Principal chiral model on superspheres
International Nuclear Information System (INIS)
Mitev, V.; Schomerus, V.; Quella, T.
2008-09-01
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Hidden symmetries of the Principal Chiral Model unveiled
International Nuclear Information System (INIS)
Devchand, C.; Schiff, J.
1996-12-01
By relating the two-dimensional U(N) Principal Chiral Model to a Simple linear system we obtain a free-field parametrization of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known 'hidden symmetries' and Baecklund transformations, as well as a host of new symmetries, arise. (author). 21 refs
The exact mass-gaps of the principal chiral models
Hollowood, Timothy J
1994-01-01
An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.
Infinite conformal symmetries and Riemann-Hilbert transformation in super principal chiral model
International Nuclear Information System (INIS)
Hao Sanru; Li Wei
1989-01-01
This paper shows a new symmetric transformation - C transformation in super principal chiral model and discover an infinite dimensional Lie algebra related to the Virasoro algebra without central extension. By using the Riemann-Hilbert transformation, the physical origination of C transformation is discussed
Exact scattering in the SU(n) supersymmetric principal chiral model
Evans, J M; Evans, Jonathan M; Hollowood, Timothy J
1997-01-01
The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...
International Nuclear Information System (INIS)
Musakhanov, M.M.
1980-01-01
The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data
Siegel's chiral boson and the chiral Schwinger model
International Nuclear Information System (INIS)
Berger, T.
1992-01-01
In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model
Buividovich, P. V.; Davody, A.
2017-12-01
We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Non-uniform chiral phase in effective chiral quark models
International Nuclear Information System (INIS)
Sadzikowski, M.; Broniowski, W.
2000-01-01
We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
International Nuclear Information System (INIS)
Rahaman, Anisur
2015-01-01
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson
Chiral soliton models for baryons
International Nuclear Information System (INIS)
Weigel, H.
2008-01-01
This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Variational approach to chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira
1987-03-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.
A variational approach to chiral quark models
International Nuclear Information System (INIS)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.
1987-01-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)
Supersymmetry and the chiral Schwinger model
International Nuclear Information System (INIS)
Amorim, R.; Das, A.
1998-01-01
We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Timoshenko beam model for chiral materials
Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.
2018-06-01
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.
International Nuclear Information System (INIS)
Aliev, B.N.; Leznov, A.N.
1989-01-01
A method to determine the solutions for principal chiral field (PCP) equation with the parameters depending on independent arguments for arbitrary semisimple algebra is worked out. Each solution depends on N(G)-r/2 arbitrary functions of independent arguments. Moreover, the number of derivatives of the arbitrary functions appearing in the solution distinguishes them, gathering them into series. 6 refs
Large time asymptotics of solutions of the equations of principal chiral field
International Nuclear Information System (INIS)
Sukhanov, V.V.
1990-01-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.
Hadron properties in chiral sigma model
International Nuclear Information System (INIS)
Shen Hong
2005-01-01
The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)
The paradigm of Pseudodual Chiral Models
International Nuclear Information System (INIS)
Zachos, C.K.; Curtright, T.L.
1994-01-01
This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory
Recent status of the chiral bag model
International Nuclear Information System (INIS)
Hosaka, Atsushi; Toki, Hiroshi.
1995-01-01
In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
Unified Chiral models of mesons and baryons
International Nuclear Information System (INIS)
Mendez-Galain, R.; Ripka, G.
1990-01-01
Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
A nonlocal model of chiral dynamics
International Nuclear Information System (INIS)
Holdom, B.; Terning, J.; Verbeek, K.
1989-01-01
We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)
Parity doublers in chiral potential quark models
International Nuclear Information System (INIS)
Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.
2007-01-01
The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated
Quark matter in a chiral chromodielectric model
International Nuclear Information System (INIS)
Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.
1989-03-01
Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
Chiral algebras in Landau-Ginzburg models
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Vortex in the chiral quark model
Hadasz, Leszek
1995-02-01
We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
Kutschera, M.
1990-12-01
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
Structure functions from chiral soliton models
International Nuclear Information System (INIS)
Weigel, H.; Reinhardt, H.; Gamberg, L.
1997-01-01
We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data
Chiral quark model with relativistic kinematics
International Nuclear Information System (INIS)
Garcilazo, H.; Valcarce, A.
2003-01-01
The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum
Chiral quark model with relativistic kinematics
Garcilazo, H.; Valcarce, A.
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Chiral Schwinger model and lattice fermionic regularizations
International Nuclear Information System (INIS)
Kieu, T.D.; Sen, D.; Xue, S.
1988-01-01
The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations
Structure functions in the chiral bag model
International Nuclear Information System (INIS)
Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia
1989-01-01
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)
Structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V.; Vento, V.
1989-07-13
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).
Kac-Moody algebra is not hidden symmetry of chiral models
International Nuclear Information System (INIS)
Devchand, C.; Schiff, J.
1997-01-01
A detailed examination of the infinite dimensional loop algebra of hidden symmetry transformations of the Principal Chiral Model reveals it to have a structure differing from a standard centreless Kac-Moody algebra. A new infinite dimensional Abelian symmetry algebra is shown to preserve a symplectic form on the space of solutions. (author). 15 refs
International Nuclear Information System (INIS)
Shen Kun; Qiu Zhongping
1993-01-01
Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature
Star-Triangle Relation of the Chiral Potts Model Revisited
Horibe, M.; Shigemoto, K.
2001-01-01
We give the simple proof of the star-triangle relation of the chiral Potts model. We also give the constructive way to understand the star-triangle relation of the chiral Potts model, which may give the hint to give the new integrable models.
Localized endomorphisms of the chiral Ising model
International Nuclear Information System (INIS)
Boeckenhauer, J.
1994-07-01
In the frame of the treatment of the chiral Ising model by Mack and Schomerus, examples of localized endomorphisms ρ 1 loc and ρ 1/2 loc are presented. It is shown that they lead to the same superselection sectors as the global ones in the sense that π 0 oρ 1 log ≅π 1 and π 0 pρ 1/2 loc ≅π 1/2 holds. For proving the latter unitary equivalence, Arakis formalism of the selfdual CAR algebra is used. Further it is shown that the localized endomorphisms obey the Ising fusion rules. (orig.)
Strange Hadronic Matter in a Chiral Model
Institute of Scientific and Technical Information of China (English)
ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng
2000-01-01
The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -～ (-26.0MeV, 1.23).
A chiral model for excited pions
International Nuclear Information System (INIS)
Volkov, M.K.; Weiss, C.
1996-01-01
We study radially excited mesons (π', σ') in a simple extension of the Nambu-Jona-Lasinio model with a polynomial meson-quark form factor. The form factor is introduced so that the usual form of the NJL gap equation remains unchanged. We derive the effective Lagrangian for π- and π'-mesons which describes the decoupling of the Goldstone pion in the chiral limit in agreement with current algebra. For π' masses in the range of 750 MeV and 1300 MeV f π' /f π is found to be of an order of one per cent. 12 refs
Modelling Monthly Mental Sickness Cases Using Principal ...
African Journals Online (AJOL)
The methodology was principal component analysis (PCA) using data obtained from the hospital to estimate regression coefficients and parameters. It was found that the principal component regression model that was derived was good predictive tool. The principal component regression model obtained was okay and this ...
Chiral model for nucleon and delta
International Nuclear Information System (INIS)
Birse, M.C.; Banerjee, M.K.
1985-01-01
We propose a model of the nucleon and delta based on the idea that strong QCD forces on length scales approx.0.2--1 fm result in hidden chiral SU(2) x SU(2) symmetry and that there is a separation of roles between these forces which are also responsible for binding quarks in hadrons and the forces which produce absolute confinement. This leads us to study a linear sigma model describing the interactions of quarks, sigma mesons, and pions. We have solved this model in the semiclassical (mean-field) approximation for the hedgehog baryon state. We refer to this solution as a chiral soliton. In the semiclassical approximation the hedgehog state is a linear combination of N and Δ. We project this state onto states of good spin and isospin to calculate matrix elements of various operators in these states. Our results are in reasonable agreement with the observed properties of the nucleon. The mesonic contributions to g/sub A/ and sigma(πN) are about two to three times too large, suggesting the need for quantum corrections
Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter
DEFF Research Database (Denmark)
Toxvaerd, Søren
2001-01-01
Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...
Moduli stabilisation for chiral global models
International Nuclear Information System (INIS)
Cicoli, Michele; Mayrhofer, Christoph; Valandro, Roberto
2011-10-01
We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r< n D-term conditions on a set of n intersecting divisors. The remaining (n-r) flat directions are fixed by perturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)
Moduli stabilisation for chiral global models
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2011-10-15
We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r
Analysis of a classical chiral bag model
International Nuclear Information System (INIS)
Nadeau, H.
1985-01-01
The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes
Toy model for two chiral nonets
International Nuclear Information System (INIS)
Fariborz, Amir H.; Jora, Renata; Schechter, Joseph
2005-01-01
Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3) L xSU(3) R transformations, they transform differently under the U(1) A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1) A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure
A principal-agent Model of corruption
Groenendijk, Nico
1997-01-01
One of the new avenues in the study of political corruption is that of neo-institutional economics, of which the principal-agent theory is a part. In this article a principal-agent model of corruption is presented, in which there are two principals (one of which is corrupting), and one agent (who is
Lorentz Invariant Spectrum of Minimal Chiral Schwinger Model
Kim, Yong-Wan; Kim, Seung-Kook; Kim, Won-Tae; Park, Young-Jai; Kim, Kee Yong; Kim, Yongduk
We study the Lorentz transformation of the minimal chiral Schwinger model in terms of the alternative action. We automatically obtain a chiral constraint, which is equivalent to the frame constraint introduced by McCabe, in order to solve the frame problem in phase space. As a result we obtain the Lorentz invariant spectrum in any moving frame by choosing a frame parameter.
Currents, charges, and canonical structure of pseudodual chiral models
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1994-01-01
We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory
Electroweak amplitudes in chiral quark models
International Nuclear Information System (INIS)
Fiolhais, Manuel
2004-01-01
After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes
Exchange algebra and exotic supersymmetry in the Chiral Potts model
International Nuclear Information System (INIS)
Bernard, D.; Pasquier, V.
1989-01-01
We obtain an exchange algebra for the Chiral Potts model, the elements of which are linear in the parameters defining the rapidity curve. This enables us to connect the Chiral Potts model to a U q (GL(2)) algebra. On the other hand, looking at the model from the S-matrix point of view relates it to a Z N generalisation of the supersymmetric algebra
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Approximating chiral quark models with linear σ-models
International Nuclear Information System (INIS)
Broniowski, Wojciech; Golli, Bojan
2003-01-01
We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea
A chiral quark model of the nucleon
International Nuclear Information System (INIS)
Wakamatsu, M.; Yoshiki, H.
1991-01-01
The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)
Chiral phase transition in a covariant nonlocal NJL model
International Nuclear Information System (INIS)
General, I.; Scoccola, N.N.
2001-01-01
The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)
International Nuclear Information System (INIS)
Leznov, A.N.
1987-01-01
A connection is found between the self-dual equations of 4-dimensional space and the principal chiral field problem in n-dimensional space. It is shown that any solution of the principal chiral field equations in n-dimensional space with arbitrary 2-dimensional functions of definite linear combinations of 4 variables y, y-bar, z, z-bar as independent arguments satisfies the system of self-dual equations of 4-dimensional space. General solution of self-dual equations depending on the suitable number of functions of three independent variables coincides with the general solution of the principal chiral field problem when the dimensionality of the space tends to the infinity
Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry
International Nuclear Information System (INIS)
Lawrie, E A
2017-01-01
Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry. (paper)
ZNxZN generalization of the chiral Potts model
International Nuclear Information System (INIS)
Bazhanov, V.V.; Kashaev, R.M.; Mangazeev, V.V.
1990-01-01
It is shown that the R-matrix which interwines two 3-by-N 2 state cyclic L-operators can be considered as a Boltzmann weight of four-spin box for a lattice model with two-spin interaction juct as the R-matrix of the checkerboard chiral Potts model. The rapidity variables lie on the same algebraiz curve as in the chiral Potts model. Factorization properties of the L-operator and its connection to the SOS models, are also discussed. 13 refs.; 11 figs
Quark matter inside neutron stars in an effective chiral model
International Nuclear Information System (INIS)
Kotlorz, A.; Kutschera, M.
1994-02-01
An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab
Imprecise Beliefs in a Principal Agent Model
Rigotti, L.
1998-01-01
This paper presents a principal-agent model where the agent has multiple, or imprecise, beliefs. We model this situation formally by assuming the agent's preferences are incomplete. One can interpret this multiplicity as an agent's limited knowledge of the surrounding environment. In this setting,
Light hadrons in the bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1987-01-01
A version of the bag model with broken chiral symmetry is proposed. A satisfactory description of the experimental data on light hadrons including the pion is obtained. The estimate of the pion-nucleon σ term is given in the framework of this model. The pion and kaon decay constants are calculated. The centre-of-mass motion problem in bag models is discussed
Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking
International Nuclear Information System (INIS)
Dhar, Avinash; Nag, Partha
2008-01-01
We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra
Distinguishing standard model extensions using monotop chirality at the LHC
Energy Technology Data Exchange (ETDEWEB)
Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)
2016-12-13
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, V V [Leningradskij Gosudarstvennyj Univ., Leningrad (USSR)
1990-07-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation.
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
The Chiral bag model and the little bag
International Nuclear Information System (INIS)
Vento, Vincent.
1980-11-01
We review the properties of the existing solutions to the Chiral bag equations of motion and discuss how the 'little bag' picture could come about in this scheme. Our analysis leads to a model which is qualitatively similar to the naive quark model with pion cloud corrections. We use this latter approach to look for pion cloud signatures in experimental data
On the vacuum baryon number in the chiral bag model
International Nuclear Information System (INIS)
Jaroszewicz, T.
1984-01-01
We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)
Bose-Einstein condensation and chiral phase transition in linear sigma model
International Nuclear Information System (INIS)
Shu Song; Li Jiarong
2005-01-01
With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation
Magnetic moments of octet baryons in a chiral potential model
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1986-12-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. 32 refs., 2 tables.
Magnetic moments of octet baryons in a chiral potential model
International Nuclear Information System (INIS)
Barik, N.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. (author)
Stationary solutions of multicomponent chiral and gauge models
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)
Model for dynamical chiral symmetry breaking and quark condensate
International Nuclear Information System (INIS)
Nekrasov, M.L.; Rochev, V.E.
1986-01-01
In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one
Baryons as solitonic solutions of the chiral sigma model
International Nuclear Information System (INIS)
Bentz, W.; Hartmann, J.; Beck, F.
1996-01-01
Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society
Chiral Thirring–Wess model with Faddeevian regularization
International Nuclear Information System (INIS)
Rahaman, Anisur
2015-01-01
Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
An Anderson-like model of the QCD chiral transition
International Nuclear Information System (INIS)
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-01-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
PCA: Principal Component Analysis for spectra modeling
Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas
2012-07-01
The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.
Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction
Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi
2018-05-01
Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.
Quark fragmentation function and the nonlinear chiral quark model
International Nuclear Information System (INIS)
Zhu, Z.K.
