WorldWideScience

Sample records for prior cold work

  1. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  2. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    International Nuclear Information System (INIS)

    Ulaganathan, Jaganathan; Newman, Roger C.

    2014-01-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved

  3. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M.D.

    2013-01-01

    Prior cold worked (PCW) titanium-modified 14Cr–15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16–24% on creep properties of IFAC-1 SS, a titanium modified 14Cr–15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K

  4. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  5. Does Work Stress Predict the Occurrence of Cold, Flu and Minor Illness Symptoms in Clinical Psychology Trainees?

    OpenAIRE

    Phillips, Anna C.; Sheffield, David

    2005-01-01

    Objectives: The present study examined the three/four-day lagged relationship between daily work stress and upper respiratory tract infection (URTI) and other minor illness symptoms. Methods: Twenty-four postgraduate clinical psychology trainees completed work stress, cold/flu symptoms and somatic symptoms checklists daily for four weeks. Results: Increases in work stress were observed two days prior to a cold/flu episode but not three or four days preceding a cold/flu episode. Work stress wa...

  6. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  7. Effect of ageing on the microstructural stability of cold-worked titanium-modified 15Cr-15Ni-2.5Mo austenitic stainless steel

    International Nuclear Information System (INIS)

    Venkadesan, S.; Bhaduri, A.K.; Rodriguez, P.; Padmanabhan, K.A.

    1992-01-01

    A titanium-modified 15Cr-15Ni-2.5Mo austenitic stainless steel conforming to ASTM A 771 (UNS S 38660), commercially called Alloy D9, is being indigenously developed for application as material for the fuel clad and the hexagonal wrapper for fuel subassemblies of the Prototype Fast Breeder Reactor. As this material would be used in the cold-worked condition and would be subjected to prolonged exposure to elevated service temperatures, the effect of ageing on the microstructural stability was studied as a function of the amount of cold work. The material was given 2.5-30% prior cold work and then aged at temperatures in the range 923 to 1173 K for times ranging from 0.25 to 1000 h. Hardness measurements made before and after ageing were correlated with the Larson-Miller parameter to determine the highest stable prior cold-work level. Optical microscopy was used to study the microstructural changes. The influence of prolonged exposure for two and three years at the operating temperatures of clad and wrapper, on the elevated temperature tensile properties of a 20% prior cold-worked Alloy D9 was also studied through accelerated ageing treatments based on the present parametric approach. (orig.)

  8. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  9. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  10. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  11. Development of nondestructive measurement of cold work rate, (2)

    International Nuclear Information System (INIS)

    Kamimura, Hideaki; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    Cold-worked type 316 stainless steel will be used as fuel cladding material for the proto-type fast reactor MONJU. Cold work rate is an important parameter in swelling behavior of fuel cladding. It has been shown that austenitic stainless steel undergoes martensitic transformation during cold working. Nondestructive evaluation of cold work rate will be expected by measuring residual magnetism produced in the presence of martensitic phase when cold worked austenitic stainless steel is magnetized. In the previous work, the residual magnetism of cladding tubes of type 316 stainless steel was measured. The results have shown high degree of the correlation between residual magnetism and cold work rate. This paper reports the results of measurement on cold-rolled type 316 stainless steel plate samples. Dimensions of the specimens are 100 mm long and 3.5 and 7 mm wide. The apparatus and experimental procedures were similar to the previous work. Good agreement was found between the estimated cold work rate obtained in the previous work and that for cold rolled plate specimens. Measurement of residual magnetism in identical direction with magnetization showed smaller dispersion of data as compared with that in transverse direction. The residual magnetism near specimen surface hardly decreased when the surface of specimen was chemically removed. The reason for the comparative decrease in residual magnetism at 10% and 15% cold work rate is not clear. (Wakatsuki, Y.)

  12. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Effect of composition and cold work on the ferrite transformation in feroplug materials

    International Nuclear Information System (INIS)

    Lai, J.K.L.; Wong, K.W.; Shek, C.H.; Duggan, B.J.

    1993-01-01

    Feroplug is a newly developed temperature indicator suitable for use in the remaining life assessment of high temperature components in power generating plants. The device has been patented in the US on March 17, 1992 under patent number 5,096,304, by the British Technology Group. The Feroplug uses the phase transformation characteristics of duplex stainless steels for temperature measurement. Duplex stainless steels contain ferrite and austenite. Upon exposure to elevated temperatures, the ferrite transforms into austenite, carbides and intermetallic phases. The transformation can be easily monitored by magnetic measurements using a device called the Feritscope. A number of specially designed duplex stainless steels have been produced and the effects of silicon, carbon, and prior cold work on the phase transformation in these alloys. The ferrite transformation was found to be accelerated by prior cold work and by the addition of silicon. The effect of carbon was complicated. Increase in carbon content resulted in a slight increase in the rate of transformation at the early stage, but at the later stage of the transformation the effect of higher carbon content was to reduce the rate of transformation

  14. Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy

    International Nuclear Information System (INIS)

    Chandra, Dhanesh; Sharma, Archana; Chellappa, Raja; Cathey, William N.; Lynch, Franklin E.; Bowman, Robert C.; Wermer, Joseph R.; Paglieri, Stephen N.

    2008-01-01

    High pressure hydrides of V 0.995 C 0.005 were thermally cycled between β 2 - and γ-phases hydrides for potential use in cryocoolers/heat pumps for space applications. The effect of addition of carbon to vanadium, on the plateau enthalpies of the high pressure β 2 + γ region is minimal. This is in contrast to the calculated plateau enthalpies for low pressure (α + β 1 ) mixed phases which showed a noticeable lowering of the values. Thermal cycling between β 2 -and γ-phase hydrides increased the absorption pressures but desorption pressure did not change significantly and the free energy loss due to hysteresis also increased. Hydriding of the alloy with prior cold-work increased the pressure hysteresis significantly and lowered the hydrogen capacity. In contrast to the alloy without any prior straining (as-cast), desorption pressure of the alloy with prior cold-work also decreased significantly. Microstrains, 2 > 1/2 , in the β 2 -phase lattice of the thermally cycled hydrides decreased after 778 cycles and the domain sizes increased. However, in the γ-phase, both the microstrains and the domain sizes decreased after thermal cycling indicating no particle size effect. The dehydrogenated α-phase after 778 thermal cycles also showed residual microstrains in the lattice, similar to those observed in intermetallic hydrides. The effect of thermal cycling (up to 4000 cycles between β 2 - and γ-phases) and cold working on absorption/desorption pressures, hydrogen storage capacity, microstrains, long-range strains, and domain sizes of β 2 - and γ-phase hydrides of V 0.995 C 0.005 alloys are presented

  15. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  16. Temperature dependence of creep properties of cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Yuji; Nakajima, Hajime

    1995-01-01

    The creep properties of Hastelloy XR, in a solution treated, 10% or 20% cold-worked condition, were investigated at temperatures from 800 to 1,000degC for the duration of creep tests up to about 2,500 ks. At 800 and 850degC, the steady-state creep rate and rupture ductility decreased and the rupture life increased after cold work of 10% or 20%. Although the rupture life of the 10% cold-worked alloy was longer at 900degC than that of the solution treated one, the rupture lives of the 10% cold-worked and solution treated alloys were almost equal at 950degC, which is the highest helium temperature in an intermediate heat exchanger of the High Temperature Engineering Test Reactor (HTTR). The beneficial effect of 10% cold work on the rupture life and the steady-state creep rate disappeared at 1,000degC. The beneficial effect of 20% cold work disappeared at 950degC because significant dynamic recrystallization occurred during creep. While rupture ductility of this alloy decreased after cold work of 10% or 20%, it recovered to a considerable extend at 1,000degC. It is emphasized that these cold work effects should be taken into consideration in design, operation and residual life estimation of high temperature components of the HTTR. (author)

  17. Cold moderator test facilities working group

    International Nuclear Information System (INIS)

    Bauer, Guenter S.; Lucas, A. T.

    1997-09-01

    The working group meeting was chaired by Bauer and Lucas.Testing is a vital part of any cold source development project. This applies to specific physics concept verification, benchmarking in conjunction with computer modeling and engineering testing to confirm the functional viability of a proposed system. Irradiation testing of materials will always be needed to continuously extend a comprehensive and reliable information database. An ever increasing worldwide effort to enhance the performance of reactor and accelerator based neutron sources, coupled with the complexity and rising cost of building new generation facilities, gives a new dimension to cold source development and testing programs. A stronger focus is now being placed on the fine-tuning of cold source design to maximize its effectiveness in fully exploiting the facility. In this context, pulsed spallation neutron sources pose an extra challenge due to requirements regarding pulse width and shape which result from a large variety of different instrument concepts. The working group reviewed these requirements in terms of their consequences on the needs for testing equipment and compiled a list of existing and proposed facilities suitable to carry out the necessary development work.

  18. 29 CFR 1915.13 - Cleaning and other cold work.

    Science.gov (United States)

    2010-07-01

    ... affecting cleaning and cold work. ... 29 Labor 7 2010-07-01 2010-07-01 false Cleaning and other cold work. 1915.13 Section 1915.13 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  19. Effect of cold work on creep properties of oxygen-free copper

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.

    2009-03-01

    Spent nuclear fuel is in Sweden planned to be disposed by encapsulating in waste packages consisting of a cast iron insert surrounded by a copper canister. The cast iron is load bearing and the copper canister gives corrosion protection. The waste package is heavy. Throughout the manufacturing process from the extrusion/pierce-and-draw manufacturing to the final placement in the repository, the copper is subjected to handling which could introduce cold work in the material. It is well known that the creep properties of engineering materials at higher temperatures are affected by cold working. The study includes creep testing of four series of cold worked, oxygen-free, phosphorus doped copper (Cu-OFP) at 75 deg C. The results are compared to reference series for as series of copper cold worked in tension (12 and 24 %) and two series cold worked in compression (12 % parallel to creep load axis and 15 % perpendicular to creep load axis) were tested. The results show that pre-straining in tension of copper leads to prolonged creep life at 75 deg C. The creep rate and ductility are reduced. The influence on the creep properties increases with the amount of cold work. Cold work in compression applied along the creep load axis has no effect on the creep life or the creep rate. Nonetheless the ductility is still impaired. However, cold work in compression applied perpendicular to the creep load direction has a positive effect on the creep life. Cold work in both tension and compression results in a pronounced reduction of the initial creep strain, which is the strain obtained from the beginning of the loading until full creep load is achieved. Yet the area reduction is unaffected by the degree of cold work

  20. Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples

    Science.gov (United States)

    Greenen, A. D.; Webster, E. S.

    2017-12-01

    Cold-working of most thermocouples has a significant, direct impact on the Seebeck coefficient which can lead to regions of thermoelectric inhomogeneity and accelerated drift. Cold-working can occur during the wire swaging process, when winding the wire onto a bobbin, or during handling by the end user—either accidentally or deliberately. Swaging-induced cold-work in thermocouples, if uniformly applied, may result in a high level of homogeneity. However, on exposure to elevated temperatures, the subsequent recovery process from the cold-working can then result in significant drift, and this can in turn lead to erroneous temperature measurements, often in excess of the specified manufacturer tolerances. Several studies have investigated the effects of cold-work in Type K thermocouples usually by bending, or swaging. However, the amount of cold-work applied to the thermocouple is often difficult to quantify, as the mechanisms for applying the strains are typically nonlinear when applied in this fashion. A repeatable level of cold-working is applied to the different wires using a tensional loading apparatus to apply a known yield displacement to the thermoelements. The effects of thermal recovery from cold-working can then be accurately quantified as a function of temperature, using a linear gradient furnace and a high-resolution homogeneity scanner. Variation in these effects due to differing alloy compositions in Type K wire is also explored, which is obtained by sourcing wire from a selection of manufacturers. The information gathered in this way will inform users of Type K thermocouples about the potential consequences of varying levels of cold-working and its impact on the Seebeck coefficient at a range of temperatures between ˜ 70°C and 600° C. This study will also guide users on the temperatures required to rapidly alleviate the effects of cold-working using thermal annealing treatments.

  1. Study on Recrystallization of Cold-worked and β-quenched zirconium alloys

    International Nuclear Information System (INIS)

    Goo, J. S.; Hong, S. I.; Kim, H. S.; Jeong, Y. H.

    1998-01-01

    The observation of microstructure and the hardness test of Zr-Sn binary and Zircaloy-4 alloys were performed to investigate the recrystallization of cold-worked and β-quenched Zr alloys. All specimens were heat-treated in vacuum condition at various temperatures. From the observation of microstructures of cold-worked and β-quenched Zr alloys, the cold-worked specimens were shown to keep the cold-worked micro- structure as annealing temperature increased up to 500 deg C and the recrystallization was completed at between 550 deg C and 700 deg C. Meanwhile, the recrystallization of β-quenched Zr alloys was started at about 700 deg C. In all specimens of cold-worked and β-quenched Zr alloys, the hardness value tended to be consistent with microstructure. Although the cold-worked and the β-quenched specimens had an equal initial hardness value, the recrystallization behavior was indicated to be different from each other, which means that recrystallization mechanism is different from each other

  2. Fatigue life prediction for a cold worked T316 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1983-01-01

    Permanent damage curves of initiation-life and propagation-life which predict the fatigue life of specimens of a cold-worked type 316 stainless steel under complex strain-range histories were generated by a limited test program. Analysis of the test data showed that fatigue damage is not linear throughout life and that propagation life is longer than initiation-life at high strain ranges but is shorter at low strain ranges. If permanent damage has been initiated by prior history and/or fabrication, propagation to a given life can occur at a lower strain range than that estimated from the fatigue curves for constant CSR. (author) [pt

  3. Low oxygen treatment prior to cold storage decreases the incidence of bitter pit in 'Golden Reinders' apples.

    Science.gov (United States)

    Val, Jesús; Fernández, Victoria; López, Paola; Peiró, Jose María; Blanco, Alvaro

    2010-02-01

    The effect of subjecting 'Golden Reinders' apples to a low O(2) pre-treatment (LOT; 1-2% O(2)) was evaluated as a strategy to decrease the rate of bitter pit (BP) incidence after standard cold storage (ST). Immediately after harvest, apples were stored for 10 days at 20 degrees C under low O(2). Thereafter, apples were cold-stored (0-4 degrees C) for 4 months and changes were monitored in terms of BP incidence, fruit quality traits and mineral element concentrations. After 4 months cold storage, LOT apples presented a 2.6-fold decrease in the rate of BP incidence (14%) versus the values obtained for standard cold-stored fruits (37% BP incidence). LOT increased flesh firmness, total soluble solids and titratable acidity as compared to the quality traits determined for cold-stored fruits. Lower cortex Ca and Mg concentrations as compared to ST apples were determined in association with LOT, 2 months after cold storage. Application of a LOT prior to cold storage may be a promising strategy to reduce the incidence of BP and preserve fruit quality, which should be further investigated.

  4. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P < 0.001) and did not differ between sexes. Cold stress raised plasma epinephrine and serum cortisol levels only in men (P < 0.05). Cold stress adversely affected memory performance in men but not in women (P < 0.05). The present study indicated that similar moderate cold stress in men and women induces sex-specific neuroendocrine and working memory responses.

  5. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  6. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    Science.gov (United States)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  7. Experimental determination of the effects of annealing on the micro-structures and mechanical properties of cold-worked alpha-brass

    Science.gov (United States)

    Edward, Aghogho Bright; Izelu, Christopher

    2013-12-01

    Experimental determination of the effect of annealing on the microstructure and mechanical properties of a cold work 70 - 30 brass, was carried out by subjecting specimens of the material to various degrees of cold-work (20%, 40% and 60%), by straining using a tensile machine. The specimens for each degree of cold work were then annealed at 250°C, 350°C, 450°C and 600°C, for 30 minutes. The approach involves the use of metallographic techniques: grinding, polishing and etching to reveal the microstructure while tensile test was carried out on the specimen using a Monsanto tensometer so as to obtain the load/extension graph from which the tensile strength and hardness values were obtained. From the results obtained, it was conclusive that annealing produced finer grains and eliminates prior cold work whereby the material becomes ductile. However, there should be an appreciable deformation for this effect to be noticed. One important aspect of re-crystallization in structural materials is that there is a loss of strength which accompanies disappearance of the cold-worked grains when subjected to high temperature applications. Yet, it is often difficult to establish the exact range of permissible temperature. This work establishes a range for the re-crystallization of alpha brass as 350°C < TC < 450°C, where TC is the re-crystallization temperature. Thus, it will be safe to apply this material at temperatures below 350°C, without fear of structural changes with accompanying lost in strength.

  8. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  9. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  10. Hydrogen blister formation on cold-worked tungsten with layered structure

    International Nuclear Information System (INIS)

    Nishijima, Dai; Sugimoto, Takanori; Takamura, Shuichi; Ye, Minyou; Ohno, Noriyasu

    2005-01-01

    Low-energy ( 10 21 m -2 s -1 ) hydrogen plasma exposures were performed on cold-worked powder metallurgy tungsten (PM-W), recrystallized cold-worked PM-W and hot-worked PM-W. Large blisters with a diameter of approximately 100-200 μm were observed only on the surface of cold-worked PM-W. The blister formation mechanism has not been clarified thus far. PM-W has a consisting of 1-μm-thick layers, which is formed by press-roll processing. A detailed observation of the cross section of those blisters shows for the first time that the blisters are formed by cleaving the upper layer along the stratified layer. These experimental results indicate that the manufacturing process of tungsten material is one of the key factors for blister formation on the tungsten surface. (author)

  11. Influence of prior intense exercise and cold water immersion in recovery for performance and physiological response during subsequent exercise

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2016-01-01

    ) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from...... min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P

  12. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  13. Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Behjati, P., E-mail: p.behjatipournaki@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karjalainen, L.P.; Järvenpää, A.; Jaskari, M. [Centre for Advanced Steels Research, University of Oulu, FIN-90014 Oulu (Finland); Samaei Baghbadorani, H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Foulad Institute of Technology, Fouladshahr, Isfahan 84916-63763 (Iran, Islamic Republic of); Hamada, A. [Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721 (Egypt)

    2016-01-05

    The martensitic reversion is known to be effective in refining the grain size of metastable austenitic stainless steels. However, severe cold rolling reductions are generally required for this process. In this study, the influence of the degree of prior cold rolling and subsequent annealing on the microstructure and mechanical properties of a metastable high-Mn austenitic steel was investigated. Three cold rolling reductions of 20%, 35% and 50% were applied at ambient temperature before the annealing at 700 °C for the durations of 10, 100 and 1000 s. Microstructures were examined by optical, scanning and transmission electron microscopes. Mechanical properties were measured by hardness and tensile tests. The microstructure changes were followed by magnetic measurements and X-ray diffraction. It was shown that a relatively small reduction of 35% and 100 s annealing could provide efficient grain refinement (the average size of 0.5 µm) and accordingly an outstanding combination of strength-ductility properties with the yield strength 890 MPa, tensile strength 1340 MPa and elongation 41% was achieved. The occurrence of martensite reversion and recrystallization processes with different contributions in dependence on degree of prior deformation before annealing was discussed.

  14. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  15. Effect of cold works on creep-rupture life of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Han, C. H.; Ryu, W. S.

    2003-01-01

    Effect of cold works on creep-rupture life of the cold-worked type 316LN stainless steels, which are fabricated with the various reductions ; 0%(solution annealing), 20%, 30%, 40%, and 50%, was investigated. The creep-rupture time increased gradually up to 30% reduction, but it decreased inversely over 30% reduction. The longest rupture time exhibited at cold-worked reduction of 30%. The reason for this is that fine carbide precipitates are uniformly generated in grain boundary and the dislocations are pinned in the precipitates and the dislocations are sustained for a long time at high temperature. However, it is assumed that the higher cold-work reductions over 30% lead to excessive generation of deformation faults. The SEM fractrographs of the cold-worked specimens showed dense fracture micrographs, and they did not show intergranular structures in creep fracture mode. From this result, it is believed that the cold-worked specimens were superior in creep-rupture time to solution annealed ones

  16. Night-shift work increases cold pain perception.

    Science.gov (United States)

    Pieh, Christoph; Jank, Robert; Waiß, Christoph; Pfeifer, Christian; Probst, Thomas; Lahmann, Claas; Oberndorfer, Stefan

    2018-05-01

    Although night-shift work (NSW) is associated with a higher risk for several physical and mental disorders, the impact of NSW on pain perception is still unclear. This study investigates the impact of NSW on cold pain perception considering the impact of mood and sleepiness. Quantitative sensory testing (QST) was performed in healthy night-shift workers. Cold pain threshold as well as tonic cold pain was assessed after one habitual night (T1), after a 12-hour NSW (T2) and after one recovery night (T3). Sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI) before T1, sleepiness with the Stanford Sleepiness Scale (SSS) and mood with a German short-version of the Profile of Mood States (ASTS) at T1, T2 and T3. Depending on the distribution of the data, ANOVAs or Friedman tests as well as t- or Wilcoxon tests were performed. Nineteen healthy shift-workers (13 females; 29.7 ± 7.5 years old; 8.1 ± 6.6 years in shift work, PSQI: 4.7 ± 2.2) were included. Tonic cold pain showed a significant difference between T1 (48.2 ± 27.5 mm), T2 (61.7 ± 26.6 mm; effect size: Cohen's d=.49; percent change 28%), and T3 (52.1 ± 28.7 mm) on a 0-100 mm Visual Analog Scale (p = 0.007). Cold pain threshold changed from 11.0 ± 7.9 °C (T1) to 14.5 ± 8.8 °C (T2) (p = 0.04), however, an ANOVA comparing T1, T2, and T3 was not significant (p = 0.095). Sleepiness (SSS) and mood (ASTS) changed significantly between T1, T2 and T3 (p-values night. Increases in cold pain perception due to NSW appear to be more strongly related to changes in mood as compared to changes in sleepiness. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of cold work and aging on mechanical properties of a copper ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of cold working and aging on the mechanical properties of a ... toughness and ductility in various stages of cold work and aging may include high stress concentration at high ... copper is added to HSLA steels to cause precipitation.

  18. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  19. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    Science.gov (United States)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  20. IGSCC in cold worked austenitic stainless steel in BWR environment

    International Nuclear Information System (INIS)

    Persson, B.; Lindblad, B.

    1989-09-01

    The survey shows that austenitic stainless steels in a cold worked condition can exhibit IGSCC in BWR environment. It is also found that IGSCC often is initiated as a transgranular crack. Local stresses and surface defects very often acts as starting points for IGSCC. IGSCC due to cold working requires a cold working magnitude of at leas 5%. During cold working a formation of mechanical martensite can take place. The transgranular corrosion occurs in the martensitic phase due to sensitation. The crack propagates integranularly due to anodic solvation of α'-martensite. Sensitation of the martensitic phase is fasten in BCC-structures than in a FCC-structures mainly due to faster diffusion of chromium and carbon which cause precipitation of chromium carbides. Experiments show that a carbon content as low as 0.008% is enough for the formation of 68% martensite and for sensitation. Hydrogen induced cracking is regarded as a mechanism which can accelerate IGSCC. Such cracking requires a hydrostatic stress near the crack tip. Since the oxide in the crack tip is relatively impermeable to hydrogen, cracks in the oxide layer are required for such embrittlement. Hydrogen induced embrittlement of the martensitic phase, at the crack tip, can cause crack propagation. Solution heat treated unstabilized stainless steels are regarded to have a good resistance to IGSCC if they have not undergone cold working. In general, though, Mo-alloyed steels have a better resistance to IGSCC in BWR environment. Regarding the causes for IGSCC, the present literature survey shows that many mechanisms are suggested. To provide a safer ground for the estimation of crack propagation rates, SA recommends SKI to finance a project with the aim to determine the crack propagation rate on proper material. (authors) (65 refs.)

  1. Effect of cold work and processing orientation on the SCC behavior of Alloy 600

    International Nuclear Information System (INIS)

    Moshier, W.C.; Brown, C.M.

    1999-01-01

    Cold work accelerates SCC growth rates in Alloy 600. However, the variation in crack growth rates generated from cold worker material has been significant, and the effect has been difficult to quantify. A study was performed in hydrogenated water adjusted to pH 10.2 to systematically evaluate the effect of cold work on Alloy 600 as a function of temperature, amount of cold work, stress intensity factor, and processing orientation. Cold work was introduced into the material by either tensile prestraining or cold rolling plate product. Crack growth rates were determined between 252 and 360 C, stress intensity factors between 21 and 55 MPa√m, and yield strengths between 201 and 827 MPa. The material with the highest yield strength was cold rolled and tested in the longitudinal-transverse (LT) and short-transverse (ST) orientations. Crack growth rates increased with increasing temperature, stress intensity factor, and yield strength. Furthermore, crack growth rates were a strong function of the processing orientation in the cold rolled plate, with growth rates being approximately an order of magnitude greater in the ST orientation compared to the LT orientation. Crack growth rates in the LT orientation were measured between 0.003 and 1.95 x 10 -9 m/s and between 0.066 and 6.3 x 10 -9 m/s in the ST orientation. Activation energies were slightly greater in the ST orientation, ranging from 154 to 191 kcal/mole, compared to activation energies between 126 and 157 kJ/mole in the LT orientation. The results of this study demonstrate that although cold work can be used to accelerate SCC, the orientation of crack growth can significantly affect the results, and must be taken into account when analyzing data from cold worked material

  2. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  3. Effects of cold-working on pinning behaviour and critical current densities in NbTi-based superconductors

    International Nuclear Information System (INIS)

    Yamada, Y.; Murase, S.; Wada, H.; Tachikawa, K.

    1985-01-01

    The effects of cold-working on high-field pinning behaviour at 1.8 K and 4.2 K have been studied for multifilamentary NbTi, NbTiHf and NbTiTa superconductors, which were subjected to cold-working, heat treatment and cold-working, in sequence. It is found that the cold-working, either before or after heat treatment, shifts the peak in pinning force density to a higher field, while the maximum pinning force value is first increased with increasing amount of cold-working, and then decreased. This result can not be predicted by existing pinning theories, and we conclude that for pinning behaviour induced by cold-working, not only the introduction of pinning centres but also their size and spacing must be taken into account. (author)

  4. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  5. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Sathyanarayanan, S.; Sasikala, G.; Ray, S.K.

    2004-01-01

    Dynamic J-R curves for cold worked 9Cr-1Mo steel have been estimated from instrumented impact test data at ambient temperature on pre-cracked Charpy specimens using three methods of analysis, namely those by Ray et al., Schindler, and Sreenivasan and Mannan. It is concluded that of these three, Schindler's method is the best suited for the purpose since it gives consistent variations with cold work of dynamic J-R curves and dynamic fracture toughness. Cold work results in substantial degradation in dynamic fracture toughness of 9Cr-1Mo steel

  6. Effect of cold working on ordering of an equiatomic CuPt alloy

    International Nuclear Information System (INIS)

    Hisatsune, Kunihiro; Shiraishi, Takanobu; Takuma, Yasuko; Tanaka, Yasuhiro; Miura, Eri

    2005-01-01

    Effect of cold working on the ordering of an equiatomic CuPt alloy during continuous heating was studied by means of electrical resistivity measurements, hardness tests, differential scanning calorimetry, and X-ray diffraction. The ordering after cold working occurred in three stages with remarkable acceleration, namely, the migration and the annihilation of excess vacancies (I a ), those of secondary defects (I b ) and the migration of equilibrium vacancies (II) as well as that of quenched sample. The lattice defects introduced by cold working advanced the stages I a and I b , and therefore decreased the stage II. There existed two temperature regions with softening due to ordering enhanced recrystallization and normal recrystallization

  7. Prior frozen storage enhances the effect of edible coatings against Listeria monocytogenes on cold-smoked salmon during subsequent refrigerated storage.

