WorldWideScience

Sample records for primordial mass segregation

  1. Centromeric heterochromatin: the primordial segregation machine.

    Science.gov (United States)

    Bloom, Kerry S

    2014-01-01

    Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.

  2. Rapid mass segregation in small stellar clusters

    Science.gov (United States)

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2017-12-01

    In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.

  3. Calculating the mass fraction of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Young, Sam; Byrnes, Christian T. [Department of Physics and Astronomy, University of Sussex, North-South Road, Brighton (United Kingdom); Sasaki, Misao, E-mail: sy81@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2014-07-01

    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R{sub c} in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k{sup 2}. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.

  4. Calculating the mass fraction of primordial black holes

    International Nuclear Information System (INIS)

    Young, Sam; Byrnes, Christian T.; Sasaki, Misao

    2014-01-01

    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k 2 . We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes

  5. Running-mass inflation model and primordial black holes

    International Nuclear Information System (INIS)

    Drees, Manuel; Erfani, Encieh

    2011-01-01

    We revisit the question whether the running-mass inflation model allows the formation of Primordial Black Holes (PBHs) that are sufficiently long-lived to serve as candidates for Dark Matter. We incorporate recent cosmological data, including the WMAP 7-year results. Moreover, we include ''the running of the running'' of the spectral index of the power spectrum, as well as the renormalization group ''running of the running'' of the inflaton mass term. Our analysis indicates that formation of sufficiently heavy, and hence long-lived, PBHs still remains possible in this scenario. As a by-product, we show that the additional term in the inflaton potential still does not allow significant negative running of the spectral index

  6. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  7. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  8. Production of high stellar-mass primordial black holes in trapped inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shu-Lin; Lee, Wolung [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Ng, Kin-Wang [Institute of Physics, Academia Sinica,Taipei 11529, Taiwan (China); Institute of Astronomy and Astrophysics, Academia Sinica,Taipei 11529, Taiwan (China)

    2017-02-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.

  9. Comparisons between different techniques for measuring mass segregation

    Science.gov (United States)

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  10. Differential population synthesis approach to mass segregation in M92

    International Nuclear Information System (INIS)

    Tobin, W.J.

    1979-01-01

    Spectra are presented of 26 low-metal stars and of the center and one-quarter intensity positions of M92. Spectral coverage is from 390 to 870 nm with resolution better than 1 nm in the blue and 2 nm in the red. Individual pixel signal-to-noise is about 100. Dwarf features are notably absent from the M92 spectra. Numerical estimates of 36 absorption features are extracted from every spectrum, as are two continuum indices. Mathematical models are constructed describing each feature's dependence on stellar color, luminosity, and metal content and then used to estimate the metal content of 6 of the stars for which the metal content is not known. For 10 features reliably measured in M92's center and edge a mass segregation sensitivity parameter is derived from each feature's deduced luminosity dependence. The ratio of feature equivalent widths at cluster edge and center are compared to this sensitivity: no convincing evidence of mass segregation is seen. The only possible edge-to-center difference seen is in the Mg b 517.4 nm feature. Three of the 10 cluster features can be of interstellar origin, at least in part; in particular the luminosity-sensitive Na D line cannot be used as a segregation indicator. The experience gained suggests that an integrated spectrum approach to globular cluster mass segregation is very difficult. An appendix describes in detail the capabilities of the Pine Bluff Observatory .91 m telescope, Cassegrain grating spectrograph, and intensified Reticon dual diode-array detector. It is possible to determine a highly consistent wavelength calibration

  11. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200, Tenerife (Spain); Jiménez-Vicente, J.; Calderón-Infante, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A.; Vives-Arias, H. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain)

    2017-02-20

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M {sub ⊙} ≲ M ≲ 200 M {sub ⊙} range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M {sub ⊙} ≲ M ≲ 0.45 M {sub ⊙} mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.

  12. Models of mass segregation at the Galactic Centre

    International Nuclear Information System (INIS)

    Freitag, Marc; Amaro-Seoane, Pau; Kalogera, Vassiliki

    2006-01-01

    We study the process of mass segregation through 2-body relaxation in galactic nuclei with a central massive black hole (MBH). This study has bearing on a variety of astrophysical questions, from the distribution of X-ray binaries at the Galactic centre, to tidal disruptions of main- sequence and giant stars, to inspirals of compact objects into the MBH, an important category of events for the future space borne gravitational wave interferometer LISA. In relatively small galactic nuclei, typical hosts of MBHs with masses in the range 10 4 - 10 7 M o-dot , the relaxation induces the formation of a steep density cusp around the MBH and strong mass segregation. Using a spherical stellar dynamical Monte-Carlo code, we simulate the long-term relaxational evolution of galactic nucleus models with a spectrum of stellar masses. Our focus is the concentration of stellar black holes to the immediate vicinity of the MBH. Special attention is given to models developed to match the conditions in the Milky Way nucleus

  13. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  14. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella.

    Science.gov (United States)

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A

    2014-02-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals.

  15. The maximal-density mass function for primordial black hole dark matter

    Science.gov (United States)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  16. Clusters of galaxies compared with N-body simulations: masses and mass segregation

    International Nuclear Information System (INIS)

    Struble, M.F.; Bludman, S.A.

    1979-01-01

    With three virially stable N-body simulations of Wielen, it is shown that use of the expression for the total mass derived from averaged quantities (velocity dispersion and mean harmonic radius) yields an overestimate of the mass by as much as a factor of 2-3, and use of the heaviest mass sample gives an underestimate by a factor of 2-3. The estimate of the mass using mass weighted quantities (i.e., derived from the customary definition of kinetic and potential energies) yields a better value irrespectively of mass sample as applied to late time intervals of the models (>= three two-body relaxation times). The uncertainty is at most approximately 50%. This suggests that it is better to employ the mass weighted expression for the mass when determining cluster masses. The virial ratio, which is a ratio of the mass weighted/averaged expression for the potential energy, is found to vary between 1 and 2. It is concluded that ratios for observed clusters approximately 4-10 cannot be explained even by the imprecision of the expression for the mass using averaged quantities, and certainly implies the presence of unseen matter. Total masses via customary application of the virial theorem are calculated for 39 clusters, and total masses for 12 clusters are calculated by a variant of the usual application. The distribution of cluster masses is also presented and briefly discussed. Mass segregation in Wielen's models is studied in terms of the binding energy per unit mass of the 'heavy' sample compared with the 'light' sample. The general absence of mass segregation in relaxaed clusters and the large virial discrepancies are attributed to a population of many low-mass objects that may constitute the bulk mass of clusters of galaxies. (Auth.)

