defined level to achieve the equity-efficiency tradeoff in the decision-making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk-return tradeoff, equity-reconstruction expenditures tradeoff, and variation of per-capita expected earthquake loss in different income classes are also presented. © 2015 Society for Risk Analysis.

  20. Novel Complete Probabilistic Models of Random Variation in High Frequency Performance of Nanoscale MOSFET

    Directory of Open Access Journals (Sweden)

    Rawid Banchuin

    2013-01-01

    Full Text Available The novel probabilistic models of the random variations in nanoscale MOSFET's high frequency performance defined in terms of gate capacitance and transition frequency have been proposed. As the transition frequency variation has also been considered, the proposed models are considered as complete unlike the previous one which take only the gate capacitance variation into account. The proposed models have been found to be both analytic and physical level oriented as they are the precise mathematical expressions in terms of physical parameters. Since the up-to-date model of variation in MOSFET's characteristic induced by physical level fluctuation has been used, part of the proposed models for gate capacitance is more accurate and physical level oriented than its predecessor. The proposed models have been verified based on the 65 nm CMOS technology by using the Monte-Carlo SPICE simulations of benchmark circuits and Kolmogorov-Smirnov tests as highly accurate since they fit the Monte-Carlo-based analysis results with 99% confidence. Hence, these novel models have been found to be versatile for the statistical/variability aware analysis/design of nanoscale MOSFET-based analog/mixed signal circuits and systems.