1993-01-01
The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results
Consequences of the partial restoration of chiral symmetry in an AdS/QCD model
International Nuclear Information System (INIS)
Kim, Youngman; Lee, Hyun Kyu
2008-01-01
Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetry on the physical quantities in the framework of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant, and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.
Color superconductivity from the chiral quark-meson model
Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen
2018-05-01
We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.
Fermion masses in potential models of chiral symmetry breaking
International Nuclear Information System (INIS)
Jaroszewicz, T.
1983-01-01
A class of models of spontaneous chiral symmetry breaking is considered, based on the Hamiltonian with an instantaneous potential interaction of fermions. An explicit mass term mΨ-barΨ is included and the physical meaning of the mass parameter is discussed. It is shown that if the Hamiltonian is normal-ordered (i.e. self-energy omitted), then the mass m introduced in the Hamiltonian is not the current mass appearing in the current algebra relations. (author)
Tetraquarks in a chiral constituent-quark model
International Nuclear Information System (INIS)
Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B.
2004-01-01
We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)
Tetraquarks in a chiral constituent-quark model
Energy Technology Data Exchange (ETDEWEB)
Vijande, J.; Fernandez, F.; Valcarce, A. [Grupo de Fisica Nuclear, Universidad de Salamanca, E-37008, Salamanca (Spain); Silvestre-Brac, B. [Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026, Grenoble Cedex (France)
2004-03-01
We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)
Continuum model for chiral induced spin selectivity in helical molecules
Energy Technology Data Exchange (ETDEWEB)
Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
K- nuclear potentials from in-medium chirally motivated models
International Nuclear Information System (INIS)
Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.
2011-01-01
A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.
Lattice chiral symmetry and the Wess-Zumino model
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Ishibashi, Masato
2002-01-01
A lattice regularization of the supersymmetric Wess-Zumino model is studied by using Ginsparg-Wilson operators. We recognize a certain conflict between the lattice chiral symmetry and the Majorana condition for Yukawa couplings, or in Weyl representation a conflict between the lattice chiral symmetry and Yukawa couplings. This conflict is also related, though not directly, to the fact that the kinetic (Kaehler) term and the superpotential term are clearly distinguished in the continuum Wess-Zumino model, whereas these two terms are mixed in the Ginsparg-Wilson operators. We illustrate a case where lattice chiral symmetry together with naive Bose-Fermi symmetry is imposed by preserving a SUSY-like symmetry in the free part of the Lagrangian; one-loop level non-renormalization of the superpotential is then maintained for finite lattice spacing, though the finite parts of wave function renormalization deviate from the supersymmetric value. All these properties hold for the general Ginsparg-Wilson algebra independently of the detailed construction of lattice Dirac operators
Deep inelastic structure functions in the chiral bag model
International Nuclear Information System (INIS)
Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia
1989-01-01
We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)
Deep inelastic structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)
1989-10-02
We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).
Finite nuclei in relativistic models with a light chiral scalar meson
International Nuclear Information System (INIS)
Serot, B.D.; Furnstahl, R.J.
1993-01-01
Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed
Pion-nucleon scattering in the chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru
On the chiral phase transition in the linear sigma model
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa
2003-01-01
The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)
The Baryon Number Two System in the Chiral Soliton Model
International Nuclear Information System (INIS)
Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.
2013-01-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)
Radiative decays of vector mesons in the chiral bag model
International Nuclear Information System (INIS)
Tabachenko, A.N.
1988-01-01
A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment
Pion-nucleon scattering in the Chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)
Chiral models of low energy QCD
International Nuclear Information System (INIS)
Ripka, G.
1993-01-01
Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs
QCD topological susceptibility from the nonlocal chiral quark model
Nam, Seung-Il; Kao, Chung-Wen
2017-06-01
We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.
An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model
International Nuclear Information System (INIS)
Bel'kov, A.A.; Lanev, A.V.; Schaale, A.; Scherer, S.; Mainz Univ.
1994-01-01
In this work we present a strong chiral meson Lagrangian up to and including O(p 6 ) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs
On the quantum symmetry of the chiral Ising model
Vecsernyés, Peter
1994-03-01
We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.
Vector meson decays in the chiral bag model
International Nuclear Information System (INIS)
Maxwell, O.V.; Jennings, B.K.
1985-01-01
Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)
Explicit chiral symmetry breaking in Gross-Neveu type models
Energy Technology Data Exchange (ETDEWEB)
Boehmer, Christian
2011-07-25
This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well
Explicit chiral symmetry breaking in Gross-Neveu type models
International Nuclear Information System (INIS)
Boehmer, Christian
2011-01-01
This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti ψiγ μ ∂ μ ψ-m 0 anti ψψ+(g 2 )/(2)(anti ψψ) 2 +(G 2 )/(2)(anti ψiγ 5 ψ) 2 in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL 2 model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL 2 model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL 2 model in (μ,T,γ) space, where γ arises from m 0 through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL 2 model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel ξ parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL 2 model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well-known that the massless NJL 2 model can be solved analytically. The same is true for the GN model, be it massless or massive. Here, the
Studies on phenomenological hadron models with chiral symmetry
International Nuclear Information System (INIS)
Rathske, E.
1991-12-01
In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.) [de
SIMP model at NNLO in chiral perturbation theory
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2015-10-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.
The generalized chiral Schwinger model on the two-sphere
International Nuclear Information System (INIS)
Bassetto, A.
1995-01-01
A family of theories which interpolate between vector and chiral Schwinger models is studied on the two-sphere S 2 . The conflict between the loss of gauge invariance and global geometrical properties is solved by introducing a fixed background connection. In this way the generalized Dirac-Weyl operator can be globally defined on S 2 . The generating functional of the Green functions is obtained by taking carefully into account the contribution of gauge fields with non-trivial topological charge and of the related zero-modes of the Dirac determinant. In the decompactification limit, the Green functions of the flat case are recovered; in particular the fermionic condensate in the vacuum vanishes, at variance with its behaviour in the vector Schwinger model. ((orig.))
The Principal-Agent model and the European Union
Delreux, Tom; Adriaensen, J.
2017-01-01
This book assesses the use and limitations of the principal-agent model in a context of increasingly complex political systems such as the European Union. Whilst a number of conceptual, theoretical and methodological challenges need to be addressed, the authors show that the principal-agent model
Chiral bag model with constituent quarks: topological and nontopological decisions
International Nuclear Information System (INIS)
Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.
2002-01-01
The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru
Kaon quark distribution functions in the chiral constituent quark model
Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen
2018-04-01
We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.
The Goldberger-Treiman relation and the chiral soliton model
International Nuclear Information System (INIS)
Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Nippe, A.; Gruemmer, F.; Goeke, K.; Bonn Univ.
1987-01-01
The linear chiral soliton model with explicit quark fields and elementary pion- and sigma-fields is solved in order to describe nucleon and delta properties. Special emphasis is put on the axial vector coupling constant g A and on the Goldberger-Treiman relation. To this end baryon Fock states are constructed in a mean field approximation with hedgehog-like configurations from which the physical states are obtained by projection techniques. It is shown that the Goldberger-Treiman relation is only fulfilled if the quark- and pion-hedgehog is generalized and the variation is performed with projected states. Under this condition no parameter set is found which yields a proper g A and a proper pion-nucleon coupling constant g πNN , if the polarization of the Dirac sea is neglected. Other observables are reproduced within 20% limits or less. (orig.)
The generalized hedgehog and the projected chiral soliton model
International Nuclear Information System (INIS)
Fiolhais, M.; Kernforschungsanlage Juelich G.m.b.H.; Goeke, K.; Bochum Univ.; Gruemmer, F.; Urbano, J.N.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cosηvertical strokeu↓> - sin ηvertical stroked↑>. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. Various nucleon properties are calculated. These include proton and neutron charge raii, and the mangnetic moment of the proton for which experiment is obtained. (orig./HSI)
Reinvention and the Principal-Agent Model
Directory of Open Access Journals (Sweden)
J. Ramón Gil García
2003-01-01
Full Text Available Existe una interesante polémica en el sector público, derivada de las tensiones existentes entre desempeño y flexibilidad administrativa por un lado, y rendición de cuentas y control, por el otro. El propósito de este artículo es discutir la utilidad del modelo agente principal para un mejor entendimiento de las tensiones entre desempeño y rendición de cuentas, así como analizar las similitudes y contradicciones de esta perspectiva teórica en comparación con el movimiento de reinvención del gobierno de la década de los noventa en Estados Unidos.
Chiral correlators in Landau-Ginsburg theories and N=2 superconformal models
International Nuclear Information System (INIS)
Howe, P.S.; West, P.C.
1989-01-01
Chiral correlation functions are computed in N=2 Landau-Ginsburg models using the ε-expansion and the superconformal Ward identities for the Landau-Ginsburg effective action. They are also computed directly using superconformal model techniques. The same results are obtained yielding further confirmation of the identification of superconformal minimal models with Landau-Ginsburg models evaluated at their fixed points. The formulae for the chiral commutators that we compute are extremely simple when expressed in terms of effective actions. (orig.)
Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model
Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn
2018-04-01
Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).
Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities
International Nuclear Information System (INIS)
Vecchia, P. di; Ferrara, S.; Girardello, L.
1985-01-01
Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Relativistic Chiral Mean Field Model for Finite Nuclei
Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.
2009-08-01
We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}
Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.
1983-12-01
The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)
Standard model and chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Smit, J.
1990-01-01
A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)
A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment
Energy Technology Data Exchange (ETDEWEB)
Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)
2016-07-01
Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.
Non-leptonic decays in an extended chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)
2012-10-23
We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.
Chiral phase transition in the soft-wall model of AdS/QCD
International Nuclear Information System (INIS)
Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang
2016-01-01
We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.
Antikaon induced Ξ production from a chiral model at NLO
Directory of Open Access Journals (Sweden)
Feijoo A.
2014-01-01
Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei
Nuclear matter saturation in a U(1) circle-times chiral model
International Nuclear Information System (INIS)
Lin, Wei
1989-01-01
The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs
Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model
International Nuclear Information System (INIS)
Bardeen, W.A.; Hill, C.T.
1994-01-01
We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.; Liang, Faming; Zhou, Lan; Carroll, Raymond J.
2010-01-01
model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
Nuclear matter calculations with a pseudoscalar-pseudovector chiral model
Energy Technology Data Exchange (ETDEWEB)
Niembro, R.; Marcos, S.; Bernardos, P. [University of Cantabria, Faculty of Sciences, Department of Modern Physics, 39005 Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 197341 St Petersburg (Russian Federation); Savushkin, L.N. [St Petersburg University for Telecomunications, Department of Physics, 191065 St Petersburg (Russian Federation); Lopez-Quelle, M. [University of Cantabria, Faculty of Sciences, Department of Applied Physics, 39005 Santander, Spain (Spain)
1998-10-01
A mixed pseudoscalar-pseudovector {pi}N coupling relativistic Lagrangian is obtained from a pure pseudoscalar chiral one, by transforming the nucleon field according to a generalized Weinberg transformation, which depends on a mixing parameter. The interaction is generated by the {sigma}, {omega} and {pi} meson exchanges. Within the Hartree-Fock context, pion polarization effects, including the {delta} isobar, are considered in the random phase approximation in nuclear matter. These effects are interpreted, in a non-relativistic framework, as a modification of the range and intensity of a Yukawa-type potential by means of a simple function which takes into account the nucleon-hole and {delta}-hole excitations. Results show stability of relativistic nuclear matter against pion condensation. Compression modulus is diminished by the combined effects of the nucleon and {delta} polarization towards the usually accepted experimental values. The {pi}N interaction strength used in this paper is less than the conventional one to ensure the viability of the model. The fitting parameters of the model are the scalar meson mass m{sub {sigma}} and the {omega}-N coupling constant g{sub {omega}}. (author)
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Form factors in the projected linear chiral sigma model
International Nuclear Information System (INIS)
Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.
1990-01-01
Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.
1996-01-01
The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...
International Nuclear Information System (INIS)
Saito, H; Jansen, K.; Cichy, K.; Frankfurt Univ.; Poznan Univ.
2014-12-01
We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.
Chiral and color-superconducting phase transitions with vector interaction in a simple model
International Nuclear Information System (INIS)
Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio
2002-01-01
We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)
Symmetry conservation in the linear chiral soliton model
International Nuclear Information System (INIS)
Goeke, K.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Introduction to chiral symmetry
International Nuclear Information System (INIS)
Koch, V.
1996-01-01
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented
Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models
International Nuclear Information System (INIS)
Horvat, D.; Ilakovac, A.; Tadic, D.
1986-01-01
SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays
Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model
International Nuclear Information System (INIS)
Lang Junyi; Jiang Shaozhou; Wang Qing
2009-01-01
Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'
International Nuclear Information System (INIS)
Broniowski, W.
1992-01-01
This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs
Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature
Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.
2018-05-01
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.
Incremental principal component pursuit for video background modeling
Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt
2017-03-14
An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.
Block spins and chirality in Heisenberg model on Kagome and triangular lattices
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs
Sparse Principal Component Analysis in Medical Shape Modeling
DEFF Research Database (Denmark)
Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus
2006-01-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.
2010-06-01
The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.
Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states
Poilblanc, Didier
2017-09-01
A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model
Energy Technology Data Exchange (ETDEWEB)
Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)
2010-02-15
We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)
Nicoll-Griffith, D A
1987-07-31
A chiral recognition model is proposed which incorporates the electronic and steric interactions between amide derivatives of ibuprofen and the (R)-N-(3,5-dinitrobenzoyl)phenylglycine-derived Pirkle chiral stationary phase during high-performance liquid chromatography. Based on this rationale, amide derivatives of ibuprofen were prepared using 4-chloroaniline, 4-bromoaniline, aniline, 4-methoxyaniline and 1-aminonaphthylene to improve the enantiomer separation over previously reported results with this column. The amides prepared gave separation values of 1.16, 1.16, 1.19, 1.21 and 1.23, respectively. These high separation values are consistent with the proposed model.
Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
Akiyama, Satoru; Futami, Yasuhiko
2003-01-01
In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...
Deconfinement, chiral transition and localisation in a QCD-like model
Energy Technology Data Exchange (ETDEWEB)
Giordano, Matteo; Katz, Sándor D. [Institute for Theoretical Physics, Eötvös University,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); MTA-ELTE “Lendület” Lattice Gauge Theory Research Group,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); Kovács, Tamás G. [Institute for Nuclear Research of the Hungarian Academy of Sciences,Bem tér 18/c, H-4026 Debrecen (Hungary); Pittler, Ferenc [HISKP(Theory), University of Bonn,Nussallee 14-16, D-53115 Bonn (Germany)
2017-02-10
We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N{sub T}=4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.
Chiral Models in Noncommutative N=1/2 Four Dimensional Superspace
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
We derive the component Lagrangian for a generic N=1/2 supersymmetric chiral model with an arbitrary number of fields in four space-time dimensions. We then investigate a toy model in which the deformation parameter modifies the undeformed potential near the origin of the field space in a way which...
Efficient modeling of chiral media using SCN-TLM method
Directory of Open Access Journals (Sweden)
Yaich M.I.