  17. Implications for Primordial Non-Gaussianity ($f_{NL}$) from weak lensing masses of high-z galaxy clusters

    CERN Document Server

    Jimenez, Raul

    2009-01-01

    The recent weak lensing measurement of the dark matter mass of the high-redshift galaxy cluster XMMUJ2235.3-2557 of (8.5 +- 1.7) x 10^{14} Msun at z=1.4, indicates that, if the cluster is assumed to be the result of the collapse of dark matter in a primordial gaussian field in the standard LCDM model, then its abundance should be 3-10 if the non-Gaussianity parameter f^local_NL is in the range 150-200. This value is comparable to the limit for f_NL obtained by current constraints from the CMB. We conclude that mass determination of high-redshift, massive clusters can offer a complementary probe of primordial non-gaussianity.

  18. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  19. Primordial Dwarfism

    Science.gov (United States)

    ... Topics Gait & Motion Analysis Genetic Disorders Limb Length Discrepancy Orthopedics Orthotics Primordial Dwarfism Locations & Doctors About Primordial ... Sign-In » Patient-Family Resources Insurance We Accept Pay My Bill Financial Assistance Medical Records Support Services ...

  20. How Segregation Makes Us Fat: Food Behaviors and Food Environment as Mediators of the Relationship Between Residential Segregation and Individual Body Mass Index

    OpenAIRE

    Melody Goodman; Sarah Lyons; Lorraine T. Dean; Cassandra Arroyo; James Aaron Hipp

    2018-01-01

    ObjectivesRacial residential segregation affects food landscapes that dictate residents’ food environments and is associated with obesity risk factors, including individual dietary patterns and behaviors. We examine if food behaviors and environments mediate the association between segregation and body mass index (BMI).MethodsNon-Hispanic Whites and Blacks living in the St. Louis and Kansas City metro regions from 2012 to 2013 were surveyed on dietary behaviors, food environment, and BMI (n =...

  1. How Segregation Makes Us Fat: Food Behaviors and Food Environment as Mediators of the Relationship Between Residential Segregation and Individual Body Mass Index

    Directory of Open Access Journals (Sweden)

    Melody Goodman

    2018-03-01

    Full Text Available ObjectivesRacial residential segregation affects food landscapes that dictate residents’ food environments and is associated with obesity risk factors, including individual dietary patterns and behaviors. We examine if food behaviors and environments mediate the association between segregation and body mass index (BMI.MethodsNon-Hispanic Whites and Blacks living in the St. Louis and Kansas City metro regions from 2012 to 2013 were surveyed on dietary behaviors, food environment, and BMI (n = 1,412. These data were combined with the CDC’s modified retail food environment index and 2012 American Community Survey data to calculate racial segregation using various evenness and exposure indices. Multi-level mediation analyses were conducted to determine if dietary behavior and food environment mediate the association between racial residential segregation and individual BMI.ResultsThe positive association between racial segregation and individual BMI is partially mediated by dietary behaviors and fully mediated by food environments.ConclusionRacial segregation (evenness and exposure is associated with BMI, mediated by dietary behaviors and food environment. Elements of the food environment, which form the context for dietary behaviors, are potential targets for interventions to reduce obesity in residentially segregated areas.

  2. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  3. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    International Nuclear Information System (INIS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-01-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  4. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jincheng; Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22 (Chile); Lin, Congping; Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com [Center for Mathematical Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 4370074 (China)

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  5. Consequences of dynamical disruption and mass segregation for the binary frequencies of star clusters

    International Nuclear Information System (INIS)

    Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.

    2013-01-01

    The massive (13,000-26,000 M ☉ ) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M ☉ ). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ≳ 3000 AU), on approximately a crossing time (∼5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t rh (0) ∼ 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t rh (0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.

  6. The mass function of primordial rogue planet MACHOs in quasar nano-lensing

    NARCIS (Netherlands)

    Schild, R.E; Nieuwenhuizen, T.M.; Gibson, C.H.

    2012-01-01

    The recent Sumi et al (2010 Astrophys. J. 710 1641; 2011 Nature 473 349) detection of free roaming planet mass MACHOs in cosmologically significant numbers recalls their original detection in quasar microlening studies (Colley and Schild 2003 Astrophys. J. 594 97; Schild R E 1996 Astrophys. J. 464

  7. Photinos and primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Salati, P.

    1986-07-01

    Photinos are among the most interesting particles predicted by supersymmetric theories. If they exist they should influence in many ways the results of the primordial nucleosynthesis i.e. the predicted primordial abundances of D, 3 He, 4 He (and 7 Li). If photinos are stable, cosmological constraints restrict their possible mass to be either very light (M∼ γ γ > a few GeV), depending on the slepton and squark masses. In the case where photinos are unstable, they could create high energy photons able to photodisintegrate the light elements. The comparison between the predicted and the observed abundances allows to restrict significantly the photino mass-lifetime range: roughly speaking photinos of relatively high mass (M∼ γ > 150 MeV) and low time scale ( 3 sec) are compatible with these abundances

  8. INVESTIGATING THE MASS SEGREGATION PROCESS IN GLOBULAR CLUSTERS WITH BLUE STRAGGLER STARS: THE IMPACT OF DARK REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Alessandrini, Emiliano; Lanzoni, Barbara; Ferraro, Francesco R.; Miocchi, Paolo [Dept. of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2 (Italy); Vesperini, Enrico [Dept. of Astronomy, Indiana University, Bloomington, IN 47401 (United States)

    2016-12-20

    We present the results of a set of N -body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes (BHs)). To this end, clusters characterized by different initial concentrations and different fractions of dark remnants have been modeled. We find that an increasing fraction of stellar-mass BHs significantly delay the mass segregation of BSSs and the visible stellar component. In order to trace the evolution of BSS segregation, we introduce a new parameter ( A {sup +}), which can be easily measured when the cumulative radial distribution of these stars and a reference population are available. Our simulations show that A {sup +} might also be used as an approximate indicator of the time remaining to the core collapse of the visible component.

  9. Primordial nucleosynthesis.

    Science.gov (United States)

    Schramm, D N

    1998-01-06

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-alpha clouds, x-ray gas in clusters, and the microwave anisotropy are made.