    Science.gov (United States)

    Ye, M; Neetoo, H; Chen, H

    2011-10-01

    Listeria monocytogenes is a major safety concern for ready-to-eat foods. The overall objective of this study was to investigate whether prior frozen storage could enhance the efficacy of edible coatings against L. monocytogenes on cold-smoked salmon during subsequent refrigerated storage. A formulation consisting of sodium lactate (SL, 1·2-2·4%) and sodium diacetate (SD, 0·125-0·25%) or 2·5% Opti.Form (a commercial formulation of SL and SD) was incorporated into each of five edible coatings: alginate, κ-carrageenan, pectin, gelatin and starch. The coatings were applied onto the surface of cold-smoked salmon slices inoculated with L. monocytogenes at a level of 500 CFU cm⁻². In the first phase, the slices were first frozen at -18°C for 6 days and stored at 22°C for 6 days. Alginate, gelatin and starch appeared to be the most effective carriers. In the second phase, cold-smoked salmon slices were inoculated with L. monocytogenes, coated with alginate, gelatin or starch with or without the antimicrobials and stored frozen at -18°C for 12 months. Every 2 months, samples were removed from the freezer and kept at 4°C for 30 days. Prior frozen storage at -18°C substantially enhanced the antilisterial efficacy of the edible coatings with or without antimicrobials during the subsequent refrigerated storage. Plain coatings with ≥ 2 months frozen storage and antimicrobial edible coatings represent an effective intervention to inhibit the growth of L. monocytogenes on cold-smoked salmon. This study demonstrates the effectiveness of the conjunct application of frozen storage and edible coatings to control the growth of L. monocytogenes to enhance the microbiological safety of cold-smoked salmon. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. 29 CFR 553.23 - Agreement or understanding prior to performance of work.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Agreement or understanding prior to performance of work... understanding prior to performance of work. (a) General. (1) As a condition for use of compensatory time in lieu... reached prior to the performance of work. This can be accomplished pursuant to a collective bargaining...

  9. Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Dayal, R.K. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Gnanamoorthy, J.B. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India))

    1994-02-01

    The sensitization behaviour of a nuclear grade AISI 316LN stainless steel (SS) was studied for various cold-work levels ranging from 0% (mill-annealed) to 25% reduction in thickness. ASTM standard A262 Practices A and E were adopted to detect the susceptibility to intergranular corrosion. The results obtained in these tests were used to construct time-temperature-sensitization (TTS) diagrams. Using these data, the critical linear cooling rate was calculated, above which there is no risk of sensitization. In order to predict the sensitization behaviour during practical cooling conditions, Continuous-cooling-sensitization (CCS) diagrams were established utilising the TTS diagrams by a mathematical method. The influences of prior deformation and nitrogen in the alloy on the sensitization kinetics are discussed. It was found that nitrogen addition retards the sensitization kinetics and that t[sub min] (minimum time required for sensitization at nose temperature) increases by two orders of magnitude in Type 316LN SS compared to that of Type 316 SS at the different prior deformation levels. Cold-working up to 15% accelerates the onset of carbide precipitation and on further cold working there is not much difference in the kinetics. Desensitization is faster in highly cold-worked material, especially at high temperatures. (orig.)

  10. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    Science.gov (United States)

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  11. Combined effect of repetitive work and cold on muscle function and fatigue.

    Science.gov (United States)

    Oksa, Juha; Ducharme, Michel B; Rintamäki, Hannu

    2002-01-01

    This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.

  12. Void formation in cold-worked type 316 stainless steel irradiated with 1-MeV protons

    International Nuclear Information System (INIS)

    Keefer, D.W.; Pard, A.G.

    1974-01-01

    Cold-worked Type 316 stainless steel was irradiated at 500 and 600 0 C with 1-MeV protons. The dependence of void formation on displacement damage, irradiation temperature, and microstructure was studied by transmission electron microscopy. Cold working delays the onset of swelling and reduces it, via a reduction in void size, at both irradiation temperatures. Inhomogeneity in the cold-worked microstructure leads to inhomogeneity in the disposition of voids. Swelling at 600 is greater than at 500 0 C; the voids are less numerous but larger at the higher temperature. No change in the cold-worked microstructure can be detected by transmission electron microscopy after 500 0 C irradiation to 23 displacements per atom. Irradiation to a comparable damage level at 600 0 C results in almost complete elimination of the cold-worked microstructure. Comparison of the results is made with data from reactor irradiation experiments

  13. Influence of cold working on deformation behavior and shape memory effect of Ti-Ni-Nb

    International Nuclear Information System (INIS)

    Okita, K.; Semba, H.; Okabe, N.; Sakuma, T.; Mihara, Y.

    2005-01-01

    In this study, the influence of cold working on the deformation behavior and the transformation characteristics was investigated on the Ti-Ni-Nb shape memory alloy (SMA). Both the tensile test and the shape recovery test were performed for the wire specimens of 1mm in the diameter with some different rates of cold working. The shape recovery tests were performed for the wire specimens of different cold working rates until the various levels of maximum applied strain, and the reverse-transformation characteristics on the process of heating after unloading were studied. It is clarified that the higher cold-working rate improves the shape memory properties of the alloy. (orig.)

  14. The role of cell structure during creep of cold worked copper

    Energy Technology Data Exchange (ETDEWEB)

    Sandström, Rolf, E-mail: rsand@kth.se

    2016-09-30

    In previous work it was demonstrated that cold work could reduce the creep rate of phosphorus doped copper (Cu-OFP) by up to six orders of magnitude at 75 °C at a given applied stress. Cu-OFP will be used in canisters for final disposal of spent nuclear fuel. A dislocation model for the cell structure in the cold deformed material has been formulated. A distinction is made between the balanced dislocation content in the cell walls where the number of dislocations of opposite sign match and the unbalanced content where they do not. The recovery rate of the unbalanced content is much lower than that of the balanced content. Taking this into account, it has been possible to model the creep curves of both 12% and 24% cold worked Cu-OFP. The general appearance of the two sets of creep curves are distinctly different, which can be explained by the higher recovery rate in the 24% deformed state.

  15. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    Science.gov (United States)

    Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    Purpose The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Methods Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were randomized (1:1:1:1) to a (hot-to-) cold shower for 30, 60, 90 seconds or a control group during 30 consecutive days followed by 60 days of showering cold at their own discretion for the intervention groups. The primary outcome was illness days and related sickness absence from work. Secondary outcomes were quality of life, work productivity, anxiety, thermal sensation and adverse reactions. Results 79% of participants in the interventions groups completed the 30 consecutive days protocol. A negative binomial regression model showed a 29% reduction in sickness absence for (hot-to-) cold shower regimen compared to the control group (incident rate ratio: 0.71, P = 0.003). For illness days there was no significant group effect. No related serious advents events were reported. Conclusion A routine (hot-to-) cold shower resulted in a statistical reduction of self-reported sickness absence but not illness days in adults without severe comorbidity. Trial Registration Netherlands National Trial Register NTR5183 PMID:27631616

  16. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  17. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation.

    Science.gov (United States)

    Jones, Douglas M; Roelands, Bart; Bailey, Stephen P; Buono, Michael J; Meeusen, Romain

    2018-03-19

    It is well-documented that severe cold stress impairs exercise performance. Repeated immersion in cold water induces an insulative type of cold acclimation, wherein enhanced vasoconstriction leads to greater body heat retention, which may attenuate cold-induced exercise impairments. The purpose of this study, therefore, was to investigate changes in exercise performance during a 7-day insulative type of cold acclimation. Twelve healthy participants consisting of eight males and four females (mean ± SD age: 25.6 ± 5.2 years, height: 174.0 ± 8.9 cm, weight: 75.6 ± 13.1 kg) performed a 20 min self-paced cycling test in 23 °C, 40% humidity without prior cold exposure. Twenty-four hours later they began a 7-day cold acclimation protocol (daily 90 min immersion in 10 °C water). On days one, four, and seven of cold acclimation, participants completed the same cycling test. Measurements of work completed, core and skin temperatures, heart rate, skin blood flow, perceived exertion, and thermal sensation were measured during each cycling test. Successful insulative cold acclimation was observed. Work produced during the baseline cycling test (220 ± 70 kJ) was greater (p immersions (195 ± 58, 197 ± 60, and 194 ± 62 kJ) despite similar ratings of perceived exertion during each test, suggesting that cold exposure impaired cycling performance. This impairment, however, was not attenuated over the cold acclimation period. Results suggest that insulative cold acclimation does not attenuate impairments in exercise performance that were observed following acute cold water immersion.

  18. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  19. Laboratory results gained from cold worked type 316Ti under simulated PWR primary environment

    International Nuclear Information System (INIS)

    Devrient, B.; Kilian, R.; Koenig, G.; Widera, M.; Wermelinger, T.

    2015-01-01

    Beginning in 2005, intergranular stress corrosion cracking (IGSCC) of barrel bolts made from cold worked type 316Ti (German Material No. 1.4571 K) was observed in several S/KWU type PWRs. This mechanism was so far less understood for PWR primary conditions. Therefore an extended joint research program was launched by AREVA GmbH and VGB e.V. to clarify the specific conditions which contributed to the observed findings on barrel bolts. In the frame of this research program beneath the evaluation of the operational experience also laboratory tests on the general cracking behavior of cold worked type 316Ti material, which followed the same production line as for barrel bolt manufacturing in the eighties, with different cold work levels covering up to 30 % were performed to determine whether there is a specific susceptibility of cold worked austenitic stainless steel specimens to suffer IGSCC under simulated PWR primary conditions. All these slow strain rate tests on tapered specimens and component specimens came to the results that first, much higher cold work levels than used for the existing barrel bolts are needed for IGSCC initiation. Secondly, additional high active plastic deformation is needed to generate and propagate intergranular cracking. And thirdly, all specimens finally showed ductile fracture at the applied strain rates. (authors)

  20. The Role of Cold Work in Eddy Current Residual Stress Measurements in Shot-Peened Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Yu, F.; Nagy, P. B.

    2006-01-01

    Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work

  1. The effects of corrosion conditions and cold work on the nodular corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    You, Gil Sung

    1992-02-01

    The nodular corrosion of Zircaloy-4 was investigated on the effects of corrosion conditions and cold work. Variation of steam pressures, heat-up environments and prefilms were considered and cold work effects were also studied. The corrosion rate of Zircaloy-4 was dependent on pressure between 1 and 100 atm and it followed the cubic law as W=16.85 x P 0.31 for plate specimens and W=12.69 x P 0.27 for tube specimens, where W is weight gain (mg/dm 2 ) and P is the steam pressure (atm). The environment variation in autoclave during heat-up period did not affect the early stage of nodular corrosion. The prefilm, which was formed at 500 .deg. C under 1 atm steam for 4 hours, restrained the formation of the initial small nodules. The oxide film formed under 1 atm steam showed no difference of electrical resistivity from the oxides formed under 100 atm steam pressure. Cold work specimens showed the higher resistivity against nodular corrosion than as-received specimens. The corrosion resistance arising from cold work seems to be due to the texture changes by the cold work. The results showed that cold work can affect the later stage of uniform corrosion and the early stage of nodular corrosion, namely, the nodule initiation stage

  2. Hardness survey of cold-worked and heat-treated JBK-75 stainless steel alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lucas, R.L.

    1977-01-01

    The alloy JBK-75, an age-hardenable austenitic stainless steel, is similar to commercial A-286, but has certain chemistry modifications to improve weldability and hydrogen compatibility. The principal changes are an increase in nickel and a decrease in manganese with lower limits on carbon, phosphorus, sulfur, silicon, and boron. In this study, the effects of solutionizing time and temperature, quench rate, cold working, and the effects of cold working on precipitation kinetics were examined. Findings show that the solutionizing temperature has a moderate effect on the as-quenched hardness, while times greater than that required for solutionizing do not significantly affect hardness. Quench rate was found to have a small effect on as-quenched hardness, however, hardness gradients did not develop in small bars. It was found that JBK-75 can be significantly strengthened by cold working. Cold working alone produced hardness increases from Rockwell-A 49 to R/sub A/ 68. A recovery-related hardness change was noted on heat treating at 300 and 400 0 C for both as-quenched and as-worked JBK-75. Significant age-hardening was observed at temperatures as low as 500 0 C for as-worked metal. Aging at 600 0 C resulted in maximum hardness in the 75 percent worked sample at about 6 hours (R/sub A/ 73.5) while the 50 percent worked sample was near maximum hardness (R/sub A 72.5) after seven days. THE 25 and 0 percent worked samples were considerably underaged after seven days. Similar type kinetic data were obtained for worked and nonworked metal at 650, 700, 800, 850, 900, 1000, and 1100 0 C for times from 10 minutes to 10,000 minutes (6.7 days). The overall purpose of the hardness survey was to better define the effects of cold work on the stress-relieving range, coherent precipitation range, incoherent precipitation range, recrystallization range, solutionizing range, and grain-growth range

  3. Evaluation of the StressWave Cold Working (SWCW) Process on High-Strength Aluminum Alloys for Aerospace

    Science.gov (United States)

    2009-02-01

    Alloy Spot- welds by Cold Working,” 13 International Pacific Conference on Automotive Engineering (IPC-13), Gyeongju, Korea, August 2005. 7. Kim...so that it remains normal to the indenting direction. The restraint provided around the area to be cold worked minimizes surface upset (albeit...direction. The restraint provided around the area to be cold worked minimizes surface upset (albeit small without a PF). The stabilizing aspect

  4. 46 CFR 176.710 - Inspection and testing prior to hot work.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 176.710... testing prior to hot work. (a) An inspection for flammable or combustible gases must be conducted by a... operations involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel...

  5. 46 CFR 115.710 - Inspection and testing prior to hot work.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 115.710... AND CERTIFICATION Repairs and Alterations § 115.710 Inspection and testing prior to hot work. (a) An... involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel: (1...

  6. Effect of cold work on tensile behavior of irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1986-01-01

    Tensile specimens were irradiated in ORR at 250, 290, 450, and 500 0 C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290 0 C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450 0 C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500 0 C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500 0 C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes

  7. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Retarding effect of prior-overloading on stress corrosion cracking of cold rolled 316L SS in simulated PWR water environment

    Science.gov (United States)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Ma, Jiarong; Shoji, Tetsuo

    2017-12-01

    The effect of prior single tensile overloading on the stress corrosion cracking behavior of cold rolled 316L in a simulated PWR water environment at 310 °C was investigated. SCC growth retardation by overloading was observed in cold rolled 316L specimens in both the T-L and L-T orientations. The stretch zone observed on the fracture surfaces of the overloaded specimens affected SCC propagation. The compressive residual stress induced by overloading process reduced the effective driving force of SCC propagation. The negative dK/da effect ahead of the crack tip likely contributes to the retardation of SCC growth. The duration of overloading is dependent on water chemistry and the local stress conditions.

  9. Residual cold-work determination by X-ray diffraction

    International Nuclear Information System (INIS)

    Pireau, A.; Vanderborck, Y.

    1990-01-01

    The determination of the cold-work level of materials for fast breeder reactors can be made by different techniques. The report compares different methods for an application on austenitic stainless steels and demonstrates that the X-ray diffraction procedure is a reliable technique. A round robin test has been performed between three laboratories; the results are presented and discussed

  10. The effect of cold work on the recrystallization and precipitation kinetics of Al-Cu alloy

    International Nuclear Information System (INIS)

    Taha, A.S.; EL-Mossalamy, S.; Nassar, A.M.

    1990-01-01

    The effect of cold work by rolling (10-70%) followed by isochronal and isothermal annealing on the microhardness and iso thermal annealing on the microhardness and structure of Al-3.94 wt % Cu was investigated using microhardness measurements, optical and scanning electron microscopy. Two stages of annealing were observed, the first stage lies in the range R T-623 degree K is associated with decrease in hardness indicating overall recovery, while the second stage lies in the range 623-823 degree K shows hardness increase with temperature indicating precipitation reaching a maximum at 823 degree K for all cold worked specimens. The maximum hardness increases with the increase of the degree of cold work. The first stage is attributed to recovery processes including recrystallization while the second stage is attributed to precipitation which enhanced by increasing amount of cold work as indicated by hardness and scanning electron microscopy observations

  11. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  12. Effect of cold working on the aging and corrosion behavior of Fe-Mn-Al stainless steel

    International Nuclear Information System (INIS)

    Ghayad, I.M.; Girgis, N.N.; Ghanem, W.; Hamada, A.S.

    2004-01-01

    The cold working; aging process; and corrosion behavior of the Fe-Mn-Al stainless steel having a composition of Fe-29wt%Mn-3.5wt%Al-0.5wt%C were investigated. Three different groups of specimens of the alloy were subjected to different procedures of cold working and aging. The first group were cold worked then solution treated at 1100 deg. C for 24 hr, coded as CW+ST. The second group were cold worked, solution treated at 1100 deg. C for 24 hr then cold worked again, coded as CW+ST+CW. The third group were solution treated at 1100 deg. C for 24 hr then cold worked, coded as ST+CW. Subsequent aging treatments of the controlled-worked alloy showed age hardening similar to that reported for the solution-treated alloys. The strengthening of the experimental alloy due to the controlled-working and aging is discussed on the basis of microstructural observations and X-ray diffraction analysis. The corrosion behavior of the different groups of the alloy, CW+ST; CW+ST+CW; ST+CW, with their peak aged and over aged conditions has been examined in 3.5% NaCl solution. The electrochemical techniques, potentiodynamic polarization and Tafel plots were employed. All the alloy groups did not passivate in 3.5% NaCl solution and the major corrosion type observed was general corrosion. The peak aged and over aged of the CW+ST+CW exhibited higher corrosion rates due to the formation of ferrite phase that formed a galvanic couple with the austenitic matrix. (authors)

  13. Two-parametric model of metals hardening during cold working

    International Nuclear Information System (INIS)

    Khajkin, B.E.

    1985-01-01

    Mathematical models of cold working metal resistance σ depending on deformation degree have been analyzed. Advantage of two-parametric formula combining simplicity with satisfactory accuracy of experimental data approximation is noted. The formula is convenient when determining value σ, which is average with respect of deformation location, as average geometric value

  14. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    NARCIS (Netherlands)

    Buijze, Geert A.; Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were

  15. Estimation and correlation of strengthening components to the evolution of microstructure following cold work and articial aging in AA6111 aluminium

    International Nuclear Information System (INIS)

    Quainoo, G K; Yannacopoulos, S; Sargent, C M

    2010-01-01

    In this study, the contributions of the various strengthening components following the application of cold work and precipitation in AA6111 has been evaluated and correlated by means of tensile testing and transmission electron microscopy (TEM). The results show a considerable improvement in yield and tensile strength with increasing level of cold work. The component of strength developed from cold work and precipitation respectively increases with increasing level of cold work. The recovery strength (softening) also increases with increasing level of cold work. TEM showed a strong interaction of strengthening precipitates with dislocations. The density of dislocation tangles is shown to increase with increasing degree of cold work.

  16. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550 degrees c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength

  17. Simulation of tensile stress-strain properties of irradiated type 316 SS by heavily cold-worked material

    International Nuclear Information System (INIS)

    Muto, Yasushi; Jitsukawa, Shiro; Hishinuma, Akimichi

    1995-07-01

    Type 316 stainless steel is one of the most promising candidate materials to be used for the structural parts of plasma facing components in the nuclear fusion reactor. The neutron irradiation make the material brittle and reduces its uniform elongation to almost zero at heavy doses. In order to apply such a material of reduced ductility to structural components, the structural integrity should be examined and assured by the fracture mechanics. The procedure requires a formulated stress-strain relationship. However, the available irradiated tensile test data are very limited at present, so that the cold-worked material was used as a simulated material in this study. Property changes of 316 SS, that is, a reduction of uniform elongation and an enhancement of yield stress are seemingly very similar for both the irradiated 316 SS and the cold-worked one. The specimens made of annealed 316 SS, 20% (or 15%) cold worked one and 40% cold worked one were prepared. After the formulation of stress strain behavior, the equation for the cold-worked 316 SS was fitted to the data on irradiated material under the assumption that the yield stress is the same for both materials. In addition, the upper limit for the plastic strain was introduced using the data on the irradiated material. (author)

  18. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  19. Temperature dependence of the dynamic fracture toughness of the alloy Incoloy 800 after cold work

    International Nuclear Information System (INIS)

    Krompholz, K.; Ullrich, G.

    1991-02-01

    Precracked charpy-V-notch specimens of the iron-nickel base alloy Incoloy 800 in the as-received condition and after cold work have been tested using an instrumented impact tester (hammer) in the temperature range 293 ≤ T/K ≤ 1223. The specific impact energies were determined by dial readings, from the integration of the load versus time and the load versus load point displacement diagrams; in all cases the agreement was excellent. The specific impact energies and the impulses are correlated with the test temperature and with the degree of cold work, respectively. The dynamic fracture toughness values were determined following the equivalent energy approach. In all cases a distinct decrease of the mechanical properties in the range between the as-received state and after 5 % cold work was found. The temperature behaviour of the impact energies clearly reveals an increase of its value between room temperature and 673 K. This increase is distinctly reduced after cold work. The dynamic fracture toughness decreases with increasing temperature. The fracture surfaces clearly show elasto-plastic fracture behaviour of the material in the temperature regime investigated. (author) 19 figs., 3 tabs., 7 refs

  20. Rapid nickel diffusion in cold-worked carbon steel at 320-450 °C

    Science.gov (United States)

    Arioka, Koji; Iijima, Yoshiaki; Miyamoto, Tomoki

    2015-11-01

    The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/-2.5) × 10-11 exp (-146 ± 4 kJ mol-1/RT) m2s-1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol-1 is 54% of the activation energy 270.4 kJ mol-1 for lattice diffusion of nickel in the ferromagnetic state iron.

  1. Effect of cold working on the corrosion resistance of JPCA stainless steel in flowing Pb–Bi at 450 °C

    International Nuclear Information System (INIS)

    Rivai, Abu Khalid; Saito, Shigeru; Tezuka, Masao; Kato, Chiaki; Kikuchi, Kenji

    2012-01-01

    Development of a high performance proton beam window material is one of the critical issues for the deployment of the accelerator-driven transmutation system (ADS) with liquid Pb–Bi eutectic as a spallation target and coolant. In the present study, we applied 20% cold work treatment to JPCA austenitic stainless steel and investigated it from the corrosion behavior viewpoint. The corrosion test of 20% cold-worked JPCA SS has been carried in the JLBL-1 (JAEA Lead–Bismuth Loop-1) apparatus. The maximum temperature, the temperature difference, the flow velocity and the exposure time of the liquid Pb–Bi were 450 °C, 100 °C, 1 m/s, and 1000 h, respectively. For comparison analysis, JPCA SS without cold working was also tested in the same time and conditions with the 20% cold-worked JPCA SS. The results showed a different corrosion behavior between the JPCA SS without and with cold working. As for the JPCA SS without cold working, Pb–Bi penetrated into the matrix through a ferrite layer which was formed because of constituent metals dissolution from the matrix into Pb–Bi. As for the 20% cold-worked JPCA SS, dissolution attack occurred only partially and formed localized superficial pitting corrosion. It was found that the different corrosion behavior occurred because the cold working induced a structure transformation from γ-austenite to α′-martensite and affected the corrosion resistance of the JPCA SS in flowing Pb–Bi at 450 °C.

  2. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  3. Effect of cold work on decarburization of 2.25Cr-1Mo steel in high temperature sodium

    International Nuclear Information System (INIS)

    Aoki, Norichika; Yoshida, Eiichi; Wada, Yusaku.

    1994-01-01

    It is known that the mechanical properties of a 2.25Cr-1Mo steel deteriorated due to the decarburization during immersion in the melt sodium at high temperatures. In low-alloy steel as well as a 2.25Cr-1Mo steel, precipitation reactions of carbides are known to be accelerated by cold working and aging. Thus, it may be expected that cold working and aging effectively suppress the decarburization of the mechanical properties of a 2.25Cr-1Mo steel because the decarburization will be restrained owing to fixation of carbon as precipitates of the carbides. In the present article, effects of cold-working and heat treatments on the kinetics of the decarburization of a 2.25Cr-1Mo steel has been studied experimentally. The annealed, cold-rolled, and normalized and tempered specimens were immersed in the melt of sodium at 500, 600 and 700degC for 425, 437 and 432h, respectively. On the basis of the observations obtained from these specimens, the experiment was also carried out at 450, 500 and 550degC for 2270 and 5465h. The microstructures before and after the immersion were observed with optical and scanning electron microscopes. An average concentration of carbon in each specimen was analyzed by an inert gas fusion method. The carbides extracted from the specimens were identified by X-ray diffraction. At immersion temperatures of 450 and 500degC, a 10% reduction of the decarburization in thickness by cold-working is sufficiently effective for retardation of the decarburization at both 2270 and 5465h. Whereas, at 550degC, more than 30% reduction in thickness by cold-working is needed for it at 2270h but even 80% reduction in thickness by cold-working causes merely slight retardation of the decarburization at 5465h. (author)

  4. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line

    International Nuclear Information System (INIS)

    Talha, Mohd; Kumar, Sanjay; Behera, C.K.; Sinha, O.P.

    2014-01-01

    The aims of the present work are to explore the effect of cold working on in-vitro biocompatibility of indigenized low cost Ni-free nitrogen containing austenitic stainless steels (HNSs) and to compare it with conventionally used biomedical grade, i.e. AISI 316L and 316LVM, using Dalton's Lymphoma (DL) cell line. The MTT assay [3-(4,5-dimethythiazol 2-yl)-2,5-diphenyltetrazolium bromide] was performed on DL cell line for cytotoxicity evaluation and cell adhesion test. As a result, it was observed that the HNS had higher cell proliferation and cell growth and it increases by increasing nitrogen content and degree of cold working. The surface wettability of the alloys was also investigated by water contact angle measurements. The value of contact angles was found to decrease with increase in nitrogen content and degree of cold working. This indicates that the hydrophilic character increases with increasing nitrogen content and degree of cold working which further attributed to enhance the surface free energy (SFE) which would be conducive to cell adhesion which in turn increases the cell proliferation. - Graphical abstract: Effect of cold working on in-vitro biocompatibility of indigenized Ni-free nitrogen bearing austenitic stainless steels was explored using Dalton's Lymphoma cell line. Cell proliferation and cell adhesion increase by increasing the degree of cold working and nitrogen content in steel indicating that indigenized material is more biocompatible and no negative effect of cold working on these steels. - Highlights: • Effect of cold working on biocompatibility of Ni-free austenitic stainless steels • Cell proliferation and adhesion increase with nitrogen and degree of cold working. • Contact angle values decrease with nitrogen and degree of cold working

  5. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  6. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.

    2003-01-01

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  7. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1977-02-01

    Results from a study of the resistivity recovery of neutron-irradiated and cold-worked thorium on isochronal annealing, activation energies, and isothermal annealing and kinetics are discussed. The nature and extent of radiation effects on the resistivity of thorium at 80 0 K, interpretation of stage II recovery above 80 0 K, and activation energy and interpretation of stage III recovery are also discussed. There are 79 references

  8. Cold standby repairable system with working vacations and vacation interruption

    Institute of Scientific and Technical Information of China (English)

    Baoliang Liu; Lirong Cui; Yanqing Wen

    2015-01-01

    This paper studies a cold standby repairable system with working vacations and vacation interruption. The repairman’s multiple vacations policy, the working vacations policy and the vacation interruption are considered simultaneously. The lifetime of components fol ows a phase-type (PH) distribution. The repair time in the regular repair period and the working vacation period fol ow other two PH distributions at different rates. For this sys-tem, the vector-valued Markov process governing the system is constructed. We obtain several important performance measures for the system in transient and stationary regimes applying matrix-analytic methods. Final y, a numerical example is given to il ustrate the results obtained.

  9. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  10. Working group on a database for cold moderators

    International Nuclear Information System (INIS)

    Broome, T. A.

    1997-09-01

    The working group meeting was chaired by Broome. The working group was charged with the task: Gather a table of neutronic performance known for specific designs; operational, test, theoretical/calculated. Set up generation of a (very briefly) annotated bibliography on this topic. A joint meeting with the Working Group on Moderator Performance Measurements was held to define the data on cold moderators which should be contained in the data base. It became clear that there exists only a small amount of data in very different forms much of it incomplete in its detail. So, rather than spending time collating existing data, it was considered to be more generally profitable to concentrate on the specification of the database and its implementation. The aim was to propose a system which could start quickly and simply yet be capable of extension and development in the future. The system was outlined in the summary session of the workshop and agreed by the participants.