2004-01-01
Full Text Available An efficient approach allowing to include linear bi-isotropic chiral materials in time-domain transmission line matrix (TLM calculations by employing recursive evaluation of the convolution of the electric and magnetic fields and susceptibility functions is presented. The new technique consists to add both voltage and current sources in supplementary stubs of the symmetrical condensed node (SCN of the TLM method. In this article, the details and the complete description of this approach are given. A comparison of the obtained numerical results with those of the literature reflects its validity and efficiency.
Random matrix theory and higher genus integrability: the quantum chiral Potts model
International Nuclear Information System (INIS)
Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.
2002-01-01
We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)
Directory of Open Access Journals (Sweden)
IVAN GUTMAN
1999-11-01
Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.
Soft modes at the critical end point in the chiral effective models
International Nuclear Information System (INIS)
Fujii, Hirotsugu; Ohtani, Munehisa
2004-01-01
At the critical end point in QCD phase diagram, the scalar, vector and entropy susceptibilities are known to diverge. The dynamic origin of this divergence is identified within the chiral effective models as softening of a hydrodynamic mode of the particle-hole-type motion, which is a consequence of the conservation law of the baryon number and the energy. (author)
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment
Mehrdad, GOSHTASBPOUR; Center for Theoretical Physics and Mathematics, AEOI:Department of Physics, Shahid Beheshti University
1991-01-01
Extended D^†+D-DD^† Fujikawa regularization of anomaly and a method of integration of fermions for the chiral Schwinger model are criticized. On the basis of the corrected integration method, a new extended version of D^2 is obtained, resulting in the Jackiw-Rajaraman effective action.
Chiral symmetry restoration and pion properties in a q-deformed NJL model
International Nuclear Information System (INIS)
Timoteo, V.S.; Lima, C.L.
2006-01-01
We review the implementation of a q-deformed fermionic algebra in the Nambu-Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied. (author)
International Nuclear Information System (INIS)
Sakai, S.
1983-01-01
The generalized Gross-Neveu model with Usub(N)xUsub(N) flavours chiral symmetry in 1+1 dimensions is studied by means of boson-fermion metamorphosis. A more rigorous argument on the presence of the low-temperature phase of Berezinski-Kosterlitz-Thauless type is presented. Low-lying physical fermion masses are obtained
Chirality invariance and 'chiral' fields
International Nuclear Information System (INIS)
Ziino, G.
1978-01-01
The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)
International Nuclear Information System (INIS)
Faber, M.; Ivanov, A.N.
2001-01-01
We investigate the equivalence between Thirring model and sine-Gordon model in the chirally broken phase of the Thirring model. This is unlike all other available approaches where the fermion fields of the Thirring model were quantized in the chiral symmetric phase. In the path integral approach we show that the bosonized version of the massless Thirring model is described by a quantum field theory of a massless scalar field and exactly solvable, and the massive Thirring model bosonizes to the sine-Gordon model with a new relation between the coupling constants. We show that the non-perturbative vacuum of the chirally broken phase in the massless Thirring model can be described in complete analogy with the BCS ground state of superconductivity. The Mermin-Wagner theorem and Coleman's statement concerning the absence of Goldstone bosons in the 1+1-dimensional quantum field theories are discussed. We investigate the current algebra in the massless Thirring model and give a new value of the Schwinger term. We show that the topological current in the sine-Gordon model coincides with the Noether current responsible for the conservation of the fermion number in the Thirring model. This allows one to identify the topological charge in the sine-Gordon model with the fermion number. (orig.)
Transport and collective radiance in a basic quantum chiral optical model
Kornovan, D. F.; Petrov, M. I.; Iorsh, I. V.
2017-09-01
In our work, we theoretically study the dynamics of a single excitation in a one-dimensional array of two-level systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state, which is well known to be superradiant, has twice lower emission rate in the case of unidirectional quantum interaction. Our model is supported and verified with the numerical computations of quantum emitters coupled via surface plasmon modes in a metallic nanowire. The obtained results are based on a very general model and can be applied to any chirally coupled system that gives a new outlook on quantum transport in chiral nanophotonics.
Surrogacy assessment using principal stratification and a Gaussian copula model.
Conlon, Asc; Taylor, Jmg; Elliott, M R
2017-02-01
In clinical trials, a surrogate outcome ( S) can be measured before the outcome of interest ( T) and may provide early information regarding the treatment ( Z) effect on T. Many methods of surrogacy validation rely on models for the conditional distribution of T given Z and S. However, S is a post-randomization variable, and unobserved, simultaneous predictors of S and T may exist, resulting in a non-causal interpretation. Frangakis and Rubin developed the concept of principal surrogacy, stratifying on the joint distribution of the surrogate marker under treatment and control to assess the association between the causal effects of treatment on the marker and the causal effects of treatment on the clinical outcome. Working within the principal surrogacy framework, we address the scenario of an ordinal categorical variable as a surrogate for a censored failure time true endpoint. A Gaussian copula model is used to model the joint distribution of the potential outcomes of T, given the potential outcomes of S. Because the proposed model cannot be fully identified from the data, we use a Bayesian estimation approach with prior distributions consistent with reasonable assumptions in the surrogacy assessment setting. The method is applied to data from a colorectal cancer clinical trial, previously analyzed by Burzykowski et al.
Structure of the vacuum in the color dielectric model: confinement and chiral symmetry
International Nuclear Information System (INIS)
Mazzolo, A.
1992-01-01
Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied
Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baoan; Chen Liewen
2007-01-01
We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry
Higgs-Yukawa model in chirally-invariant lattice field theory
Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji
2013-01-01
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim
2008-10-01
We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)
Weak ωNN coupling in the non-linear chiral model
International Nuclear Information System (INIS)
Shmatikov, M.
1988-01-01
In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7
Higgs-Yukawa model in chirally-invariant lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics
2012-10-15
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Sparse principal component analysis in medical shape modeling
Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus
2006-03-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.
Modeling chiral criticality and its consequences for heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Friman, Bengt, E-mail: b.friman@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); Redlich, Krzysztof, E-mail: krzysztof.redlich@ift.uni.wroc.pl [ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); University of Wrocław - Faculty of Physics and Astronomy, PL-50-204 Wrocław (Poland); Department of Physics, Duke University, Durham, NC 27708 (United States)
2016-12-15
We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the CEP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.
Modeling chiral criticality and its consequences for heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Almasi, Gabor [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); Friman, Bengt [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Redlich, Krzysztof [ExtreMe Matter Institute (EMMI), Darmstadt (Germany); University of Wroclaw, Faculty of Physics and Astronomy, Wroclaw (Poland); Department of Physics, Duke University, Durham, NC (United States)
2016-07-01
We explore the critical fluctuations near the chiral critical endpoint (CEP), which belongs to the Z(2) universality class, in a chiral effective model and discuss possible signals of the CEP, recently explored in nuclear collision experiments. Particular attention is attributed to the dependence of such signals on the location of the phase boundary and the CEP relative to the hypothetical freeze-out conditions in nuclear collisions. We argue that in effective models freeze-out fits to heavy-ion results should not be used directly, and relevant quantities should be investigated on lines of the phase diagram, that are defined self-consistently in the framework of the model. We discuss possible choices for such an approach. Additionally we discuss the effect of the repulsive vector interaction of quarks on the location of the CEP and on the structure of the baryon number cumulant ratios.
Path-integral formulation of chiral invariant fermion models in two dimensions
International Nuclear Information System (INIS)
Furuya, K.; Gamboa Saravi, R.E.; Schaposnik, F.A.
1982-01-01
We study the Thirring and chiral-invariant Gross-Neveu (CGN) models using the functional integral method. By introducing an auxiliary vector field we disclose a relation with two-dimensional gauge theories coupled to fermions and then extend a technique based on a chiral change in the functional variables to study purely fermionic models. We obtain the exact Klaiber solution for the massless Thirring model (for spin 1/2) in a very simple way and we then extend our technique to investigate the CGN model. We show the factorization of a free fermionic part at the level of Green functions on very general grounds. We then impose certain restrictions on the behavior of the fields - which render our treatment exact only in the zero winding number sector, but allow the computation of the U(1) part of the CGN Green functions exactly, showing, in particular, its complete decoupling from the color part and the almost long-range order behavior in the infrared region. In our approach, the non-triviality of the jacobian arising from the chiral transformation - directly related to the topological density and the axial anomaly - appears to be crucial for the functional integral treatment of these models. (orig.)
Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.
Zeng, Chenjie; Jin, Rongchao
2017-08-04
Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature
International Nuclear Information System (INIS)
Rukeng Su
1994-01-01
By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)
Divergence of the quark self-energy in the second quantized chiral bag model
International Nuclear Information System (INIS)
Oset, E.
1983-01-01
When summing over the intermediate quark states of a spherical cavity, the quark self-energy of the chiral bag model, in lowest order of the pion coupling, is shown to generate a series of terms, each one growing linearly with the angular variable kappa. However, there is a cancellation between terms for different kappa, which finally leads to an overall linearly divergent series. (orig.)
Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model
International Nuclear Information System (INIS)
Song, X.; McCarthy, J.S.; Weber, H.J.
1997-01-01
The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society
Roper resonances and generator coordinate method in the chiral-soliton model
International Nuclear Information System (INIS)
Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.
1989-01-01
The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed
Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory
International Nuclear Information System (INIS)
Chung, S.; Tye, S.H.
1993-01-01
The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory
The half-skyrmion phase in a chiral-quark model
International Nuclear Information System (INIS)
Mantovani Sarti, Valentina; Vento, Vicente
2014-01-01
The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD
Chiral effective potential in N = {1/2} non-commutative Wess-Zumino model
International Nuclear Information System (INIS)
Banin, A.T.; Buchbinder, I.L.; Pletnev, N.G.
2004-01-01
We study a structure of holomorphic quantum contributions to the effective action for N = {1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield φ and derivative D 2 φ and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form. (author)
The 10-D chiral null model and the relation to 4-D string solutions
International Nuclear Information System (INIS)
Behrndt, K.
1994-12-01
The chiral null model is a generalization of the fundamental string and gravitational wave background. It is an example of a conformally invariant model in all orders in α' and has unbroken supersymmetries. In a Kaluza-Klein approach we start in 10 dimensions and reduce the model down to 4 dimensions without making any restrictions. The 4-D field content is given by the metric, torsion, dilaton, a moduli field and 6 gauge fields. This model is self-dual and near the singularities asymptotically free. The relation to known IWP, Taub-NUT and rotating black hole solutions is discussed. (orig.)
Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Suganuma, Hideo
1990-01-01
We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)
Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ –bands
International Nuclear Information System (INIS)
Sheikh, Javid A; Bhat, Gowhar H; Dar, Waheed A; Jehangir, Sheikh; Ganai, Prince A
2016-01-01
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ -bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ -bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ -bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ -band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ -bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135 Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties. (invited comment)
Chiral phase transition and Anderson localization in the instanton liquid model for QCD
International Nuclear Information System (INIS)
Garcia-Garcia, Antonio M.; Osborn, James C.
2006-01-01
We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations
Nucleon-delta mass difference in the chiral bag plus skyrmion hybrid model
International Nuclear Information System (INIS)
Kusaka, K.; Toki, H.
1988-01-01
We study the nucleon-delta isobar mass difference in the chiral bag plus skyrmion hybrid model (CSH). While in the Skyrme model the collective rotation solely provides the mass difference, in the CSH model the one-gluon exchange process also contributes in addition to the collective rotation due to the broken symmetry restoration. We study the one-gluon exchange contribution using the collective coordinate projection method. We find that the one-gluon exchange energy tends to compensate for the decreasing tendency of the rotational energy in the large bag region. (orig.)
Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model
Energy Technology Data Exchange (ETDEWEB)
Zacchi, Andreas
2017-07-04
In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final
Review of Nuclear Regulation using Principal-Agent Model
Energy Technology Data Exchange (ETDEWEB)
Choi, Kwang Sik; Lee, Young Eal; Ryu, Yong Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2010-05-15
Regulation is performed by the government on behalf of the public to accomplish a societal goal. However, the public is not necessarily confident that regulatory authority does well enough for the benefit of the public. That is partly because they have less information, competence and resources for monitoring regulatory activities. However, it is a problem that cannot be solved easily only by efforts of the personnel involved. In nuclear industry and regulation, there is increasing concerns of the local community on the decision making related to the safety matters on nuclear facilities. Resident people on NPP sites realize that radiation risk caused by the NPPs is their first concern, whereas the general public as a whole is less concerned with the radiation risk or nuclear safety. Regulatory organizations have less motivation to do their best because they pursue their private or group interests. In this paper, the above mentioned issue has been reviewed in terms of principal agent problem(PAP) theory and also the PAP model for Korean nuclear regulatory system has been developed
Review of Nuclear Regulation using Principal-Agent Model
International Nuclear Information System (INIS)
Choi, Kwang Sik; Lee, Young Eal; Ryu, Yong Ho
2010-01-01
Regulation is performed by the government on behalf of the public to accomplish a societal goal. However, the public is not necessarily confident that regulatory authority does well enough for the benefit of the public. That is partly because they have less information, competence and resources for monitoring regulatory activities. However, it is a problem that cannot be solved easily only by efforts of the personnel involved. In nuclear industry and regulation, there is increasing concerns of the local community on the decision making related to the safety matters on nuclear facilities. Resident people on NPP sites realize that radiation risk caused by the NPPs is their first concern, whereas the general public as a whole is less concerned with the radiation risk or nuclear safety. Regulatory organizations have less motivation to do their best because they pursue their private or group interests. In this paper, the above mentioned issue has been reviewed in terms of principal agent problem(PAP) theory and also the PAP model for Korean nuclear regulatory system has been developed
Strange star candidates revised within a quark model with chiral mass scaling
Institute of Scientific and Technical Information of China (English)
Ang Li; Guang-Xiong Peng; Ju-Fu Lu
2011-01-01
We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (～ 1.6 M⊙) and radius (～ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.
Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model
International Nuclear Information System (INIS)
Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.
2004-01-01
We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles
Light pseudoscalar mesons in a nonlocal three flavor chiral quark model
International Nuclear Information System (INIS)
Gomez Dumm, D.
2004-01-01
We study the properties of light pseudoscalar mesons in a nonlocal three flavor chiral quark model with nonlocal separable interactions. We consider the case of a Gaussian regulator, evaluating meson masses and decay constants. Our results are found to be in good agreement with empirical values, in particular, in the case of the ratio f κ /f π and the decay π 0 → γγ. The model leads also to a reasonable description of the observed phenomenology in the η-η ' sector, where two significantly different mixing angles are required. Detailed description of the work sketched here can be found in Ref. [1]. (author)
The Role of Stochastic Models in Interpreting the Origins of Biological Chirality
Directory of Open Access Journals (Sweden)
Gábor Lente
2010-04-01
Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.
Two dimensional untwisted (4,4), twisted (4,4-bar) and chiral supersymmetric non linear σ-models
International Nuclear Information System (INIS)
Lhallabi, T.; Saidi, E.H.
1987-09-01
D=2 N=(4,4) harmonic superspace analysis is developed. The underlying untwisted (4,4) non linear σ-models are studied. A method of deriving chiral (4,0) and (0,4) models is presented. The Lagrange superparameter leading to the constraint specifying the hyperkahler manifold structure is predicted and its relation to the matter superfield is stated in a covariant way. A known construction is recovered. We show also that (4,4) model is not a direct sum of the chiral ones. Finally a twisted (4,4-bar) model is obtained. (author). 28 refs
Theory of conductivity of chiral particles
International Nuclear Information System (INIS)
Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim
2013-01-01
In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)
Chirally motivated separable potential model for eta N amplitudes
Czech Academy of Sciences Publication Activity Database
Cieplý, Aleš; Smejkal, J.