  10. Primordial Nucleosynthesis

    International Nuclear Information System (INIS)

    Coc, Alain

    2013-01-01

    Primordial nucleosynthesis, or Big Bang Nucleosynthesis (BBN), is one of the three evidences for the Big-Bang model, together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4 He, D, 3 He and 7 Li deduced from observations, and calculated in primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. However, there remain, a yet unexplained, discrepancy of a factor 3-5, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. We review here the nuclear physics aspects of BBN for the production of 4 He, D, 3 He and 7 Li, but also 6 Li, 9 Be, 11 B and up to CNO isotopes. These are, for instance, important for the initial composition of the matter at the origin of the first stars. Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic density, and the number of neutrino families, remains, a valuable tool to probe the physics of the early Universe, like variation of ''constants'' or alternative theories of gravity.

  11. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    Science.gov (United States)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  12. Primordial Nucleosynthesis

    Science.gov (United States)

    Coc, Alain

    Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Most solutions to this lithium problem involve a source of extra neutrons that inevitably leads to an increase of the deuterium abundance. This seems now to be excluded by recent deuterium observations that have drastically reduced the uncertainty on D/H and also calls for improved precision on thermonuclear reaction rates.

  13. Primordial Spirituality

    Directory of Open Access Journals (Sweden)

    Kees Waaijman

    2010-11-01

    Full Text Available This article explores the primordial spirituality of the Bible, as expressed in names, narratives and prayers. It looks at the nomadic families of Abraham and Sarah, Isaac and Rebecca, Jacob, Lea and Rachel, moving around from Mesopotamia via Canaan into Egypt and vice versa (see Gn 11:31–32; 12:4–5; 27:43; 28:10; 29:4; Gn 24 and 29–31. It analyses their experiences, covering the span between birth and death and listens to their parental concerns about education as survival. It also follows their journeys along the margins of the deserts. It shares their community life as it takes shape in mutual solidarity, mercy and compassion.

  14. Grain-size segregation and levee formation in geophysical mass flows

    Science.gov (United States)

    Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  15. Primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Gustavino, C.; Anders, M.; Bemmerer, D.; Elekes, Z.; Trezzi, D.

    2016-01-01

    Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low (E < 1 MeV) that nuclear cross section measurements are practically unfeasible at the Earth's surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3 He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2 H( 4 He, γ) 6 Li. Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2 H(p, γ) 3 He, 3 He( 2 H, p) 4 He and 3 He( 4 He, γ) 7 Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined. (orig.)

  16. Quantification of segregation and mass transport in InxGa1-xASGaAs Stranski-Krastanow layers

    International Nuclear Information System (INIS)

    Rosenauer, A.; Gerthsen, D.; Van Dyck, D.; Arzberger, M.; Boehm, G.; Abstreiter, G.

    2001-01-01

    We report on transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy measurement of mass transport and segregation in InAs Stranski-Krastanow layers grown on GaAs(001) by molecular beam epitaxy at growth temperatures of 480 and 530 deg. C. Plan-view TEM reveals regularly shaped islands with a density of 7.8x10 10 cm -2 (480 deg. C) and 1.5x10 10 cm -2 (530 deg. C), respectively. Uncapped islands were investigated by strain state analysis of electron wave functions reconstructed from high-resolution TEM images. In-concentration profiles of the islands were obtained by the measurement of lattice-parameter profiles of the islands and the application of finite-element calculations. We find that the islands contain Ga-atoms with a percentage of 50% (480 deg. C) and 67% (530 deg. C). The capped InAs-layers were investigated with PL and TEM. In agreement with TEM, PL indicates a smaller and deeper potential well of the islands grown at 480 deg. C. Concentration profiles of the wetting layers were measured with TEM using the composition evaluation of lattice fringe images method, clearly revealing segregation profiles. The obtained segregation efficiency of In-atoms is 0.77±0.02 (480 deg. C) and 0.82±0.02 (530 deg. C). As an explanation for the strong mass transport of Ga from the substrate to the islands we show that the segregation of In atoms during the growth of the binary InAs can lead to the generation of vacancies in the metal sublattice. The vacancies are filled by Ga-atoms migrating along the surface or by a diffusion of the vacancies from the wetting layer and the islands into the GaAs buffer, leading to a unidirectional diffusion of Ga atoms from the buffer into the Stranski-Krastanow layer

  17. DYNAMICAL ACCRETION OF PRIMORDIAL ATMOSPHERES AROUND PLANETS WITH MASSES BETWEEN 0.1 AND 5 M {sub ⊕} IN THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P. [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lammer, Helmut, E-mail: alexander.stoekl@astro.univie.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042, Graz (Austria)

    2016-07-10

    In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme, we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.

  18. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  19. The primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    This review of the primordial nucleosynthesis is divided in three chapters. In the first the author attempts to determine the primordial abundances of the lightest elements which can be formed by the Big Bang nucleosynthesis. The second is a summary of the Standard Big Bang nucleosynthesis. This simple and attractive model might be found in difficulty in the case of a primordial abundance of He <= 0.24 and/or in the case of models of galactic evolution allowing infall of external matter having a primordial composition. Finally, in the third, two alternative proposals to the Standard Big Bang nucleosynthesis are summarized. (Auth.)

  20. Resonant primordial gravitational waves amplification

    Directory of Open Access Journals (Sweden)

    Chunshan Lin

    2016-01-01

    Full Text Available We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.

  1. Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy

    International Nuclear Information System (INIS)

    Seljak, Uros; Makarov, Alexey; McDonald, Patrick; Anderson, Scott F.; Bahcall, Neta A.; Cen, Renyue; Gunn, James E.; Lupton, Robert H.; Schlegel, David J.; Brinkmann, J.; Burles, Scott; Doi, Mamoru; Ivezic, Zeljko; Kent, Stephen; Loveday, Jon; Munn, Jeffrey A.; Nichol, Robert C.; Ostriker, Jeremiah P.; Schneider, Donald P.; Berk, Daniel E. Vanden

    2005-01-01

    We combine the constraints from the recent Lyα forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Lyα forest constraints with other probes. Combining WMAP and the Lyα forest we find for the primordial slope n s =0.98±0.02. We see no evidence of running, dn/dlnk=-0.003±0.010, a factor of 3 improvement over previous constraints. We also find no evidence of tensors, r 2 model is within the 2-sigma contour, V∝φ 4 is outside the 3-sigma contour. For the amplitude we find σ 8 =0.90±0.03 from the Lyα forest and WMAP alone. We find no evidence of neutrino mass: for the case of 3 massive neutrino families with an inflationary prior, eV and the mass of lightest neutrino is m 1 ν λ =0.72±0.02, w(z=0.3)=-0.98 -0.12 +0.10 , the latter changing to w(z=0.3)=-0.92 -0.10 +0.09 if tensors are allowed. We find no evidence for variation of the equation of state with redshift, w(z=1)=-1.03 -0.28 +0.21 . These results rely on the current understanding of the Lyα forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here

  2. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    Science.gov (United States)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while in January it decreased to values that are typical of November. Both accumulation and upper super-micron fractions showed a maximum in the same period contributing to the PM10 peak of mid-summer.