  11. Recovery in cold-worked alloy under pressure: example of AISI 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, M; Sahu, P C; Raghunathan, V S; Govinda Rajan, K

    1986-06-01

    In this paper we report the behaviour of defects under high pressure in severely cold-deformed 316 stainless steel. In situ electrical resistivity measurements indicate a minimum in the reduced resistivity ratio at 2 GPa associated with a characteristic relaxation time of 500 + - 5 sec. Microhardness data on pressure-treated and recovered samples are consistent with the electrical resistivity behaviour. X-ray powder diffraction rings indicate sharpening beyond 2 GPa. The decrease in the full width at half maximum (FWHM) of the strongest ring is about 2% at pressures beyond 2 GPa. Transmission electron microscopy reveals that samples pressure treated beyond 2 GPa have a polygonized dislocation structure. This is in sharp contrast to the tangled dislocation structure observed in the cold-worked samples. The experimental results suggest a recovery stage in cold-worked stainless steel at 2 GPa. We propose that the recovery process is activated through an enhanced vacancy concentration caused by deformation, a pressure-induced vacancy-dislocation interaction and consequently a pressure-assisted dislocation mobility leading to polygonization.

  12. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  13. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  14. Stress-relaxation in bending of zircaloy-4 at 673 K, as a function of cold-work

    International Nuclear Information System (INIS)

    Povolo, F.

    1983-01-01

    Stress-relaxation data, in bending, in Zircaloy-4 with different degrees of cold-work are presented. The measurements were performed at 673 K, with six different initial stresses and up to times of the order of 1000 h. The stress-relaxation curves are interpreted in terms of a creep model involving jog-drag and cell formation and some dislocation parameters are calculated from the experimental results. The influence of cold-work on these parameters is discussed. (author)

  15. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 6000C

    International Nuclear Information System (INIS)

    Isore, A.; Miyada, L.T.

    1975-01-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280 0 C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600 0 C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions

  16. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  17. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  18. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  19. On the significance of a subsequent ageing after cold working of Incoloy 800 at operational temperatures

    International Nuclear Information System (INIS)

    Ullrich, G.; Krompholz, K.

    1993-01-01

    The influence of cold working and subsequent ageing at operational temperatures on the long-term and short-term mechanical properties of components made from the iron-nickel-chromium base alloy Incoloy 800 are discussed. Long-term properties are time-to-rupture strengths, which are included in the design code, over a lifetime of 300,000 hours. For LWR operating temperatures of 350 o C, this is of minor importance. An operating temperature of 550 o C is possible for Incoloy 800 with up to 25% cold working and a subsequent solution annealing at 950 o C, without loss of time-to-rupture strength compared with the 'as received' state. The short-term mechanical properties are strongly influenced by cold working, in the form of increasing yield strength and rupture strength, and decreasing ductility and consequently loss in impact energies. A subsequent ageing at 550 o C leads to a decrease of the yield strength and rupture strength, and an increase of ductility as well as the impact energies. The environmental influence are discussed. (author) 3 figs., 1 tab., 8 refs

  20. Effects of prior stress history on the irradiation creep of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Chin, B.A.; Straalsund, J.L.; Wire, G.L.

    1979-01-01

    The following conclusions resulted from this study: An in-reactor transient component of creep is found to occur whenever the stress level is increased. The transient is principally a thermal process, short in duration, and only weakly dependent on flux. The observed irradiation component of in-reactor creep is independent of prior stress history. Microstructural development during irradiation is influenced predominantly by the irradiation flux and temperature variables, and only to a minor extent by the irradiation stress history. (Auth.)

  1. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  2. Effect of grain size and cold working on high temperature strength of Hastelloy X

    International Nuclear Information System (INIS)

    Fujioka, J.; Murase, H.; Matsuda, S.

    1980-01-01

    Effect of grain size and cold working on creep, creep rupture, low cycle fatigue and tensile strengths of Hastelloy X were studied at temperatures ranging from 800 to 1000 0 C. In order to apply these data to design, the allowable design stresses were estimated by expanding the criteria of ASME Code Case 1592 to such a high temperature range. The allowable design stress increased, on the other hand, the low cycle fatigue life decreased with increasing grain size. Cold working up to a ratio of 5 per cent may not be a serious problem in design, because the allowable design stress and the fatigue life were little affected. The cause of these variations in strength was discussed by examining the initiation and growth of cracks, and the microstructures. (author)

  3. Effect of cold work and aging on mechanical properties of a copper ...

    Indian Academy of Sciences (India)

    TECS

    cal properties of a Cu-bearing HSLA-100 steel microalloyed with Nb and Ti. Aging at 400°C after ... impact energy (24 J). C50A treatment involving 50 pct cold work and aging ... 2006) as well as by thermomechanical treatments along with suitable ... the transformed structure of ferrite, bainite or martensite. In a recent paper, ...

  4. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  5. Effect of Annealing on Strain-Temperature Response under Constant Tensile Stress in Cold-Worked NiTi Thin Wire

    OpenAIRE

    Yan, Xiaojun; Van Humbeeck, Jan

    2011-01-01

    The present paper aims to understand the influence of annealing on the strain-temperature response of a cold-worked NiTi wire under constant tensile stress. It was found that transformation behavior, stress-strain relationship, and strain-temperature response of the cold-worked NiTi wire are strongly affected by the annealing temperature. Large martensitic strains can be reached even though the applied stress is below the plateau stress of the martensite phase. At all stress levels transforma...

  6. On the influence of cold work on the oxidation behavior of some austenitic stainless steels: High temperature oxidation

    NARCIS (Netherlands)

    Langevoort, J.C.; Fransen, T.; Gellings, P.J.

    1984-01-01

    AISI 304, 314, 321, and Incoloy 800H have been subjected to several pretreatments: polishing, milling, grinding, and cold drawing. In the temperature range 800–1400 K, cold work improves the oxidation resistance of AISI 304 and 321 slightly, but has a relatively small negative effect on the

  7. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Isore, A; Miyada, L T

    1975-05-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280/sup 0/C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600/sup 0/C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions.

  8. The effect of cold work on grain boundary precipitation and sensitization in nitrogen added type 316L stainless steels

    International Nuclear Information System (INIS)

    Seo, Moo Hong; Chun, Byong Sun; Oh, Yong Jun; Ryu, Woo Seog; Hong, Jun Hwa

    1998-01-01

    The precipitation and sensitization behavior of nitrogen added type 316L Stainless Steels (SS) were investigated by using specimens cold worked for 0∼40%. The alloys had a variation in nitrogen content from 0.04 to 0.15%. To quantify the degree of sensitization, Double-Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test was performed in a 0.1M H 2 SO 4 + 0.01M KSCN solution at 30 .deg. C. The addition of nitrogen increased sensitization resistance by retarding the onset of M 23 C 6 precipitation and shifted Time-Temperature-Sensitization(TTS) curve to higher temperature and longer time range. Cold work accelerated the M 23 C 6 precipitation and sensitization kinetic due to the increase in dislocation density. However, the acceleration of sensitization was found to depend on the added nitrogen content in the alloys. The alloys with high nitrogen(>0.1%N) content exhibited higher acceleration of the sensitization as a function of the cold work than that with low nitrogen content. From the microstructural analysis, this was found to be attributed to the development of intensive slip bands during cold work and retardation of dislocation annihilation during subsequent aging in the alloys with high nitrogen content

  9. Deformation path effects on the internal stress development in cold worked austenitic steel deformed in tension

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Grant, B.; Sherry, A.H.; Quinta da Fonseca, J.

    2014-01-01

    The effects of cold work level and strain paths on the flow stress of austenitic stainless steels, including Bauschinger effect and associated internal stresses were investigated with both mechanical testing and neutron diffraction techniques. The main objective was to assess the effects of cold rolling: to 5%, 10%, 20% and 40% reduction and uniaxial straining on the evolution of the internal strains during the re-straining to 5% tensile strain in-situ, which is relevant for stress corrosion cracking (SCC) studies. The results of mechanical testing showed that the yield strength of material increased when it was reloaded in the forward direction and decreased well below the flow stress when the loading direction was reversed, showing a strong Bauschinger effect. The magnitude of Bauschinger effect is independent on whether tensile or compressive prestraining comes first but rather on the amount of prestrain. The assessment of the effect of prestraining methods showed that the magnitude of yield asymmetry was higher in the material prestrained by uniaxial deformation than those prestrained by cold rolling. Neutron diffraction test results showed that the elastic lattice strain difference between the maximum and minimum strain values increased consistently with the applied stress during the re-straining to 5% tensile strain in-situ along the 3 orthogonal directions of the rolled plate. It also emerged that, following the in-situ loading of cold rolled materials to 5% tensile strain, the largest strain difference occurred in the material prestrained to 20% reduction. In cold rolled samples, the peak width increased with cold work levels and during re-straining to 5% along rolling, transverse to rolling and normal directions which simulated reversed condition. In contrast to the cold rolled samples, there was neither increase nor decrease in the peak width of samples prestrained by uniaxial deformation on re-straining in reverse direction. This was rationalised in

  10. Age hardening of cold-worked Zr-2.5 wt% Nb pressure tube alloy

    International Nuclear Information System (INIS)

    Kishore, R.; Singh, R.N.; Dey, G.K.; Sinha, T.K.

    1992-01-01

    Specimens for hardness and tensile tests, machined from a cold-worked zirconium-2.5% niobium pressure tube, with their axes parallel to longitudinal and transverse directions, were aged for 1 hr. at 300-500 C. The age hardening behaviour was monitored by mechanical tests, electron-microscopy and x-ray diffraction. In addition a few studies were carried on longitudinal tension specimens subjected to prolonged ageing (100-1000 hrs) at 300 C. It was observed that the short-term (1 hour) thermal ageing of this material at 300-400 C caused an increase in both strength and hardness without affecting ductility. It appears that the observed age-hardening is due to precipitation hardening by a niobium-rich phase and softening by recovery of cold-work and that the phenomenon is influenced by crystallographic texture. Further it was noted that a prolonged ageing at 300 C upto 1000 hrs, did not cause any appreciable changes in strength and ductility of the material compared to those obtained by 1 hour ageing at the same temperature. (author). 11 refs., 3 figs., 2 tabs

  11. Cellular origins of cold-induced brown adipocytes in adult mice.

    Science.gov (United States)

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment. © FASEB.

  12. Are individuals' nighttime sleep characteristics prior to shift-work exposure predictive for parameters of daytime sleep after commencing shift work?

    NARCIS (Netherlands)

    Lammers-van der Holst, H.M.; van Dongen, H.P.A.; Kerkhof, G.A.

    2006-01-01

    This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift‐work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police

  13. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  14. Continuous cooling and low temperature sensitization of AISI types 316 SS and 304 SS with different degrees of cold work

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)

    This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).

  15. ON THE INFLUENCE OF COLD WORK ON RESISTIVITY VARIATIONS WITH THERMAL EXPOSURE IN IN-718 NICKEL-BASE SUPERALLOY

    International Nuclear Information System (INIS)

    Madhi, Elhoucine; Nagy, Peter B.

    2010-01-01

    In nickel-base superalloys, irreversible electrical conductivity changes occur above a transition temperature where thermally-activated microstructural evolution initiates. The electrical conductivity first decreases above about 450 deg. C then increases above 600 deg. C. However, the presence of plastic deformation results in accelerated microstructure evolution at an earlier transition temperature. It was recently suggested that this well-known phenomenon might explain the notable conductivity difference between the peened near-surface part and the intact part at sufficiently large depth in surface-treated specimens. The influence of cold work on the electrical conductivity change with thermal exposure offers a probable answer to one of the main remaining questions in eddy current residual stress assessment, namely unusually fast and occasionally even non-monotonic decay of the apparent eddy current conductivity (AECC) change that was observed at temperatures as low as 400 deg. C. To validate this explanation, the present study investigates the influence of cold work on low-frequency Alternating Current Potential Drop (ACPD) resistivity variations with thermal exposure. In-situ resistivity monitoring was conducted throughout various heating cycles using the ACPD technique. IN-718 nickel-base superalloy specimens with different levels of cold work were exposed to gradually increasing peak temperatures from 400 deg. C to 800 deg. C. The results indicate that the initial irreversible rise in resistivity is approximately one order of magnitude higher and occurs at about 50 deg. C lower temperature in cold-worked samples of 30% plastic strain than in the intact material.

  16. Comfort and performance of power line maintainers' gloves during electrical utility work in the cold.

    Science.gov (United States)

    Hunt, S; Boyle, C; Wells, R

    2014-01-01

    Electrical utility workers wear thick rubber gloves and often work in the cold. To document the challenge of working in the cold and the effectiveness of different glove/liner combinations in keeping workers' hands warm. Ten experienced male electrical utility employees worked in a controlled temperature walk-in chamber at -20 °C for 45 minutes for each of five glove conditions: standard five-finger rubber gloves with cotton liners and gauntlets, mitten style gloves, a prototype wool liner, and two heating options; glove or torso. Dependent measures were maximum grip force, skin temperatures, finger dexterity and sensitivity to touch, ratings of perceived effort and a rating of thermal sensation. Participants' hand skin temperatures decreased, they perceived their hands to be much colder, their finger sensitivity decreased and their ratings of perceived exertion increased, however their performance did not degrade over the 45 minute trials. The mitten-style gloves showed a smaller drop in skin temperature for the 3rd and 5th digits (pglove conditions. Mitten style gloves kept workers' hands warmer than the standard five finger glove.

  17. The Effects of The Industrial Cryogenic Process on The Wear Behaviours of AISI D2 Cold Work Tool Steels

    OpenAIRE

    Ersöz, Enes; Ovalı, İsmail

    2018-01-01

    In this study, industrial cryogenic process afterconventional heat treatment process for various holding time was applied toAISI D2 (DIN 1.2379) cold work tool steel. The effects of the industrialcryogenic process on the wear behavior was investigated. In the wear test 5,10and 15 N forces were carried out to all group specimens at a constant shearrate (3,16 m/s) and three different wear distances. Experimental results showthat cryogenic processing of AISI D2 cold work tool steels have a signi...

  18. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  19. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  20. Internal friction measurement with a kilohertz range test facility of cold-worked and neutron-irradiated gold

    International Nuclear Information System (INIS)

    Grandchamp, Pierre-Andre

    1970-02-01

    The author studies properties of the Bordoni peak in 99,999 % gold. The following features are considered: - influence of type and rate of cold-work on relaxation strength. After traction cold-work, the height of the Bordoni peak is roughly proportional to the rate of plastic deformation, - relaxation features. The relaxation energies and attempt frequencies of the Bordoni peak are determined for poly - and single crystals. The broadening of experimental peaks is studied, - effect of dislocation pinning on the Bordoni peak. One shows that the experience leads to a relation: Q"-"1_m_a_x ∼ Λl"2 where Q"-"1_m_a_x is the height of the peak, Λ the dislocation density and l the mean loop length of dislocations which are implied in the phenomenon [fr

  1. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  2. Welding of cold worked austenitic steels - comparison of TIG, EB and laser processes

    International Nuclear Information System (INIS)

    Richard, A.; Prunele, D. de; Castilan, F.

    1993-01-01

    Effect of welding on cold worked components is a local falling of their properties. Modifications induced by such an operation depend on the thermal cycle and consequently on the welding process. An experimental study aim of which is to compare respective effects of different welding processes (TIG, EB, laser) has been realized. This publication presents results related to 316L and 316Ti steels. (author). 2 refs., 7 figs., 1 tab

  3. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  4. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  5. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    Science.gov (United States)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  6. Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Puigh, R.J.; Lovell, A.J.; Garner, F.A.

    1984-01-01

    Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)

  7. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  8. Influence of cold work on the diffusion of ion-implanted nitrogen in D9 steel using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Arunkumar, J.; David, C.; Panigrahi, B.K.; Nair, K.G.M.

    2014-01-01

    D9 steels and their modified versions are envisaged for use as fuel cladding and wrapper materials in the Indian fast breeder reactor (FBR) programme. The role played by interstitially dissolved nitrogen in steel matrices for the stabilization of austenitic phase, increase of strength and corrosion resistance is well known. Various factors: the role of grain boundaries and the their orientation, stress mediation, grain fragmentation and production of short circuit paths as a result of compressive stress are known to affect the diffusion of nitrogen. Basically, cold working produces plethora of defects throughout the sample as compared to its solution annealed state. Our earlier studies on 1 x10"1"5 and 5x10"1"5 N"1"5 implanted Solution Annealed D9 (SAD9) showed significant vacancy-nitrogen complexes for higher fluence. Hence, thermal diffusion behaviour of nitrogen was studied in 5 x10"1"5 -N"1"5 implanted samples in solution annealed state. In the present study, to understand the influence of cold work, similar thermal diffusion behaviour of nitrogen has been studied in Cold Worked D9 steel (CWD9) using nuclear reaction analysis

  9. Influence of cold worked layer on susceptibility to stress corrosion of duplex stainless steel

    International Nuclear Information System (INIS)

    Labanowski, J.; Ossowska, A.; Cwiek, J.

    2001-01-01

    Stress corrosion cracking resistance of cold worked layers on duplex stainless steel was investigated. The surface layers were performed through burnishing treatment. Corrosion tests were performed with the use of Slow Strain Rate Test technique in boiling 35% MgCl 2 solution. It has been shown that burnishing treatment increases corrosion resistance of steel. The factor that improves stress corrosion cracking resistance is crack incubation time. (author)

  10. The effect of surface condition and cold work on the sulphidation resistance of 153MA at 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Szakalos, P.; Hertzman, S.; Pettersson, R.F.A. [Swedish Inst. for Metals Research, Stockholm (Sweden); Ivarsson, B. [Avesta Sheffield AB, Avesta (Sweden)

    2000-05-01

    The normal grain sized 153MA-sample experienced an almost linear weight gain curve in the sulphidizing environment while modified materials, with a finer grain size or cold worked structure, displayed more parabolic behaviour and lower weight gains. These effects may be related to more effective Cr-diffusion in the modified samples with a higher Cr-grain boundary diffusion in the fine grain-sample and a higher Cr-bulk diffusion rate in the cold worked sample. The sand blasted sample performed exceedingly well with a thin protective oxide layer compared to the etched and ground samples which both suffered significant weight loss and spalling. The deformed surface structure on the sand blasted sample enhances the Cr-bulk diffusion thus promoting a protective Cr-rich oxide formation. (orig.)

  11. Finite element analysis of cutting tools prior to fracture in hard turning operations

    International Nuclear Information System (INIS)

    Cakir, M. Cemal; I Sik, Yahya

    2005-01-01

    In this work cutting FEA of cutting tools prior to fracture is investigated. Fracture is the catastrophic end of the cutting edge that should be avoided for the cutting tool in order to have a longer tool life. This paper presents finite element modelling of a cutting tool just before its fracture. The data used in FEA are gathered from a tool breakage system that detects the fracture according to the variations of the cutting forces measured by a three-dimensional force dynamometer. The workpiece material used in the experiments is cold work tool steel, AISI O1 (60 HRC) and the cutting tool material is uncoated tungsten carbide (DNMG 150608). In order to investigate the cutting tool conditions in longitudinal external turning operations prior to fracture, static and dynamic finite element analyses are conducted. After the static finite element analysis, the modal and harmonic response analyses are carried on and the dynamic behaviours of the cutting tool structure are investigated. All FE analyses were performed using a commercial finite element package ANSYS

  12. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  13. Analytical approaches and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Steinberg, E.; Schaa, A.; Weidinger, H.G.

    1984-01-01

    Well-controlled laboratory heat treatments were performed in the range from 460 to 610 0 C(733 to 883 K) and from 1 to 8 h at temperature on Zircaloy-4 cladding tubes with three different degrees of initial cold work (40%, 64%, and 76%). Within this range the influence of annealing temperature T and time t and of cold work on the yield strength R /SUB pO.2/ at 400 0 C(673 K) and on the degree R of recrystallization was experimentally determined. This data base was used to verify a semi-empirical approach to describe analytically the dependence of yield strength and recrystallization on the aforementioned technological parameters T and t for the annealing and /phi/ = ln l/l /SUB o/ as a measure for the applied cold work

  14. Slit-burst testing of cold-worked Zr-2.5 wt.% Nb pressure tubing for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Barrie, J.N.; Zink, R.J.

    1978-12-01

    This report documents the available data on critical crack length of cold-worked Zr-2.5 wt.% Nb pressure tubing in CANDU reactors. In particular, it includes data for tubing removed from the Pickering 3 and 4 reactors. (author)

  15. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  16. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water

    International Nuclear Information System (INIS)

    Yamazaki, Seiya; Lu Zhanpeng; Ito, Yuzuru; Takeda, Yoichi; Shoji, Tetsuo

    2008-01-01

    The effect of prior deformation on stress corrosion cracking (SCC) growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water environment is studied. The prior deformation was introduced by welding procedure or by cold working. Values of Vickers hardness in the Alloy 600 weld heat-affected zone (HAZ) and in the cold worked (CW) Alloy 600 materials are higher than that in the base metal. The significantly hardened area in the HAZ is within a distance of about 2-3 mm away from the fusion line. Electron backscatter diffraction (EPSD) results show significant amounts of plastic strain in the Alloy 600 HAZ and in the cold worked Alloy 600 materials. Stress corrosion cracking growth rate tests were performed in a simulated pressurized water reactor primary water environment. Extensive intergranular stress corrosion cracking (IGSCC) was found in the Alloy 600 HAZ, 8% and 20% CW Alloy 600 specimens. The crack growth rate in the Alloy 600 HAZ is close to that in the 8% CW base metal, which is significantly lower than that in the 20% CW base metal, but much higher than that in the as-received base metal. Mixed intergranular and transgranular SCC was found in the 40% CW Alloy 600 specimen. The crack growth rate in the 40% CW Alloy 600 was lower than that in the 20% CW Alloy 600. The effect of hardening on crack growth rate can be related to the crack tip mechanics, the sub-microstructure (or subdivision of grain) after cross-rolling, and their interactions with the oxidation kinetics

  17. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  18. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  19. Stress relaxation in solution-annealed and 20% cold-worked Type 316 stainless steel

    International Nuclear Information System (INIS)

    Thomas, J.F. Jr.; Yaggee, F.L.

    1975-01-01

    Relaxation experiments were conducted at room temperature and various levels of tensile plastic strain. The data for both solution-annealed (SA) and 20 percent cold-worked (CW) material can be presented in terms of a single family of nonintersecting hardness curves. Although the hardness curves for SA can be reduced to a master curve, those for CW fail to fit this master curve at strain rates below 5 x 10 -6 s -1 . The slope of the hardness scaling relation increases with plastic deformation. (DLC)

  20. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  1. The precipitation response of 20%-cold-worked type 316 stainless steel to simulated fusion irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1979-01-01

    The precipitation response of 20%-cold-worked type 316 stainless steel has been examined after irradiation in HFIR at 380-600 0 C, after irradiation in EBR-II at 500 0 C, and after thermal aging at 600 to 750 0 C. Eta phase forms during exposure to all environments. It constitutes a major portion of the precipitation response, and is rich in Ni, Si and Mo relative to M 23 C 6 after thermal aging. It is not normally reported in 20%-cold-worked type 316 stainless steel. The eta, M 23 C 6 , Laves, sigma, and chi precipitate phases appear at similar temperatures after HFIR, EBR-II, or thermal exposure. There are, however, some differences in relative amounts, size, and distribution of phases among the various environments. Eta phase is the only carbide-type phase observed after irradiation in HFIR from 380-550 0 C. The large cavities associated with it at 380 0 C contribute significantly to swelling. Re-solution of fine M 23 C 6 , eta, and Laves particles and re-precipitation of massive particles of sigma, M 23 C 6 and chi are observed after recrystallization in HFIR. (orig.)

  2. Reversed Microstructures and Tensile Properties after Various Cold Rolling Reductions in AISI 301LN Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2018-02-01

    Full Text Available Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} .

  3. The influence of cold work on the oxidation behaviour of stainless steel

    International Nuclear Information System (INIS)

    Langevoort, J.C.

    1985-01-01

    In this thesis the study of the interaction of oxygen gas with stainless steel surfaces is described. Thermogravimetry, microscopy and ellipsometry have been used to follow the oxidation in situ, while EDX, AES and XPS have been used to determine the oxide compositions. The aim of this thesis is to reveal the influence on the oxidation behaviour of stainless steel of i) cold work (rolling, drawing, milling, polishing and Ar ion bombardment) ii) the initially formed oxide and iii) the experimental conditions. Two types of stainless steels have been used (AISI 304 (a 18/8 Cr/Ni steel) and Incoloy 800 H (a 20/30 Cr/Ni steel)). (Auth.)

  4. Improvement of strength and toughness of SKD11 type cold work tool steel; SKD 11 gata reikan koguko no kyojinsei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Fukaura, K.; Sunada, H.; Yokoyama, Y. [Himeji Inst. of Technology, Hyogo (Japan); Teramoto, K. [Himeji Inst. of Technology, Hyogo (Japan). Graduate School| Sanyo Special Steel Co. Ltd., Hyogo (Japan)

    1998-03-01

    Toughness and wear resistance are the factors which affect on the lifetime of cold work tool steels importantly. Generally, both properties show the contrary characteristics. The evaluation of tool steel materials has been carried out focusing on the strength and wear resistance mainly. However, owing to the rapid progress of recent plastic working techniques, usage environments are under the severe conditions more and more. Therefore, it is expected to develop the high reliable cold work tool steels which balanced with toughness including wear resistance. In this study, the strength and toughness of a newly developed 0.8C-8Cr cold work tool steel whose composition was controlled to suppress the precipitation of massive eutectic M7C3 carbides were investigated with reference to microstructure and were compared with conventional SKD11. The toughness was evaluated by the area under the stress-strain curve. As a result, it was clarified that the tensile strength of the newly developed steel designated as Mod. SKD 11 was about 400 MPa higher and the toughness was 1.8 times larger than that of SKD 11 throughout a wide range of tempering temperatures and so forth. 17 refs., 13 figs., 1 tab.

  5. Quantitative texture determination in pressure tube (Zr-2.5 Wt% Nb alloy) material as a function of cold work

    International Nuclear Information System (INIS)

    Dey, G.K.; Tewari, R.; Srivastava, D.; De, P.K.; Banerjee, S.; Kiran Kumar, M.; Samajdar, I.

    2003-06-01

    The texture studies on the pressure tube Zr-2.5 Nb alloy have mainly been confined to the determination of the basal pole distribution along certain direction or the inverse pole presentation in the material. This information though useful does not provide an insight into micro-textural development upon cold working. In the present study, complete bulk as well as micro texture development as a function of cold work has been obtained by determining orientation distribution function. In this work, two distinct starting microstructures of Zr-2.5 wt% Nb have been used -(a) single-phase α(hcp) martensitic structure and (b) two-phase, β(bcc) + α, Widmanstaetten structure. In the second case, the α phase was present in lamellar morphology and β stringers were sandwiched between these a lamella. In some instances single-phase α were present. However, both microstructures had similar starting crystallographic texture. Samples were deformed by unidirectional and cross rolling at room temperature. In the two-phase structure the changes in the bulk texture on cold rolling was found to be insignificant, while in the single-phase material noticeable textural changes were observed. Taylor type deformation texture models predicted textural changes in single-phase structure but failed to predict the observed lack of textural development in the two-phase material. Microtexture observations showed that a plates remained approximately single crystalline after cold rolling, while the β matrix underwent significant orientational changes. Based on microstructural and microtextural observations, a simple model is proposed in which the plastic flow is mainly confined to the β matrix within which the α plates are subjected to in-plane rigid body rotation. The model explains the observed lack of textural developments in the two-phase structure. (author)

  6. Manual work in cold environments and its impact on selection of materials for protective gloves based on workplace observations.