2013-01-01
Roč. 919, DEC (2013), s. 46-66 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : Chrial model * eta-nucleon amplitude * Baryon resonances Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013
K- nuclear potentials from in-medium chirally motivated models
Czech Academy of Sciences Publication Activity Database
Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří
2011-01-01
Roč. 84, č. 4 (2011), 045206/1-045206/11 ISSN 0556-2813 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : p-wave interactions * coupled-channel model Subject RIV: BE - Theoretical Physics Impact factor: 3.308, year: 2011
SIMP model at NNLO in chiral perturbation theory
DEFF Research Database (Denmark)
Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.
2015-01-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles...... with phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....
$Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model
Li, M. T.; Wang, W. L.; Dong, Y. B.; Zhang, Z. Y.
2012-01-01
We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...
Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model
International Nuclear Information System (INIS)
Zhang Haixia; Zhang Min; Zhang Zongye
2007-01-01
We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)
Effects of renormalizing the chiral SU(2) quark-meson model
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
Relation between the Lee-Wick and Nambu-Jona-Lasinio models of chiral symmetry breaking
International Nuclear Information System (INIS)
Klevansky, S.P.; Lemmer, R.H.
1990-01-01
The connection between the sigma model of Lee and Wick and the Nambu-Jona-Lasinio (NJL) model is discussed. It is shown that the sigma field potential of the linear Lee-Wick model is identical in form with the variation of the vacuum energy of the NJL system with the baryonic scalar density n s . The sigma field is proportional to n s . Furthermore, the coupling constant and mass of this σ field are fully determined by the NJL model version of the Goldberger-Treiman relation. It is shown further that the restoration of chiral symmetry with increasing baryonic density always occurs via a second order transition in the NJL model, while it is necessarily of first order in the associated linear Lee-Wick model. (orig.)
Perspectives on Principal Instructional Leadership in Vietnam: A Preliminary Model
Hallinger, Philip; Walker, Allan; Nguyen, Dao Thi Hong; Truong, Thang; Nguyen, Thi Thinh
2017-01-01
Purpose: Worldwide interest in principal instructional leadership has led to global dissemination of related research findings despite their concentration in a limited set of western cultural contexts. An urgent challenge in educational leadership and management lies in expanding the range of national settings for investigations of instructional…
Directory of Open Access Journals (Sweden)
Yifeng Chai
2012-01-01
Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.
Chiral Quark-Meson model of N and DELTA with vector mesons
International Nuclear Information System (INIS)
Broniowski, W.; Banerjee, M.K.
1985-10-01
Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)
Revealing the equivalence of two clonal survival models by principal component analysis
International Nuclear Information System (INIS)
Lachet, Bernard; Dufour, Jacques
1976-01-01
The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr
Blanco, Celia; Ribó, Josep M; Hochberg, David
2015-02-01
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Energy Technology Data Exchange (ETDEWEB)
Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)
2011-12-15
We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)
Chiral recognition in separation science: an overview.
Scriba, Gerhard K E
2013-01-01
Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.
Some aspects of pion physics in the Nambu- and Jona-Lasinio model and chiral Lagrangians
International Nuclear Information System (INIS)
Tegen, R.
1994-03-01
I discuss here to what extent the original two-flavour NJL model (which has a minimal number of adjustable parameters) reproduces pion observables. In particular, the sensitivity of the recently calculated electromagnetic mass shift to these NJL parameters is pointed out and a new way to fix them is suggested. A new set of O(1/N c ) diagrams, which are the first meson loop corrections to the RPA, is presented and its effect on the pionic Goldstone mode, its electromagnetic form factor, weak decay constant, and on the constituent quark mass m is discusseed. The relation of these NJL model results to some other chiral Lagrangians is pointed out, where ever possible. The here presented higher order diagrams indicate how one could systematically generate the next-order diagrams. It is, however, questionable whether the simplistic but mathematically manageable contact interaction of the NJL model should be maintained also in these higher order diagrams. (orig.)
The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl
2011-11-01
The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)
Masses of the light hadrons in the chiral and cloudy bag models
International Nuclear Information System (INIS)
Saito, Koichi.
1983-10-01
The masses of the light hadrons except for the pion are calculated in the stable chiral and cloudy bag models with the massless or massive u, d quark and pion. Two difficulties in these models, i.e. the lack of stability and the divergence of the quark self-energy, are removed by taking account of a simple non-local quark-pion interaction. The effects of the finite size of the qq-bar pion and the behavior of the quark self-energy are discussed in detail. In our calculation the bag self-energy due to the pion has an important role in the origin of the N-Δ and the Σ-Λ mass differences. The baryon octet and decuplet masses are well reproduced by the present model. (author)
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Mohan, R.
1992-01-01
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals
Directory of Open Access Journals (Sweden)
Yogesh K. Murugesan
2010-12-01
Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.
International Nuclear Information System (INIS)
Bogolyubov, N.P.
1988-01-01
A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found
Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction
International Nuclear Information System (INIS)
Nagy, M.; Volkov, M.K.; Yudichev, V.L.
2000-01-01
In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described
Smith, Rachel A.; Somers, John
2016-01-01
This paper presents a model for developing an interdisciplinary principal preparation program, an MBA in Education Leadership, which integrates best practices in both education and business within an educational context. The paper addresses gaps that exist in many traditional principal preparation programs and provides an alternative model, which…
Topological and nontopological solutions for the chiral bag model with constituent quarks
International Nuclear Information System (INIS)
Sveshnikov, K.; Malakhov, I.; Khalili, M.; Fedorov, S.
2002-01-01
The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom
Chiral spin liquids at finite temperature in a three-dimensional Kitaev model
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2017-11-01
Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.
Analysis of η,KL→π+π-γ using chiral models
International Nuclear Information System (INIS)
Picciotto, C.
1992-01-01
The decay η→π + π - γ is analyzed using two different approaches that incorporate vector mesons in the chiral Lagrangian, one which treats vector mesons as massive Yang-Mills bosons and one which treats them as dynamical gauge bosons of a hidden symmetry. From these approaches a common way of adding vector mesons to that decay emerges. A rate and photon spectrum are generated which compare reasonably to the experimental data. The procedure is then adapted into a simple pole model and used to calculate the more complicated decay K L →π + π - γ. Notwithstanding some uncertainties in the model, a rate that matches the experimental one is obtained with reasonable values of SU(3)-breaking parameters
Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model
International Nuclear Information System (INIS)
Dorokhov, Alexander E.
2004-01-01
The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a μ hvp(1) , is estimated
Strange mesonic transition form factor in the chiral constituent quark model
International Nuclear Information System (INIS)
Ito, H.; Ramsey-Musolf, M.J.
1998-01-01
The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society
Effects of chirality and surface stresses on the bending and buckling of chiral nanowires
International Nuclear Information System (INIS)
Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng
2014-01-01
Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)
Nonlinear spectroscopic studies of chiral media
International Nuclear Information System (INIS)
Belkin, Mikhail Alexandrovich
2004-01-01
Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies
Energy Technology Data Exchange (ETDEWEB)
Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)
2006-04-07
A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.
Generalized chiral membrane dynamics
International Nuclear Information System (INIS)
Cordero, R.; Rojas, E.
2003-01-01
We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)
The solution of a chiral random matrix model with complex eigenvalues
International Nuclear Information System (INIS)
Akemann, G
2003-01-01
We describe in detail the solution of the extension of the chiral Gaussian unitary ensemble (chGUE) into the complex plane. The correlation functions of the model are first calculated for a finite number of N complex eigenvalues, where we exploit the existence of orthogonal Laguerre polynomials in the complex plane. When taking the large-N limit we derive new correlation functions in the case of weak and strong non-Hermiticity, thus describing the transition from the chGUE to a generalized Ginibre ensemble. We briefly discuss applications to the Dirac operator eigenvalue spectrum in quantum chromodynamics with non-vanishing chemical potential. This is an extended version of hep-th/0204068
Born term for high-energy meson-hadron collisions from QCD and chiral quark model
International Nuclear Information System (INIS)
Ochs, W.; Shimada, T.
1988-01-01
Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)
Axial charges of octet and decuplet baryons in a perturbative chiral quark model
Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.
2018-05-01
Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.
Low-temperature expansions and correlation functions of the Z3-chiral Potts model
International Nuclear Information System (INIS)
Han, N.S.; Honecker, A.
1993-04-01
Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z 3 -chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z n -spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z 3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length. (orig.)
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Chirality-controlled crystallization via screw dislocations.
Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric
2018-04-11
Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.
Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model
International Nuclear Information System (INIS)
Gerhold, Philipp Frederik Clemens
2009-01-01
Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling
International Nuclear Information System (INIS)
Ge Fengjun; Jiang Shaozhou; Wang Qing
2011-01-01
The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in this study. We found that the features of the model are qualitatively similar to those of Lane's previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound of the Z ' mass. We discuss the phase structure and possible walking behavior of the model. We obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p 4 . We show that although the walking effect reduces the S parameter to half its original value, it maintains an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions in its value.
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
Chiral Spirals from Discontinuous Chiral Symmetry
Kojo, Toru
2014-09-01
Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.
An asymptotic safety scenario for gauged chiral Higgs-Yukawa models
International Nuclear Information System (INIS)
Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca
2013-01-01
We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)
An asymptotic safety scenario for gauged chiral Higgs-Yukawa models
Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca
2013-12-01
We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Power Grid Modelling From Wind Turbine Perspective Using Principal Componenet Analysis
DEFF Research Database (Denmark)
Farajzadehbibalan, Saber; Ramezani, Mohammad Hossein; Nielsen, Peter
2015-01-01
In this study, we derive an eigenvector-based multivariate model of a power grid from the wind farm's standpoint using dynamic principal component analysis (DPCA). The main advantages of our model over previously developed models are being more realistic and having low complexity. We show that th...
Chirality in adsorption on solid surfaces.
Zaera, Francisco
2017-12-07
In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral
Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1989-01-01
The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs
Non-chiral, molecular model of negative Poisson ratio in two dimensions
International Nuclear Information System (INIS)
Wojciechowski, K W
2003-01-01
A two-dimensional model of tri-atomic molecules (in which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbour site-site interactions. It is shown that the cyclic trimers form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, case (iii) is an example
Description of a nucleon in nuclear matter using the chiral bag model
International Nuclear Information System (INIS)
Bunatyan, G.G.
1990-01-01
The chiral bag (cloudy bag) model, which contains an essentially nonlinear interaction of quarks with both the classical and quantum pion field, is extended for description of a nucleon in nuclear matter. The dependence on the density and temperature of the medium is studied. The pion field in nuclear matter differs considerably from the free field, and this leads to a modification of the nucleon bag. Increase of the density ρ and temperature T causes strengthening of the pion field and growth of its thermodynamic fluctuations. At sufficiently high densities ρ approx-gt ρ CB and temperatures T≥T cr this leads to instability of the three-quark nucleon bag. Under such conditions nuclear matter cannot be composed only of nucleons, and one should expect the appearance of a different, non-nucleon, phase. Estimates of the critical density and temperature are obtained: ρ CB ∼ (1.5-2)ρ 0 and T cr ∼ 200 MeV (where ρ 0 is the conventional nuclear density)
Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.
Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter
2018-05-11
Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Sengupta, S.K.; Boyle, J.S.
1993-05-01
Variables describing atmospheric circulation and other climate parameters derived from various GCMs and obtained from observations can be represented on a spatio-temporal grid (lattice) structure. The primary objective of this paper is to explore existing as well as some new statistical methods to analyze such data structures for the purpose of model diagnostics and intercomparison from a statistical perspective. Among the several statistical methods considered here, a new method based on common principal components appears most promising for the purpose of intercomparison of spatio-temporal data structures arising in the task of model/model and model/data intercomparison. A complete strategy for such an intercomparison is outlined. The strategy includes two steps. First, the commonality of spatial structures in two (or more) fields is captured in the common principal vectors. Second, the corresponding principal components obtained as time series are then compared on the basis of similarities in their temporal evolution
On the existence of optimal contract mechanisms for incomplete information principal-agent models
Balder, E.J.
1997-01-01
Two abstract results are given for the existence of optimal contract selection mechanisms in principal-agent models; by a suitable reformulation of the (almost) incentive compatibility constraint, they deal with both single- and multi-agent models. In particular, it is shown that the existence
Benincori, Tiziana; Appoloni, Giulio; Mussini, Patrizia Romana; Arnaboldi, Serena; Cirilli, Roberto; Quartapelle Procopio, Elsa; Panigati, Monica; Abbate, Sergio; Mazzeo, Giuseppe; Longhi, Giovanna
2018-05-02
Two new inherently chiral oligothiophenes characterized by the atropisomeric 3,3'-bithianaphtene scaffold functionalized with fused ring bithiophene derivatives, namely 4H-cyclopenta [2,1-b3:4b']dithiophene (CPDT) and dithieno[3,3-b:2',3'-d]pyrrole (DTP), were synthesized. The racemates were fully characterized and resolved into antipodes by enantioselective HPLC. The enantiomers were analyzed through different chiroptical techniques: electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) were employed to attribute the absolute configuration (AC). Comparison of experimental and calculated VCD spectra confirmed the DFT calculated conformational characteristics. The compound functionalized with two CPDT units was oxidized with FeCl3 and ECD and CPL of the resulting material were measured. Circularly Polarized Luminescence (CPL) was measured in order to verify if inherently chiral oligothiophenes could be promising systems for chiral photonics applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determining characteristic principal clusters in the “cluster-plus-glue-atom” model
International Nuclear Information System (INIS)
Du, Jinglian; Wen, Bin; 2NeT Lab, Wilfrid Laurier University, Waterloo, 75 University Ave West, Ontario N2L 3C5 (Canada))" data-affiliation=" (M2NeT Lab, Wilfrid Laurier University, Waterloo, 75 University Ave West, Ontario N2L 3C5 (Canada))" >Melnik, Roderick; Kawazoe, Yoshiyuki
2014-01-01
The “cluster-plus-glue-atom” model can easily describe the structure of complex metallic alloy phases. However, the biggest obstacle limiting the application of this model is that it is difficult to determine the characteristic principal cluster. In the case when interatomic force constants (IFCs) inside the cluster lead to stronger interaction than the interaction between the clusters, a new rule for determining the characteristic principal cluster in the “cluster-plus-glue-atom” model has been proposed on the basis of IFCs. To verify this new rule, the alloy phases in Cu–Zr and Al–Ni–Zr systems have been tested, and our results indicate that the present new rule for determining characteristic principal clusters is effective and reliable
Bryon, Jacob
2017-09-01
The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.
Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
A critical review of principal traffic noise models: Strategies and implications
Energy Technology Data Exchange (ETDEWEB)
Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in [Apex Level Standards and Industrial Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India); Maji, Sagar [Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India)
2014-04-01
The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.