  3. Primordial chemistry: an overview

    International Nuclear Information System (INIS)

    Signore, Monique; Puy, Denis

    1999-01-01

    In the standard Big Bang model, the light elements in the cosmos -hydrogen and helium but also deuterium and lithium- were created in the very early Universe. The main problem is to connect what we can actually observe to day with the standard Big Bang nucleosynthesis predictions essentially because of uncertainties in modeling their evolution since the Big Bang. After a brief review of the primordial nucleosynthesis -predictions and observations of the primordial abundances- we present the preliminary studies of the primordial chemistry: molecular formation and evolution in the early Universe

  4. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    International Nuclear Information System (INIS)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-01-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M . ∼ 6 M o-dot (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ∼10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ∼250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ∼10 2 -7 x 10 2 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5

  5. Primordial dwarfism: an update.

    Science.gov (United States)

    Alkuraya, Fowzan S

    2015-02-01

    To review the recent advances in the clinical and molecular characterization of primordial dwarfism, an extreme growth deficiency disorder that has its onset during embryonic development and persists throughout life. The last decade has witnessed an unprecedented acceleration in the discovery of genes mutated in primordial dwarfism, from one gene to more than a dozen genes. These genetic discoveries have confirmed the notion that primordial dwarfism is caused by defects in basic cellular processes, most notably centriolar biology and DNA damage response. Fortunately, the increasing number of reported clinical primordial dwarfism subtypes has been accompanied by more accurate molecular classification. Qualitative defects of centrioles with resulting abnormal mitosis dynamics, reduced proliferation, and increased apoptosis represent the predominant molecular pathogenic mechanism in primordial dwarfism. Impaired DNA damage response is another important mechanism, which we now know is not mutually exclusive to abnormal centrioles. Molecular characterization of primordial dwarfism is helping families by enabling more reproductive choices and may pave the way for the future development of therapeutics.

  6. Primordial Black Holes from First Principles (Overview)

    Science.gov (United States)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  7. Before primordial inflation

    Science.gov (United States)

    Nanopoulos, D. V.; Srednicki, M.

    1983-12-01

    We show that, before the onset of primordial inflation, there is plenty of time for fields with very flat potentials and very weak couplings (such as the local supersymmetry breaking field and the axion field) to roll to the global minima of their potentials. Thus there is no energy stored in these fields today and hence no constraint (such as faxion USA.

  8. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Science.gov (United States)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-05-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• boosting the EMRI rates by a factor of ~10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ~250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ~102-7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding LISA detection capabilities.

  9. The Primordial Inflation Explorer

    Science.gov (United States)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  10. Corrections to primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.

    1982-01-01

    The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%

  11. Waste segregation

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1982-01-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. This task was planned for completion in FY 1981. It should be noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day. 8 figures

  12. Electroweak baryogenesis with primordial hypermagnetic fields

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Pallares, Gabriel; Besprosvany, Jaime; Piccinelli, Gabriella

    2002-01-01

    Primordial magnetic fields, independently of their origin, could have had a significant influence over several physical processes that took place during the evolution of the early universe, in particular baryogenesis. Recall that for temperatures above the electroweak phase transition (T > 100 GeV), the symmetry of the standard model corresponded to the U(1)y hypercharge group, instead of the U(1)em electromagnetic group and are therefore properly called hypermagnetic fields. In this work, we show that during a first order electroweak phase transition, the presence of hypermagnetic fields produces an axial charge segregation in the reflection and transmission of fermions off the true vacuum bubbles. We also comment on the possible consequences that these processes have for the generation of baryon number during the phase transition

  13. A new mass mortality of juvenile Protoceratops and size-segregated aggregation behaviour in juvenile non-avian dinosaurs.

    Directory of Open Access Journals (Sweden)

    David W E Hone

    Full Text Available BACKGROUND: Monodominant bonebeds are a relatively common occurrence for non-avian dinosaurs, and have been used to infer associative, and potentially genuinely social, behavior. Previously known assemblages are characterized as either mixed size-classes (juvenile and adult-sized specimens together or single size-classes of individuals (only juveniles or only adult-sized individuals within the assemblage. In the latter case, it is generally unknown if these kinds of size-segregated aggregations characterize only a particular size stage or represent aggregations that happened at all size stages. Ceratopsians ("horned dinosaurs" are known from both types of assemblages. METHODS/PRINCIPAL FINDINGS: Here we describe a new specimen of the ceratopsian dinosaur Protoceratops andrewsi, Granger and Gregory 1923 from Mongolia representing an aggregation of four mid-sized juvenile animals. In conjunction with existing specimens of groups of P. andrewsi that includes size-clustered aggregations of young juveniles and adult-sized specimens, this new material provides evidence for some degree of size-clustered aggregation behaviour in Protoceratops throughout ontogeny. This continuity of size-segregated (and presumably age-clustered aggregation is previously undocumented in non-avian dinosaurs. CONCLUSIONS: The juvenile group fills a key gap in the available information on aggregations in younger ceratopsians. Although we support the general hypothesis that many non-avian dinosaurs were gregarious and even social animals, we caution that evidence for sociality has been overstated and advocate a more conservative interpretation of some data of 'sociality' in dinosaurs.

  14. A new mass mortality of juvenile Protoceratops and size-segregated aggregation behaviour in juvenile non-avian dinosaurs.