    Science.gov (United States)

    Irzmańska, Emilia; Wójcik, Paulina; Adamus-Włodarczyk, Agnieszka

    2018-04-01

    This article presents a workplace observations on manual work in cold environments and its impact on the selection of materials for protective gloves. The workplace observations was conducted on 107 workers in 7 companies and involved measurements of the temperature of air and objects in the workplaces; in addition the type of surface and shape of the objects was determined. Laboratory tests were also carried out on 11 materials for protective gloves to be used in cold environments. Protective characteristics, including mechanical properties (wear, cut, tear, and puncture resistance), insulation properties (thermal resistance), functional parameters, and hygienic properties (resistance to surface wetting, material stiffness) were evaluated. Appropriate levels of performance and quality, corresponding to the protective and functional properties of the materials, were determined. Based on the results of manual work and laboratory tests, directions for the selection of materials for the construction of protective gloves were formulated with a view to improving work ergonomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  9. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  10. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  11. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  12. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  13. Design and cold-air test of single-stage uncooled turbine with high work output

    Science.gov (United States)

    Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.

    1980-01-01

    A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.

  14. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    120 and Ж = 172 or 184, for superheavy nuclei. This result is discussed in ... 1980 [7] on the basis of the QMFT, once again prior to its observation in 1984. Thus, cold ... On the other hand, based on a rather complete deformed relativistic mean field (DRMF) calculation, using the NL1 parameter set, we [16] predicted. = 120.

  15. The use of cold plasma generators in medicine

    Directory of Open Access Journals (Sweden)

    Kolomiiets R.O.

    2017-04-01

    Full Text Available Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use. This work aims at disclosing the basic principles of construction of cold atmospheric plasma generators in medicine and prospects for their further improvement. The purpose of this work is to improve the existing cold atmospheric plasma generators for use in medical applications. Novelty of this work consists in the application of new principles of construction of cold atmospheric plasmas medical apparatus, namely the combination of the gas discharge chamber, electrodes complex shape forming device and plasma flow in a single package. This helps to achieve a significant reduction in the size of the device, and a discharge chamber design change increases the therapeutic effect. The design of cold atmospheric plasma generator type «pin-to-hole», which is able to control parameters using the plasma current (modulation fluctuations in the primary winding and mechanically (using optional rotary electrode. It is also possible to combine some similar generators in the set, which will increase the surface area of the plasma treatment. We consider the basic principles of generating low atmospheric plasma flow, especially the formation of the plasma jet, changing its shape and modulation stream. The features of cold plasma generator design and information about prospects for further application, and opportunities for further improvement are revealed. The recommendations for further use of cold atmospheric plasma generators in medicine are formulated.

  16. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  17. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  18. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    Directory of Open Access Journals (Sweden)

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  19. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  20. A Proposal of a Constitutive Description for Aluminium Alloys in Both Cold and Hot Working

    Directory of Open Access Journals (Sweden)

    Javier León

    2016-10-01

    Full Text Available The most important difficulties when the behaviour of a part that is subjected to external mechanical forces is simulated deal with the determination of both the material thermo-mechanical properties and its boundary conditions. The accuracy of the results obtained from the simulation is directly related to the knowledge of the flow stress curve. Therefore, the determination of a material flow rule which is valid for both a wide temperature range and different initial deformation conditions in the starting material presents a great deal of interest when simulation results close to the experimental values are required to be obtained. In this present study, a novel flow stress curve is proposed that is able to accurately predict the behaviour of both materials with no previous accumulated strain and materials that have been previously subjected to severe plastic deformation processes. Moreover, it is possible to use it both for hot and cold working. The results are analysed in a wide test temperature range, which varies from room temperature to 300 °C, and from material previously processed by angular channel extrusion or with no previous strain accumulated. It is shown that the flow rule proposed is effective to model the material behaviour in a wide temperature range and it makes it possible to take the recrystallization phenomena that appear in previously deformed materials into account. In addition, the results obtained are compared with those predicted by other flow rules that exist in the prior literature. Furthermore, the study is complemented with finite element simulations and with a comparison between simulation and experimental results.

  1. Cold Leak Tests of LHC Beam Screens

    CERN Document Server

    Collomb-Patton, C; Jenninger, B; Kos, N

    2009-01-01

    In order to guide the high energy proton beams inside its two 27 km long vacuum rings, the Large Hadron Collider (LHC) at CERN, Geneva, makes use of superconducting technology to create the required magnetic fields. More than 4000 beam screens, cooled at 7 20 K, are inserted inside the 1.9 K beam vacuum tubes to intercept beam induced heat loads and to provide dynamic vacuum stability. As extremely high helium leak tightness is required, all beam screens have been leak tested under cold conditions in a dedicated test stand prior to their installation. After describing the beam screen design and its functions, this report focuses on the cold leak test sequence and discusses the results.

  2. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  3. Prediction of ttt curves of cold working tool steels using support vector machine model

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  4. Creep and stress-relaxation in bending, at 673 K, of cold-worked Zircaloy-4

    International Nuclear Information System (INIS)

    Povolo, F.; Marzocca, A.J.

    1981-01-01

    Data of creep and stress-relaxation in bending at 673 K and up to times of the order of 1000 h, in cold-worked Zry-4, are discussed. It is shown that the results, previously interpreted in terms of Hart's phenomenological equation of state for high homologous temperatures, can be described also by an equation of the type E = B(αsigma), which has more precise physical meaning in terms of thermally activated motion of dislocations. Finally, it is shown that the hyperbolic sine representation satisfies the conditions for an equation of state and some dislocation parameters are calculated. (orig.)

  5. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  6. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  7. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  8. Cold fusion: Need to keep door wide open

    International Nuclear Information System (INIS)

    Jones, S.E.

    1992-01-01

    Steven E. Jones of Brigham Young University in Provo, Utah, began work on cold fusion in 1986. Although insisting his work is markedly different from that of Stanley Pons and Martin Fleischmann at the nearby University of Utah, he nevertheless was tarred by the same brush that besmirched their sensational revelations in 1989. Whereas we were searching for tiny nuclear effects, they were looking for heat production, he explains. In no way, he insists, does his work substantiate the bold claims of heat generation by cold fusion in an electrochemical cell. In fact, Jones doublts Fleischmann and Pons' claims and sees evidence of either self-deception or hype in their actions. He adds, For useful energy production, thermonuclear (hot) fusion remains for more promising than that cold fusion claims of Pons and Fleischmann. But at the same time, Jones finds it necessary to appeal for tolerance for researchers brave enough to continue in the now unfashionable field of cold fusion

  9. Cold Storage for a Single-Family House in Italy

    Directory of Open Access Journals (Sweden)

    Luigi Mongibello

    2016-12-01

    Full Text Available This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM, and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the present work is represented by the fact that, for the considered user characteristics, and under the Italian electricity tariff policy, the use of a proper designed cold storage system characterized by an effective operation strategy could represent a viable solution from an economical point of view.

  10. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  11. Swelling in cold-worked 316 stainless steels irradiated in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Fujii, Katsuhiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Swelling behavior in a cold-worked 316 stainless steel irradiated up to 53 dpa in a PWR at 290-320degC was examined using high resolution transmission electron microscopy. Small cavities with the average diameter of 1 nm were observed in the samples irradiated to doses above 3 dpa. The average diameter did not increase with increasing in dose. The maximum swelling was as low as 0.042%. The measured helium content and the cavity morphology led to the conclusion that the cavities were helium bubbles. A comparison of the observed cavity microstructure with data from FBR, HFIR and ATR irradiation showed that the cavity structure in PWR at 320degC or less was similar to those in HFIR and ATR irradiation but quite different from those in FBR condition. From a calculation based on the cavity data and kinetic models the incubation dose of swelling was estimated to be higher than 80dpa in the present irradiation condition. (author)

  12. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  13. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  14. Human nutrition in cold and high terrestrial altitudes

    Science.gov (United States)

    Srivastava, K. K.; Kumar, Ratan

    1992-03-01

    The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.

  15. Consumer attitudes on cough and cold: US (ACHOO) survey results.

    Science.gov (United States)

    Blaiss, M S; Dicpinigaitis, P V; Eccles, R; Wingertzahn, M A

    2015-08-01

    The Attitudes of Consumers Toward Health, Cough, and Cold (ACHOO) survey was developed to better inform health care providers on the natural history and impact of common cold and cough, and related consumer experience and behaviors. Randomly selected US Internet/mobile device users were invited to participate in an online survey (N = 3333) in October 2012. Response quotas modeled upon 2010 US Census data ensured a demographically representative sample. To reduce potential bias from the quota design, 75% of the completed surveys were randomly selected as the primary analysis pool. Survey questions assessed participant demographics, frequency and duration of cough/cold symptoms, impact of symptoms on daily life, treatment preferences, and knowledge about cough/cold pathophysiology. In the past year, 84.6% of respondents had experienced at least one cold. Colds typically started with sore/scratchy throat (39.2%), nasal congestion (9.8%), and runny nose (9.3%) and lasted 3-7 days. Cough, the most common cold symptom (73.1%), had a delayed onset (typically 1-5 days after cold onset) and a long duration (>6 days in 35.2%). Nasal congestion and cough were the most bothersome symptoms. Many respondents waited until symptoms were 'bad enough' (42.6%) or multiple symptoms were present (20.2%) before using nonprescription medications. Drivers of choice included effectiveness in relieving symptoms, safety, and past experience. Respondents rarely consulted clinicians regarding treatment, and more than three-quarters had never received instructions from a clinician on how to choose a nonprescription cough/cold medication. Misperceptions regarding etiology and treatment of the common cold were prevalent. The main limitation is potential recall bias, since respondents had to recall cough/cold episodes over the prior year. The ACHOO survey confirms that cold is a common, bothersome experience and that there are gaps in consumers' knowledge of pathophysiology and appropriate

  16. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  17. An optimum cold end configuration for helium liquefaction cycles

    International Nuclear Information System (INIS)

    Minta, M.; Smith, J.L.

    1984-01-01

    This chapter examines the effect of the non-ideal behavior of helium at low temperature on the performance of helium liquefaction cycles. The effect is isolated by means of a continuum model for the precooling stage. The cold end losses are due primarily to the composite effect of the non-ideality of helium at low temperatures and the heat exchanger losses, in addition to the component losses fixed by the expander/compressor efficiencies. Topics considered include continuously distributed full-pressure ratio expanders, continuously distributed full-flow expanders, the heat exchange effect (ideal gas working fluid, real gas working fluid), and cold end configuration. The cold end configuration minimizes the cycle cold end losses

  18. The Effectiveness of Worked Examples Associated with Presentation Format and Prior Knowledge: A Web-Based Experiment

    Science.gov (United States)

    Hsiao, E-Ling

    2010-01-01

    The aim of this study is to explore whether presentation format and prior knowledge affect the effectiveness of worked examples. The experiment was conducted through a specially designed online instrument. A 2X2X3 factorial before-and-after design was conducted. Three-way ANOVA was employed for data analysis. The result showed first, that prior…

  19. Effect of cold-working and aging processes on the microstructure, mechanical properties and electrical conductivity of Cu–13.5%Mn–4%Ni–1.2%Ti alloy

    International Nuclear Information System (INIS)

    Ehsanian Mofrad, H.; Raygan, Sh.; Amin Forghani, B.; Hanaei, K.; Ahadi, F.K.

    2012-01-01

    Highlights: ► Mn 2 Ti 4 O precipitates observed in the microstructure of as-cast alloys. ► During aging at 400, 450 and 500 °C hardness reached the value of 139, 165 and 192 HV. ► β-Cu 3 Ti and Ni 3 Ti precipitates formed during over aging at temperatures of 500 °C. ► Electrical conductivity was 29.7% IACS in the 0% cold worked samples aged at 500 °C. ► Conductivity of 28% IACS, hardness of 250 HV obtained by 60% cold work + aging at 450 °C. -- Abstract: In this study, variations of hardness, electrical conductivity, strength, elongation and microstructure of the Cu–13.5%Mn–4%Ni–1.2%Ti alloy were investigated during aging, cold-working and subsequent aging. X-ray diffraction (XRD), transmission electron microscopy and scanning electron microscopy methods were used to evaluate the microstructure of the alloy. Tensile, hardness and electrical conductivity measurements were also used for investigating the effects of processing parameters on the characteristic of the alloy. Hardness value of 190 HV and strength of 644 MPa were obtained after aging the as-cast alloy for 4 h at the temperature of 500 °C. The maximum hardness and strength increased up to 253 HV and 816 MPa, respectively, after aging 60% cold-worked samples for 1 h at the temperature of 500 °C. The dominant strengthening mechanism during aging was attributed to the precipitation of Cu 4 Ti phase. Formation of the β-Cu 3 Ti phase during aging at the temperature of 500 °C was another reason of strengthening. As a result of aging, electrical conductivity of both as-cast and cold-worked alloys was improved. The maximum conductivity of 29.7% IACS was attained after aging the as-cast material at the temperature of 500 °C for 4 h.

  20. Relationship between swelling and irradiation creep in cold worked PCA stainless steel to 178 DPA at∼400 degrees C

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1993-01-01

    At 178 dpa and ∼400 degrees C, the irradiation creep behavior of 20% cold-worked PCA has become dominated by the creep disappearance phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however

  1. Social science in the Cold War.

    Science.gov (United States)

    Engerman, David C

    2010-06-01

    This essay examines ways in which American social science in the late twentieth century was--and was not--a creature of the Cold War. It identifies important work by historians that calls into question the assumption that all social science during the Cold War amounts to "Cold War social science." These historians attribute significant agency to social scientists, showing how they were enmeshed in both long-running disciplinary discussions and new institutional environments. Key trends in this scholarship include a broadening historical perspective to see social scientists in the Cold War as responding to the ideas of their scholarly predecessors; identifying the institutional legacies of World War II; and examining in close detail the products of extramural--especially governmental--funding. The result is a view of social science in the Cold War in which national security concerns are relevant, but with varied and often unexpected impacts on intellectual life.

  2. The Combined Effect of Cold and Moisture on Manual Performance.

    Science.gov (United States)

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2018-02-01

    Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.

  3. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  4. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  5. The impact of the 2008 cold spell on mortality in Shanghai, China

    Science.gov (United States)

    Ma, Wenjuan; Yang, Chunxue; Chu, Chen; Li, Tiantian; Tan, Jianguo; Kan, Haidong

    2013-01-01

    No prior studies in China have investigated the health impact of cold spell. In Shanghai, we defined the cold spell as a period of at least seven consecutive days with daily temperature below the third percentile during the study period (2001-2009). Between January 2001 and December 2009, we identified a cold spell between January 27 and February 3, 2008 in Shanghai. We investigated the impact of cold spell on mortality of the residents living in the nine urban districts of Shanghai. We calculated the excess deaths and rate ratios (RRs) during the cold spell and compared these data with a winter reference period (January 6-9, and February 28 to March 2). The number of excess deaths during the cold spell period was 153 in our study population. The cold spell caused a short-term increase in total mortality of 13 % (95 % CI: 7-19 %). The impact was statistically significant for cardiovascular mortality (RR = 1.21, 95 % CI: 1.12-1.31), but not for respiratory mortality (RR = 1.14, 95 % CI: 0.98-1.32). For total mortality, gender did not make a statistically significant difference for the cold spell impact. Cold spell had a significant impact on mortality in elderly people (over 65 years), but not in other age groups. Conclusively, our analysis showed that the 2008 cold spell had a substantial effect on mortality in Shanghai. Public health programs should be tailored to prevent cold-spell-related health problems in the city.

  6. The effect of boriding on wear resistance of cold work tool steel

    International Nuclear Information System (INIS)

    Anzawa, Y; Koyama, S; Shohji, I

    2017-01-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ∼ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement. (paper)

  7. Temperature limit values for cold touchable surfaces ' ColdSurf ' : final report

    NARCIS (Netherlands)

    Holmer, I.; Havenith, G.; Hartog, E.A. den; Rintamaki, H.; Malchaire, J.

    2000-01-01

    The aim of the project was to find and compile information on human responses to contact with cold surfaces. The work has covered 1) literature search and field survey; 2) experimental studies with human subjects; 3) simulation by modeling; 4) instrumentation (artificial finger), 5) establishment of

  8. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

    Science.gov (United States)

    Dhanaraj, Anik L; Alkharouf, Nadim W; Beard, Hunter S; Chouikha, Imed B; Matthews, Benjamin F; Wei, Hui; Arora, Rajeev; Rowland, Lisa J

    2007-02-01

    Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.

  9. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    Directory of Open Access Journals (Sweden)

    Kane J. Hayter

    2016-03-01

    Full Text Available This study examined the effects of cold-water immersion (CWI and cold air therapy (CAT on maximal cycling performance (i.e. anaerobic power and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10 and female (n = 10 participants were randomised into either: CWI (15 min in 14 °C water to iliac crest or CAT (15 min in 14 °C air immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively. Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24, 48 (T48 and 72 (T72 h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05. However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90, T48 (8% ± 2%, ES = 0.64 and T72 (8% ± 7%, ES = 0.76. The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

  10. A Study on the Characteristics of Corrosion in Cold Worked Flexible STS 304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, In Soo; Kim, Sung Jin

    1993-01-01

    Effects of cold working on the corrosion resistance of austenitic STS 304 stainless steel pipes were investigated using anodic polarization method, EDX analysis and SEM technique. Corrosion products had a lots of S and Cl - ion. Generally, corrosion patterns as a result of STS 304 stainless steel to concrete environment were proceeded in the order of the pitting to intergranular corrosion. In the case of the flexible pipes were covered tightly with other polymer materials, crevice corrosion occurred to a much greater extent on austenitic than on martensitic region

  11. Prediction of tensile curves, at 673 K, of cold-worked and stress-relieved zircaloy-4 from creep data

    International Nuclear Information System (INIS)

    Povolo, F.; Buenos Aires Univ. Nacional; Marzocca, A.J.

    1986-01-01

    A constitutive creep equation, based on jog-drag cell-formation, is used to predict tensile curves from creep data obtained in the same material. The predicted tensile curve are compared with actual stress versus plastic strain data, obtained both in cold-work and stress-relieved specimens. Finally, it is shown that the general features of the tensile curves, at low strain rates, are described by the creep model. (orig.)

  12. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  13. Influence of cold work to increase swelling of pure iron irradiated in the BR-10 reactor to ∼6 and ∼25 dpa at ∼400 deg. C

    International Nuclear Information System (INIS)

    Dvoriashin, A.M.; Porollo, S.I.; Konobeev, Yu.V.; Garner, F.A.

    2000-01-01

    Irradiation of pure iron in several starting conditions at 400 deg. C has been conducted in the BR-10 fast reactor. Contrary to expectations, cold working appears to significantly accelerate the onset of void swelling. When compared to a similar experiment conducted in this reactor at the same time, it appears that iron experiences a rather long transient duration before the onset of steady-state swelling. The transient appears to be shortened by both cold-working and lower atomic displacement rates

  14. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  15. The Importance of Prior Knowledge.

    Science.gov (United States)

    Cleary, Linda Miller

    1989-01-01

    Recounts a college English teacher's experience of reading and rereading Noam Chomsky, building up a greater store of prior knowledge. Argues that Frank Smith provides a theory for the importance of prior knowledge and Chomsky's work provided a personal example with which to interpret and integrate that theory. (RS)

  16. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  17. Effect of temperature on the mechanical characteristics of cold-worked steel OKh16N15M3B with active tension and creep

    International Nuclear Information System (INIS)

    Erasov, V.S.; Konoplenko, V.P.; Pirogov, E.N.

    1986-01-01

    Steel OKh16N15M3B is used extensively for the manufacture of atomic reactor fuel-element shells. The aim of this work is a study of the mechanical characteristics of this steel cold-worked by 20% with active tension and creep in the temperature range 973-1323 0 K, which is necessary for predicting the behavior of fuel-element shells in critical situations. It is found that above 973 0 K there is active loss of strength for cold-worked steel OKh16N15M3B. Strength characteristics in the region 973-1323 0 K decrease by more than a factor of six. Thermal activation analysis of the plastic deformation process, showing a sharp increase in activation energy above 1073 0 K, suggests a change in the mechanisms of plastic deformation taking place. For active tension and creep the same temperature range is obtained for a marked change in activation energy

  18. Effect of chemistry variations on the short-term rupture life and tensile properties of 20% cold-worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Duncan, D.R.; Paxton, M.M.

    1977-01-01

    The effects of compositional variations on the rupture life of 20% cold-worked Type 316 stainless steel were investigated at 19-ksi (131-MPa) uniaxial tensile stress and at 1400 0 F (1033 K). Forty-nine different alloys were studied, with compositional variations from nominal in carbon, nitrogen, phosphorus, sulfur, boron, manganese, copper, silicon, molybdenum, cobalt, chromium and nickel. This alloy and cold-work level represents the duct and fuel cladding material choice for the first four core loadings of the Fast Flux Test Facility, a key element in the Liquid-Metal Fast Breeder Reactor Program. Tensile properties of four of the alloys were studied at temperatures from room temperature to 1600 0 F (1144 K). Boron, nitrogen, and molybdenum plus silicon additions significantly increased rupture life, while chromium and carbon additions decreased rupture life. Molybdenum plus silicon additions increased yield and ultimate strength and ductility at 1200 0 F (922 K) and below

  19. Cold Storage for a Single-Family House in Italy

    OpenAIRE

    Luigi Mongibello; Giorgio Graditi

    2016-01-01

    This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM), and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the p...

  20. The association between retirement and emotional well-being: does prior work-family conflict matter?

    Science.gov (United States)

    Coursolle, Kathryn M; Sweeney, Megan M; Raymo, James M; Ho, Jeong-Hwa

    2010-09-01

    This study investigates whether the association between retirement and emotional well-being depends on prior experience of work-family conflict. We use data from the 1993 and 2004 waves of the Wisconsin Longitudinal Study to estimate linear regression models of 2 dimensions of emotional well-being-depressive symptoms and positive psychological functioning. We also use fixed effects models to investigate whether key findings persist after controlling for stable, but unobserved, characteristics of individuals. Retirement is associated with relatively fewer depressive symptoms among individuals who reported high levels of work stress interfering with family life in late midlife. We find suggestive evidence of a similar association with respect to positive psychological functioning after accounting for unobserved characteristics of individuals. Among individuals reporting high levels of family stress spillover into work life at late midlife, our results suggest that retirement tends to be associated with better emotional well-being among men than among women. Retirement may come more as a relief than as a stressor for individuals previously experiencing high levels of work demands interfering with family life. However, particularly among women, retirement may not relieve the burdens of family life stressors.

  1. Analysis and development of the method for calculating calibration of the working plank in the cold tube roller rolling mills

    Directory of Open Access Journals (Sweden)

    S. V. Pilipenko

    2017-05-01

    Full Text Available Analysis and development of the existing method of calculation of the calibrated profile of the working strips mills CTRR roller cold rolling pipe to ensure the required distribution of energy-power parameters along the cone. In presented paper, which has for aim the development of existing method for calculating the profile of calibrated working plank in the cold tube roller rolling mills, the analysis had been made and it was proposed to use Besier-lines while building the the profile of the plank working surface. It was established that the use of Besier spline-curve for calculating the calibration of supporting planks creates the possibility to calculate the parameters proceeding from reduction over the external diameter. The proposed method for calculating deformation parameters in CTRR mills is the result of development of existing method and as such shows the scientific novelty. Comparison of the plots for distribution of the force parameters of the CTRR process along the cone of deformation presents as evidence the advantage of the method to be proposed. The decrease of reduction value at the end of deformation zone favors the manufacture of tubes with lesser wall thickness deviation (especially longitudinal one, caused with waviness induced by the cold pilgering process. Joined the further development of the method of calculating the deformation parameters CTRR. It is proposed for the calculation of the calibration work surface support bracket mills CTRR to use a spline Bezier. The practical significance of the proposed method consists in the fact that calculation of all zones of the plank by means of one dependence allows simplifying the process of manufacturing the latter in machines with programmed numerical control. In this case the change of reduction parameters over the thickness of the wall will not exert the considerable influence on the character of the force parameters (the character and not the value distribution along the

  2. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  3. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  4. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  5. The Effects of Prior Cold Work on the Shock Response of Copper

    Science.gov (United States)

    Millett, J. C. F.; Higgins, D. L.; Chapman, D. J.; Whiteman, G.; Jones, I. P.; Chiu, Y.-L.

    2018-04-01

    A series of experiments have been performed to probe the effects of dislocation density on the shock response of copper. The shear strength immediately behind the shock front has been measured using embedded manganin stress gauges, whilst the post shock microstructural and mechanical response has been monitored via one-dimensional recovery experiments. Material in the half hard (high dislocation density) condition was shown to have both a higher shear strength and higher rate of change of shear strength with impact stress than its annealed (low dislocation density) counterpart. Microstructural analysis showed a much higher dislocation density in the half hard material compared to the annealed after shock loading, whilst post shock mechanical examination showed a significant degree of hardening in the annealed state with reduced, but still significant amount in the half hard state, thus showing a correlation between temporally resolved stress gauge measurements and post shock microstructural and mechanical properties.

  6. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  7. Enzyme-assisted peeling of cold water shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Dang, Tem Thi; Gringer, Nina; Jessen, Flemming

    2018-01-01

    An enzymatic method to facilitate the peeling of cold water shrimps (Pandalus borealis) was developed. The protease solutions were used to mature the shrimps to promote shell-loosening prior to peeling. The efficiency of peeling enzyme-treated shrimps was evaluated by a new quantitative measurement......L and 0.25% Exocut-A0 for 20 h resulted in the best peeling of shrimps (100% completely peeled shrimps, 3 mJ/g work and 89% meat yield). Reuse of the enzyme solution was possible due to a 95% retention rate of proteolytic activity after two 20-h cycles of maturation. The studied enzymatic maturation...... of shrimp. This approach would benefit the shrimp processing industry by 1) enhancing peeling efficiency that includes least efforts to remove the shell, high rate of completely peeled shrimps and high meat yield; 2) shortening the duration of maturation but still sufficiently loosening the shell...

  8. International cooperation in cold forging technology

    DEFF Research Database (Denmark)

    Bay, Niels; Lange, K

    1992-01-01

    International cooperation in the field of cold forging technology started in 1961 by formation of the OECD Group of Experts on Metal Forming. In 1967 this group was transformed into the International Cold Forging Group, ICFG, an independent body which has now been operative for 25 years. Members...... of the ICFG are personally elected by the Plenary as experts within the field, often representing national groups within cold forging. The main work within the ICFG is carried out in its subgroups which are established by the Plenary to collect, compile and evaluate data and eventually also produce data...... by cooperative activities or by instigating national research. These subgroups have produced 9 data sheets and 7 guidelines on subjects such as materials, tool design and construction, calculation methods for cold forging tools, manufacture of slugs, lubrication aspects and small quantity production. Plenary...

  9. Effects of prior exposure to office noise and music on aspects of working memory.

    Science.gov (United States)

    Smith, Andrew; Waters, Beth; Jones, Hywel

    2010-01-01

    Previous research has suggested that prior exposure to noise reduces the effect of subsequent exposure due to habituation. Similarly, a number of studies have shown that exposure to Mozart's music leads to better subsequent spatial reasoning performance. Two studies were conducted to extend these findings. The first one examined whether habituation occurs to office noise (including speech) and, if so, how long it takes to develop. Thirty-six young adults participated in the first study which compared effects of office noise with quiet on the performance of a maths task. The study also examined the effects of prior exposure to the office noise on the subsequent effect of the noise. The results showed that performance was initially impaired by the office noise but that the effects of the noise were removed by 10 minutes of exposure between tasks. The second experiment attempted to replicate the "Mozart effect" which represents an improvement in spatial reasoning following listening to Mozart. The study also examined whether the Mozart effect could be explained by changes in mood. Twenty-four young adults participated in the study. The results replicated the Mozart effect and showed that it was not due to changes in mood. Overall, these results show that prior exposure to noise or music can influence aspects of working memory. Such effects need to be incorporated into models of effects of noise on cognition and attempts have to be made to eliminate alternative explanations rather than just describing changes that occur in specific contexts.