Torons, chiral symmetry breaking and U(1) problem in σ-model and in gauge theories. Part 1
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1989-01-01
A novel class of self-dual solutions in σ-models and in SU(2) gauge theories is considered. The solution is defined on manifold with boundary, it has topological charge Q=1/2. The contribution of the corresponding fluctuations and toron configurations to chiral condensate is calculated. This contribution has finite nonzero value. The APS (Atiyah, Patodi, Singer) theorem for a manifold with a boundary is discussed for the O(3) σ model. The necessity of imposing non-local boundary conditions for the Dirac operator is explained. 30 refs.; 4 figs
Digital model analysis of the principal artesian aquifer, Savannah, Georgia area
Counts, H.B.; Krause, R.E.
1977-01-01
A digital model of the principal artesian aquifer has been developed for the Savannah, Georgia, area. The model simulates the response of the aquifer system to various hydrologic stresses. Model results of the water levels and water-level changes are shown on maps. Computations may be extended in time, indicating changes in pumpage were applied to the system and probable results calculated. Drawdown or water-level differences were computed, showing comparisons of different water management alternatives. (Woodard-USGS)
Principal Empowering Leadership and Teacher Innovative Behavior: A Moderated Mediation Model
Gkorezis, Panagiotis
2016-01-01
Purpose: The purpose of this paper is to contribute to extant literature by linking principal empowering leadership to teachers' innovative work behavior. By doing so, the author attempts to provide a more nuanced understanding of this relationship by examining a moderated mediation model which encompasses exploration as a mediator and role…
Informed Principal Model and Contract in Supply Chain with Demand Disruption Asymmetric Information
Directory of Open Access Journals (Sweden)
Huan Zhang
2016-01-01
Full Text Available Because of the frequency and disastrous influence, the supply chain disruption has caused extensive concern both in the industry and in the academia. In a supply chain with one manufacturer and one retailer, the demand of the retailer is uncertain and meanwhile may suffer disruption with a probability. Taking the demand disruption probability as the retailer’s asymmetric information, an informed principal model with the retailer as the principal is explored to make the contract. The retailer can show its information to the manufacturer through the contract. It is found out that the high-risk retailer intends to pretend to be the low-risk one. So the separating contract is given through the low-information-intensity allocation, in which the order quantity and the transferring payment for the low-risk retailer distort upwards, but those of high-risk retailer do not distort. In order to reduce the signaling cost which the low-risk retailer pays, the interim efficient model is introduced, which ends up with the order quantity and transferring payment distorting upwards again but less than before. In the numerical examples, with two different mutation probabilities, the informed principal contracts show the application of the informed principal model in the supply chain with demand disruption.
Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets
International Nuclear Information System (INIS)
Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi
2007-01-01
Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent
Hierarchical chirality transfer in the growth of Towel Gourd tendrils
Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua
2013-01-01
Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107
Chirality effect in disordered graphene ribbon junctions
International Nuclear Information System (INIS)
Long Wen
2012-01-01
We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)
On the p4-corrections to K → 3π decay amplitudes in nonlinear and linear chiral models
International Nuclear Information System (INIS)
Bel'kov, A.A.; Bolnn, G.; Lanyov, A.V.; Schaale, A.
1993-09-01
The calculations of isotopic amplitudes and their results for the direct CP-violating charge asymmetry in K ± → 3π decays within the nonlinear and linear (σ-model) chiral Lagrangian approach are compared with each other. It is shown, that the latter, taking into account intermediate scalar resonances, does not reproduce the p 4 -corrections of the nonlinear approach introduced by Gasser and Leutwyler, being saturated mainly by vector resonance exchange. The resulting differences concerning the CP violation effect are traced in some detail. (author). 31 refs., 1 tab
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.
1989-01-01
Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data
Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components
Matteo Manera; Angelo Marzullo
2003-01-01
Since oil is a non-renewable resource with a high environmental impact, and its most common use is to produce combustibles for electricity, reliable methods for modelling electricity consumption can contribute to a more rational employment of this hydrocarbon fuel. In this paper we apply the Principal Components (PC) method to modelling the load curves of Italy, France and Greece on hourly data of aggregate electricity consumption. The empirical results obtained with the PC approach are compa...
A Multi-task Principal Agent Model for Knowledge Contribution of Enterprise Staff
Directory of Open Access Journals (Sweden)
Chengyi LE
2016-10-01
Full Text Available According to the different behavior characteristics of knowledge contribution of enterprise employees, a multi-task principal-agent relationship of knowledge contribution between enterprise and employees is established based on principal-agent theory, analyzing staff’s knowledge contribution behavior of knowledge creation and knowledge participation. Based on this, a multi-task principal agent model for knowledge contribution of enterprise staff is developed to formulate the asymmetry of information in knowledge contribution Then, a set of incentive measures are derived from the theoretic model, aiming to prompt the knowledge contribution in enterprise. The result shows that staff’s knowledge creation behavior and positive participation behavior can influence and further promote each other Enterprise should set up respective target levels of both knowledge creation contribution and knowledge participation contribution and make them irreplaceable to each other. This work contributes primarily to the development of the literature on knowledge management and principal-agent theory. In addition, the applicability of the findings will be improved by further empirical analysis.
Vector mesons and chiral symmetry
International Nuclear Information System (INIS)
Ecker, G.
1989-01-01
The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)
International Nuclear Information System (INIS)
Kanno, Manabu; Kono, Hirohiko; Fujimura, Yuichi; Lin, Sheng H.
2010-01-01
We theoretically investigated the nonadiabatic couplings between optically induced π-electron rotations and molecular vibrations in a chiral aromatic molecule irradiated by a nonhelical, linearly polarized laser pulse. The results of wave packet dynamics simulation show that the vibrational amplitudes strongly depend on the initial rotation direction, clockwise or counterclockwise, which is controlled by the polarization direction of the incident pulse. This suggests that attosecond π-electron rotations can be observed by spectroscopic detection of femtosecond molecular vibrations.
Directory of Open Access Journals (Sweden)
Dan Wu
2009-06-01
Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).
The η′N interaction from a chiral effective model and η′-N bound state
International Nuclear Information System (INIS)
Sakai, Shuntaro; Jido, Daisuke
2015-01-01
The η ′ mass reduction in the nuclear medium is expected owing to the degeneracy of the pseudoscalar-singlet and octet mesons in the restoration of the spontaneous chiral symmetry breaking. In this study, we investigate the η ′ N 2body interaction, which is the fundamental interaction of the in-medium η ′ properties, using the linear sigma model as a chiral effective model. The η ′ N interaction in the linear sigma model comes from the scalar meson exchange with U A (1) symmetry effect and is found to be fairly strong attraction. The transition amplitude of η ′ N to the ηN channel is relatively small compared to that of elastic channel. From the analysis of the η ′ N 2body system, we find a η ′ N bound state with the binding energy 12.3-3.3iMeV. We expect that this strongly attractive two body interaction leads to a deep and attractive optical potential
Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model
International Nuclear Information System (INIS)
Tamagaki, R.; Tatsumi, T.
1984-01-01
In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter
Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops%引入Polyakov环路的手征模型中的涨落与相变
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.
The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice
Energy Technology Data Exchange (ETDEWEB)
Kallarackal, Jim
2011-04-28
Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the
The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice
International Nuclear Information System (INIS)
Kallarackal, Jim
2011-01-01
Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the
Directory of Open Access Journals (Sweden)
Christian NZENGUE PEGNET
2011-07-01
Full Text Available The recent financial turmoil has clearly highlighted the potential role of financial factors on amplification of macroeconomic developments and stressed the importance of analyzing the relationship between banks’ balance sheets and economic activity. This paper assesses the impact of the bank capital channel in the transmission of schocks in Europe on the basis of bank's balance sheet data. The empirical analysis is carried out through a Principal Component Analysis and in a Vector Error Correction Model.
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baozn; Chen Liewen
2007-01-01
Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations
Chiral topological insulator of magnons
Li, Bo; Kovalev, Alexey A.
2018-05-01
We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.
International Nuclear Information System (INIS)
Cuypers, F.
1989-01-01
The authors studies the phenomenological implications of the Chiral Colour model which allow him to derive experimental bounds on the axigluon mass or to predict deviations from the Standard Model. After a short introduction to the theory, the author examines the way it modifies the standard decay of quarkonium. Comparison with the observed lifetime of the upsilon allows him to exclude the existence of axigluons lighter than 9 GeV. (Others have since extended the work and were able to increase this limit to 25 GeV.) He then studies the Chiral Colour contribution to the hadronic cross-section in the electron-positron scattering and derive a conservative lower bound of 50 GeV for the axigluon mass. Finally, he predicts observable enhancements of the lifetime and rare decay channels of the Z O in the presence of light axigluons
Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.
Zhang, Ying; Ye, Jing; Liu, Min
2017-01-01
Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs
Chiral anomaly, bosonization and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Rego Monteiro, M.A. do.
1984-01-01
A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt
Chiral anomaly, bosonization, and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Monteiro, M.A.R.
1985-01-01
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators
International Nuclear Information System (INIS)
Bastianelli, F.
1991-01-01
We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)
International Nuclear Information System (INIS)
Zarzo, Manuel; Marti, Pau
2011-01-01
Research highlights: →Principal components analysis was applied to R s data recorded at 30 stations. → Four principal components explain 97% of the data variability. → The latent variables can be fitted according to latitude, longitude and altitude. → The PCA approach is more effective for gap infilling than conventional approaches. → The proposed method allows daily R s estimations at locations in the area of study. - Abstract: Measurements of global terrestrial solar radiation (R s ) are commonly recorded in meteorological stations. Daily variability of R s has to be taken into account for the design of photovoltaic systems and energy efficient buildings. Principal components analysis (PCA) was applied to R s data recorded at 30 stations in the Mediterranean coast of Spain. Due to equipment failures and site operation problems, time series of R s often present data gaps or discontinuities. The PCA approach copes with this problem and allows estimation of present and past values by taking advantage of R s records from nearby stations. The gap infilling performance of this methodology is compared with neural networks and alternative conventional approaches. Four principal components explain 66% of the data variability with respect to the average trajectory (97% if non-centered values are considered). A new method based on principal components regression was also developed for R s estimation if previous measurements are not available. By means of multiple linear regression, it was found that the latent variables associated to the four relevant principal components can be fitted according to the latitude, longitude and altitude of the station where data were recorded from. Additional geographical or climatic variables did not increase the predictive goodness-of-fit. The resulting models allow the estimation of daily R s values at any location in the area under study and present higher accuracy than artificial neural networks and some conventional approaches
Multi-particle structure in the Zn-chiral Potts models
International Nuclear Information System (INIS)
Gehlen, G. von; Honecker, A.
1992-10-01
We calculate the lowest translationally invariant levels of the Z 3 - and Z 4 -symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N≤12 and N≤10 sites, respectively, and extrapolating N→∞. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z n -charges Q=1, ..., n-1 (mass m Q ), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m Q =Qm 1 . Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P m =(1-2Q/n)Φ, where Φ is the chiral angle and Q is the Z n -charge of the respective particle. (orig.)
Steensma, M.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard
2007-01-01
This paper reports on determination of the intrinsic reaction kinetics in reactive extraction of chiral compounds. It is important to know the mass transfer rates and reaction kinetics separately for a reliable scale-up. A kinetic model is developed to interpret the experimental data from the
International Nuclear Information System (INIS)
Santos, R.P. dos.
1986-12-01
The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)
QCD and the chiral critical point
International Nuclear Information System (INIS)
Gavin, S.; Gocksch, A.; Pisarski, R.D.
1994-01-01
As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point
Asymmetric synthesis using chiral-encoded metal
Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander
2016-08-01
The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.
Machine learning of frustrated classical spin models. I. Principal component analysis
Wang, Ce; Zhai, Hui
2017-10-01
This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.
A Solvable Dynamic Principal-Agent Model with Linear Marginal Productivity
Directory of Open Access Journals (Sweden)
Bing Liu
2018-01-01
Full Text Available We study how to design an optimal contract which provides incentives for agent to put forth the desired effort in a continuous time dynamic moral hazard model with linear marginal productivity. Using exponential utility and linear production, three different information structures, full information, hidden actions and hidden savings, are considered in the principal-agent model. Applying the stochastic maximum principle, we solve the model explicitly, where the agent’s optimization problem becomes the principal’s problem of choosing an optimal contract. The explicit solutions to our model allow us to analyze the distortion of allocations. The main effect of hidden actions is a reduction of effort, but the a smaller effect is on the consumption allocation. In the hidden saving case, the consumption distortion almost vanishes but the effort distortion is expanded. In our setting, the agent’s optimal effort is also reduced with the decline of marginal productivity.
Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models
Wang, Quan
2012-01-01
Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which better exploits the complicated spatial structure of high-dimensional features. In this paper, we first review the basic ideas of PCA and kernel PCA. Then we focus on the reconstruction of pre-images for kernel PCA. We also give an introduction on how PCA is used in active shape models (ASMs), and discuss how kernel PCA can be applied ...
Silva, António; Urbano, Diana; Kim, Hyun-Chul
2018-02-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.
K → πι+ι- decays in the effective chiral lagrangian of the standard model
International Nuclear Information System (INIS)
Pich, A.; Rafael, E. de; Ecker, G.
1986-01-01
The decay amplitudes of K → πι + ι - transitions (ι = e or μ) are calculated in chiral perturbation theory to lowest non-trivial order. This includes one-loop contributions as well as contributions from all possible tree level counterterms to the corresponding order in momenta and meson masses. Only one combination of counterterm coupling constants appearing in the decay amplitudes remains unknown. Two possible solutions for this constant are found from a comparison with the experimentally known K + → π + e + e - decay rate. Predictions are then obtained for the rates of K + → π + μ + μ - , K S o → π o e + e - and K S o → π o μ + μ - decays as well as for the corresponding spectra in the invariant mass of the lepton pair. The CP-violating transition K L o → π o 'γ' → π o ι + ι - is also discussed. (Author)
International Nuclear Information System (INIS)
Plum, Eric; Zheludev, Nikolay I.
2015-01-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media
International Nuclear Information System (INIS)
Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee; Costa, Pedro; Borgnat, Pierre
2015-01-01
The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ CEP varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)
2015-09-15
The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)
Supersymmetric chiral electrodynamics as a renormalized theory
International Nuclear Information System (INIS)
Ansel'm, A.A.; Iogansen, A.A.
1991-01-01
It is well know that the QED of chiral fermions is a nonrenormalizable theory, inasmuch as the gauge current in it is not conserved because of the presence of an anomaly. It is evident that in this theory unitarity is also violated. The principal object of investigation in the present paper is supersymmetric chiral QED, supersymmetric QED is a renormalizable theory. This happens because the radiative corrections generate here a charged current of a chiral fermion that appears in the chiral (i.e., longitudinal) part of the vector supermultiplet. At first sight, the chiral part of the vector multiplet is unphysical and contains only supergauge degrees of freedom. However, this is valid only at the classical level, whereas, because of the anomaly, the radiative corrections lead to nonconservation of the gauge current, as a result of which the degrees of freedom associated with the chiral part of the vector multiplet become physical. On the other hand, owing to the nonconservation of the gauge charge, the apparently neutral fermion appearing int he chiral (longitudinal) part of the vector superfield becomes charged
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Chiralities of spiral waves and their transitions.
Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong
2013-06-01
The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression
Ling, X.; Snow, J. E.; Chin, W.
2017-12-01
The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The
International Nuclear Information System (INIS)
Zeeb, G.