    Science.gov (United States)

    Hone, David W E; Farke, Andrew A; Watabe, Mahito; Shigeru, Suzuki; Tsogtbaatar, Khishigjav

    2014-01-01

    Monodominant bonebeds are a relatively common occurrence for non-avian dinosaurs, and have been used to infer associative, and potentially genuinely social, behavior. Previously known assemblages are characterized as either mixed size-classes (juvenile and adult-sized specimens together) or single size-classes of individuals (only juveniles or only adult-sized individuals within the assemblage). In the latter case, it is generally unknown if these kinds of size-segregated aggregations characterize only a particular size stage or represent aggregations that happened at all size stages. Ceratopsians ("horned dinosaurs") are known from both types of assemblages. Here we describe a new specimen of the ceratopsian dinosaur Protoceratops andrewsi, Granger and Gregory 1923 from Mongolia representing an aggregation of four mid-sized juvenile animals. In conjunction with existing specimens of groups of P. andrewsi that includes size-clustered aggregations of young juveniles and adult-sized specimens, this new material provides evidence for some degree of size-clustered aggregation behaviour in Protoceratops throughout ontogeny. This continuity of size-segregated (and presumably age-clustered) aggregation is previously undocumented in non-avian dinosaurs. The juvenile group fills a key gap in the available information on aggregations in younger ceratopsians. Although we support the general hypothesis that many non-avian dinosaurs were gregarious and even social animals, we caution that evidence for sociality has been overstated and advocate a more conservative interpretation of some data of 'sociality' in dinosaurs.

  15. Searching for Primordial Antimatter

    Science.gov (United States)

    2008-10-01

    Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  17. Cosmological implications of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise; Verde, Licia, E-mail: joseluis.bernal@icc.ub.edu, E-mail: nicola.bellomo@icc.ub.edu, E-mail: alvise@icc.ub.edu, E-mail: liciaverde@icc.ub.edu [ICC, University of Barcelona, IEEC-UB, Martí i Franquès, 1, E08028 Barcelona (Spain)

    2017-10-01

    The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced with the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.

  18. Quantum inflaton, primordial perturbations, and CMB fluctuations

    International Nuclear Information System (INIS)

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-01-01

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m 2 /NH 2 ), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it

  19. The Primordial Inflation Explorer (PIXIE)

    Science.gov (United States)

    Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David

    2016-07-01

    The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6° and sensitivity 70 nK per 1° square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r complements anticipated ground-based polarization measurements such as CMB- S4, providing a cosmic-variance-limited determination of the large-scale E-mode signal to measure the optical depth, constrain models of reionization, and provide a firm detection of the neutrino mass (the last unknown parameter in the Standard Model of particle physics). In addition, PIXIE will measure the absolute frequency spectrum to characterize deviations from a blackbody with sensitivity 3 orders of magnitude beyond the seminal COBE/FIRAS limits. The sky cannot be black at this level; the expected results will constrain physical processes ranging from inflation to the nature of the first stars and the

  20. PICH promotes mitotic chromosome segregation

    DEFF Research Database (Denmark)

    Nielsen, Christian Thomas Friberg; Hickson, Ian D

    2016-01-01

    PICH is an SNF2-family DNA translocase that appears to play a role specifically in mitosis. Characterization of PICH in human cells led to the initial discovery of "ultra-fine DNA bridges" (UFBs) that connect the 2 segregating DNA masses in the anaphase of mitosis. These bridge structures, which...... further the role of PICH in the timely segregation of the rDNA locus....

  1. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    Science.gov (United States)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a

  2. Effect of vacuum energy on evolution of primordial black holes in Einstein gravity

    International Nuclear Information System (INIS)

    Nayak, Bibekananda; Jamil, Mubasher

    2012-01-01

    We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) . Thus here primordial black holes live longer than previous works Nayak and Singh (2011). Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its' lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.

  3. Primordial black holes from passive density fluctuations

    International Nuclear Information System (INIS)

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this Letter, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses ≲10 15 g depending on the number of e-folds when the scale of our observable universe leaves horizon. These PBHs are likely to have evaporated and cannot be a candidate for dark matter but they may still affect the early universe.

  4. Primordial black holes from passive density fluctuations

    OpenAIRE

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this paper, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses $\\lesssim 10^{15}g$ depending on the number of e-folds when the scale of our observable universe leaves horizon...

  5. Gravitational waves from primordial black hole mergers

    Energy Technology Data Exchange (ETDEWEB)

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi, E-mail: martti.raidal@cern.ch, E-mail: ville.vaskonen@kbfi.ee, E-mail: hardi.veermae@cern.ch [NICPB, Rävala 10, 10143 Tallinn (Estonia)

    2017-09-01

    We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5−30 M {sub ⊙}. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.

  6. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  7. The statistical clustering of primordial black holes

    International Nuclear Information System (INIS)

    Carr, B.J.

    1977-01-01

    It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10 5 M(sun). If the mass spectrum of primordial black holes falls off more slowly than m -3 (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10 -4 s or if something prevented black hole formation before 1 s. (orig.) [de

  8. Statistical clustering of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, B J [Cambridge Univ. (UK). Inst. of Astronomy

    1977-04-01

    It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10/sup 5/ M(sun). If the mass spectrum of primordial black holes falls off more slowly than m/sup -3/ (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10/sup -4/ s or if something prevented black hole formation before 1 s.

  9. Some cosmological consequences of primordial black-hole evaporations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1976-01-01

    According to Hawking, primordial black holes of less than 10 15 g would have evaporated by now. This paper examines the way in which small primordial black holes could thereby have contributed to the background density of photons, nucleons, neutrinos, electrons, and gravitons in the universe. Any photons emitted late enough should maintain their emission temperature apart from a redshift effect: it is shown that the biggest contribution should come from primordial black holes of about 10 15 g, which evaporate in the present era, and it is argued that observations of the γ-ray background indicate that primordial black holes of this size must have a mean density less than 10 -8 times the critical density. Photons which were emitted sufficiently early to be thermalized could, in principle, have generated the 3 K background in an initially cold universe, but only if the density fluctuations in the early universe had a particular form and did not extend up to a mass scale of 10 15 g. Primordial black holes of less than 10 14 g should emit nucleons: it is shown that such nucleons could not contribute appreciably to the cosmic-ray background. However, nucleon emission could have generated the observed number density of baryons in an initially baryon-symmetric universe, provided some CP-violating process operates in black hole evaporations such that more baryons are always produced than antibaryons. We predict the spectrum of neutrinos, electrons, and gravitons which should result from primordial black-hole evaporations and show that the observational limits on the background electron flux might place a stronger limitation on the number of 10 15 g primordial black holes than the γ-ray observations. Finally, we examine the limits that various observations place on the strength of any long-range baryonic field whose existence might be hypothesized as a means of preserving baryon number in black-hole evaporations

  10. [Persistence of the primordial vitreous body and buphthalmos].