  10. Effects of prior exposure to office noise and music on aspects of working memory

    Directory of Open Access Journals (Sweden)

    Andrew Smith

    2010-01-01

    Full Text Available Previous research has suggested that prior exposure to noise reduces the effect of subsequent exposure due to habituation. Similarly, a number of studies have shown that exposure to Mozart′s music leads to better subsequent spatial reasoning performance. Two studies were conducted to extend these findings. The first one examined whether habituation occurs to office noise (including speech and, if so, how long it takes to develop. Thirty-six young adults participated in the first study which compared effects of office noise with quiet on the performance of a maths task. The study also examined the effects of prior exposure to the office noise on the subsequent effect of the noise. The results showed that performance was initially impaired by the office noise but that the effects of the noise were removed by 10 minutes of exposure between tasks. The second experiment attempted to replicate the "Mozart effect" which represents an improvement in spatial reasoning following listening to Mozart. The study also examined whether the Mozart effect could be explained by changes in mood. Twenty-four young adults participated in the study. The results replicated the Mozart effect and showed that it was not due to changes in mood. Overall, these results show that prior exposure to noise or music can influence aspects of working memory. Such effects need to be incorporated into models of effects of noise on cognition and attempts have to be made to eliminate alternative explanations rather than just describing changes that occur in specific contexts.

  11. Cold working room temperature increased moderate/severe qualitative work stressor risk in Air Traffic Controllers

    Directory of Open Access Journals (Sweden)

    Dewi Astuti

    2012-07-01

    work load stressor among the ATCs.Methods:  This  cross-sectional  study  was  conducted  in November  2008  at  Soekarno-Hatta  International Airport. Subjects consisted of active ATCs with a minimum of six months total working tenure. The study used standard diagnostic as well as home stressor questionnaire surveys. All questionnaires were filled in by the participants.Results: Subjects were aged 27–55 years, consisted of 112 ATCs who had moderate and 13 (9.6% ATCs who had slight QLWS. Those who felt than did not feel the working room temperature was not too cold had 11-fold moderate/severe QLWS [adjusted odds ratio (ORa = 10.63: 95% confidence interval (CI = 1.79-65.59]. Those who had than did not have moderate/severe role ambiguity stressor had 8.2-fold risk of moderate/severe QLWS (ORa = 8.23: 95% CI = 1.13-59.90. Those who had than did not have moderate/severe personal responsibility stressor had 6,6-fold risk for moderate/severe QLWS (ORa = 6.64: 95% CI = 1.13-38.85. In terms of the career development stressor, those who had it than did not have it had a 3.7-fold risk for moderate/severe QLWS (ORa = 3,67: 95% CI = 0.88-15.35; P = 0.075.Conclusion:  Those who felt the room temperature was too cold, moderate/severe role ambiguity, personal responsibility, as well as career development stressor were at increased risk for moderate/severe QLWS. (Health Science Indones 2011;2:58-65. 

  12. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  13. Arthur Prior and 'Now'

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2016-01-01

    ’s search led him through the work of Castañeda, and back to his own work on hybrid logic: the first made temporal reference philosophically respectable, the second made it technically feasible in a modal framework. With the aid of hybrid logic, Prior built a bridge from a two-dimensional UT calculus...

  14. Performance evaluation approach for the supercritical helium cold circulators of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  15. Improving cold chain systems: Challenges and solutions.

    Science.gov (United States)

    Ashok, Ashvin; Brison, Michael; LeTallec, Yann

    2017-04-19

    While a number of new vaccines have been rolled out across the developing world (with more vaccines in the pipeline), cold chain systems are struggling to efficiently support national immunization programs in ensuring the availability of safe and potent vaccines. This article reflects on the Clinton Health Access Initiative, Inc. (CHAI) experience working since 2010 with national immunization programs and partners to improve vaccines cold chains in 10 countries-Ethiopia, Nigeria, Kenya, Malawi, Tanzania, Uganda, Cameroon, Mozambique, Lesotho and India - to identify the root causes and solutions for three common issues limiting cold chain performance. Key recommendations include: Collectively, the solutions detailed in this article chart a path to substantially improving the performance of the cold chain. Combined with an enabling global and in-country environment, it is possible to eliminate cold chain issues as a substantial barrier to effective and full immunization coverage over the next few years. Copyright © 2017. Published by Elsevier Ltd.

  16. An Isocurvature Cold Dark Matter Cosmogony. I. A Worked Example of Evolution through Inflation

    Science.gov (United States)

    Peebles, P. J. E.

    1999-01-01

    I present a specific worked example of evolution through inflation to the initial conditions for an isocurvature cold dark matter (ICDM) model for structure formation. The model invokes three scalar fields: one that drives power-law inflation, one that survives to become the present-day CDM, and one that gives the CDM field a mass that slowly decreases during inflation and therefore ``tilts'' the primeval mass fluctuation spectrum of the CDM. The functional forms for the potentials and the parameter values that lead to an observationally acceptable model for structure formation do not seem to be out of line with current ideas about the physics of the very early universe. I argue in an accompanying paper that the model offers a not unacceptable fit to main observational constraints.

  17. Determination of stannous tin in radiopharmaceutical cold kits

    International Nuclear Information System (INIS)

    Farrant, A.J.

    1979-01-01

    Two methods for determining stannous tin in 'cold kits', used for the preparation of Tc-99m labelled radiopharmaceuticals, have been developed. Both are based on the direct titration of the Sn2 in solution. In the first method titration is with N-bromosuccinimide. Of the materials commonly used as cold kits only albumin has been found to interfere with the determination. The second method is a standard iodometric titration in which starch is used as indicator. None of the materials tested interfere with this procedure. The N-bromosuccinimide method is the method of choice as the re-agent, a solid, can be used without prior standardization. Iodine solution must be standardized daily. The paper describes in detail the methods used and gives examples of kits in which the Sn2 levels have been determined using the described procedures

  18. Progress with cold antihydrogen

    CERN Document Server

    Charlton, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Johnson, I; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, Rolf; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; Van der Werf, D P; Yamazaki, Y; Zurlo, N

    2006-01-01

    The creation of cold antihydrogen by the ATHENA and ATRAP collaborations, working at CERN's unique Antiproton Decelerator (AD) facility, has ushered in a new era in atomic physics. This contribution will briefly review recent results from the ATHENA experiment. These include discussions of antiproton slowing down in a cold positron gas during antihydrogen formation, information derived on the dependence of the antihydrogen formation rate upon the temperature of the stored positron plasma and, finally, upon the spatial distribution of the emitted anti-atoms. We will discuss the implications of these studies for the major outstanding goal of trapping samples of antihydrogen for precise spectroscopic comparisons with hydrogen. The physics motivations for undertaking these challenging experiments will be briefly recalled.

  19. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    Science.gov (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  20. Proceedings of the cold climate construction conference and expo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This conference provided a forum to present innovative technologies in engineering, construction, energy efficiency, workforce productivity and several other aspects affecting cold regions. The session on winter construction featured tools techniques and technologies that maximize winter construction, with reference to the latest in cold weather construction techniques and lessons learned from the far north and south. It featured lessons on building on ice, frozen ground and permafrost. The session on sustainability addressed issues regarding sustainable design; solar, wind and geothermal systems; building envelopes that work in cold climates; and energy efficient products and techniques. The session on workforce productivity presented methods to keep the workforce warm and healthy in cold conditions; attracting and preparing foreign workers for the far north; worker productivity in a cold environment; tools, techniques and clothing to minimize the effects of cold weather; and cold weather equipment operations. Three presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  1. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  2. Effect of aging and cold working on the high-temperature low-cycle fatigue behavior of alloy 800H. Part I. The effect of hardening processes on the initial stress--strain curve

    International Nuclear Information System (INIS)

    Villagrana, R.E.; Kaae, J.L.; Ellis, J.R.; Gantzel, P.K.

    1978-01-01

    The individual and combined effects of cold working (5 and 10%) and aging (4000 and 8000 h at 538 to 760 0 C) on the microstructure and high-temperature yield strength of alloy 800H have been investigated. The specimens were tested at the aging temperatures. During testing some of the specimens showed the phenomenon of serrated yielding. In order of importance, the principal hardening agents observed in this work were: cold work, the precipitation of Cr 23 C 6 at the grain boundaries, and, in some cases, the precipitation of a Perovskite-type γ' phase in the grain interiors

  3. Hot deformation and processing maps of K310 cold work tool steel

    International Nuclear Information System (INIS)

    Ezatpour, H.R.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Ebrahimi, G.R.

    2012-01-01

    Highlights: ► The steady state stresses are related to strain rate and temperature. ► The study led to n DRX = 3.95 and Q DRX = 219.65 kJ/(mol K) and α = 1.2 × 10 −2 MPa −1 . ► The safe domain occurs in the region of 1000–1100 °C for a strain rate of 0.1 s −1 . - Abstract: Hot working response of cold work tool steel K310 was investigated by means of compression test at temperature range of 900–1100 °C. The equivalent strain rates used in these tests were 0.01, 0.1 and 1 s −1 , respectively in order to obtain the processing and stability maps of the studied material following the Dynamic Material Model. All the zones of flow instability were studied through scanning electron microscopy (SEM). The microstructure of the samples after deformation was then analyzed by light microscopy and the differences were compared together. The steady state stress obtained from the flow curves was related to strain rate (ε . ) and temperature (T) by means of the well known Zener–Holloman equation. A least square analysis of the data led to n = 3.95 and Q DRX = 219.65 kJ/mol and α = 1.2 × 10 −2 MPa −1 . Also, hardness results showed that by increasing strain from peak to steady state strain, hardness was decreased.

  4. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  5. Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruits

    Directory of Open Access Journals (Sweden)

    Claudia A Bustamante

    2016-09-01

    Full Text Available Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI

  6. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  7. Reanalysis of Korean War Anthropological Records to Support the Resolution of Cold Cases.

    Science.gov (United States)

    Wilson, Emily K

    2017-09-01

    Re-investigation of previously unidentified remains from the Korean War has yielded 55 new identifications, each with corresponding records of prior anthropological analyses. This study compares biological assessments for age at death, stature, and ancestry across (i) anthropological analyses from the 1950s, (ii) recent anthropological analyses of those same sets of remains, and (iii) the reported antemortem biological information for the identified individual. A comparison of long bone measurements from both the 1950s and during reanalysis is also presented. These comparisons demonstrate commonalities and continuing patterns of errors that are useful in refining both research on Korean War cold case records and forensic anthropological analyses performed using methods developed from the 1950s identifications. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Changes in landing mechanics after cold-water immersion.

    Science.gov (United States)

    Wang, He; Toner, Michael M; Lemonda, Thomas J; Zohar, Mor

    2010-06-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 degrees C) and in cold water (20 degrees C) to the ankle (low level), knee (medium level), and hip (high level) joints. Sagittal plane kinematics and kinetics were determined. One-way repeated measures multivariate analysis of variance was used for statistical analysis. Compared to the control, the low-level condition had similar joint mechanics, the medium level showed 26% less ankle mechanical work (p = .003), and the high level showed 9% less vertical ground reaction force (p = .025) and 23% less ankle mechanical work (p = .023) with 18% greater trunk flexion (p = .024). In summary, the low-level cold-water immersion had no effect on landing mechanics. The medium- and high-level cold-water immersion resulted in a reduction in impact absorption at the ankle joint during landing. The increased trunk flexion after high-level immersion helped dissipate landing impact.

  9. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  10. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  11. Cold fusion reactors and new modern physics

    OpenAIRE

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the c...

  12. Investigation of the effect of heat treatment on the structure of the cold-rolled ferrite stainless steels

    Directory of Open Access Journals (Sweden)

    В. Л. Грешта

    2015-03-01

    Full Text Available The work presents the estimation of a factor, namely, the solid solution super saturation by carbon and nitrogen on crystalline nature of high-chromium ferrite (HCF in defining the inhibition mechanism of recrystallization processes in ferritic stainless steel. The essence of the study was to conduct an additional heat treatment of hot (h/r tackle for the following modes: annealing 800 ° C - 4 hours, tempering with temperatures of 900, 1000, 1100 ° C after exposure to 1 min/mm. It is established that the determining factor that influences the amount of the carbide phase in c/r sheet is prior treatment of h/r tackle. A definite connection between the volume fraction of the secondary phase and the degree of cold deformation was observed. In the structure of cold-rolled sheet the same pattern with respect to the degree of implementation processes allocation of excess phases is maintained as in hot-rolled, after appropriate heat treatment. The smallest amount of the secondary phase structure was observed in the letter after hardening from 1100 °C - 1 min/mm. The reason is the thermodynamic state of HCF, to which at 1100 °C all the excess carbon and nitrogen must exist in solid solution. Thus, it is found that according to the present analysis of structural changes it should be noted that the best option of thermal prior treatment of h/r tackle is the annealing at 800 °C – 4 hours

  13. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  14. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  15. An alternative to the traditional cold pressor test: the cold pressor arm wrap.

    Science.gov (United States)

    Porcelli, Anthony John

    2014-01-16

    Recently research on the relationship between stress and cognition, emotion, and behavior has greatly increased. These advances have yielded insights into important questions ranging from the nature of stress' influence on addiction(1) to the role of stress in neural changes associated with alterations in decision-making(2,3). As topics being examined by the field evolve, however, so too must the methodologies involved. In this article a practical and effective alternative to a classic stress induction technique, the cold pressor test (CPT), is presented: the cold pressor arm wrap (CPAW). CPT typically involves immersion of a participant's dominant hand in ice-cold water for a period of time(4). The technique is associated with robust activation of the sympatho-adrenomedullary (SAM) axis (and release of catecholamines; e.g. adrenaline and noradrenaline) and mild-to-moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis with associated glucocorticoid (e.g. cortisol) release. While CPT has been used in a wide range of studies, it can be impractical to apply in some research environments. For example use of water during, rather than prior to, magnetic resonance imaging (MRI) has the potential to damage sensitive and expensive equipment or interfere with acquisition of MRI signal. The CPAW is a practical and effective alternative to the traditional CPT. Composed of a versatile list of inexpensive and easily acquired components, CPAW makes use of MRI-safe gelpacs cooled to a temperature similar to CPT rather than actual water. Importantly CPAW is associated with levels of SAM and HPA activation comparable to CPT, and can easily be applied in a variety of research contexts. While it is important to maintain specific safety protocols when using the technique, these are easy to implement if planned for. Creation and use of the CPAW will be discussed.

  16. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  17. Special Issue ;Sediment cascades in cold climate geosystems;

    Science.gov (United States)

    Morche, David; Krautblatter, Michael; Beylich, Achim A.

    2017-06-01

    This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.

  18. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  19. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  20. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    Science.gov (United States)

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p  0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  1. Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties

    International Nuclear Information System (INIS)

    Vasudevan, M.; Palanichamy, P.

    2003-01-01

    As ultrasonic velocity is sensitive to the changes in texture, it is a more reliable technique than mechanical property measurements for assessment of microstructural stability (recrystallization behaviour) of cold worked alloy where recrystallization is coupled with precipitation. Hence ultrasonic velocity measurements have been employed for studying the influence of Ti/C ratio on the microstructural stability of cold worked Ti-modified austenitic stainless steel during isochronal aging. In this alloy precipitation of TiC is known to retard recovery and recrystallization. The variation in ultrasonic velocity with aging temperature exhibited a three stage behaviour at all three frequencies employed (2, 10 and 20 MHz) and correlated well with the microstructural changes. Based on the microstructural investigations, the three stages have been identified to be recovery, progress of recrystallization and completion of recrystallization. There was one to one correspondence between the variation in the hardness, strength values and the variation in the ultrasonic velocity values as a function of aging temperature in assessing the microstructural changes, except when the interaction between the TiC precipitation and recrystallization is stronger

  2. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  3. Influence of cold work on electrochemical behavior of 316L ASS in PEMFC environment

    Science.gov (United States)

    Tandon, Vipin; Patil, Awanikumar P.; Rathod, Ramesh C.; Shukla, Sourabh

    2018-02-01

    The influence of cold work (CW) on electrochemical behavior of 316L ASS in PEMFC (0.5M H2SO4 + 2 ppm HF at 70 °C) environment was investigated by microstructural observations, x-ray diffraction (XRD), polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) techniques. The XRD is used to analyze the increase in dislocation density and formation of α‧-martensite with increasing CW degree. The EIS is used to find out the effect of substrate dislocation density on the film resistance. The EIS result show that with increasing CW, the diameter of depressed semi-circular arc and consequently film resistance decreased. This indicates the formation of highly disordered and porous film on CW. From PDP results, it is found that icrit, ip and icorr increased on increasing CW degree. Moreover, the direct relationship was drawn from the dislocation density of the substrate to the defect density of the passive film from M-S technique.

  4. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  5. Do not panic: Hawkwind, the Cold War and “the imagination of disaster”

    Directory of Open Access Journals (Sweden)

    Erin Ihde

    2015-12-01

    Full Text Available The English rock band, Hawkwind, was amongst the founders of the genre known as “space rock”. From the early 1970s to the early 1990s, their work also included references to Cold War issues. An examination of their concert appearances, musical output and printed matter reveals that relevant material often reflected the “imagination of disaster” made famous in an essay by Susan Sontag. As well, there are correlations between the waxing and waning of Cold War tensions, and the presence and absence of such themes in their work. Thus, their work provides an example of how popular music could serve as a barometer of the impact of the Cold War on popular culture.

  6. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  7. Susceptibility to hypoxia and breathing control changes after short-term cold exposures

    Directory of Open Access Journals (Sweden)

    Lyudmila T. Kovtun

    2013-08-01

    Full Text Available Background . Hypoxia is the reduction of oxygen availability due to external or internal causes. There is large individual variability of response to hypoxia. Objective . The aim of this study was to define individual and typological features in susceptibility to hypoxia, its interrelation with hypoxic and hypercapnic ventilatory responses (HVR and HCVR, respectively and their changes after cold acclimation. Design . Twenty-four healthy men were tested. HVR and HCVR were measured by the rebreathing method during hypoxic and hypercapnic tests, respectively. These tests were carried out in thermoneutral conditions before and after cold exposures (nude, at 13°C, 2 h daily, for 10 days. Susceptibility to hypoxia (sSaO2 was determined as haemoglobin saturation slope during hypoxic test. Results . It was found that HVR and HCVR significantly increased and susceptibility to hypoxia (sSaO2 tended to decrease after cold acclimation. According to sSaO2 results before cold exposures, the group was divided into 3: Group 1 – with high susceptibility to hypoxia, Group 2 – medium and Group 3 – low susceptibility. Analysis of variances (MANOVA shows the key role of susceptibility to hypoxia and cold exposures and their interrelation. Posterior analysis (Fisher LSD showed significant difference in susceptibility to hypoxia between the groups prior to cold acclimation, while HVR and HCVR did not differ between the groups. After cold acclimation, susceptibility to hypoxia was not significantly different between the groups, while HCVR significantly increased in Groups 1 and 3, HVR significantly increased in Group 3 and HCVR, HVR did not change in Group 2. Conclusions . Short-term cold exposures caused an increase in functional reserves and improved oxygen supply of tissues in Group 1. Cold exposure hypoxia has caused energy loss in Group 3. Group 2 showed the most appropriate energy conservation reaction mode to cold exposures. No relation was found between

  8. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  9. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  10. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  11. Effect of surface cold work on corrosion of Alloy 690TT in high temperature high pressure water

    International Nuclear Information System (INIS)

    Wang, J.; Zhang, Z.; Han, E.-H.; Ke, W.

    2009-01-01

    This paper aims to investigate the effect of surface cold work on corrosion of Alloy 690TT. The Alloy 690TT was mechanical ground and electro polished respectively and immersed in primary water at DO = 2 ppm and DH = 2.5ppm respectively. The microstructure of surface and the compositions and morphology of the surface film on Alloy 690TT after immersion test were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and focused ion beam (FIB). The results showed that feather-like oxide with decorated polyhedral oxide formed on ground surface and needle-like oxide with decorated polyhedral oxide formed on electro-polished surface. (author)

  12. The Characteristics of Cold Air Outbreaks in the Eastern United States and the Influence of Atmospheric Circulation Patterns

    Science.gov (United States)

    Smith, E. T.

    2017-12-01

    Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.

  13. Study of diffusion type cold traps in liquid sodium circuit

    International Nuclear Information System (INIS)

    Araujo, F.G.B. de.

    1974-01-01

    The purpose of this thesis is to attain conclusions related with the work of the diffusion type cold traps. Primarily a mathematic formulation is established for a purification process, including the determination of the cold trap thermic field. With parameters obtained from the temperature field, purification characteristics were calculated allowing conclusions concerning the system's performance. (author)

  14. Flange Curling in Cold Formed Profiles

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Ramonas, Gediminas

    2012-01-01

    The non-linear flange curling phenomenon in cold formed profiles is the tendency of slender flanges to deform towards the neutral axis for increasing flexural curvature. Based on Braziers work, Winter proposed a simple engineering formula for determination of the local flange deformation towards...

  15. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  16. Improving Open Access through Prior Learning Assessment

    Science.gov (United States)

    Yin, Shuangxu; Kawachi, Paul

    2013-01-01

    This paper explores and presents new data on how to improve open access in distance education through using prior learning assessments. Broadly there are three types of prior learning assessment (PLAR): Type-1 for prospective students to be allowed to register for a course; Type-2 for current students to avoid duplicating work-load to gain…

  17. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  18. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  19. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    Science.gov (United States)

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  20. A Multi-Modality Deep Network for Cold-Start Recommendation

    Directory of Open Access Journals (Sweden)

    Mingxuan Sun

    2018-03-01

    Full Text Available Collaborative filtering (CF approaches, which provide recommendations based on ratings or purchase history, perform well for users and items with sufficient interactions. However, CF approaches suffer from the cold-start problem for users and items with few ratings. Hybrid recommender systems that combine collaborative filtering and content-based approaches have been proved as an effective way to alleviate the cold-start issue. Integrating contents from multiple heterogeneous data sources such as reviews and product images is challenging for two reasons. Firstly, mapping contents in different modalities from the original feature space to a joint lower-dimensional space is difficult since they have intrinsically different characteristics and statistical properties, such as sparse texts and dense images. Secondly, most algorithms only use content features as the prior knowledge to improve the estimation of user and item profiles but the ratings do not directly provide feedback to guide feature extraction. To tackle these challenges, we propose a tightly-coupled deep network model for fusing heterogeneous modalities, to avoid tedious feature extraction in specific domains, and to enable two-way information propagation from both content and rating information. Experiments on large-scale Amazon product data in book and movie domains demonstrate the effectiveness of the proposed model for cold-start recommendation.

  1. The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    E.P. Georgiou

    2017-10-01

    Full Text Available This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process, until the average thickness of the specimens was reduced by 7% and 15%, respectively. A study of the structure, microhardness, and tensile properties of the hydrogen charged aluminium specimens, with and without cold rolling, indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.

  2. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    Jensen, K.; Leth, j.A.

    1980-09-01

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  3. Effect of pulsed electric field treatment during cold maceration and alcoholic fermentation on major red wine qualitative and quantitative parameters.

    Science.gov (United States)

    El Darra, Nada; Rajha, Hiba N; Ducasse, Marie-Agnès; Turk, Mohammad F; Grimi, Nabil; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène

    2016-12-15

    This work studies the effect of pulsed electric field (PEF) treatment at moderate and high field strengths (E=0.8kV/cm & 5kV/cm) prior and during alcoholic fermentation (AF) of red grapes on improving different parameters of pre-treated extracts: pH, °Brix, colour intensity (CI), total polyphenols content (TPI) of Cabernet Sauvignon red wine. Similar trends were observed for treating grapes using moderate and high electric field strength on the enhancement of CI and TPI of the wine after AF. The application of PEF using moderate strengths at different times during cold maceration (CM) (0, 2 and 4days) was more efficient for treatment during CM. The treatment during AF showed lower extraction rate compared to treating during CM and prior to AF. Our results clearly show that the best time for applying the PEF-treatment through the red fermentation is during the CM step. Copyright © 2016. Published by Elsevier Ltd.

  4. Focus: new perspectives on science and the Cold War. Introduction.

    Science.gov (United States)

    Heyck, Hunter; Kaiser, David

    2010-06-01

    Twenty years after the fall of the Berlin Wall, the Cold War looks ever more like a slice of history rather than a contemporary reality. During those same twenty years, scholarship on science, technology, and the state during the Cold War era has expanded dramatically. Building on major studies of physics in the American context--often couched in terms of "big science"--recent work has broached scientific efforts in other domains as well, scrutinizing Cold War scholarship in increasingly international and comparative frameworks. The essays in this Focus section take stock of current thinking about science and the Cold War, revisiting the question of how best to understand tangled (and sometimes surprising) relationships between government patronage and the world of ideas.

  5. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  6. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  7. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  8. Effect of preliminary thermal treatment of EhP-56 on resistivity to cold cracks formation in the joint heat affected zone

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Shubin, V.I.; Belov, Yu.M.

    1975-01-01

    Data are given on the influence of the conditions of prior heat treatment on the resistance of steel EP56 to cold cracking in the joint heat affected zone /HAZ/. Other things being equal, the resistance of steel EP56 to cold cracking in the HAZ increases with reduction of hardness and increase of austenite content. Conditions for welding steel EP56, preventing cracking in the HAZ, have been determined

  9. Electrically heated catalysts for cold-start emission control on gasoline- and methanol-fueled vehicles

    International Nuclear Information System (INIS)

    Heimrich, M.J.; Albu, S.; Ahuja, M.

    1992-01-01

    Cold-start emissions from current technology vehicles equipped with catalytic converters can account for over 80 percent of the emissions produced during the Federal Test Procedure (FTP). Excessive pollutants can be emitted for a period of one to two minutes following cold engine starting, partially because the catalyst has not reached an efficient operating temperature. Electrically heated catalysts, which are heated prior to engine starting, have been identified as a potential strategy for controlling cold-start emissions. This paper summarizes the emission results of three gasoline-fueled and three methanol-fueled vehicles equipped with electrically heated catalyst systems. Results from these vehicles demonstrate that heated catalyst technology can provide FTP emission levels of nonmethane organic gases (NMOG), carbon monoxide (CO), and oxides of nitrogen (NO x ) that show promise of meeting the Ultra-Low Emission Vehicle (ULEV) standards established by the California Air Resources Board

  10. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  11. Optimization of the cold processing of 15-15Ti AIM1 austenitic steel cladding tubes

    International Nuclear Information System (INIS)

    Courtin, Laurine

    2015-01-01

    In order to face the next century energy demand growth, the worldwide development of the 4. generation of nuclear reactors is considered. The construction of a sodium-cooled fast reactor prototype (ASTRID) is currently envisaged at the CEA. The reference material selected for the fuel cladding of its first core is the 15-15Ti-AIM1 austenitic steel (Austenitic Improved Material). The goal of this PhD thesis work is to investigate the different ways of optimization for the cold working steps undergone by the claddings during their manufacture in order to improve their swelling resistance. The main investigations are focused on the conditions of the cold-working steps and the thermal treatments applied throughout the shaping of the claddings, especially of the last solution annealing treatment. The effects of these parameters on the microstructure are investigated (structural refinement, precipitation and the additive elements dissolution and arrangement of the dislocations). This study is divided into three main steps: An analysis of the fabrication routes applied in the past along with the study of the 'cold-work' and the thermal treatments conditions; An assessment of new shaping processes, such as the 'cold-pilgering' and the hammering, in order to verify the conformity of the manufactured tubes with respect to the required specifications; An attempt of optimization of the cold-work routes and the microstructure of the final material. The results of microstructure characterization and the mechanical behavior allow envisaging favorably the use of an alternative process such as the cold pilgering to manufacture claddings. (author) [fr

  12. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  13. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  14. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    International Nuclear Information System (INIS)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; Morgan, Dane

    2017-01-01

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10"–"7 dpa/s and 390 °C) and then use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10"–"8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni_3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.