2006-01-01
In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization
Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.
Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K
2018-02-27
Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.
Kahle, Kimberly A; Foley, Joe P
2007-06-01
The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.
Non-leptonic decays of K-mesons within the chiral quark model
International Nuclear Information System (INIS)
Bergan, A.E.
1996-01-01
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K o -anti K o was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K→φ, and a relatively small g 8 1/2 factor was found due to large subleading terms. In the third paper nonperturbative effects on the B K parameter were obtained. To order (G 3 ) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K→φ which included non-diagonal self-energy effects due to the s→d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K→φ transition was calculated. The result was then related to the physical K→2φ decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K→2φ. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q 6 and Q 8 the contribution was of the same size as ε/ε itself. 76 refs
International Nuclear Information System (INIS)
Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.
2010-01-01
We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.
Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry
2018-04-01
The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.
Directory of Open Access Journals (Sweden)
Rodrigo Reis Mota
2016-09-01
Full Text Available ABSTRACT: The aim of this research was to evaluate the dimensional reduction of additive direct genetic covariance matrices in genetic evaluations of growth traits (range 100-730 days in Simmental cattle using principal components, as well as to estimate (covariance components and genetic parameters. Principal component analyses were conducted for five different models-one full and four reduced-rank models. Models were compared using Akaike information (AIC and Bayesian information (BIC criteria. Variance components and genetic parameters were estimated by restricted maximum likelihood (REML. The AIC and BIC values were similar among models. This indicated that parsimonious models could be used in genetic evaluations in Simmental cattle. The first principal component explained more than 96% of total variance in both models. Heritability estimates were higher for advanced ages and varied from 0.05 (100 days to 0.30 (730 days. Genetic correlation estimates were similar in both models regardless of magnitude and number of principal components. The first principal component was sufficient to explain almost all genetic variance. Furthermore, genetic parameter similarities and lower computational requirements allowed for parsimonious models in genetic evaluations of growth traits in Simmental cattle.
On the τ(2)-model in the chiral Potts model and cyclic representation of the quantum group Uq(sl2)
International Nuclear Information System (INIS)
Roan Shishyr
2009-01-01
We identify the precise relationship between the five-parameter τ (2) -family in the N-state chiral Potts model and XXZ chains with U q (sl 2 )-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover a one-parameter family of L-operators in terms of the quantum group U q (sl 2 ). When N is odd, the N-state τ (2) -model can be regarded as the XXZ chain of U q (sl 2 ) cyclic representations with q N =1. The symmetry algebra of the τ (2) -model is described by the quantum affine algebra U q (sl 2 -hat) via the canonical representation. In general, for an arbitrary N, we show that the XXZ chain with a U q (sl 2 )-cyclic representation for q 2N = 1 is equivalent to two copies of the same N-state τ (2) -model. (fast track communication)
Non-leptonic decays of K-mesons within the chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Bergan, A E
1997-12-31
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.
Chiral discotics; expression and amplification of chirality
Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.
2003-01-01
In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic
DEFF Research Database (Denmark)
Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul
2015-01-01
amine product. Using 2-propylamine as the amine donor of the ω-transaminase reaction, gives acetone as a by-product, which in turn allows the coupling of the ω-transaminase reaction with the Oppenauer oxidation. The Oppenauer reaction converts secondary alcohols into ketones, and these can subsequently......In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral...... of this paper is to report the development of a mathematical model as a tool for the simulation and potential design of such a process for the production of a range of chiral amines. The mathematical model developed considers that each reaction is performed in a single ideally mixed isothermal reactor operating...
International Nuclear Information System (INIS)
Rho, M.
1982-01-01
As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Hernandez, Frank; Kose, Brad W.
2012-01-01
Principals' understanding and skills pertaining to diversity are important in leading diverse schools and preparing all students for a democratic and multicultural society. Although educational leadership scholars have theorized about exemplary leadership of and for diversity, a developmental perspective on principals' diversity or cultural…
Trajectory modeling of gestational weight: A functional principal component analysis approach.
Directory of Open Access Journals (Sweden)
Menglu Che
Full Text Available Suboptimal gestational weight gain (GWG, which is linked to increased risk of adverse outcomes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of Canadian pregnant women, our goals are to estimate the individual weight growth trajectory using sparsely collected bodyweight data, and to identify the factors affecting the weight change during pregnancy, such as prepregnancy body mass index (BMI, dietary intakes and physical activity. The first goal was achieved through functional principal component analysis (FPCA by conditional expectation. For the second goal, we used linear regression with the total weight gain as the response variable. The trajectory modeling through FPCA had a significantly smaller root mean square error (RMSE and improved adaptability than the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to facilitate real time monitoring and interventions of GWG. Our regression analysis showed that prepregnancy BMI had a high predictive value for the weight changes during pregnancy, which agrees with the published weight gain guideline.
Ewert, Ralf; Niemann, Rainer
2014-01-01
We derive determinants of tax avoidance by means of a multi-task principal-agent model. We extend prevailing models by integrating both corporate and individual income taxation as well as by including tax planning effort in the agentâ€™s action portfolio. Our model shows novel and apparently paradoxical results regarding the impact of increased tax rates on efforts, risks, and incentive schemes. First, the principalâ€™s after-tax profit can increase with a higher corporate tax rate. Second, t...
Speciation and gene flow between snails of opposite chirality.
Directory of Open Access Journals (Sweden)
Angus Davison
2005-09-01
Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
On chiral and non chiral 1D supermultiplets
International Nuclear Information System (INIS)
Toppan, Francesco
2011-01-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Xu, Lihua; Wubbena, Zane; Stewart, Trae
2016-01-01
Purpose: The purpose of this paper is to investigate the factor structure and the measurement invariance of the Multifactor Leadership Questionnaire (MLQ) across gender of K-12 school principals (n=6,317) in the USA. Design/methodology/approach: Nine first-order factor models and four second-order factor models were tested using confirmatory…
Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui
2017-09-11
Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.
PumpKin: A tool to find principal pathways in plasma chemical models
Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.
2014-10-01
PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Mechanical separation of chiral dipoles by chiral light
International Nuclear Information System (INIS)
Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W
2013-01-01
We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)
International Nuclear Information System (INIS)
Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun
2010-01-01
In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method
Pakpahan, Eka K. A.; Iskandar, Bermawi P.
2015-12-01
Mining industry is characterized by a high operational revenue, and hence high availability of heavy equipment used in mining industry is a critical factor to ensure the revenue target. To maintain high avaliability of the heavy equipment, the equipment's owner hires an agent to perform maintenance action. Contract is then used to control the relationship between the two parties involved. The traditional contracts such as fixed price, cost plus or penalty based contract studied is unable to push agent's performance to exceed target, and this in turn would lead to a sub-optimal result (revenue). This research deals with designing maintenance contract compensation schemes. The scheme should induce agent to select the highest possible maintenance effort level, thereby pushing agent's performance and achieve maximum utility for both parties involved. Principal agent theory is used as a modeling approach due to its ability to simultaneously modeled owner and agent decision making process. Compensation schemes considered in this research includes fixed price, cost sharing and revenue sharing. The optimal decision is obtained using a numerical method. The results show that if both parties are risk neutral, then there are infinite combination of fixed price, cost sharing and revenue sharing produced the same optimal solution. The combination of fixed price and cost sharing contract results in the optimal solution when the agent is risk averse, while the optimal combination of fixed price and revenue sharing contract is obtained when agent is risk averse. When both parties are risk averse, the optimal compensation scheme is a combination of fixed price, cost sharing and revenue sharing.
Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan
2016-10-01
Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.
Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods
Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.
2011-12-01
Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion
Directory of Open Access Journals (Sweden)
Jinlu Sheng
2016-07-01
Full Text Available To effectively extract the typical features of the bearing, a new method that related the local mean decomposition Shannon entropy and improved kernel principal component analysis model was proposed. First, the features are extracted by time–frequency domain method, local mean decomposition, and using the Shannon entropy to process the original separated product functions, so as to get the original features. However, the features been extracted still contain superfluous information; the nonlinear multi-features process technique, kernel principal component analysis, is introduced to fuse the characters. The kernel principal component analysis is improved by the weight factor. The extracted characteristic features were inputted in the Morlet wavelet kernel support vector machine to get the bearing running state classification model, bearing running state was thereby identified. Cases of test and actual were analyzed.
Sensitive criterion for chirality; Chiral doublet bands in 104Rh59
International Nuclear Information System (INIS)
Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.
2003-01-01
A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh
Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F
2012-09-01
Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.
2015-01-01
The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for “normal” left-hand-helical filaments and below pH 2 for “reversed” right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218–289) prion, and a short polypeptide fragment of transthyretin, TTR (105–115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases. PMID:24484302
Kurouski, Dmitry; Lu, Xuefang; Popova, Ludmila; Wan, William; Shanmugasundaram, Maruda; Stubbs, Gerald; Dukor, Rina K; Lednev, Igor K; Nafie, Laurence A
2014-02-12
The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.
Energy Technology Data Exchange (ETDEWEB)
Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1991-04-18
We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).
International Nuclear Information System (INIS)
Kondratyuk, S.; Kubodera, K.; Myhrer, F.; Scholten, O.
2004-01-01
The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: (1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and (2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the Δ resonance, including its dressing with meson loops, is discussed in some detail and found to be small
Out of equilibrium phase transitions and a toy model for disoriented chiral condensates
International Nuclear Information System (INIS)
Bedaque, P.F.; Das, A.
1993-07-01
We study the dynamics of a second order phase transition in a situation that mimics a sudden quench to a temperature below the critical temperature in a model with dynamical symmetry breaking. In particular we show that the domains of correlated values of the condensate grow as √t and that this result seems to be largely model independent. (author). 9 refs
National Oceanic and Atmospheric Administration, Department of Commerce — Principal Ports are defined by port limits or US Army Corps of Engineers (USACE) projects, these exclude non-USACE projects not authorized for publication. The...
International Nuclear Information System (INIS)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu
2010-01-01
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Energy Technology Data Exchange (ETDEWEB)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)
2010-04-23
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
A chiral quark model for meson electroproduction in the S11 partial wave
International Nuclear Information System (INIS)
Golli, B.; Sirca, S.
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)
A quantitative analysis of instabilities in the linear chiral sigma model
International Nuclear Information System (INIS)
Nemes, M.C.; Nielsen, M.; Oliveira, M.M. de; Providencia, J. da
1990-08-01
We present a method to construct a complete set of stationary states corresponding to small amplitude motion which naturally includes the continuum solution. The energy wheighted sum rule (EWSR) is shown to provide for a quantitative criterium on the importance of instabilities which is known to occur in nonasymptotically free theories. Out results for the linear σ model showed be valid for a large class of models. A unified description of baryon and meson properties in terms of the linear σ model is also given. (author)
Green-Schwarz superstring as an asymmetric chiral field sigma model
International Nuclear Information System (INIS)
Isaev, A.P.; Ivanov, E.A.
1988-01-01
A new class of two-dimensional σ-models of the Wess-Zumino-Witten type is constructed. The target manifold of these models is coset space GxG/G - , where supergroup G is obtained by contraction from an arbitrary semisimple Lie supergroup and G - is some abelian supergroup of translations in GxG. It is shown that the equations of motion following from the Wess-Zumino-Witten type action of these models admit a zero-curvature representation. 16 refs
Leaders in Education Program: The Singapore Model for Developing Effective Principal-Ship Capability
Jayapragas, Prashant
2016-01-01
In this era of constant change, principals need to be able to handle high levels of complexity in its governance and policy implementation. Planning ahead is not sufficient; being able to interpret and plan the future into strategic responses is a huge focus in educational development today. The Leaders in Education Program (LEP) is a 6-month…
Light-front realization of chiral symmetry breaking
International Nuclear Information System (INIS)
Itakura, Kazunori; Maedan, Shinji
2001-01-01
We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-09-01
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
Pionic and radiative decays of vector mesons in the chiral bag model
International Nuclear Information System (INIS)
Araki, M.; Osaka Univ.; Council for Scientific and Industrial Research, Pretoria; Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences)
1986-01-01
It is shown that a mechanism, within the framework of the cloudy bag model, analogous to that for e + e - ->2γ in QED accounts qualitatively for the decays p->2π, ω->πγ and p->πγ with a bag radii 0.8-1.0 fm, and averaged momenta for decay particles. For the radiative decays, the process identical to that in the vector-dominance model gives about 60% of the total calculated width. It also explains small decay widths previously calculated, using the single quark transition process. (orig.)
Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun
2017-11-01
Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.
1987-01-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Chiral-model of weak-interaction form factors and magnetic moments of octet baryons
International Nuclear Information System (INIS)
Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.
1989-01-01
For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons
Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model
International Nuclear Information System (INIS)
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2002-01-01
We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model
The ring structure of chiral operators for minimal models coupled to 2D gravity
International Nuclear Information System (INIS)
Sarmadi, M.H.
1992-09-01
The BRST cohomology ring for (p,q) models coupled to gravity is discussed. In addition to the generators of the ghost number zero ring, the existence of a generator of ghost number - 1 and its inverse is proved and used to construct the entire ring. Some comments are made regarding the algebra of the vector fields on the ring and the supersymmetric extension. (author). 13 refs
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
International Nuclear Information System (INIS)
Kulshreshtha, U.
1998-01-01
A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)
Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang
2018-01-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Zhu, Hanyu
2018-02-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Van Dou, Mbulelo Gratitude
2004-01-01
In South Africa, little is documented on the strategies for addressing conflicts in schools and on the problems that are caused by lack of viable conflict management strategies in schools. Principals exist in a world of problems that always have the potential to result in serious conflicts. Their abilities to solve problems and manage conflict efficiently and effectively are important measures of their school leadership. Current literature in conflict management, particularly in d...
Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules.
Barabás, Béla; Kurdi, Róbert; Zucchi, Claudia; Pályi, Gyula
2018-07-01
Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry. © 2018 Wiley Periodicals, Inc.
Geometrical approach to central molecular chirality: a chirality selection rule
Capozziello, S.; Lattanzi, A.
2004-01-01
Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...
International Nuclear Information System (INIS)
Jacobson, Orit; Laky, Desideriu; Carlson, Kathryn E.; Elgavish, Sharona; Gozin, Michael; Even-Sapir, Einat; Leibovitc, Ilan; Gutman, Mordechai; Chisin, Roland; Katzenellenbogen, John A.; Mishani, Eyal
2006-01-01
Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/μmol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer
Strange baryons in a chiral quark-meson model. Pt. 2
International Nuclear Information System (INIS)
McGovern, J.A.; Birse, M.C.
1990-01-01
The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)
Hallin, M.; Hörmann, S.; Piegorsch, W.; El Shaarawi, A.
2012-01-01
Principal Components are probably the best known and most widely used of all multivariate analysis techniques. The essential idea consists in performing a linear transformation of the observed k-dimensional variables in such a way that the new variables are vectors of k mutually orthogonal
Energy Technology Data Exchange (ETDEWEB)
Zeeb, G.
2006-07-01
In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the
Feng, Ssj; Sechopoulos, I
2012-06-01
To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.