    Science.gov (United States)

    Cernea, P; Simionescu, C; Bosun, I

    1995-01-01

    Persistence of the hyperplasic primordial vitreous body is determined by a deletion of embryonal development of the vitreous body and of the hyaloid vascular system. Infant aged 3.5 years presents persistence of primordial vitreous body with crystalline dislocation in the camera aquosa and secondary buphthalmos of the left eye and microphthalmos with dislocation of the crystalline in the vitreous body of the right eye. At the back of the right eye we noticed a whitish mass, richly vascularized with vestiges from the hyaloid artery, but the posterior half of the vitreous cavity is filled with microscopic blood; the fibrovascular membrane is made of conjunctive tissue set in parallel layers and vessels with macrolipophagic degeneration. Microscopic investigation of retina reveals glial hyperplasia zones in the neighbourhood of the vitreous body. In the present paper the authors show the persistence of the primordial vitreous body in the left eye and bilateral dislocation of the crystalline, revealing multiple ocular malformations.

  11. Surface Segregation in YSZ

    DEFF Research Database (Denmark)

    Bay, Lasse; Zachau-Christiansen, Birgit; Jacobsen, Torben

    1998-01-01

    The space charge layer formed due to segregation of yttria and oxygen ion vacancies in YSZ is described by a simple model. Effects of impurities segregation are omitted.......The space charge layer formed due to segregation of yttria and oxygen ion vacancies in YSZ is described by a simple model. Effects of impurities segregation are omitted....

  12. Inflation and dark matter primordial black holes

    International Nuclear Information System (INIS)

    Erfani, Encieh

    2012-09-01

    In this thesis a broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs) to serve as candidates for Dark Matter. To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative α S of the spectral index n S (k pivot ) is negative at the pivot scale k pivot , PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') β S . Among the three small-field and five large-field inflation models we analyze, only one small-field model, the ''running-mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of α S , which is weakly preferred by current data. Similarly, proving conclusively that the second derivative of the spectral index is positive would exclude all the large-field models we investigated.

  13. Inflation and dark matter primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Erfani, Encieh

    2012-09-15

    In this thesis a broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs) to serve as candidates for Dark Matter. To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative {alpha}{sub S} of the spectral index n{sub S}(k{sub pivot}) is negative at the pivot scale k{sub pivot}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') {beta}{sub S}. Among the three small-field and five large-field inflation models we analyze, only one small-field model, the ''running-mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of {alpha}{sub S}, which is weakly preferred by current data. Similarly, proving conclusively that the second derivative of the spectral index is positive would exclude all the large-field models we investigated.

  14. Late baryogenesis faces primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Delbourgo-Salvador, P.; Audouze, J.; Salati, P.

    1991-11-01

    Since the sphalleron mechanism present in the standard theory of electro-weak interactions violates B+L, models have been suggested where baryogenesis takes place at late epochs and is concomitant with primordial nucleosynthesis. The possibility for the baryon asymmetry to be generated was numerically investigated at the same time as the light elements are cooked. The primordial yields of D, 3 He, 4 He and 7 Li were shown to exceed the upper limits inferred from observation, unless baryogenesis is anterior to the freeze-out of the weak interactions. This implies strong constraints on scenarios where the baryon asymmetry originates from the late decay of massive gravitinos. (author) 18 refs., 6 figs

  15. Primordial Regular Black Holes: Thermodynamics and Dark Matter

    Directory of Open Access Journals (Sweden)

    José Antonio de Freitas Pacheco

    2018-05-01

    Full Text Available The possibility that dark matter particles could be constituted by extreme regular primordial black holes is discussed. Extreme black holes have zero surface temperature, and are not subjected to the Hawking evaporation process. Assuming that the common horizon radius of these black holes is fixed by the minimum distance that is derived from the Riemann invariant computed from loop quantum gravity, the masses of these non-singular stable black holes are of the order of the Planck mass. However, if they are formed just after inflation, during reheating, their initial masses are about six orders of magnitude higher. After a short period of growth by the accretion of relativistic matter, they evaporate until reaching the extreme solution. Only a fraction of 3.8 × 10−22 of relativistic matter is required to be converted into primordial black holes (PBHs in order to explain the present abundance of dark matter particles.

  16. Primordial Kaluza-Klein inflation

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, P.F.

    1986-01-01

    In a higher-dimensional version of the gravitational action with higher-derivative terms and logarithmic dependence on the curvature scalar, in addition to the four-dimensional gravitational action integral, the non-gravitational Coleman-Weinberg effective potential that governs primordial inflation is obtained. Also, it is obtained that the length scale for the internal space decreases monotonously during the inflationary era, at a similar rate as the three spacelike dimensions grow. (orig.)

  17. Gender Segregation Small Firms

    OpenAIRE

    Kenneth R Troske; William J Carrington

    1992-01-01

    This paper studies interfirm gender segregation in a unique sample of small employers. We focus on small firms because previous research on interfirm segregation has studied only large firms and because it is easier to link the demographic characteristics of employers and employees in small firms. This latter feature permits an assessment of the role of employer discrimination in creating gender segregation. Our first finding is that interfirm segregation is prevalent among small employers. I...

  18. Primordial inflation and the monopole problem

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.

    1984-01-01

    This chapter discusses the cosmological abundance of magnetic monopoles in locally supersymmetry grand unified theories (GUTs) and primordial inflation. It is shown how the magnetic monopole problem can be solved in variants of broken N=1 supergravity primordial inflation. The monopole problem and its solution in inflationary models is reviewed. It is demonstrated that the monopole problem can be solved by coupling primordial inflation to supersymmetric SU(5) breaking

  19. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  20. Constraints on amplitudes of curvature perturbations from primordial black holes

    International Nuclear Information System (INIS)

    Bugaev, Edgar; Klimai, Peter

    2009-01-01

    We calculate the primordial black hole (PBH) mass spectrum produced from a collapse of the primordial density fluctuations in the early Universe using, as an input, several theoretical models giving the curvature perturbation power spectra P R (k) with large (∼10 -2 -10 -1 ) values at some scale of comoving wave numbers k. In the calculation we take into account the explicit dependence of gravitational (Bardeen) potential on time. Using the PBH mass spectra, we further calculate the neutrino and photon energy spectra in extragalactic space from evaporation of light PBHs, and the energy density fraction contained in PBHs today (for heavier PBHs). We obtain the constraints on the model parameters using available experimental data (including data on neutrino and photon cosmic backgrounds). We briefly discuss the possibility that the observed 511 keV line from the Galactic center is produced by annihilation of positrons evaporated by PBHs.

  1. QCD pairing in primordial nuggets

    Science.gov (United States)

    Lugones, G.; Horvath, J. E.

    2003-08-01

    We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.