  15. Ultrasonic characterization of pork fat crystallization during cold storage.

    Science.gov (United States)

    Corona, Edith; García-Pérez, José V; Santacatalina, Juan V; Ventanas, Sonia; Benedito, José

    2014-05-01

    In this work, the feasibility of using ultrasonic velocity measurements for characterizing and differentiating the crystallization pattern in 2 pork backfats (Montanera and Cebo Iberian fats) during cold storage (0 °C, 2 °C, 5 °C, 7 °C, and 10 °C) was evaluated. The fatty acid profile, thermal behavior, and textural properties (hardness) of fat were also determined. Both fats became harder during cold storage (average hardness increase for both fats, 11.5 N, 8 N, and 1.8 N at 0, °C 2 °C, and 5 °C , respectively), showing a 2-step pattern related with the separate crystallization of the different existing triacylglycerols, which was well described using a modified Avrami equation (explained variance > 99%). Due to a greater content of saturated triacylglycerols, Cebo fat (45.1%) was harder than Montanera (41.8%). The ultrasonic velocity followed a similar 2-step pattern to hardness during cold storage, being found an average increase for both fats of 184, 161, and 150 m/s at 0 °C 2 °C, and 5 °C, respectively. Thus, ultrasonic measurements were useful both to characterize the textural changes taking place during cold storage and to differentiate between fats with different composition. The cold storage of dry-cured meat products during their distribution and retail sale exert an important effect on their textural properties and consumers' acceptance due to the crystallization of the fat fraction, which is greatly influenced by the type of fat. In this work, a nondestructive ultrasonic technique was used to identify the textural changes provoked by the crystallization during cold storage, and to differentiate between fats, which could be used for quality control purposes. © 2014 Institute of Food Technologists®

  16. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  17. Effect of cold-rolling on pitting corrosion of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Peguet, L.; Malki, B.; Baroux, B.

    2004-01-01

    Full text of publication follows: This paper deals with a not very often investigated topic on relation between cold-working and stainless steels localized corrosion resistance. It is devoted to the study of the cold-rolling effects on the pitting corrosion behavior of a 304 stainless steel grade in chloride containing aqueous electrolytes. It focus particularly on the analysis of metastable pitting transients observed at Open Circuit Potential using an experimental protocol including two identical working electrodes connected through a zero-impedance. As received the used specimens were heat-treated at 1100 C for 30 s and cold-rolled at 10%, 20%, 30% up to a final reduction pass of 70% inducing a large amount of α'-martensite. Then, current-potential fluctuations measurements were performed at OCP in NaCl 0.1 M + FeCl 3 2.10 -4 M containing aqueous solution during 24 h from the immersion time. As expected, a detrimental effect on corrosion behavior induced by cold rolling has been confirmed. Surprisingly, this is a nonlinear effect as a function of cold-rolling rate which controverts the hypothesis that strain induced martensite is the principal factor to explain this kind of sensibilizing. In particular, the results show a maximum of the metastable pits initiation frequency at 20% of cold-rolling rate. Moreover, the passive film/electrochemical double layer resistance and capacity deduced from the transients study show an analog nonlinear behavior. So, the transfer resistance show a minimum around 10-20% of cold-rolling rate where one can assume an increase of the electrons transfer kinetics through the interface. Conversely, the interfacial capacity is the highest at 20% of cold-rolling rate. Finally, It is expected a combined effect of the cold-rolled induced martensite and the dislocations arrangement via the mechano-chemical theory discussed by Gutman. (authors)

  18. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.

    1998-01-01

    The scope of this project includes the development, design, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube hole in the pressure vessel. All aspects of the cold source design will be based on demonstrated technology adapted to the HFIR design and operating conditions

  19. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  20. Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Na, Seong Hyeon; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korea Gas Coporation R& D Division, Daejeon (Korea, Republic of)

    2017-09-15

    STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and -170℃ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

  1. Evaluation of Physiological and Psychological Impairment of Human Performance in Cold Stressed Subjects

    Science.gov (United States)

    1990-03-23

    overall oscillations, although Uprus et al. ( 1935 ) notes that overt body tremors also occur during fever, relaxation of sphincters and emotional...periods of time. Shivering can occur in decorticate (Aring, 1935 ) and thalamectomized animals (Clark, et al., 1939) and in animals with anterior hypothalmic...prior to (pro) and during (poet) cold exposure. None of epre . post comparltons are significantly different nor are there any differences between

  2. Total Variability Modeling using Source-specific Priors

    DEFF Research Database (Denmark)

    Shepstone, Sven Ewan; Lee, Kong Aik; Li, Haizhou

    2016-01-01

    sequence of an utterance. In both cases the prior for the latent variable is assumed to be non-informative, since for homogeneous datasets there is no gain in generality in using an informative prior. This work shows in the heterogeneous case, that using informative priors for com- puting the posterior......, can lead to favorable results. We focus on modeling the priors using minimum divergence criterion or fac- tor analysis techniques. Tests on the NIST 2008 and 2010 Speaker Recognition Evaluation (SRE) dataset show that our proposed method beats four baselines: For i-vector extraction using an already...... trained matrix, for the short2-short3 task in SRE’08, five out of eight female and four out of eight male common conditions, were improved. For the core-extended task in SRE’10, four out of nine female and six out of nine male common conditions were improved. When incorporating prior information...

  3. Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments

    Directory of Open Access Journals (Sweden)

    Ling-Yu Ji

    2017-07-01

    Full Text Available Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects.Objective: Investigate the time-dependent effects of acute exercise on university students’ processing speed, working memory and cognitive flexibility in temperate and cold environments.Method: Twenty male university students (age 23.5 ± 2.0 years with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE, followed by a 45-min rest (REST, immediately after (EX and 30 min after (POST-EX 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C and cold (COLD; 10°C environments. Mean skin temperature (MST and thermal sensation (TS were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman’s rho was used to identify the correlations between MST, TS and cognitive performance.Results: Reaction time (RT of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007. The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163 and COLD (p = 0.667, while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047, but not in COLD (p = 0.663. Though RT of cognitive flexibility reduced in both conditions (p = 0.003, no significance was found between EX and REST (p = 0.135. Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001 and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005, and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001.Conclusion: The results demonstrate

  4. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  5. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  6. Sets of priors reflecting prior-data conflict and agreement

    NARCIS (Netherlands)

    Walter, G.M.; Coolen, F.P.A.; Carvalho, J.P.; Lesot, M.-J.; Kaymak, U.; Vieira, S.; Bouchon-Meunier, B.; Yager, R.R.

    2016-01-01

    Bayesian inference enables combination of observations with prior knowledge in the reasoning process. The choice of a particular prior distribution to represent the available prior knowledge is, however, often debatable, especially when prior knowledge is limited or data are scarce, as then

  7. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  8. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    Science.gov (United States)

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of

  9. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  10. Cold and ultracold molecules: science, technology and applications

    International Nuclear Information System (INIS)

    Carr, Lincoln D; DeMille, David; Krems, Roman V; Ye Jun

    2009-01-01

    This paper presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the focus issue of New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few-body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.

  11. Why the end of the Cold War doesn't matter: the US war of terror in Colombia

    OpenAIRE

    Stokes, Doug

    2003-01-01

    Orthodox narratives of US foreign policy have been employed as uncontested modes of historical interpretation with US post-Cold War foreign policy in the Third World characterised by discontinuity from its earlier Cold War objectives. Chomsky's work adopts an alternative revisionist historiography that views US post-Cold War foreign policy as characterised by continuity with its earlier Cold War objectives. This article examines the continuities of US post-Cold War policy in Colombia, and exp...

  12. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  13. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  14. Working of Ideology in the TV Commercials of Cold Drinks in Pakistani Media

    Science.gov (United States)

    Ahmad, Madiha; Ahmad, Sofia; Ijaz, Nida; Batool, Sumera; Abid, Maratab

    2015-01-01

    The article aims at the analysis of the TV commercials of three carbonated cold drinks from Pakistani media. The analysis will be carried out using the three dimensional framework presented by Fairclough. Through the analysis, the ideological framing of the commercials will be brought to light. To achieve this purpose different techniques used by…

  15. Coating by the Cold Spray Process: a state of the art

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2009-04-01

    Full Text Available A brief description of cold spray coating process is presented. This paper intends to review some the previous works which are mostly about the influences of the cold spray parameters, mostly the surface ofthe substrate, on the deposition efficiency (DE. Almost all the important parameters, with more focus on the roughness of the substrate, on increasing the DE are briefly studied; this review also includes a description of application of cold spray and of some important effect of this method on substrate properties.On this basis, some possible development in this field of research are drawn and discussed.

  16. Risk of hospitalization for fire-related burns during extreme cold weather.

    Science.gov (United States)

    Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie

    2017-10-01

    Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  18. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  19. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-01

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold and Dark''. Several ''near miss'' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards

  20. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  1. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  2. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  3. Influence of cold-working and subsequent heat-treatment on young's modulus and strength of Co-Ni-Cr-Mo alloy

    International Nuclear Information System (INIS)

    Otomo, Takuma; Matsumoto, Hiroaki; Chiba, Akihiko; Nomura, Naoyuki

    2009-01-01

    Changes in Young's modulus of the Co-31 mass%Ni-19 mass%Cr-10 mass%Mo alloy (Co-Ni based alloy) with cold-swaging, combined with heat-treatment at temperatures from 673 to 1323 K, was investigated to enhance the Young's modulus of Co-Ni based alloy. After cold-swaging, the Co-Ni based alloy, forming fiber deformation texture, shows the Young's modulus of 220 GPa. Furthermore, after ageing the cold-swaged alloy at temperature from 673 to 1323 K, the Young's modulus increased to 230 GPa, accompanied by a decrease in the internal fiction and an increase in the tensile strength. This suggests that the increment in Young's modulus is caused by a moving of the vacancies to the dislocation cores and a continuous locking of the dislocations along their entire length with solute atoms (trough model). By annealing at 1323 K after cold swaging, Young's modulus slightly increased to 236 GPa. On the other hand, the tensile strength decreases to almost the same value as that before cold swaging due to recrystallization. These results suggest that the Young's modulus and the strength in the present alloy are simultaneously enhanced by the continuous dislocation locking during aging as well as the formation of fiber deformation texture. (author)

  4. Self-reported cold sensitivity in normal subjects and in patients with traumatic hand injuries or hand-arm vibration syndrome

    Directory of Open Access Journals (Sweden)

    Dahlin Lars B

    2010-05-01

    Full Text Available Abstract Background Cold sensitivity is a common and disabling complaint following hand injuries. The main purpose of this study was to describe self-reported consequences of cold sensitivity and the association with disability and health-related quality of life in patients with hand injuries or hand-arm vibration syndrome (HAVS and in normal subjects. Methods Responses to the Cold Intolerance Symptom Severity (CISS questionnaire, Potential Work Exposure Scale (PWES, Disability of the Arm, Shoulder and Hand (DASH and Short-Form 36 questionnaire (SF-36 were investigated in normal subjects (n = 94, hand injured patients (amputation and nerve injuries, n = 88 and patients with HAVS (n = 30. The results are presented as median (range, percent and mean deviation from norms. The Kruskal Wallis Test or Mann-Whitney U-Test were used to identify significant differences between multiple groups or subgroups. The Spearman rank correlation was used to study the relationship between cold sensitivity and disability. Results Abnormal cold sensitivity (CISS score > 50 was seen in 75% and 45% of patients with HAVS and a traumatic hand injury, respectively. Patients were significantly more exposed to cold in their work environment than the normal population, with a consequently negative effect on work ability due to cold sensitivity. Patients with abnormal cold sensitivity were more seriously disabled and had a poorer health-related quality of life than patients with normal cold sensitivity [higher DASH scores and e.g. significantly larger mean deviation from norms in the subscales Role Physical and Bodily Pain (SF-36]. Conclusion Severe and abnormal cold sensitivity may have a profound impact on work capacity, leisure, disability and health-related quality of life. It is frequently seen in patients with traumatic hand injuries and particularly apparent in patients with HAVS.

  5. Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing.

    Science.gov (United States)

    Song, Sooyeon; Bae, Dong-Won; Lim, Kwangsei; Griffiths, Mansel W; Oh, Sejong

    2014-11-17

    The stress resistance of bacteria is affected by the physiological status of the bacterial cell and environmental factors such as pH, salts and temperature. In this study, we report on the stress response of Lactobacillus plantarum L67 after four consecutive freeze-thaw cycles. The cold stress response of the cold-shock protein genes (cspC, cspL and cspP) and ATPase activities were then evaluated. The cold stress was adjusted to 5 °C when the bacteria were growing at the mid-exponential phase. A comparative proteomic analysis was performed with two-dimensional gel electrophoresis (2D SDS-PAGE) and a matrix assisted laser desorption/ionization-mass spectrometer. Only 56% of the L. plantarum L67 cells without prior exposure to cold stress survived after four consecutive freeze-thaw cycles. However, 78% of the L. plantarum L67 cells that were treated with cold stress at 5 °C for 6 h survived after freeze-thaw conditions. After applying cold stress to the culture for 6h, the cells were then stored for 60 days at 5 °C, 25 °C and 35 °C separately. The cold-stressed culture of L. plantarum L67 showed an 8% higher viability than the control culture. After applying cold stress for 6h, the transcript levels of two genes (cspP and cspL) were up-regulated 1.4 (cspP) and 1.2 (cspL) times compared to the control. However, cspC was not up-regulated. A proteomic analysis showed that the proteins increased after a reduction of the incubation temperature to 5 °C. The importance of the expression of 13 other relevant proteins was also determined through the study. The exposure of L. plantarum cells to low temperatures aids their ability to survive through subsequent freeze-thaw processes and lyophilization. Copyright © 2014. Published by Elsevier B.V.

  6. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    The precipitation behavior and sensitization resistance of Type 316L(N) stainless steels containing different concentrations of nitrogen have been investigated at the aging condition of 700 deg. C for cold work (CW) levels ranging from 0% (as solution annealed) to 40% reduction in thickness. The precipitation of M 23 C 6 carbide and intermetallic compounds (χ, Laves and σ phase) was accelerated by increasing the CW level. Nitrogen in the deformed alloys retarded the inter- and intra-granular precipitation of the carbides at low and high CW levels respectively, whereas it increased the relative amount of the χ phase. Quantitative assessment of the degree of sensitization (DOS) using the double loop-electrochemical potentiokinetic reactivation (DL-EPR) tests indicated that CW levels up to 20% enhanced sensitization while 40% CW suppressed sensitization for all aging times. The increase in nitrogen content accelerated the sensitization at CW levels below 20%. This might be associated with the homogeneous distribution of dislocations and the lower tendency toward recrystallization exhibited in the alloys having higher nitrogen content

  7. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  8. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.

  9. An item-oriented recommendation algorithm on cold-start problem

    Science.gov (United States)

    Qiu, Tian; Chen, Guang; Zhang, Zi-Ke; Zhou, Tao

    2011-09-01

    Based on a hybrid algorithm incorporating the heat conduction and probability spreading processes (Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 4511), in this letter, we propose an improved method by introducing an item-oriented function, focusing on solving the dilemma of the recommendation accuracy between the cold and popular items. Differently from previous works, the present algorithm does not require any additional information (e.g., tags). Further experimental results obtained in three real datasets, RYM, Netflix and MovieLens, show that, compared with the original hybrid method, the proposed algorithm significantly enhances the recommendation accuracy of the cold items, while it keeps the recommendation accuracy of the overall and the popular items. This work might shed some light on both understanding and designing effective methods for long-tailed online applications of recommender systems.

  10. Study of the annealing of defects introduced in silver by cold-working (1962); Etude sur le recuit des defauts introduits dans l'argent par ecrouissage (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Regnier-Lebouteux, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    The tempering and the recrystallisation of silver (99.99 per cent purity) following cold-working is studied by means of density ({delta}d / d {approx_equal} 5.10{sup -6}) and microhardness measurements, and of X-ray diagrams. The results depend in particular on the type and the conditions of the cold-working. For a rolling of 200 per cent carried out at temperatures under 80 deg. C, the recrystallisation occurs already at room temperature. By means of isothermal annealings it has been possible to measure the self-diffusion energy (1.90 eV). For a rolling of 200 per cent carried out at room temperature, there occurs already at 25 deg. C an increase in the density corresponding to an elimination of vacancies. For a bicrystal subjected to a 200 per cent rolling, the tempering is accompanied, from 65 to 90 deg. C, by a decrease in the density due probably to the evaporation of vacancy-impurity complexes formed during the cold-working, the impurity is very likely oxygen. At high temperature, after recrystallisation, a new and big decrease in the density let on a swelling of the silver due no doubt to slightly soluble oxygen. The density of the dislocations formed is evaluated for the different types of cold working. (author) [French] On etudie par des mesures de densite ({delta}d / d {approx_equal} 5.10{sup -6}) I de microdurete, et par des diagrammes de rayons X le revenu et la recristallisation de l'argent (purete 99,99 pour cent) apres ecrouissage. Les resultats dependent notablement du type et des conditions de l'ecrouissage. Pour un laminage de 200 pour cent effectue a temperature inferieure a 80 deg. C, on a observe la recristallisation des l'ambiante. Des recuits isothermes ont permis de mesurer l'energie d'autodiffusion (1,90 eV). Pour un laminage de 200 pour cent effectue a temperature ambiante, on constate des 25 deg. C une augmentation de densite correspondant a l'elimination de lacunes. Pour un bicristal lamine de 200 pour cent, le revenu s'accompagne, de 65

  11. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    Full Text Available Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice. Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV administration of BQ788 (ETB antagonist, IRL-2500 (ETB antagonist, or FR139317 (ETA antagonist prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  12. Low back pain among mineworkers in relation to driving, cold environment and ergonomics.

    Science.gov (United States)

    Skandfer, Morten; Talykova, Ljudmila; Brenn, Tormod; Nilsson, Tohr; Vaktskjold, Arild

    2014-01-01

    We aimed to study the association between low back pain (LBP) and exposure to low temperature, wet clothes, heavy lifting and jobs that involve whole body vibration (WBV) in a population of miners. Health and personal data were collected in a population study by a questionnaire. A total of 3530 workers from four mines participated in the study. 51% of the workers reported LBP within the last 12 months. The adjusted odds ratio for LBP was above unity for working with wet clothes (1.82), working in cold conditions (1.52), lifting heavy (1.54), having worked as a driver previously (1.79) and driving Toro400 (2.61) or train (1.69). Wet clothing, cold working conditions, heavy lifting, previous work as a driver and driving certain vehicles were associated with LBP, but vehicles with WBV levels above action value were not. For better prevention of LBP, improved cabin conditions and clothing should be emphasised. To address risk factors for low back pain (LBP) in miners, a population study measured exposures and LBP. Cold work conditions, wet clothes and awkward postures appeared to be more strongly associated with LBP than exposure to whole body vibration from driving heavy vehicles. Prevention strategies must focus more on clothing and ergonomics.

  13. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Science.gov (United States)

    2010-07-01

    .... (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with the... cleaning machine complying with paragraph (a)(2) or (b) of this section shall comply with the work and...

  14. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  15. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  16. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    Science.gov (United States)

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  17. Prior Elicitation, Assessment and Inference with a Dirichlet Prior

    Directory of Open Access Journals (Sweden)

    Michael Evans

    2017-10-01

    Full Text Available Methods are developed for eliciting a Dirichlet prior based upon stating bounds on the individual probabilities that hold with high prior probability. This approach to selecting a prior is applied to a contingency table problem where it is demonstrated how to assess the prior with respect to the bias it induces as well as how to check for prior-data conflict. It is shown that the assessment of a hypothesis via relative belief can easily take into account what it means for the falsity of the hypothesis to correspond to a difference of practical importance and provide evidence in favor of a hypothesis.

  18. Effect of cold work on CO sub 2 corrosion behavior of 13% Cr (420 type) stainless steel in brine medium with and without addition of sodium sulphide

    International Nuclear Information System (INIS)

    Akram Ali Agil; Azmi Rahmat; Suraj Bhan

    1996-01-01

    Cold work introduces residual stresses and increases internal stored energy. Plastic deformation also causes slip steps on the surface. All these factors effect corrosion rate as corrosion is controlled by surface reaction. The residual stresses are caused by inhomogeneous deformation in cold rolling and are maximum at low deformation and then decrease as the samples get thinner on further rolling. In the absence of CO sub 2 the corrosion rates are found relatively low in brine solution with or without addition of Na sub 2 S, with only slight variation with % total deformation. However simultaneous presence of CO sub 2 and Na sub 2 S has synergic effect increasing the corrosion rate appreciably. Presence of sulphur is also found to increase the pitting tendency in the steel

  19. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  20. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    Science.gov (United States)

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  1. Thermal-hydraulic experiments and analyses for cold moderators

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Hino, Ryutaro

    2003-01-01

    Cold moderators using liquid hydrogen are one of the key components in a MW-scale target system working as a spallation neutron source. The cold moderators directly affect the neutronic performance both in intensity and resolution. Cold moderator vessels are designed to be flat and cylindrical type vessels, which are required to realize and uniform temperature distribution in the vessel to obtain better neutronic performance. Velocity distributions in the moderator vessels, affecting the temperature distributions, were measured by using moderator models under water flowing conditions. In the experiments, jet-induced flows such as recirculation flows and stagnant regions were observed. For the flat type moderator vessel, the analytical results of velocity distributions using a standard k-ε turbulence model agreed well with experimental results obtained with a PIV system. However, for the cylindrical type moderator vessel, especially predicted heat transfer coefficients on a bottom of the vessel were much lower than the experimental results, which gave conservative analytical result of temperature. (author)

  2. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  3. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  4. Energetic recovery from LNG gasification plant : cold energy utilization in agro-alimentary industry

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.

    2009-01-01

    It is known how the complete gasification of liquefied natural gas (LNG) can return about 230 kWh/t of energy. Nevertheless out of 51 gasification plants in the world, only 31 of them are equipped with systems for the partial recovery of the available energy. At the moment most of these plants mainly produce electric energy; however the employment of the cold energy results very interesting, in fact, it can be recovered for agrofood transformation and conservation as well as for some loops in the cold chain. Cold energy at low temperatures requires high amounts of mechanical energy and it unavoidably increases as the required temperature diminishes. Cold energy recovery from LNG gasification would allow considerable energy and economic savings to these applications, as well as environmental benefits due to the reduction of climate-changing gas emissions. The task of this work is to assess the possibility to create around a gasification plant an industrial site for firms working on the transformation and conservation of agrofood products locally grown. The cold recovered from gasification would be distributed to those firms through an opportune liquid Co 2 network distribution capable of supplying the cold to the different facilities. A LNG gasification plant in a highly agricultural zone in Sicily would increase the worth of the agrofood production, lower transformation and conservation costs when compared to the traditional systems and bring economic and environmental benefits to the interested areas. [it

  5. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  6. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G.

    2003-01-01

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm -2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  7. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  8. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  9. The Nav1.9 Channel Is a Key Determinant of Cold Pain Sensation and Cold Allodynia

    Directory of Open Access Journals (Sweden)

    Stéphane Lolignier

    2015-05-01

    Full Text Available Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9−/− neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.

  10. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  11. New Trends in Cold War History Studiesin China, 2000-2014

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    The study of Cold War history in China has made great progress in the past decade.The works of Chinese scholars are increasingly operating on a comparable level ofresearch and sophistication to their foreign colleagues. In some areas, such as Sino-Soviet relations, Sino-American relations, Japanese-American relations, and thehistory of the Korean War, Chinese scholarship has really blossomed. A number ofChinese Cold War historians have conducted innovative research in new areas, andpresented their findings on a variety of heretofore untapped issues.

  12. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  13. Analysis of creep data from MOTA irradiation of 20% cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.; Puigh, R.J.

    1992-01-01

    The objective of this study is to provide insight into the relationship between void swelling, irradiation creep and applied stress. This insight will be used to develop irradiation creep correlations for fusion applications. Analysis of creep data for 20% cold worked 316 stainless steel irradiated in FFTF/MOTA demonstrates that creep-swelling coupling coefficient is not a strong function of temperature and can be assumed to be -0.6 x 10 -2 MPa -1 in the range 400-600 C. It appears, however, that the creep compliance B o is a moderately strong function of temperature and alloy composition. The latter dependency arises primarily because derived values of B o unavoidably incorporate precipitation-related strains that cannot be easily separated from contributions arising from true creep. It has also been found that at ∼550-600 C there is an upper limit on the total diametral strain rate at 0.33%/dpa. In contrast to the conclusion of an earlier experiment, this limitation does not arise initially from the total disappearance of creep, however. The creep rate first increases with the onset of swelling and then diminishes as the swelling rate increases, disappearing only when the swelling rate reaches its steady state value

  14. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  15. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  16. PHYSIOLOGICAL AND LEUKOCYTE SUBSET RESPONSES TO EXERCISE AND COLD EXPOSURE IN COLD-ACCLIMATIZED SKATERS

    Directory of Open Access Journals (Sweden)

    K. Kim

    2014-07-01

    Full Text Available We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9 who were acclimatized to cold conditions, and inline skaters (n=10 who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% ·VO2max in cold (ambient temperature: 5±1°C, relative humidity: 41±9% and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%. Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05. The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration.

  17. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  18. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  19. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  20. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  1. The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.

    Science.gov (United States)

    Lolignier, Stéphane; Bonnet, Caroline; Gaudioso, Christelle; Noël, Jacques; Ruel, Jérôme; Amsalem, Muriel; Ferrier, Jérémy; Rodat-Despoix, Lise; Bouvier, Valentine; Aissouni, Youssef; Prival, Laetitia; Chapuy, Eric; Padilla, Françoise; Eschalier, Alain; Delmas, Patrick; Busserolles, Jérôme

    2015-05-19

    Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  3. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  4. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  5. The Performance House - A Cold Climate Challenge Home

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, S. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Grab, J. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, J. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-08-01

    Working with builder partners on test homes allows for vetting of whole-house building strategies to eliminate any potential unintended consequences prior to implementing these solution packages on a production scale. To support this research, CARB partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, CT. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adapt with the homeowners. The technologies and strategies used in the "Performance House" were not cutting-edge, but simply "best practices practiced". The focus was on simplicity in construction, maintenance, and operation. When seeking a 30% source energy savings targets over a comparable 2009 IECC code-built home in the cold climate zone, nearly all components of a home must be optimized. Careful planning and design are critical. To help builders and architects seeking to match the performance of this home, a step-by-step guide through the building shell components of DOE's Challenge Home are provided in a pictorial story book. The end result was a DOE Challenge Home that achieved a HERS Index Score of 20 (43 without PV, the minimum target was 55 for compliance). This home was also awarded the 2012 HOBI for Best Green Energy Efficient Home from the Home Builders & Remodelers Association of Connecticut.

  6. Impact of abiotic factors on frost resistance and cold acclimation in Salix species and clones

    Energy Technology Data Exchange (ETDEWEB)

    Fircks, H. von [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    1996-12-31

    The effects of mineral nitrogen, photoperiod and day-night temperature on frost resistance and growth cessation in Salix species and clones are discussed. Increased nitrogen supply and imbalances between nitrogen and other elements might cause extensive frost damage in plants of Salix. Vegetation frosts below -3 deg C reduces the level of annual yield. Although Salix clones differ in resistance to freezing stress, the capacity to recover and grow after frosts are equal essential properties which affect the growth and biomass production of shoots after night frosts in June. Early autumn frosts causing freezing damage not only may delay the onset of growth cessation and cold acclimation, but also affect the winter survival of shoots. Increased nitrogen supply prior to cold acclimation postponed growth cessation and cold acclimation. Differences in nutrient status in plants cause also differences in retranslocation of mineral nutrients. Absence of damaging autumn frosts allow plants irrespective of nitrogen status to develop a frost resistance of at least - 80 deg C. 21 refs, 1 fig, 3 tabs

  7. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    International Nuclear Information System (INIS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S.A.

    2013-01-01

    Highlights: ► Melted zone contained fine dendrites in the bottom and equiaxed grains on the top. ► Microstructural refinements of PLSM led to microhardness enhancement. ► Higher scanning rate and lower laser energy were more effective to refine the microstructure. - Abstract: D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2–4 times over that of the base metal.

  8. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Yasavol, N. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Ganjali, M. [Materials and Energy Research Center, P.O. Box 14155-4777, Karaj (Iran, Islamic Republic of); Alidokht, S.A. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Melted zone contained fine dendrites in the bottom and equiaxed grains on the top. Black-Right-Pointing-Pointer Microstructural refinements of PLSM led to microhardness enhancement. Black-Right-Pointing-Pointer Higher scanning rate and lower laser energy were more effective to refine the microstructure. - Abstract: D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  9. Physicians' attentional performance following a 24-hour observation period: do we need to regulate sleep prior to work?