Incentives Research for Enterprises to Participate in VEP in the Multitask Principal-Agent Model
Directory of Open Access Journals (Sweden)
Mo Sha
2015-01-01
Full Text Available As a comprehensive environmental management system with a higher statutory environmental standard, Voluntary Environmental Program has become a trend of international environmental policy and the essence of it is a multi-agency task, in which government (principal entrust enterprise (proxy develop eco- nomic in the context of protecting the environment. Moreover, government is in a dominant position in the ef- fective implementation of voluntary environmental program, and their incentive to set different targets, under the voluntary environmental program, play a key role for the effective implementation of voluntary environ- mental program.
Training software for chiral separations in capillary electrophoresis
Reijenga, J.C.; Ingelse, B.A.; Everaerts, F.M.
1997-01-01
A previously published steady-state simulation program for CE was extended with a sub-menu for chiral interaction. The interaction was modelled with a hypothetical (neutral) selector with properties similar to cyclodextrins. A three-type chiral interaction model was implemented in such a way that it
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Energy Technology Data Exchange (ETDEWEB)
Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)
2016-03-23
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Molecular-Level Design of Heterogeneous Chiral Catalysis
International Nuclear Information System (INIS)
Zaera, Francisco
2012-01-01
The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration
Chiral near-fields around chiral dolmen nanostructure
International Nuclear Information System (INIS)
Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue
2017-01-01
Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)
Directory of Open Access Journals (Sweden)
James M. Cheverud
2007-03-01
Full Text Available Comparisons of covariance patterns are becoming more common as interest in the evolution of relationships between traits and in the evolutionary phenotypic diversification of clades have grown. We present parallel analyses of covariance matrix similarity for cranial traits in 14 New World Monkey genera using the Random Skewers (RS, T-statistics, and Common Principal Components (CPC approaches. We find that the CPC approach is very powerful in that with adequate sample sizes, it can be used to detect significant differences in matrix structure, even between matrices that are virtually identical in their evolutionary properties, as indicated by the RS results. We suggest that in many instances the assumption that population covariance matrices are identical be rejected out of hand. The more interesting and relevant question is, How similar are two covariance matrices with respect to their predicted evolutionary responses? This issue is addressed by the random skewers method described here.
Chiral equations and fiber bundles
International Nuclear Information System (INIS)
Mateos, T.; Becerril, R.
1992-01-01
Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)
International Nuclear Information System (INIS)
Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin
2010-01-01
Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)
Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke
2018-02-01
A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
Relativistic Chiral Kinetic Theory
International Nuclear Information System (INIS)
Stephanov, Mikhail
2016-01-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Relativistic Chiral Kinetic Theory
Energy Technology Data Exchange (ETDEWEB)
Stephanov, Mikhail
2016-12-15
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Energy Technology Data Exchange (ETDEWEB)
Becher,
2002-08-08
After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.
Generalized chiral perturbation theory
International Nuclear Information System (INIS)
Knecht, M.; Stern, J.
1994-01-01
The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs
Influence of Chirality in Ordered Block Copolymer Phases
Prasad, Ishan; Grason, Gregory
2015-03-01
Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.
International Nuclear Information System (INIS)
Sharpe, S.R.
1992-04-01
I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions
Directory of Open Access Journals (Sweden)
Delong Feng
2016-05-01
Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.
Broken chiral symmetry and the structure of hadrons
International Nuclear Information System (INIS)
Spence, W.L.
1982-01-01
The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown
Chiral charge erasure via thermal fluctuations of magnetic helicity
International Nuclear Information System (INIS)
Long, Andrew J.; Sabancilar, Eray
2016-01-01
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.
Directory of Open Access Journals (Sweden)
Shen Wenbin
2013-05-01
Full Text Available The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the mass redistribution. In this study, the hydrologically induced variations are estimated on the basis of satellite gravimetric data, including those from satellite laser ranging (SLR and gravity recovery and climate experiment (GRACE, and hydrological models from global land data assimilation system (GLDAS. The longitude variations of a and b are mainly related to the variations of the spherical harmonic coefficients C¯22 and S¯22, which have been estimated to be consisting annual variations of about 1. 6 arc seconds and 1. 8 arc seconds, respectively, from gravity data. This result is confirmed by land surface water storage provided by the GLDAS model. If the atmospheric and oceanic signals are removed from the spherical harmonic coefficients C¯21 and S¯21, the agreement of the orientation series for c becomes poor, possibly due to the inaccurate background models used in pre-processing of the satellite gravimetric data. Determination of the orientation variations may provide a better understanding of various phenomena in the study of the rotation of a tri-axial Earth.
Directory of Open Access Journals (Sweden)
Yihang Yin
2015-08-01
Full Text Available Wireless sensor networks (WSNs have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA. First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
Patterns of symmetry breaking in chiral QCD
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
The Utility of Freedom: A Principal-Agent Model for Unconventional Warfare
2011-06-01
Lanchester Model of Guerrilla Warfare,‖ Operations Research 10, no. 6 (December 1962): 818–827; William A. Niskanen, ―Review: The Economics of Insurgency...http://galenet.galegroup.com/servlet/DDRS?locID=navalps. Deitchman, S. J. ―A Lanchester Model of Guerrilla Warfare.‖ Operations Research 10, no
Autoamplification of molecular chirality through the induction of supramolecular chirality
van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.
2014-01-01
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The
Chiral rings and anomalies in supersymmetric gauge theory
International Nuclear Information System (INIS)
Cachazo, Freddy; Witten, Edward; Seiberg, Nathan; Douglas, Michael R.
2002-01-01
Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
Chiral anomalies; gauge theories; bundles; connections; quantum ﬁeld ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a ﬁxed background connection. ... Current Issue : Vol.
Silver Films with Hierarchical Chirality.
Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai
2017-07-17
Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral anomalies and differential geometry
International Nuclear Information System (INIS)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references
Mirror fermions in chiral gauge theories
International Nuclear Information System (INIS)
Montvay, I.
1992-06-01
Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)
Solving the Principal - Agent Problem in Iraq: Economic Incentives Create a New Model for Security
National Research Council Canada - National Science Library
Cole, Verlan R; Cramer, Jayson L; Hollingsworth, L. S
2007-01-01
.... Using the Alaska Permanent Fund dividend as a potential model for Iraq, two key criteria were formulated for comparison and contrast with other alternatives currently available to the Iraqi government...
Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.
Matsumoto, Y; Griffin, M J
2001-01-01
Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.
International Nuclear Information System (INIS)
Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.
2016-01-01
We compute the hadronic matrix elements of the four-quark operators relevant for K 0 −K̄ 0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f =2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Directory of Open Access Journals (Sweden)
Ani Shabri
2014-01-01
Full Text Available Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI, has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
Molecular-level Design of Heterogeneous Chiral Catalysts
Energy Technology Data Exchange (ETDEWEB)
Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside
2013-04-28
Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111
Chiral Synthons in Pesticide Syntheses
Feringa, Bernard
1988-01-01
The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the
Introduction. Use and Limitations of the Principal-Agent model in Studying the European Union
Delreux, Tom; Adriaensen, J.; Delreux, Tom; Adriaensen, Johan
2017-01-01
Given the omnipresence of delegation and control in the EU, the principal–agent model has become a popular analytical framework to study the design and effects of delegation and control. Yet, with the ascendance of governance as a mode of decision-making, the contemporary relevance of the
40 CFR 60.2570 - What are the principal components of the model rule?
2010-07-01
... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c... and Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced...) Recordkeeping and reporting. (j) Definitions. (k) Tables. Model Rule—Increments of Progress ...
Towards the generation of a parametric foot model using principal component analysis: A pilot study.
Scarton, Alessandra; Sawacha, Zimi; Cobelli, Claudio; Li, Xinshan
2016-06-01
There have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate. The development of parametric models by means of the Principle Component Analysis (PCA) represents an appealing solution. In this study PCA has been applied to the feet of a small cohort of diabetic and healthy subjects, in order to evaluate the possibility of developing parametric foot models, and to use them to identify variations and similarities between the two populations. Both the skin and the first metatarsal bones have been examined. Besides the reduced sample of subjects considered in the analysis, results demonstrated that the method adopted herein constitutes a first step towards the realization of a parametric foot models for biomechanical analysis. Furthermore the study showed that the methodology can successfully describe features in the foot, and evaluate differences in the shape of healthy and diabetic subjects. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Gudiksen, P.H.; Walton, J.J.; Alpert, D.J.; Johnson, J.D.
1982-01-01
This work explores the use of principal components analysis coupled to three-dimensional atmospheric transport and dispersion models for evaluating the environmental consequences of reactor accidents. This permits the inclusion of meteorological data from multiple sites and the effects of topography in the consequence evaluation; features not normally included in such analyses. The technique identifies prevailing regional wind patterns and their frequencies for use in the transport and dispersion calculations. Analysis of a hypothetical accident scenario involving a release of radioactivity from a reactor situated in a river valley indicated the technique is quite useful whenever recurring wind patterns exist, as is often the case in complex terrain situations. Considerable differences were revealed in a comparison with results obtained from a more conventional Gaussian plume model using only the reactor site meteorology and no topographic effects
Holographic Chiral Magnetic Spiral
International Nuclear Information System (INIS)
Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung
2010-06-01
We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)
Model features as the basis of preparation of boxers individualization principal level (elite
Directory of Open Access Journals (Sweden)
O.J. Pavelec
2013-10-01
Full Text Available Purpose to improve the system of training boxers of higher categories (elite. Individualization of the training process using the model characteristics special physical preparedness. Materials : The study was conducted during 2000-2010. Participated boxers national team of Ukraine in the amount of 43 people. Of those honored masters of sport 6, masters of sports of international class 16, masters of sports 21. The average age of the athletes 23.5 years. Results : justified and features a specially designed model of physical fitness boxing class. It is established that the boxers middle weight classes (64 75 kg have an advantage over other boxers weight categories (light and after a hard in the development of speed and strength endurance. The presented model characteristics can guide the professional fitness boxing (elite, as representatives of the sport. Conclusions : It is established that the structure of the special physical training boxers depends on many components, such as weight category, tactical fighter role, skill level, stage of preparation.
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Chiroptical studies on supramolecular chirality of molecular aggregates.
Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko
2015-10-01
The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Cuypers, F.
1990-01-01
Chiral colour is considered in a general framework where the coupling constants associated with each SU(3) component are allowed to be different. To reproduce QCD at low energy, gluons and axigluons cannot then be maximally mixed. Present data form e + e - colliders contrains the axigluon mass to values between 50 GeV and 375 GeV whilst the mixing angle is bounded by 13deg and 45deg. The lower limit of the axigluon mass is a definite bound at 90% C.L., whereas the upper limit only applies if chiral colour is to explain the anomalously high rates of hadron production at TRISTAN. (orig.)
Physical properties of the chiral quantum baryon
International Nuclear Information System (INIS)
Mignaco, A.J.; Wulck, S.
1989-01-01
It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt
Norman Mora, E
1994-01-01
"In this article we analyze the different demographic patterns defining the population in the province of Alicante [Spain]. The behaviour of the demographic factors in the past and in the present is studied here, and a series of models are put into practice in order to foresee the future pattern of population.... The result shows either the effect of a possible ageing in an already aged population, as is the case of the province of Alicante, or what the job market would have to endure if the above mentioned ageing took place, increased by the possibility of an inmigration of an older population." (SUMMARY IN ENG AND FRE) excerpt
A Fault Prognosis Strategy Based on Time-Delayed Digraph Model and Principal Component Analysis
Directory of Open Access Journals (Sweden)
Ningyun Lu
2012-01-01
Full Text Available Because of the interlinking of process equipments in process industry, event information may propagate through the plant and affect a lot of downstream process variables. Specifying the causality and estimating the time delays among process variables are critically important for data-driven fault prognosis. They are not only helpful to find the root cause when a plant-wide disturbance occurs, but to reveal the evolution of an abnormal event propagating through the plant. This paper concerns with the information flow directionality and time-delay estimation problems in process industry and presents an information synchronization technique to assist fault prognosis. Time-delayed mutual information (TDMI is used for both causality analysis and time-delay estimation. To represent causality structure of high-dimensional process variables, a time-delayed signed digraph (TD-SDG model is developed. Then, a general fault prognosis strategy is developed based on the TD-SDG model and principle component analysis (PCA. The proposed method is applied to an air separation unit and has achieved satisfying results in predicting the frequently occurred “nitrogen-block” fault.
Chirality: from QCD to condensed matter
International Nuclear Information System (INIS)
Kharzeev, D.
2015-01-01
This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Guo, H; Wang, T; Louie, P K K
2004-06-01
Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
Chirality in molecular collision dynamics
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
Insight into the chiral induction in supramolecular stacks through preferential chiral salvation
George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.
2011-01-01
Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation
Energy Technology Data Exchange (ETDEWEB)
Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))
1994-01-01
Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)
Abbate, Sergio; Longhi, Giovanna; Gangemi, Fabrizio; Gangemi, Roberto; Superchi, Stefano; Caporusso, Anna Maria; Ruzziconi, Renzo
2011-10-01
The IR and Near infrared (NIR) vibrational circular dichroism (VCD) spectra of molecules endowed with noncentral chirality have been investigated. Data for fundamental, first, and second overtone regions of (S)-2,3-pentadiene, exhibiting axial chirality, and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate, exhibiting planar chirality have been measured and analyzed. The analysis of NIR and IR VCD spectra was based on the local-mode model and the use of density functional theory (DFT), providing mechanical and electrical anharmonic terms for all CH-bonds. The comparison of experimental and calculated spectra is satisfactory and allows one to monitor fine details in the asymmetric charge distribution in the molecules: these details consist in the harmonic frequencies, in the principal anharmonicity constants, in both the atomic polar and axial tensors and in their first and second derivatives with respect to the CH-stretching coordinates. Copyright © 2011 Wiley-Liss, Inc.
Chiral Lagrangians and quark condensate in nuclei
International Nuclear Information System (INIS)
Delorme, J.; Chanfray, G.; Ericson, M.
1996-03-01
The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)
Inoue, K; Ochi, H; Taketsuka, M; Saito, H; Sakurai, K; Ichihashi, N; Iwatsuki, K; Kokubo, S
2008-05-01
A systematic analysis was carried out by using response surface methodology to create a quantitative model of the synergistic effects of conditions in a continuous freezer [mix flow rate (L/h), overrun (%), cylinder pressure (kPa), drawing temperature ( degrees C), and dasher speed (rpm)] on the principal constituent parameters of ice cream [rate of fat destabilization (%), mean air cell diameter (mum), and mean ice crystal diameter (mum)]. A central composite face-centered design was used for this study. Thirty-one combinations of the 5 above-mentioned freezer conditions were designed (including replicates at the center point), and ice cream samples were manufactured and examined in a continuous freezer under the selected conditions. The responses were the 3 variables given above. A quadratic model was constructed, with the freezer conditions as the independent variables and the ice cream characteristics as the dependent variables. The coefficients of determination (R(2)) were greater than 0.9 for all 3 responses, but Q(2), the index used here for the capability of the model for predicting future observed values of the responses, was negative for both the mean ice crystal diameter and the mean air cell diameter. Therefore, pruned models were constructed by removing terms that had contributed little to the prediction in the original model and by refitting the regression model. It was demonstrated that these pruned models provided good fits to the data in terms of R(2), Q(2), and ANOVA. The effects of freezer conditions were expressed quantitatively in terms of the 3 responses. The drawing temperature ( degrees C) was found to have a greater effect on ice cream characteristics than any of the other factors.