  2. Primordial gravitational waves and cosmology.

    Science.gov (United States)

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  3. Chameleon-photon mixing in a primordial magnetic field

    International Nuclear Information System (INIS)

    Schelpe, Camilla A. O.

    2010-01-01

    The existence of a sizable, O(10 -10 -10 -9 G), cosmological magnetic field in the early Universe has been postulated as a necessary step in certain formation scenarios for the large-scale O(μG) magnetic fields found in galaxies and galaxy clusters. If this field exists then it may induce significant mixing between photons and axion-like particles (ALPs) in the early Universe. The resonant conversion of photons into ALPs in a primordial magnetic field has been studied elsewhere by Mirizzi, Redondo and Sigl (2009). Here we consider the nonresonant mixing between photons and scalar ALPs with masses much less than the plasma frequency along the path, with specific reference to the chameleon scalar field model. The mixing would alter the intensity and polarization state of the cosmic microwave background (CMB) radiation. We find that the average modification to the CMB polarization modes is negligible. However the average modification to the CMB intensity spectrum is more significant and we compare this to high-precision measurements of the CMB monopole made by the far infrared absolute spectrophotometer on board the COBE satellite. The resulting 95% confidence limit on the scalar-photon conversion probability in the primordial field (at 100 GHz) is P γ↔φ -2 . This corresponds to a degenerate constraint on the photon-scalar coupling strength, g eff , and the magnitude of the primordial magnetic field. Taking the upper bound on the strength of the primordial magnetic field derived from the CMB power spectra, B λ ≤5.0x10 -9 G, this would imply an upper bound on the photon-scalar coupling strength in the range g eff -13 GeV -1 to g eff -14 GeV -1 , depending on the power spectrum of the primordial magnetic field.

  4. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  5. The Primordial Inflation Explorer (PIXIE)

    Science.gov (United States)

    Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David

    2016-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 degrees and sensitivity 70 nK per 1degree square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r inflation to the nature of the first stars and the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture required to measure the CMB to the limits imposed by astrophysical foregrounds.

  6. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  7. Fluctuations in models with primordial inflation

    International Nuclear Information System (INIS)

    Kahn, R.; Brandenberger, R.

    1984-01-01

    The recently proposed general framework for calculating the growth of primordial energy density fluctuations in cosmological models is applied to two models of phenomenological interest in which the cosmological evolution differs crucially from that in new inflationary universe models. Both in a model of primordial supersymmetric inflation and in Linde's proposal of chaotic inflation we verify the conjectured results. (orig.)

  8. Primordial black hole detection through diffractive microlensing

    Science.gov (United States)

    Naderi, T.; Mehrabi, A.; Rahvar, S.

    2018-05-01

    Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.

  9. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    Science.gov (United States)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  10. arXiv Light Primordial Exotic Compact Objects as All Dark Matter

    CERN Document Server

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    2018-06-13

    The radiation emitted by horizonless exotic compact objects (ECOs), such as wormholes, 2-2-holes, fuzzballs, gravastars, boson stars, collapsed polymers, superspinars etc., is expected to be strongly suppressed when compared to the radiation of black holes. If large primordial curvature fluctuations collapse into such objects instead of black holes, they do not evaporate or evaporate much slower than black holes and could thus constitute all of the dark matter with masses below $M < 10^{-16}M_\\odot.$ We reevaluate the relevant experimental constraints for light ECOs in this mass range and show that very large new parameter space down to ECO masses $M\\sim 10\\,{\\rm TeV}$ opens up for light primordial dark matter. A new dedicated experimental program is needed to test this mass range of primordial dark matter.

  11. Primordial nucleosynthesis: Beyond the standard model

    International Nuclear Information System (INIS)

    Malaney, R.A.

    1991-01-01

    Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs

  12. Globular cluster seeding by primordial black hole population

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A. [ITEP, Bol. Cheremushkinsaya ul., 25, 117218 Moscow (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr., 13, Moscow 119234 (Russian Federation)

    2017-04-01

    Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. In this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.

  13. Segregation and civic virtue

    NARCIS (Netherlands)

    Merry, M.S.

    2012-01-01

    In this essay Michael Merry defends the following prima facie argument: that civic virtue is not dependent on integration and in fact may be best fostered under conditions of segregation. He demonstrates that civic virtue can and does take place under conditions of involuntary segregation, but that

  14. Primordial black holes from fifth forces

    Science.gov (United States)

    Amendola, Luca; Rubio, Javier; Wetterich, Christof

    2018-04-01

    Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.

  15. Quantum inflaton, primordial metric perturbations and CMB fluctuations

    International Nuclear Information System (INIS)

    Cao, F J

    2007-01-01

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current WMAP observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of m 2 /[NH 2 ] where m is the inflaton mass and H the Hubble constant at horizon crossing. This turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it

  16. Primordial black holes survive SN lensing constraints

    Science.gov (United States)

    García-Bellido, Juan; Clesse, Sébastien; Fleury, Pierre

    2018-06-01

    It has been claimed in [arxiv:1712.02240] that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this note, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction α of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between Ωm and α was ignored and thus, by fixing Ωm, transferred the constraining power of SN magnitudes to α. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH < 1 . 09(1 . 38) , for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.

  17. Super-horizon primordial black holes

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Carr, B.J.

    2005-01-01

    We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems

  18. Granular Segregation by an Oscillating Ratchet Mechanism

    International Nuclear Information System (INIS)

    Igarashi, A.; Horiuchi, Ch.

    2004-01-01

    We report on a method to segregate granular mixtures which consist of two kinds of particles by an oscillating ''ratchet'' mechanism. The segregation system has an asymmetrical sawtooth-shaped base which is vertically oscillating. Such a ratchet base produces a directional current of particles owing to its transport property. It is a counterintuitive and interesting phenomenon that a vertically vibrated base transports particles horizontally. This system is studied with numerical simulations, and it is found that we can apply such a system to segregation of mixtures of particles with different properties (radius or mass). Furthermore, we find out that an appropriate inclination of the ratchet-base makes the quality of segregation high. (author)

  19. Primordial Noble Gases from Earth's Core

    Science.gov (United States)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas

  20. Running of featureful primordial power spectra

    Science.gov (United States)

    Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramírez, Héctor; Boubekeur, Lotfi

    2017-06-01

    Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.

  1. Microcephalic osteodysplastic primordial dwarfism (MOPD) type I ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2017-05-02

    May 2, 2017 ... Seckel syndrome, microcephalic osteodysplastic primordial dwarf- ism (MOPD) type ... tures of elbow and knee joints, thin dry skin with marked decreased ... lashes and eyebrows, protruding eyes, prominent nose with a flat.