    Science.gov (United States)

    Smyth, P; Maximova, K; Jirsch, J D

    2017-08-01

    The tradition of physicians working while sleep deprived is increasingly criticised. Medical regulatory bodies have restricted resident physician duty-hours, not addressing the greater population of physicians. We aimed to assess factors such as sleep duration prior to a 24-hour observation period on physicians' attention. We studied 70 physicians (mean age 38 years old (SD 10.8 years)): 36 residents and 34 faculty from call rosters at the University of Alberta. Among 70 physicians, 52 (74%) performed overnight call; 18 did not perform overnight call and were recruited to control for the learning effect of repetitive neuropsychological testing. Attentional Network Test (ANT) measured physicians' attention at the beginning and end of the 24-hour observation period. Participants self-reported ideal sleep needs, sleep duration in the 24 hours prior to (ie, baseline) and during the 24-hour observation period (ie, follow-up). Median regression models examined effects on ANT parameters. Sleep deprivation at follow-up was associated with reduced attentional accuracy following the 24-hour observation period, but only for physicians more sleep deprived at baseline. Other components of attention were not associated with sleep deprivation after adjusting for repetitive testing. Age, years since medical school and caffeine use did not impact changes in ANT parameters. Our study suggests that baseline sleep before 24 hours of observation impacts the accuracy of physicians' attentional testing at 24 hours. Further study is required to determine if optimising physician sleep prior to overnight call shifts is a sustainable strategy to mitigate the effects of sleep deprivation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. New Challenges to the automotive fasteners and cold formed parts in the chinese markets

    Directory of Open Access Journals (Sweden)

    Chen Jin Guang

    2015-01-01

    Full Text Available Despite of substantial cold forming related R&D, innovations and new inventions have been achieved and reported by research institutes and famous industrial organisations, many small and medium size enterprises in the third world or developing countries considering this R&D activities is too luxury. Most of the third world cold forming factories still dependent on previously successful experiences by using trial an error methods. The author does not make attempt to write a scientific research paper on metal forming processes but, instead, to report the effect, application and impact of the previous and on-going metal forming related research work to the cold forming industry in China. This paper highlights the effect of 1 efficient manufacturing practices, 2 upgrading in process technology and 3improved machines capabilities in upgrading the cold forming operation. Three real-life cold forming examples from Ritai are illustrated showing the transformation from an automotive fasteners maker into a cold formed parts manufacturer.

  11. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  12. Performance House -- A Cold Climate Challenge Home

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, S.; Grab, J.; Williamson, J.

    2013-08-01

    Working with builder partners on a test homes allows for vetting of whole-house building strategies to eliminate any potential unintended consequences prior to implementing these solution packages on a production scale. To support this research, CARB partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, CT. The philosophy and science behind the 2,700 ft2 'Performance House' was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adapt with the homeowners. The technologies and strategies used in the 'Performance House' were not cutting-edge, but simply 'best practices practiced'. The focus was on simplicity in construction, maintenance, and operation. When seeking a 30% source energy savings targets over a comparable 2009 IECC code-built home in the cold climate zone, nearly all components of a home must be optimized. Careful planning and design are critical. To help builders and architects seeking to match the performance of this home, a step-by-step guide through the building shell components of DOE's Challenge Home are provided in a pictorial story book. The end result was a DOE Challenge Home that achieved a HERS Index Score of 20 (43 without PV, the minimum target was 55 for compliance). This home was also awarded the 2012 HOBI for Best Green Energy Efficient Home from the Home Builders & Remodelers Association of Connecticut.

  13. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  14. A Review on Cold Start of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zhongmin Wan

    2014-05-01

    Full Text Available Successful and rapid startup of proton exchange membrane fuel cells (PEMFCs at subfreezing temperatures (also called cold start is of great importance for their commercialization in automotive and portable devices. In order to maintain good proton conductivity, the water content in the membrane must be kept at a certain level to ensure that the membrane remains fully hydrated. However, the water in the pores of the catalyst layer (CL, gas diffusion layer (GDL and the membrane may freeze once the cell temperature decreases below the freezing point (Tf. Thus, methods which could enable the fuel cell startup without or with slight performance degradation at subfreezing temperature need to be studied. This paper presents an extensive review on cold start of PEMFCs, including the state and phase changes of water in PEMFCs, impacts of water freezing on PEMFCs, numerical and experimental studies on PEMFCs, and cold start strategies. The impacts on each component of the fuel cell are discussed in detail. Related numerical and experimental work is also discussed. It should be mentioned that the cold start strategies, especially the enumerated patents, are of great reference value on the practical cold start process.

  15. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  16. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  17. Safe and efficient operation of multistage cold compressor systems

    International Nuclear Information System (INIS)

    Kauschke, M.; Haberstroh, C.; Quack, H.

    1996-01-01

    Large refrigeration rates in the temperature range of super fluid helium can only be obtained with the help of centrifugal cold compressors. For the large 2 K systems, four compression stages are necessary to reach atmospheric pressure. Centrifugal cold compressors are quite sensitive to mass flow and suction temperature variations; but these have to be expected in a real system. The first step in the systems design is to find safe and efficient quasi-stationary modes of operation. The system which is being proposed for the TESLA refrigerators relies on two features. The first is to allow the room temperature screw compressor, downstream of the cold compressors to work occasionally with a subatmospheric suction pressure. The second is to stabilize the suction temperature of the third stage of compression at about 10 K. With these features it is possible, that in all modes of operation all four compressor stages operate exactly at their design point

  18. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  19. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  20. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  1. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  2. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1995-01-01

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  3. Exploring the Feasibility cold-FET Calibration Standards to Improve Radiometric Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — This work seeks to further the development of the cold-FET calibration technology designed f next generation multi-band microwave instruments for space-based remote...

  4. Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…

  5. Excess cardiovascular mortality associated with cold spells in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Kyncl Jan

    2009-01-01

    Full Text Available Abstract Background The association between cardiovascular mortality and winter cold spells was evaluated in the population of the Czech Republic over 21-yr period 1986–2006. No comprehensive study on cold-related mortality in central Europe has been carried out despite the fact that cold air invasions are more frequent and severe in this region than in western and southern Europe. Methods Cold spells were defined as periods of days on which air temperature does not exceed -3.5°C. Days on which mortality was affected by epidemics of influenza/acute respiratory infections were identified and omitted from the analysis. Excess cardiovascular mortality was determined after the long-term changes and the seasonal cycle in mortality had been removed. Excess mortality during and after cold spells was examined in individual age groups and genders. Results Cold spells were associated with positive mean excess cardiovascular mortality in all age groups (25–59, 60–69, 70–79 and 80+ years and in both men and women. The relative mortality effects were most pronounced and most direct in middle-aged men (25–59 years, which contrasts with majority of studies on cold-related mortality in other regions. The estimated excess mortality during the severe cold spells in January 1987 (+274 cardiovascular deaths is comparable to that attributed to the most severe heat wave in this region in 1994. Conclusion The results show that cold stress has a considerable impact on mortality in central Europe, representing a public health threat of an importance similar to heat waves. The elevated mortality risks in men aged 25–59 years may be related to occupational exposure of large numbers of men working outdoors in winter. Early warnings and preventive measures based on weather forecast and targeted on the susceptible parts of the population may help mitigate the effects of cold spells and save lives.

  6. Superposing pure quantum states with partial prior information

    Science.gov (United States)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  7. The origins of the vaccine cold chain and a glimpse of the future.

    Science.gov (United States)

    Lloyd, John; Cheyne, James

    2017-04-19

    International efforts to eradicate smallpox in the 1960s and 1970s provided the foundation for efforts to expand immunization programmes, including work to develop immunization supply chains. The need to create a reliable system to keep vaccines cold during the lengthy journey from the manufacturer to the point of use, even in remote areas, was a crucial concern during the early days of the Expanded Programme on Immunization. The vaccine cold chain was deliberately separated from other medical distribution systems to assure timely access to and control of vaccines and injection materials. The story of the early development of the vaccine cold chain shows how a number of challenges were overcome with technological and human resource solutions. For example, the lack of methods to monitor exposure of vaccines to heat during transport and storage led to many innovations, including temperature-sensitive vaccine vial monitors and better methods to record and communicate temperatures in vaccine stores. The need for appropriate equipment to store and transport vaccines in tropical developing countries led to innovations in refrigeration equipment as well as the introduction and widespread adoption of novel high performance vaccine cold-boxes and carriers. New technologies also helped to make injection safer. Underlying this work on technologies and equipment was a major effort to develop the human resources required to manage and implement the immunization supply chain. This included creating foundational policies and a management infrastructure; providing training for managers, health workers, technicians, and others. The vaccine cold chain has contributed to one of the world's public health success stories and provides three priority lessons for future: the vaccine supply chain needs to be integrated with other public health supplies, re-designed for efficiency and effectiveness and work is needed in the longer term to eliminate the need for refrigeration in the supply

  8. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  9. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  10. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability.

    Science.gov (United States)

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-02-01

    We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.

  11. Pelletized cold moderator of the IBR-2 reactor: current status and future development

    International Nuclear Information System (INIS)

    Ananiev, V; Beliakov, A; Bulavin, M; Verkhogliadov, A; Kulagin, E; Kulikov, S; Mukhin, K; Shabalin, E; Loktaev, K

    2016-01-01

    Current status and future development of the pelletized cold moderator of the IBR-2 reactor in Neutron Physics Laboratory of JINR are represented. Nowadays cold moderator works for physical experiments and allows conducting experiments in the region of wavelengths more than 4 Å up to 10-13 times faster in comparison with the warm water moderator. Future development of the pelletized cold moderator is aimed at increasing the time of its operation for experiments and is based on three components: creation of a system of continuous charging and discharging of beads, supplementation of various additives, and use of new materials, such as triphenylmethane. (paper)

  12. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to similar 178 dpa at similar 400 C

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1994-01-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and similar 400 C, the irradiation creep of 20% cold-worked PCA has become dominated by the ''creep disappearance'' phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from similar 20 to 40%. ((orig.))

  13. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to similar 178 dpa at similar 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B. (Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, CA 93106 (United States)); Garner, F.A. (Pacific Northwest Laboratory, Richland, WA 99352 (United States))

    1994-09-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and similar 400 C, the irradiation creep of 20% cold-worked PCA has become dominated by the creep disappearance'' phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from similar 20 to 40%. ((orig.))

  14. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site

  15. Working with the Cold War: Types of Knowledge in Swedish and Australian History Textbook Activities

    Science.gov (United States)

    Ammert, Niklas; Sharp, Heather

    2016-01-01

    This article presents a comparative analysis of pupils' activities dealing with the Cold War in Swedish and Australian history textbooks. By focusing on textbook activities to which pupils respond in relation to their learning of a particular topic, this study identifies knowledge types included in a selection of history textbooks. The study also…

  16. Effect of Prior Health-Related Employment on the Registered Nurse Workforce Supply.

    Science.gov (United States)

    Yoo, Byung-kwan; Lin, Tzu-chun; Kim, Minchul; Sasaki, Tomoko; Spetz, Joanne

    2016-01-01

    Registered nurses (RN) who held prior health-related employment in occupations other than licensed practical or vocational nursing (LPN/LVN) are reported to have increased rapidly in the past decades. Researchers examined whether prior health-related employment affects RN workforce supply. A cross-sectional bivariate probit model using the 2008 National Sample Survey of Registered Nurses was esti- mated. Prior health-related employment in relatively lower-wage occupations, such as allied health, clerk, or nursing aide, was positively associated with working s an RN. ~>Prior health-related employ- ment in relatively higher-wage categories, such as a health care manager or LPN/LVN, was positively associated with working full-time as an RN. Policy implications are to promote an expanded career ladder program and a nursing school admission policy that targets non-RN health care workers with an interest in becoming RNs.

  17. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    Science.gov (United States)

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  19. Report on preceding surveys and researches in fiscal 1999. Surveys and researches on the next generation cold emission technology; 1999 nendo jisedai cold emission gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The cold emission (CE) technology must be developed as the base technology to realize the next generation flat panel displays, fluorescent display tubes, communication use microwave tubes, electron microscopes, electric power conversion elements, image photographing tubes, and different kinds of sensors. Therefore, this paper describes surveys and researches performed on technological problems and technological seeds in a hyperfine processing technology for cold emitters, and technologies to control, evaluate and simulate solid surface of cold emitters. Different kinds of applied devices that can be realized by using the CE technology are also surveyed and researched. Section 1 summarizes the progress in information communicating technologies and the changes in terminal utilization environment. Section 2 describes the application of a display technology for information terminals and a cold cathode. Section 3 investigates elementary technologies for developing electric field radiation display. Section 4 investigates physics and an evaluation technology for the next generation cold cathode. Section 5 describes the result of the investigations re-commissioned to Tsukuba University for measuring microscopic work function on solid surface by using the scanning probe process. Section 6 proposes a research and development project for the 'next generation CE technology'. (NEDO)

  20. Independence of Hot and Cold Executive Function Deficits in High-Functioning Adults with Autism Spectrum Disorder.

    Science.gov (United States)

    Zimmerman, David L; Ownsworth, Tamara; O'Donovan, Analise; Roberts, Jacqueline; Gullo, Matthew J

    2016-01-01

    Individuals with autistic spectrum disorder (ASD) display diverse deficits in social, cognitive and behavioral functioning. To date, there has been mixed findings on the profile of executive function deficits for high-functioning adults (IQ > 70) with ASD. A conceptual distinction is commonly made between "cold" and "hot" executive functions. Cold executive functions refer to mechanistic higher-order cognitive operations (e.g., working memory), whereas hot executive functions entail cognitive abilities supported by emotional awareness and social perception (e.g., social cognition). This study aimed to determine the independence of deficits in hot and cold executive functions for high-functioning adults with ASD. Forty-two adults with ASD (64% male, aged 18-66 years) and 40 age and gender matched controls were administered The Awareness of Social Inference Test (TASIT; emotion recognition and social inference), Letter Number Sequencing (working memory) and Hayling Sentence Completion Test (response initiation and suppression). Between-group analyses identified that the ASD group performed significantly worse than matched controls on all measures of cold and hot executive functions (d = 0.54 - 1.5). Hierarchical multiple regression analyses revealed that the ASD sample performed more poorly on emotion recognition and social inference tasks than matched controls after controlling for cold executive functions and employment status. The findings also indicated that the ability to recognize emotions and make social inferences was supported by working memory and response initiation and suppression processes. Overall, this study supports the distinction between hot and cold executive function impairments for adults with ASD. Moreover, it advances understanding of higher-order impairments underlying social interaction difficulties for this population which, in turn, may assist with diagnosis and inform intervention programs.

  1. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  2. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  3. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

    Directory of Open Access Journals (Sweden)

    Antonello Sindona

    2015-03-01

    Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  4. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  5. External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    Science.gov (United States)

    Xu, Jun; Zhang, Lei; Zhang, David

    2018-06-01

    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real noisy images.

  6. Computational methods working group

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1997-09-01

    During the Cold Moderator Workshop several working groups were established including one to discuss calculational methods. The charge for this working group was to identify problems in theory, data, program execution, etc., and to suggest solutions considering both deterministic and stochastic methods including acceleration procedures.

  7. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  8. Hot and cold executive functions in pure opioid users undergoing ...

    African Journals Online (AJOL)

    Context: Methadone maintenance is a standard treatment for opiate‑dependent individuals. ... and Ekman faces test, whereas cold executive functions including working memory (WM), cognitive flexibility, and response inhibition were assessed using n‑back, Wisconsin card sorting test, and the GO/NOGO task, respectively.

  9. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    Science.gov (United States)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  10. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L.

    Science.gov (United States)

    Huang, Zhen; Zhang, Xuexian; Jiang, Shouhua; Qin, Mengfan; Zhao, Na; Lang, Lina; Liu, Yaping; Tian, Zhengshu; Liu, Xia; Wang, Yang; Zhang, Binbin; Xu, Aixia

    2017-06-01

    Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F 2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F 2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.

  11. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  12. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  13. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  14. Avoiding the known prior acts exclusion when insuring newly acquired entities.

    Science.gov (United States)

    Gasior, J P; Passannante, W G

    1998-09-01

    Adding a new entity to an organization's existing insurance program can be problematic if the existing policy contains a known prior acts exclusion clause. By purportedly excluding claims that a policyholder "could have reasonably foreseen or discovered," the known prior acts exclusion allows the insurer to reject those claims after a lawsuit has been filed policyholders should have known prior acts exclusion clauses removed from their policies or work with their insurers on language that will clarify the policy regarding this exclusion.

  15. Prior indigenous technological species

    Science.gov (United States)

    Wright, Jason T.

    2018-01-01

    One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

  16. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  17. On cold spots in tumor subvolumes

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Fowler, Jack F.

    2002-01-01

    Losses in tumor control are estimated for cold spots of various 'sizes' and degrees of 'cold dose'. This question is important in the context of intensity modulated radiotherapy where differential dose-volume histograms (DVHs) for targets that abut a critical structure often exhibit a cold dose tail. This can be detrimental to tumor control probability (TCP) for fractions of cold volumes even as small as 1%, if the cold dose is lower than the prescribed dose by substantially more than 10%. The Niemierko-Goitein linear-quadratic algorithm with γ 50 slope 1-3 was used to study the effect of cold spots of various degrees (dose deficit below the prescription dose) and size (fractional volume of the cold dose). A two-bin model DVH has been constructed in which the cold dose bin is allowed to vary from a dose deficit of 1%-50% below prescription dose and to have volumes varying from 1% to 90%. In order to study and quantify the effect of a small volume of cold dose on TCP and effective uniform dose (EUD), a four-bin DVH model has been constructed in which the lowest dose bin, which has a fractional volume of 1%, is allowed to vary from 10% to 45% dose deficit below prescription dose. The highest dose bin represents a simultaneous boost. For fixed size of the cold spot the calculated values of TCP decreased rapidly with increasing degrees of cold dose for any size of the cold spot, even as small as 1% fractional volume. For the four-subvolume model, in which the highest dose bin has a fractional volume of 80% and is set at a boost dose of 10% above prescription dose, it is found that the loss in TCP and EUD is moderate as long as the cold 1% subvolume has a deficit less than approximately 20%. However, as the dose deficit in the 1% subvolume bin increases further it drives TCP and EUD rapidly down and can lead to a serious loss in TCP and EUD. Since a dose deficit to a 1% volume of the target that is larger than 20% of the prescription dose may lead to serious loss of

  18. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  19. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  20. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.

    Science.gov (United States)

    Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata

    2017-11-08

    Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

  1. Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines.

    Science.gov (United States)

    Maturano, Y Paola; Mestre, M Victoria; Esteve-Zarzoso, Braulio; Nally, María Cristina; Lerena, María Cecilia; Toro, María Eugenia; Vazquez, Fabio; Combina, Mariana

    2015-04-16

    Prefermentative cold soak is a widely used technique in red wine production, but the impact on the development of native yeast species is hardly described. The aim of this work was to analyse the dynamics and diversity of yeast populations during prefermentative cold soak in red wines. Three different temperatures (14 ± 1 °C; 8 ± 1 °C and 2.5 ± 1 °C) were used for prefermentative cold soak in Cabernet Sauvignon and Malbec grape musts. Saccharomyces and non-Saccharomyces populations during cold soak and alcoholic fermentation were analysed. In addition, the impact on chemical and sensory properties of the wines was examined. Yeast dynamics during prefermentative cold soak were temperature dependent. At 14 ± 1 °C, the total yeast population progressively increased throughout the cold soak period. Conversely, at 2.5 ± 1 °C, the yeast populations maintained stable during the same period. Prefermentative cold soak conducted at 14±1°C favoured development of Hanseniospora uvarum and Candida zemplinina, whereas cold soak conducted at 8 ± 1 °C favoured growth of Saccharomyces cerevisiae. At 2.5 ± 1 °C, no changes in yeast species were recorded. Acidity and bitterness, two sensory descriptors, appear to be related to wines produced with prefermentative cold soak carried out at 14 ± 1 °C. This fact could be associated with the increase in non-Saccharomyces during the prefermentation stage. Our results emphasise the importance of the temperature as a determinant factor to allow an increase in non-Saccharomyces population during prefermentative cold soak and consequently to modify sensorial attributes of wines as well as their sensorial impact. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    Science.gov (United States)

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Prior Visual Experience Modulates Learning of Sound Localization Among Blind Individuals.

    Science.gov (United States)

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-Jia; Li, Jian-Jun; Ting, Kin-Hung; Lu, Zhong-Lin; Whitfield-Gabrieli, Susan; Wang, Jun; Lee, Tatia M C

    2017-05-01

    Cross-modal learning requires the use of information from different sensory modalities. This study investigated how the prior visual experience of late blind individuals could modulate neural processes associated with learning of sound localization. Learning was realized by standardized training on sound localization processing, and experience was investigated by comparing brain activations elicited from a sound localization task in individuals with (late blind, LB) and without (early blind, EB) prior visual experience. After the training, EB showed decreased activation in the precuneus, which was functionally connected to a limbic-multisensory network. In contrast, LB showed the increased activation of the precuneus. A subgroup of LB participants who demonstrated higher visuospatial working memory capabilities (LB-HVM) exhibited an enhanced precuneus-lingual gyrus network. This differential connectivity suggests that visuospatial working memory due to the prior visual experience gained via LB-HVM enhanced learning of sound localization. Active visuospatial navigation processes could have occurred in LB-HVM compared to the retrieval of previously bound information from long-term memory for EB. The precuneus appears to play a crucial role in learning of sound localization, disregarding prior visual experience. Prior visual experience, however, could enhance cross-modal learning by extending binding to the integration of unprocessed information, mediated by the cognitive functions that these experiences develop.

  4. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    Science.gov (United States)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  5. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  6. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  7. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  8. New design of process for cold forging to improve multi-stage gas fitting

    Directory of Open Access Journals (Sweden)

    Han-Sung Huang

    2016-04-01

    Full Text Available This work develops a process that solves the problem of the formation of cracks inside forged gas fittings in the cold forging process that arises from poor forging process design. DEFORM-3D forming software was utilized, and macroscopic experiments with optical microscopy and scanning electron microscopy were conducted to investigate the processed structures and the distribution therein of metal flow lines, and to find the internal micro-cracks to determine whether the cold forging process is reasonable. Analytical results herein demonstrate that the stress and strain inside the gas fitting can be elucidated using metal forming software. Together with experimental results, they demonstrate that a concentration of stress damages the workpiece in the forming process. Moreover, as metal flow lines become narrower, the workpiece becomes more easily damaged. Consequently, the improved cold forging process that is described in this work should be utilized to reduce the occurrence of fine cracks and defects. Planning for proper die design and production, increasing the quality of products, and reducing the number of defective products promote industrial competitiveness.

  9. Catching a Cold When It's Warm

    Science.gov (United States)

    ... Print this issue Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? En español ... more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s not ...

  10. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  11. Texture and superelastic behavior of cold-rolled TiNbTaZr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2008-01-01

    This work investigates the deformation texture and strain-induced α'' martensite texture of TiNbTaZr alloy during cold rolling. The alloy is rolled by 20% and 90% reductions without changing rolling direction. Textures of cold-rolled specimens are investigated by X-ray diffraction measurements. Besides {2 2 1} β β twinning texture, {1 0 0} β β texture is developed in the specimen with 20% reduction. In the 90% cold-rolled specimen, {1 0 0} β β texture appears along rolling direction and strain-induced α'' martensite texture tends to [0 1 0] and [0 0 1] directions along rolling direction (RD) and transverse direction (TD), respectively. Superelastic strain (ε SE ) exhibits higher value along RD and TD. Pure elastic strain (ε E ) shows higher value along RD and 45 deg. from RD

  12. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to ∼178 dpa at ∼400 degrees C

    International Nuclear Information System (INIS)

    Toloczko, M.B.

    1993-09-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and ∼400 degrees C, the irradiation creep of 20% cold-worked PCA has become dominated by the open-quotes creep disappearanceclose quotes phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from ∼20 to ∼40%

  13. Recognition of Prior Learning: The Participants' Perspective

    Science.gov (United States)

    Miguel, Marta C.; Ornelas, José H.; Maroco, João P.

    2016-01-01

    The current narrative on lifelong learning goes beyond formal education and training, including learning at work, in the family and in the community. Recognition of prior learning is a process of evaluation of those skills and knowledge acquired through life experience, allowing them to be formally recognized by the qualification systems. It is a…

  14. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  15. Allergic rhinitis and the common cold--high cost to society.

    Science.gov (United States)

    Hellgren, J; Cervin, A; Nordling, S; Bergman, A; Cardell, L O

    2010-06-01

    The common cold and allergic rhinitis constitute a global health problem that affects social life, sleep, school and work performance and is likely to impose a substantial economic burden on society because of absence from work and reduced working capacity. This study assesses the loss of productivity as a result of both allergic rhinitis and the common cold in the Swedish working population. Four thousand questionnaires were sent to a randomized adult population, aged 18-65 years, in Sweden, stratified by gender and area of residence (metropolitan area vs rest of the country). The human capital approach was used to assign monetary value to lost productivity in terms of absenteeism (absence from work), presenteeism (reduced working capacity while at work) and caregiver absenteeism (absence from work to take care of a sick child). Thousand two hundred and thirteen individuals responded, response rate 32%. The mean productivity loss was estimated at 5.1 days or euro 653 per worker and year, yielding a total productivity loss in Sweden of euro 2.7 billion a year. Of the total costs, absenteeism (44%) was the dominant factor, followed by presenteeism (37%) and caregiver absenteeism (19%). Poisson regression analyses revealed that women, people in the 18-29 year age group, and respondents with 'doctor-diagnosed asthma' reported more lost days than the rest of the group. In Sweden, the cost of rhinitis is euro 2.7 billion a year in terms of lost productivity. A reduction in lost productivity of 1 day per individual and year would potentially save euro 528 million.

  16. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  17. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  18. A transcription factor for cold sensation!

    OpenAIRE

    Kim, Susan J; Qu, Zhican; Milbrandt, Jeffrey; Zhuo, Min

    2005-01-01

    Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB) to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral respons...

  19. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  20. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  1. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  2. Cold War Transgressions: Christian Realism, Conservative Socialism, and the Longer 1960s

    Directory of Open Access Journals (Sweden)

    Mark Thomas Edwards

    2015-03-01

    Full Text Available This essay examines the convergence of the Protestant left and traditionalist right during the 1950s. Reinhold Niebuhr and the World Council of Churches challenged Cold War liberalism from within. As they did, they anticipated and even applauded the anti-liberalism of early Cold War conservatives. While exploring intellectual precursors of the New Left, this essay forefronts one forgotten byproduct of the political realignments following World War II: The transgressive politics of “conservative socialism.” Furthermore, this work contributes to growing awareness of ecumenical Christian impact within American life.

  3. Fatigue damage evolution of cold-worked austenitic nickel-free high-nitrogen steel X13CrMnMoN18-14-3 (1.4452)

    Energy Technology Data Exchange (ETDEWEB)

    Tikhovskiy, I.; Weiss, S.; Fischer, A. [Univ. of Duisburg-Essen, Materials Science and Engineering II, Duisburg (Germany)

    2004-07-01

    Due to the fact that the risk of Ni-allergies becomes more and more important for modern therapies, the necessity of Ni-free implant materials becomes increasingly important. Beside Co- and Ti-base alloys Ni-free high-nitrogen steels may offer an attractive alternative. The present work presents the austenitic high-nitrogen and nickel-free steel X13CrMnMoN18-14-3, (Material No.: 1.4452) after 20% cold-working. In addition this material was deformed under axial cyclic total strain controlled fatigue tests at room temperature. The development of dislocation structure due to different loading amplitudes was compared to none cyclically deformed material. The good mechanical und fatigue properties of these austenitic high-nitrogen steels as well as the better tribological, chemical and biological properties compared to CrNiMo-steels qualify these steels as a promising alternative in medical applications. (orig.)