Critical constraints on chiral hierarchies
International Nuclear Information System (INIS)
Chivukula, R.S.; Golden, M.; Simmons, E.H.
1993-01-01
Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB
Detecting the chirality for coupled quantum dots
International Nuclear Information System (INIS)
Cao Huijuan; Hu Lian
2008-01-01
We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
Elimination of the Landau ghost from chiral solitons
International Nuclear Information System (INIS)
Hartmann, J.; Beck, F.; Bentz, W.
1994-01-01
We show a practical way based on the Kaellen-Lehmann representation for the two-point functions to eliminate the instability of the vacuum against formation of small sized meson configurations in the chiral σ model
Sum-Frequency Generation from Chiral Media and Interfaces
Energy Technology Data Exchange (ETDEWEB)
Ji, Na [Univ. of California, Berkeley, CA (United States)
2006-02-13
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Sum-Frequency Generation from Chiral Media and Interfaces
International Nuclear Information System (INIS)
Ji, Na
2006-01-01
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers
Goldstone bosons in a crystalline chiral phase
Energy Technology Data Exchange (ETDEWEB)
Schramm, Marco
2017-07-24
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Goldstone bosons in a crystalline chiral phase
International Nuclear Information System (INIS)
Schramm, Marco
2017-01-01
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Dynamics of inhomogeneous chiral condensates
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
International Nuclear Information System (INIS)
Adler, S.L.
1999-01-01
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Liu Yihua [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China); Jin Maojun [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China); Gui Wenjun [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China); Cheng Jingli [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China); Guo Yirong [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China); Zhu Guonian [Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029 (China)]. E-mail: zhugn@zju.edu.cn
2007-05-22
A novel procedure for parathion hapten design is described. The optimal antigen for parathion was selected after molecular modeling studies of six types of potentially immunizing haptens with the aim to identify the best mimicking target analyte. Heterologous competitive indirect enzyme-linked immunosorbent assay (ELISA) was developed after screening a battery of competitors as coating antigens. The relationship between the heterology degree of the competitor and the resulting immunoassay detectability was investigated according to the electronic similarities of the competitor haptens and the target analyte. Molecular modeling and principal component analysis were performed to understand the electronic distribution and steric parameters of the haptens at their minimum energetic levels. The results suggested that the competitors should have a high heterology to produce assays with good detectability values. An indirect competitive ELISA was finally selected for further investigation. The immunoassay had an IC{sub 50} value of 4.79 ng mL{sup -1} and a limit of detection of 0.31 ng mL{sup -1}. There was little or no cross-reactivity to similar compounds tested except for the insecticide parathion-methyl, which showed a cross-reactivity of 7.8%.
International Nuclear Information System (INIS)
Sevrin, Alexander; Staessens, Wieland; Wijns, Alexander
2008-01-01
We investigate N = (2, 2) supersymmetric nonlinear σ-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N = 2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S 3 x S 1 . The duality transformations provide e.g new examples of coisotropic A-branes on Kaehler manifolds (which are not necessarily hyper-Kaehler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.
Non-perturbative chiral corrections for lattice QCD
International Nuclear Information System (INIS)
Thomas, A.W.; Leinweber, D.B.; Lu, D.H.
2002-01-01
We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)
Energy Technology Data Exchange (ETDEWEB)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)
2017-03-15
The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)
Chiral magnetic effect of light
Hayata, Tomoya
2018-05-01
We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.
Chiral Responsive Liquid Quantum Dots.
Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing
2017-08-01
How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li
2013-01-01
A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.
Cell chirality: emergence of asymmetry from cell culture.
Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi
2016-12-19
Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
Chiral Biomarkers in Meteorites
Hoover, Richard B.
2010-01-01
The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be
Identifying chiral bands in real nuclei
International Nuclear Information System (INIS)
Shirinda, O.; Lawrie, E.A.
2012-01-01
The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)
Chiral damping of magnetic domain walls
Jué , Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2015-01-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Realization of chiral symmetry in the ERG
International Nuclear Information System (INIS)
Echigo, Yoshio; Igarashi, Yuji
2011-01-01
We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Female Traditional Principals and Co-Principals: Experiences of Role Conflict and Job Satisfaction
Eckman, Ellen Wexler; Kelber, Sheryl Talcott
2010-01-01
This paper presents a secondary analysis of survey data focusing on role conflict and job satisfaction of 102 female principals. Data were collected from 51 female traditional principals and 51 female co-principals. By examining the traditional and co-principal leadership models as experienced by female principals, this paper addresses the impact…
International Nuclear Information System (INIS)
Araujo, Janeo Severino C. de; Dantas, Carlos Costa; Santos, Valdemir A. dos; Souza, Jose Edson G. de; Luna-Finkler, Christine L.
2009-01-01
The fluid dynamic behavior of riser of a cold flow model of a Fluid Catalytic Cracking Unit (FCCU) was investigated. The experimental data were obtained by the nuclear technique of gamma transmission. A gamma source was placed diametrically opposite to a detector in any straight section of the riser. The gas-solid flow through riser was monitored with a source of Americium-241 what allowed obtaining information of the axial solid concentration without flow disturbance and also identifying the dependence of this concentration profile with several independent variables. The MatLab R and Statistica R software were used. Statistica tool employed was the Principal Components Analysis (PCA), that consisted of the job of the data organization, through two-dimensional head offices to allow extract relevant information about the importance of the independent variables on axial solid concentration in a cold flow riser. The variables investigated were mass flow rate of solid, mass flow rate of gas, pressure in the riser base and the relative height in the riser. The first two components reached about 98 % of accumulated percentage of explained variance. (author)
Energy Technology Data Exchange (ETDEWEB)
Garron, Nicolas [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,Brownlow Hill, Liverpool, L69 3BX (United Kingdom); Hudspith, Renwick J. [Department of Physics and Astronomy, York University,4700 Keele Street, Toronto, Ontario, M3J 1P3 (Canada); Lytle, Andrew T. [SUPA, School of Physics and Astronomy, University of Glasgow,University Avenue, Glasgow, G12 8QQ (United Kingdom); Collaboration: The RBC/UKQCD collaboration
2016-11-02
We compute the hadronic matrix elements of the four-quark operators relevant for K{sup 0}−K̄{sup 0} mixing beyond the Standard Model. Our results are from lattice QCD simulations with n{sub f}=2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Simplified chiral superfield propagators for chiral constant mass superfields
International Nuclear Information System (INIS)
Srivastava, P.P.
1983-01-01
Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt
Chiral symmetry restoration and quasi-elastic electron-nucleus scattering
International Nuclear Information System (INIS)
Henley, E.M.; Krein, G.
1989-01-01
Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking
International Nuclear Information System (INIS)
Wakamatsu, M.
2003-01-01
Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future
Some aspects of chirality: Fermion masses and chiral p-forms
Energy Technology Data Exchange (ETDEWEB)
Kleppe, A
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.
Some aspects of chirality: Fermion masses and chiral p-forms
International Nuclear Information System (INIS)
Kleppe, A.
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way
Chiral realization of the non-leptonic weak interactions
International Nuclear Information System (INIS)
Ecker, G.
1990-01-01
After a short introduction to chiral perturbation theory an attempt to relate the strong and the non-leptonic weak low-energy constants is reviewed. The weak deformation model is stimulated both by the geometrical structure of chiral perturbation theory and by phenomenological considerations. Applications to the radiative decays K → πγγ and K L → γe + e - are discussed. (Author) 38 refs., 4 figs
Toyinbo, Oluyemi; Matilainen, Markus; Turunen, Mari; Putus, Tuula; Shaughnessy, Richard; Haverinen-Shaughnessy, Ulla
2016-03-30
The aim of this paper was to examine associations between school building characteristics, indoor environmental quality (IEQ), and health responses using questionnaire data from both school principals and students. From 334 randomly sampled schools, 4248 sixth grade students from 297 schools participated in a questionnaire. From these schools, 134 principals returned questionnaires concerning 51 IEQ related questions of their school. Generalized linear mixed models (GLMM) were used to study the associations between IEQ indicators and existence of self-reported upper respiratory symptoms, while hierarchical Zero Inflated Poisson (ZIP)-models were used to model the number of symptoms. Significant associations were established between existence of upper respiratory symptoms and unsatisfactory classroom temperature during the heating season (ORs 1.45 for too hot and cold, and 1.27 for too cold as compared to satisfactory temperature) and dampness or moisture damage during the year 2006-2007 (OR: 1.80 as compared to no moisture damage), respectively. The number of upper respiratory symptoms was significantly associated with inadequate ventilation and dampness or moisture damage. A higher number of missed school days due to respiratory infections were reported in schools with inadequate ventilation (RR: 1.16). The school level IEQ indicator variables described in this paper could explain a relatively large part of the school level variation observed in the self-reported upper respiratory symptoms and missed school days due to respiratory infections among students.
Chirality and angular momentum in optical radiation
Coles, Matt M.; Andrews, David L.
2012-06-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.
Chiral nanophotonics chiral optical properties of plasmonic systems
Schäferling, Martin
2017-01-01
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .
Innovation Management Perceptions of Principals
Bakir, Asli Agiroglu
2016-01-01
This study is aimed to determine the perceptions of principals about innovation management and to investigate whether there is a significant difference in this perception according to various parameters. In the study, descriptive research model is used and universe is consisted from principals who participated in "Acquiring Formation Course…
Algebraic structure of chiral anomalies
International Nuclear Information System (INIS)
Stora, R.
1985-09-01
I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories
Chiral doublet bands in odd-A nuclei 103,105Rh
International Nuclear Information System (INIS)
Qi Bin; Wang Shouyu; Zhang Shuangquan; Meng Jie
2010-01-01
Spontaneous chiral symmetry breaking is a phenomenon of general interest in chemistry, biology and particle physics. Since the pioneering work of nuclear chirality in 1997 [1] , much effort has been devoted to further explore this interesting phenomenon. Following the observation of chiral doublet bands in N = 75 isotones [2] more candidates have been reported over more than 20 nuclei experimentally in A∼100, 130 and 190 mass regions including odd-odd, odd-A and even-even nuclei. However, the identification and the intrinsic mechanism of candidate chiral doublet bands are still under debate. Although various versions of particle rotor model (PRM) and titled axis cranking model (TAC) had been applied to study chiral bands, the essential starting point for understanding their properties is based on the ideal picture, i.e. one particle and one hole coupled with a γ = 30 rigid triaxial rotor. On the other hand, from the investigation of semiclassical TAC based on the mean field, it is shown that the chiral doublet bands in the real nuclei are not always consistent with the static chirality, but mixed with the character of dynamic chirality. Thus it is necessary to construct a fully quantal model for the description of chiral doublet bands in the real nuclei, which is aimed to understand the properties of chiral doublet bands in real nuclei, and to present clearly the picture and character of chiral motion [3] . Recently, we have developed the multi-particle multi-hole coupled with the triaxial rotor model, which is able to describe the nuclear rotation related to many valence nucleons. Adopting this model, chirality in odd-A nuclei 103,105 Rh with πg 9/2 -1 ⊗νh 11/2 2 configuration and in odd-A nucleus 135 Nd with πh 11/2 2 ⊗νh 11/2 1 configuration [4] are studied in a fully quantal approach. For the chiral doublet bands, the observed energies and the B(M1) and B(E2) values are reproduced very well. Root mean square values of the angular momentum components
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Biaxiality of chiral liquid crystals
International Nuclear Information System (INIS)
Longa, L.; Trebin, H.R.; Fink, W.
1993-10-01
Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab
Biomechanical tactics of chiral growth in emergent aquatic macrophytes
Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian
2015-01-01
Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724
Directory of Open Access Journals (Sweden)
Jonas Alves de Paiva
2012-12-01
Full Text Available A terceirização é uma das soluções utilizadas para se reduzir esforços em atividades não relacionadas com a atividade de produção. Na terceirização da manutenção, modelos de contratos de incentivos existentes na literatura focam como principais indicadores de controle apenas o tempo de reparo e o custo das atividades de manutenção. O principal objetivo desse trabalho consiste em apresentar um modelo de incentivos considerando também outras variáveis que são afetadas pela manutenção e que afetam fortemente o lucro, que são a qualidade dos produtos produzidos e a redução da capacidade de produção. O trabalho utiliza a teoria principal-agente para modelar um contrato de incentivos que conduz a um aumento do lucro da empresa, forçando o agente a desenvolver atividades que maximizem esse lucro. É apresentada uma exemplificação numérica, que evidencia o impacto positivo nos resultados da empresa, além da generalização e adequação do modelo.The outsourcing is being used to reduce work on activities not related to production activities. Nowadays, the models of contracts of maintenance use the repair time and the cost of maintenance activities as main control indicator to estimate the political of incentives. The main objective of this paper is to introduce a model of incentives considering other variables that affect substantially the profit and that they are affected by the maintenance activities as the quality of products produced and the reduction of production capacity. The paper uses the Principal-Agent Theory to develop an incentive contract that leads the agent to execute activities that maximize the profit. It is used a numerical example in order to highlight the positive impact on company results, in addition to the generalization and adaptation of the model.
Tailoring the chirality of light emission with spherical Si-based antennas.
Zambrana-Puyalto, Xavier; Bonod, Nicolas
2016-05-21
Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.
Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya
2018-05-01
We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Stochastic Field evolution of disoriented chiral condensates
International Nuclear Information System (INIS)
Bettencourt, Luis M.A.
2003-01-01
I present a summary of recent work [1] where we describe the time-evolution of a region of disoriented chiral condensate via Langevin field equations for the linear σ model. We analyze the model in equilibrium, paying attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counter-parts. We use results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a ultraviolet cutoff independent theory that reproduces quantitatively the expected equilibrium behavior of pion and σ quantum fields. We also estimate the viscosity η(T), which controls the dynamical timescale in the Langevin equation, so that the near equilibrium dynamical response agrees with theoretical expectations
Chiral Floquet Phases of Many-Body Localized Bosons
Directory of Open Access Journals (Sweden)
Hoi Chun Po
2016-12-01
Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.
Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes
2015-05-12
Final 3. DATES COVERED (From - To) 03-April-2013 to 02-April-2015 4. TITLE AND SUBTITLE Novel Catalyst for the Chirality Selective...Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chiral single walled carbon nanotubes (SWCNTs) are known to possess unique... chirality control in SWCNT synthesis. A model catalyst based on CoSO4/SiO2 was developed that showed good selectivity to (9,8) nanotubes. Remote plasma
Gluonic contributions in the chiral hyperbag
International Nuclear Information System (INIS)
Park, B.Y.; Vento, V.; Valencia Univ./CSIC, Valencia
1990-01-01
We incorporate into a non-perturbative chiral bag model scheme the gluons and the η' in a perturbative fashion. We analyze in this context the proton matrix element for the flavor singlet axial current, where due account is taken of the anomaly, and the delta-nucleon mass difference. Our results show that the contribution due to the gluons is significant for large bag radii and that they are crucial in order to establish the Cheshire cat principle. (orig.)
Circular Intensity Differential Scattering of chiral molecules
Energy Technology Data Exchange (ETDEWEB)
Bustamante, C.J.
1980-12-01
In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.
Nanoscale chirality in metal and semiconductor nanoparticles.
Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M
2016-10-18
The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.