  4. Precursor evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2017-03-27

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.

  5. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    Science.gov (United States)

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  6. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  7. Contribution to study on recovery and recrystallization of cold rolling zircaloy-4

    International Nuclear Information System (INIS)

    Persiano, A.I.C.

    1977-01-01

    Recovery and recrystallization of work-hardened (40-60% - Cold rolling) Zircaloy-4 were studied between 200 and 600 0 C with times varying from 15 to 240 minutes, from electrical resistance and hardness measurements. Activation energy calculation for the recovery and recrystallization processes using the samples work-hardened 60% gave 0,7 and 2,1 eV. (author)

  8. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    Science.gov (United States)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  9. Exercise in cold air and hydrogen peroxide release in exhaled breath condensate.

    Science.gov (United States)

    Marek, E; Volke, J; Mückenhoff, K; Platen, P; Marek, W

    2013-01-01

    Athletes have changes in the lung epithelial cells caused by inhalation of cold and dry air. The exhaled breath condensate contains a number of mediators from the respiratory system and H(2)O(2) is described as a marker of airways inflammation. The aim of this study was to determine the influence of exercise combined with cold air on the H(2)O(2) release in the exhaled breath. Twelve males (23.1 ± 1.5 years) were randomly assigned at 2 different days (1 day rest) to perform a 50 min run (75-80% of their max. heart rate) under normal (N) laboratory (18.1 ± 1.1°C) or cold (C) field condition (-15.2 ± 3.1°C). Before and immediately after each run, the EBC was collected under laboratory conditions and was analyzed amperometrically. Prior to the two runs, H(2)O(2) concentrations were 145.0 ± 31.0 (N) and 160.0 ± 49.1 nmol/L (C) and theoretical release was 70.3 ± 37.1 (N) and 82.6 ± 27.1 pmol/min (C) (p > 0.05). After each run, H(2)O(2) concentration increased significantly to 388.0 ± 22.8 nmol/L (N) and 622.1 ± 44.2 nmol/L (C) (p release: 249.2 ± 35.7 pmol/min (N) and 400.9 ± 35.7 pmol/min (C) (p release of H(2)O(2) into the EBC takes place under both resting conditions and after exercise. The concentration and release of H(2)O(2) increased after exercise in cold air compared to resting and laboratory conditions, which points to an increase in inflammatory and oxidative stress.

  10. Observations and simulations of snowpack cold content and its relationship to snowmelt timing and rate

    Science.gov (United States)

    Jennings, K. S.; Molotch, N. P.

    2017-12-01

    Mountain snowpacks serve as a vital water resource for more than 1 billion people across the globe. Two key properties of snowmelt—rate and timing—are controlled by the snowpack energy budget where incoming positive fluxes are balanced by a decrease in the energy deficit of the snowpack and a change in the phase of water from solid to liquid. In this context, the energy deficit, or cold content, regulates snowmelt as runoff does not commence until the deficit approaches zero. There is significant uncertainty surrounding cold content despite its relevance to snowmelt processes, likely due to the inherent difficulties in its observation. Our work has clarified the previously unresolved meteorological and energy balance controls on cold content development in seasonal snowpacks by leveraging two unique datasets from the Niwot Ridge LTER in the Rocky Mountains of Colorado. The first is a long-term snow pit record of snowpack properties from an alpine and subalpine site within the LTER. These data were augmented with a 23-year simulation of the snowpack at both sites using a quality controlled, serially complete, hourly forcing dataset. The observations and simulations both indicated that cold content primarily developed through new snowfall, while a negative energy budget provided a secondary pathway for cold content development, mainly through longwave emission and sublimation. Cold content gains from snowfall outnumbered energy balance gains by 438% in the alpine and 166% in the subalpine. Increased spring precipitation and later peak cold content significantly delayed snowmelt onset and daily melt rates were reduced by 32.2% in the alpine and 36.1% in the subalpine when an energy deficit needed to be satisfied. Furthermore, preliminary climate change simulations indicated warmer air temperatures reduced cold content accumulation, which increased the amount of snow lost to melt throughout the winter as incoming positive fluxes had to overcome smaller energy

  11. Constrained noninformative priors

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-10-01

    The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given

  12. Physicochemical and technological aspects of application of anthracite of Nazar-Aylok Deposit for production of cold-bottom hearth mass

    International Nuclear Information System (INIS)

    Vokhidov, M.M.

    2017-01-01

    The present work is devoted to physicochemical and technological aspects of application of anthracite of Nazar-Aylok Deposit for production of cold-bottom hearth mass. The purpose of present work is to study the composition and physicochemical properties of initial and calcined anthracite of Nazar-Aylok Deposit, revelation of optimal parameters of its thermal treatment. Therefore, the structure, composition and physicochemical properties of anthracite of Nazar-Aylok Deposit have been studied by means of chemical, thermographic, X-ray, electron paramagnetic resonance and infrared spectroscopy methods; physicochemical and mechanical properties of cold-bottom hearth mass produced at various mass ratio of filler, binding and plasticizer have been studied as well; the flowsheets of production of cold-bottom hearth mass with the usage of anthracite of Nazar-Aylok Deposit have been elaborated; the pilot bitch of cold-bottom hearth mass has been produced and tested at industrial scale.

  13. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  14. The combined effects of cold therapy and music therapy on pain following chest tube removal among patients with cardiac bypass surgery.

    Science.gov (United States)

    Yarahmadi, Sajad; Mohammadi, Nooredin; Ardalan, Arash; Najafizadeh, Hassan; Gholami, Mohammad

    2018-05-01

    Chest tube removal is an extremely painful procedure and patients may not respond well to palliative therapies. This study aimed to examine the effect of cold and music therapy individually, as well as a combination of these interventions on reducing pain following chest tube removal. A factorial randomized-controlled clinical trial was performed on 180 patients who underwent cardiac surgery. Patients were randomized into four groups of 45. Group A used ice packs for 20 minutes prior to chest tube removal. Group B was assigned to listen to music for a total length of 30 minutes which started 15 minutes prior to chest tube removal. Group C received a combination of both interventions; and Group D received no interventions. Pain intensity was measured in each group every 15 minutes for a total of 3 readings. Analysis of variance, Tukey and Bonferroni post hoc tests, as well as repeated measures ANOVA were employed for data analysis. Cold therapy and combined method intervention effectively reduced the pain caused by chest tube removal (P < 0.001). Additionally, there were no statistically significant difference in pain intensity scores between groups at 15 minutes following chest tube removal (P = 0.07). Cold and music therapy can be used by nursing staff in clinical practice as a combined approach to provide effective pain control following chest tube removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  16. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  17. The molecular and cellular basis of cold sensation.

    Science.gov (United States)

    McKemy, David D

    2013-02-20

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.

  18. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: A study in a monozygotic twin

    NARCIS (Netherlands)

    M.J. Vosselman (Maarten J.); G.H.E.J. Vijgen (Guy H. E. J.); B.R.M. Kingma (Boris R. M.); B. Brans (Boudewijn); W.D. Van Marken Lichtenbelt (Wouter D.)

    2014-01-01

    textabstractIntroduction: Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has

  19. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  20. Heuristics as Bayesian inference under extreme priors.

    Science.gov (United States)

    Parpart, Paula; Jones, Matt; Love, Bradley C

    2018-05-01

    Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effect of axial stress on the transient mechanical response of 20%, cold-worked Type 316 stainless-steel cladding

    International Nuclear Information System (INIS)

    Yamada, H.

    1979-01-01

    To understand the effects of the fuel-cladding mechanical interaction on the failure of 20% cold-worked Type 316 stainless-steel cladding during anticipated nuclear reactor transients, the transient mechanical response of the cladding was investigated using a transient tube burst method at a heating rate of 5.6 0 C/s and axial-to-hoop-stress ratios in the range of 1/2 to 2. The failure temperatures were observed to remain essentially constant for the transient tests at axial-to-hoop-stress ratios between 1/2 and 1, but to decrease with an increase in axial-to-hoop-stress ratios above unity. The uniform diametral strains to failure were observed to decrease monotonically with an increase in axial-to-hoop-stress ratio from 1/2 to 2, and in general, the uniform axial strains to failure were observed to increase with an increase in axial-to-hoop-stress ratio. The fracture of the cladding during thermal transients was found to be strongly affected by the maximum principal stress but not by the effective stress

  2. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  3. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Sik

    1992-02-15

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values.

  4. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Choi, Kwang Sik

    1992-02-01

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values

  5. Using cold battery with icy water as an alternative method of air ...

    African Journals Online (AJOL)

    The aim of this work is to reduce the energy consumption of a passenger ship by using an air conditioning system with a solar energy source. This technique is applied on ships with a cold room with a refrigeration unit. The work consists of using a central air conditioning system for which a heat exchanger is placed in the ...

  6. Seven Cold Cities: The Milonga of Vitor Ramil

    Directory of Open Access Journals (Sweden)

    Bryan McCann

    2015-09-01

    Full Text Available This article analyzes popular composer Vitor Ramil's work in the musical genre of milonga. The article argues that the structural syncopation of the rhythmic cell in milonga brings leveza, or lightness, to the music, one of the qualities Ramil identifies as guiding principles in his "aesthetics of cold." The article places Ramil's exploration of milonga in the context of his long, varied and continuously evolving career.

  7. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running

    Directory of Open Access Journals (Sweden)

    Dominique Daniel Gagnon

    2013-05-01

    Full Text Available Cold exposure modulates the use of carbohydrates and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids, glycerol, glucose, beta-hydroxybutyrate, plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (-0.03 ± 0.02, greater fat oxidation (+0.14 ± 0.13 g•min-1 and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal•min-1. No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in non-esterified fatty acids, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  8. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  9. Review of Cold war social science: Knowledge production, liberal democracy, and human nature, and Working knowledge: Making the human sciences from Parsons to Kuhn.

    Science.gov (United States)

    Erickson, Paul

    2013-11-01

    Reviews the books, Cold War Social Science: Knowledge Production, Liberal Democracy, and Human Nature by Mark Solovey and Hamilton Cravens (2012) and Working Knowledge: Making the Human Sciences From Parsons to Kuhn by Joel Isaac (see record 2012-13212-000). Taken together, these two important books make intriguing statements about the way to write the histories of fields like psychology, sociology, anthropology, and economics in the Anglo American world during the 20th century. To date, histories of these fields have drawn on a number of fairly well-established punctuation marks to assist in periodization: the shift from interwar institutionalism in economics to postwar neoclassicism, with its physics-like emphasis on mathematical theory-building; the transition from the regnant prewar behaviorism through a postwar "cognitive revolution" in American psychology; and the move in fields like sociology and anthropology away from positivism and the pursuit of what has sometimes been called "grand theory" in the early postwar era toward a period defined by intellectual and political fragmentation, the reemergence of interpretive approaches and a reaction to the scientistic pretensions of the earlier period. These books, by contrast, provide perspectives orthogonal to such existing narrative frameworks by adopting cross-cutting lenses like the "Cold War" and the working practices of researchers in the social and behavioral sciences. As a result, they do much to indicate the value of casting a historiographical net beyond individual disciplines, or even beyond the "social sciences" or the "human sciences" sensu stricto, in the search for deeper patterns of historical development in these fields. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  10. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  11. Flu and Colds: In Depth

    Science.gov (United States)

    ... to prevent colds or relieve cold symptoms. Andrographis (Andrographis paniculata) Chinese herbal medicines Green tea Guided imagery Hydrotherapy ... measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of ...

  12. Six years of evidence-based adult dissection tonsillectomy with ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection.

    Science.gov (United States)

    Ragab, S M

    2012-10-01

    To conduct an adequately powered, prospective, randomised, controlled trial comparing adult dissection tonsillectomy using either ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection. Three hundred patients were randomised into four tonsillectomy technique groups. The operative time, intra-operative bleeding, post-operative pain, tonsillar fossa healing, return to full diet, return to work and post-operative complications were recorded. The bipolar radiofrequency group had a shorter mean operative time. The mean intra-operative blood loss during bipolar radiofrequency tonsillectomy was significantly less compared with cold dissection and ultrasonic scalpel tonsillectomy. Pain scores were significantly higher after bipolar electrocautery tonsillectomy. Patients undergoing bipolar electrocautery tonsillectomy required significantly more days to return to full diet and work. The bipolar electrocautery group showed significantly reduced tonsillar fossa healing during the first and second post-operative weeks. In this adult series, bipolar radiofrequency tonsillectomy was superior to ultrasonic, bipolar electrocautery and cold dissection tonsillectomies. This method combines the advantages of 'hot' and 'cold' tonsillectomy.

  13. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    Science.gov (United States)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  14. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  15. Source Localization by Entropic Inference and Backward Renormalization Group Priors

    Directory of Open Access Journals (Sweden)

    Nestor Caticha

    2015-04-01

    Full Text Available A systematic method of transferring information from coarser to finer resolution based on renormalization group (RG transformations is introduced. It permits building informative priors in finer scales from posteriors in coarser scales since, under some conditions, RG transformations in the space of hyperparameters can be inverted. These priors are updated using renormalized data into posteriors by Maximum Entropy. The resulting inference method, backward RG (BRG priors, is tested by doing simulations of a functional magnetic resonance imaging (fMRI experiment. Its results are compared with a Bayesian approach working in the finest available resolution. Using BRG priors sources can be partially identified even when signal to noise ratio levels are up to ~ -25dB improving vastly on the single step Bayesian approach. For low levels of noise the BRG prior is not an improvement over the single scale Bayesian method. Analysis of the histograms of hyperparameters can show how to distinguish if the method is failing, due to very high levels of noise, or if the identification of the sources is, at least partially possible.

  16. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Heyer, A. G.; Mishra, Kumud

    2014-01-01

    Roč. 10, č. 38 (2014) ISSN 1746-4811 R&D Projects: GA MŠk EE2.3.20.0246; GA MŠk 7E12047 Institutional support: RVO:67179843 Keywords : high-throughput screening * chlorophyll a fluorescence transients * cold tolerance * cold acclimation * whole plant * Arabidopsis thaliana Subject RIV: EH - Ecology, Behaviour Impact factor: 3.102, year: 2014

  17. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  18. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  19. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  20. Second workshop of I.A.G./A.I.G. SEDIBUD - Sediment Budgets in Cold Environments: Sediment fluxes and sediment budgets in changing high-latitude and high-altitude cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Beylich, Achim A; Lamoureux, Scott F; Decaulne, Armelle

    2007-07-01

    This Second Workshop of the I.A.G./A.I.G. Working Group SEDIBUD (Sediment Budgets in Cold Environments) builds on four previous ESF SEDIFLUX Science Meetings held in Saudarkrokur (Iceland) in June 2004, Clermont-Ferrand (France) in January 2005, Durham (UK) in December 2005 and Trondheim (Norway) in the end of October/beginning of November 2006. A first kick-off Meeting of the new I.A.G./A.I.G. SEDIBUD Workshop. The theme of this Second I.A.G./A.I.G. SEDIBUD Workshop is Sediment FLuxes and Sediment Budgets in Changing High-Latitude Cold Environments. The Workshop is split between scientific paper and poster presentations, presentation and discussion of SEDIBUD key test sites, discussions within defined work groups and guided field trip to Kaerkevagge. This workshop will address the key aim of SEDIBUD to discuss Source-to-Sink-Fluxes and Sediment Budgets in Changing Cold Environments. Major emphasis will be given to consequences of climate change, scaling issues and source-to-sink correlations. Central issues will be presentation and discussion of the SEDIFLUX Manual (First Edition), the selection of SEDIBUD key test sites, the discussion and development of further ideas to extend the scientific activities within SEDIBUD in a global framework.(auth)

  1. The process and risk of the CPR1000 cold function test in the cold area

    International Nuclear Information System (INIS)

    Liu Tinghao; Zhang Jian; Ji Dapeng; Shi Quanjian; Tian Kuo

    2014-01-01

    Hong yanhe nuclear power station is the first CPR1000 reactor which is under construction in the cold area of north China. It is also the first time to carry out the cold functional test (CFT) in the winter of north China. The preparation and process of CFT are described in the paper. According to the experience feedback of CFT of Unit 1, the risk and solution which are significance for the CFT of the other NPS in the cold area are analysed. (authors)

  2. LENR/"Cold Fusion" and Modern Physics: A Crisis Within a Crisis

    Science.gov (United States)

    Mallove, Eugene F. E.

    2004-03-01

    The primary theorists in the field of Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found, and moreover that it can be explained by hydrided metal lattice structures acting coherently. Though this was an excellent initial hypothesis, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. At the same time, compelling evidence has also emerged for other microphysical sources of energy that were unexpected by accepted physics. The exemplars have been the work Dr. Randell Mills and his colleagues at BlackLight Power Corporation and Dr. Paulo and Alexandra Correa in Canada.This has led to a crisis within a crisis: Neither "cold fusion" nor "Modern Physics" will be able to explain the full range of experimental data now available---not even the data within "mainstream" cold fusion/LENR per se--- by insisting that the fundamental paradigms of Modern Physics are without significant flaw. The present crisis is of magnitude comparable to the Copernican Revolution. Neither Modern Physics nor Cold Fusion/LENR will survive in their present forms when this long delayed revolution has run its course.

  3. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  4. Peripheral cold acclimatization in Antarctic scuba divers.

    Science.gov (United States)

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  5. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  6. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  7. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  8. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  9. How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation

    Directory of Open Access Journals (Sweden)

    McKemy David D

    2005-04-01

    Full Text Available Abstract Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.

  10. C. A. Meredith, A. N. Prior, and Possible Worlds

    DEFF Research Database (Denmark)

    Hasle, Per Frederik Vilhelm; Rybaříková, Zuzana

    of Meredith’s and Prior’s work. On the one hand, it might cause corruption of Meredith’s system of logic and lead to paradoxes, as Prior pointed out in ‘Modal Logic with Functorial Variables and a Contingent Constant’. On the other hand, considering Prior as a mere follower of Meredith could cause......, their understanding of the relevant formal representations and indeed their general approach to modal logic considerably differed. These differences should be pointed out in order to more precisely appreciate the contribution of each of these authors. To neglect the differences could cause the misinterpretation...

  11. An assessment tool to ensure compliance for the Imperial Oil Cold Lake operations

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R. [HFP Acoustical Consultants Corp., Calgary, AB (Canada); Nixon, J.K. [Imperial Oil Resources Canada, Calgary, AB (Canada)

    2005-07-01

    In order to address noise issues at Imperial Oil Resources' (IOR) Cold Lake facility, HFP Acoustical Consultants Corp. was hired to develop a noise assessment tool. The innovative tool which has been used successfully by IOR for the past 2 years to self-monitor IOR's predicted sound level contributions for the Cold Lake Operations Lease area, consists of a noise computer model and a noise assessment spreadsheet. The tool is designed to ensure that the sound levels are below those designated by the Alberta Energy and Utilities Board's (EUB) Permissible Sound Level of 40 dBa from a facility to the nearest or most impacted residence. The tool has exceeded design expectations and goals and the spreadsheet has proven to be effective in predicting non-compliance concerns prior to a new facility being constructed or operated. The tool has been incorporated into IOR's corporate project planning process. The tool has shown that the noise contributions from the Cold Lake Lease area are below the EUB Permissible Sound Levels. IOR does not believe that the noise contribution from this area will increase over the life of the project unless a facility is added close to a residence. The IOR-EUB Compliance Self-Assessment Framework, which allows IOR to self-manage noise for its operations, made it possible for IOR to implement this new, site specific regulatory tool which provides accurate, immediate and auditable due-diligence documentation. 6 refs., 2 figs.

  12. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  13. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  15. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  16. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  17. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  18. Optimization of laser cladding of cold spray coatings with B4C and Ni powders

    Science.gov (United States)

    Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.

    2017-12-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.

  19. Facts about the Common Cold

    Science.gov (United States)

    ... different viruses. Rhinovirus is the most common cause, accounting for 10 to 40 percent of colds. Other common cold viruses include coronavirus and ... RSS | Terms Of Use | Privacy | Sitemap Our Family Of Sites ... Introduction Risk Factors Screening Symptoms Tumor Testing Summary '; var ...

  20. Cold fusion 1: the discovery that never was

    International Nuclear Information System (INIS)

    Close, F.

    1991-01-01

    In this first of two articles chronicalling the claims to have produced ''cold fusion'' in 1989, the author, a nuclear physicist, explores the evidence against the claim. A brief description is offered of the experimental work that led to the claim and a critique of research methods and lack of proper scientific procedures is offered. The work of many reputable scientific teams across the globe, especially that done at Harwell Laboratory, to replicate the results produced negative results. The author suggests that what positive results exist, subsequent to the original claim, are anecdotal and done by less professionally qualified workers, and can consequently be dismissed. (UK)

  1. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....

  2. Private Higher Education in a Cold War World: Central America

    Science.gov (United States)

    Harrington, James J.

    2009-01-01

    In Central America the Cold War support of the elites by the United States was designed to ward off the communist threat. At the same time social and economic demands by the working and middle classes created revolutionary movements in the face of rigid and violent responses by Central American governments. Issues of social justice pervaded the…

  3. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  4. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  5. A key performance measures for evaluating cold supply chain performance in farm industry

    Directory of Open Access Journals (Sweden)

    Shashi Shashi

    2015-08-01

    Full Text Available The main objective of this study was to develop a set of measures, evaluate their importance and effect in cold supply chain performance. This investigation reviewed previous research works on all the stages of the farm product supply chain. Based on farm product supply chain, 4 measures with 31 metrics were identified and developed to measure the cold supply chain performance. A survey was organized to establish the importance and the effect of identified measures. The 5 point Likert scale questionnaire was distributed among SC academics and practitioners. The observed finding infers that the measurement instrument was substantiating for evaluating cold supply chain performance in farm industry. The new developed metrics will help firms improve the visibility of supply among partners and in better decision making. The investigation was enfolded up through the plan of direction intended for future study.

  6. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  7. Monitoring the vaccine cold chain.

    OpenAIRE

    Cheriyan, E

    1993-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  8. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.

    Directory of Open Access Journals (Sweden)

    Maarten J Vosselman

    Full Text Available INTRODUCTION: Mild cold acclimation is known to increase brown adipose tissue (BAT activity and cold-induced thermogenesis (CIT in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured. METHODS: The Iceman (subject A and his brother (subject B were studied during mild cold (13°C and thermoneutral conditions (31°C. Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. RESULTS: Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal, within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G. CIT was relatively high (A: 40.1% and B: 41.9%, but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. CONCLUSION: No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the

  9. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  10. Ca2+-Induced Cold Set Gelation of Whey Protein Isolate Fibrils

    NARCIS (Netherlands)

    Bolder, S.G.; Hendrickx, H.; Sagis, L.M.C.; Linden, van der E.

    2006-01-01

    In this paper we describe the rheological behaviour of Ca2+-induced cold-set gels of whey protein mixtures. Coldset gels are important applications for products with a low thermal stability. In previous work [1], we determined the state diagram for whey protein mixtures that were heated for 10 h at

  11. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  12. Kinetic characterization and of recrystallization of the aluminum alloy 6063 after S work hardening treatment

    International Nuclear Information System (INIS)

    Esposito, Iara Maria

    2006-01-01

    The aluminum 6063 alloy possesses a great industrial interest, presenting characteristics that justify its frequent use, when compared to the other aluminum alloys: the precipitation hardening and high cold work capacity. These alloys present high ductility, that allows their use in operations with high deformation degrees, as the cold work. The objective of this work is to show comparative analysis of the hardness Vickers of the commercial aluminum 6063 alloy, after cold work with different area reduction degree and thermal treatment. Considering the frequent utilization aluminium 6063 alloy, this work studies the characterization and recrystallization of this alloy, after the plastic deformation in different area reduction degrees, thermal treatment and convenient treatment times - Thermo mechanic Treatments. (author)

  13. Potential applications of heat and cold stress indices to sporting events.

    Science.gov (United States)

    Moran, D S

    2001-01-01

    Many recreational and elite athletes participate in sporting events every year. However, when these events are conducted under hostile environmental conditions, whether in cold or hot climates, the risk for environmental illnesses increases. The higher the stress, the greater is the potential for performance decrements, injuries and illnesses. The most common expected heat illnesses are heat exhaustion and heatstroke, whereas hypothermia and frostbite are the most common cold injuries. However, heat and cold stress indices can minimise the risk for environmental illnesses and dehydration by following the recommendations and guidelines which accompany these indices. Stress indices should be used by athletes, coaches and officials to prevent injury and improve safety conditions for competitors and participants in recreational activities. All participants should be made aware of warning signs, susceptibility and predisposing conditions. Coaches should be aware of their responsibility with regard to the safety of their trainees, and officials should organise and plan events at times that are likely to be of low environmental stress. However, they must also be prepared and equipped with the means necessary to reduce injuries and treat cases of collapse and environmental illnesses. The lack of a friendly, small and simple device for environmental stress assessment is probably the main reason why stress indices are not commonly used. We believe that developing a new portable heat and cold stress monitor in wristwatch format for use by those exposed to environmental stress could help in the decision making process of expected hazards caused by exercising and working in hostile environments, and might help prevent heat and cold illnesses.

  14. Experiments in cold fusion

    International Nuclear Information System (INIS)

    Palmer, E.P.

    1986-01-01

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models

  15. Nonfreezing Cold-Induced Injuries

    Science.gov (United States)

    2012-01-01

    cold injury. ( Modi - fi ed from Jia J, Pollock M: The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain 120:631, 1997...myelitis and sinus development ( Figures 7-17 to 7-19 ). Appearance and behavior of the neuropathic foot have many similarities to those of the diabetic ...foot. In the diabetic foot, infections tend to be polymicrobial with Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus and

  16. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    International Nuclear Information System (INIS)

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-01-01

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets

  17. Cold immersion recovery responses in the diabetic foot with neuropathy.

    Science.gov (United States)

    Bharara, Manish; Viswanathan, Vijay; Cobb, Jonathan E

    2008-10-01

    The aim of this article was to investigate the effectiveness of testing cold immersion recovery responses in the diabetic foot with neuropathy using a contact thermography system based on thermochromic liquid crystals. A total of 81 subjects with no history of diabetic foot ulceration were assigned to neuropathy, non neuropathy and healthy groups. Each group received prior verbal and written description of the test objectives and subsequently underwent a comprehensive foot care examination. The room temperature and humidity were consistently maintained at 24 degrees C and less than 50%, respectively, with air conditioning. The right foot for each subject was located on the measurement platform after cold immersion in water at 18-20 degrees C. Whole-field thermal images of the plantar foot were recorded for 10 minutes. Patients with diabetes with neuropathy show the highest 'delta temperature', that is difference between the temperature after 10-minute recovery period and baseline temperature measured independently at all the three sites tested, that is first metatarsal head (MTH), second MTH and heel. This clinical study showed for the first time the evidence of poor recovery times for the diabetic foot with neuropathy when assessing the foot under load. A temperature deficit (because of poor recovery to baseline temperature) suggests degeneration of thermoreceptors, leading to diminished hypothalamus-mediated activity in the diabetic neuropathic group.

  18. Wood construction under cold climate

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2014-01-01

    As wood constructions increasingly use engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives system. The glueline stability is a crucial issue for engineered wood application, especially under cold climate. In this study, Norway spruce (Picea abies...... affected shear strength of wood joints. As temperature decreased, the shear strength decreased. PUR resin resulted in the strongest shear strength at all temperatures tested. MF resin responded to temperature changes in a similar ways as the PUR resin. The shear strength of wood joints with EPI resins...... specimens need to be tested in further work to more completely present the issue. The EN 301 and EN 302 may need to be specified based on wood species....

  19. Cold fusion anomalies more perplexing than ever

    International Nuclear Information System (INIS)

    Dagani, R.

    1989-01-01

    This article addresses the debate over research on cold fusion. Analysis is made of the research efforts that have taken place since cold fusion was first thought to have been discovered in Utah. Research in the Soviet Union on the cold fusion phenomenon is also discussed

  20. Environment-Assisted Cracking in Custom 465 Stainless Steel

    Science.gov (United States)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.