  2. Primordial gravitational waves, BICEP2 and beyond

    Indian Academy of Sciences (India)

    2016-01-07

    Jan 7, 2016 ... Observations of the imprints of primordial gravitational waves on the ... the cosmic microwave background can provide us with unambiguous clues to the ... by the stress–energy tensor) can be classified, for instance, based on ...

  3. Segregation in cast products

    Indian Academy of Sciences (India)

    Unknown

    The agreement with experimental data is mostly qualitative. The paper also ... For example, a high degree of positive segregation in the central region .... solute in a cast product, important ones being: size of casting, rate of solidification, mode.

  4. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, G.; Gerdes, Kenn

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments...... that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating...... filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement...

  5. Segregation and Hispanic Homicide

    OpenAIRE

    Michael G. Bisciglia

    2014-01-01

    As the overall population of Hispanics within the United States has eclipsed that of African Americans, a mounting concern has developed regarding the rise in Hispanic lethal violence as a result of social and economic inequality. One means to measure this inequality is in the form of segregation. Research indicates that in many Hispanic communities, their levels of segregation from the White non-Hispanic population ar...

  6. Source Segregation and Collection of Source-Segregated Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Matsufuji, Y.

    2011-01-01

    of optimal handling of the waste. But in a few cases, the waste must also be separated at source, for example removing the protective plastic cover from a commercial advertisement received by mail, prior to putting the advertisement into the waste collection bin for recyclable paper. These issues are often...... in wastes segregation addressing: - Purpose of source segregation. - Segregation criteria and guidance. - Segregation potentials and efficiencies. - Systems for collecting segregated fraction....

  7. The Cosmochemistry of Pluto: A Primordial Origin of Volatiles?

    Science.gov (United States)

    Glein, C. R.; Waite, J. H., Jr.

    2017-12-01

    Pluto is a wonderland of volatiles. Nitrogen, methane, and carbon monoxide are the principal volatiles that maintain its tenuous atmosphere, and they have also created a mesmerizing landscape of icy geological features, including Pluto's iconic "heart". Recent data, particularly those returned by the New Horizons mission [1-3], allow us to begin testing hypotheses for the cosmochemical origins of these world-shaping species on Pluto. Here, we investigate if Pluto's volatiles could have been accreted in its building blocks. We take both bottom-up and top-down approaches in testing this hypothesis in terms of mass balance. We estimate Pluto's primordial inventory of volatiles by scaling a range of cometary abundances up to the ice mass fraction of Pluto. We also make estimates of the present and lost inventories of volatiles based on surface observations and interpretations, as well as different scenarios of atmospheric photochemistry and escape. We find that, if primordial Pluto resembled a giant comet with respect to volatile abundances, then the initial volatile inventory would have been sufficient to account for the estimated present and lost inventories. This consistency supports a primordial origin for Pluto's volatiles. However, the observed ratio of CO/N2 in Pluto's atmosphere [4] is several orders of magnitude lower than the nominal cometary value. We are currently using phase equilibrium and rate models to explore if volatile layering in Sputnik Planitia, or the destruction of CO in a past or present subsurface ocean of liquid water could explain the apparent depletion of CO on Pluto. References: [1] Moore et al. (2016) Science 351, 1284. [2] Grundy et al. (2016) Science 351, aad9189. [3] Gladstone et al. (2016) Science 351, aad8866. [4] Lellouch et al. (2017) Icarus 286, 289.

  8. Segregation and Hispanic Homicide

    Directory of Open Access Journals (Sweden)

    Michael G. Bisciglia

    2014-01-01

    Full Text Available As the overall population of Hispanics within the United States has eclipsed that of African Americans, a mounting concern has developed regarding the rise in Hispanic lethal violence as a result of social and economic inequality. One means to measure this inequality is in the form of segregation. Research indicates that in many Hispanic communities, their levels of segregation from the White non-Hispanic population are similar to that of African Americans. Although a multitude of previous studies have looked at the impact of segregation among African Americans, the literature remains under-represented in terms of multi-city macro-level analyses among Hispanics. This current study extends the analysis of segregation’s effects on lethal violence to this population. To this end, two measures of segregation were used, the index of dissimilarity and exposure. Using data from the census and the Centers for Disease Control (CDC mortality files, negative binominal regression models were created using a sample of 236 U.S. cities. The results indicated that both measures of segregation show a strong positive influence on rates of Hispanic homicides.

  9. Understanding Segregation Processes

    Science.gov (United States)

    Bruch, Elizabeth

    There is growing consensus that living in neighborhoods of concentrated poverty increases the likelihood of social problems such as teenage parenthood, drug and alcohol use, crime victimization, and chronic unemployment. Neighborhood inequality is also implicated in studies of enduring race/ethnic health disparities, and there are recent moves to broaden the definition of health care policy to policies targeting social inequality (Mechanic 2007). Residential segregation affects health outcomes in several different ways. First, income, education, and occupation are all strongly related to health (Adler and Newman 2002). Segregation is a key mechanism through which socioeconomic inequality is perpetuated and reinforced, as it hinders the upward mobility of disadvantaged groups by limiting their educational and employment opportunities. Second, segregation increases minority exposure to unhealthy neighborhood environments. Residential segregation creates areas with concentrated poverty and unemployment, both of which are key factors that predict violence and create racial differences in homicide (Samson and Wilson 1995). Neighborhood characteristics, such as exposure to environmental hazards, fear of violence, and access to grocery stores, affect health risks and health behaviors (Cheadle et al. 1991). Tobacco and alcohol industries also advertise their products disproportionately in poor, minority areas (Moore, Williams, and Qualls 1996). Finally, residential segregation leads to inequalitie in health care resources, which contributes to disparities in quality of treatment (Smedley, Stith, and Nelson 2002).

  10. Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish

    Directory of Open Access Journals (Sweden)

    Ni Hong

    2016-03-01

    Full Text Available Primordial germ cell (PGC specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes. Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model.

  11. Galaxy bias and primordial non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  12. Galaxy bias and primordial non-Gaussianity

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian

    2015-01-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation

  13. Primordial nucleosynthesis: A cosmological point of view

    International Nuclear Information System (INIS)

    Mathews, G. J.; Kajino, T.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.

    2014-01-01

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field

  14. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background.

    Science.gov (United States)

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G F

    2018-05-11

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1M_{⊙}≲M_{PBH}≲100M_{⊙}, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  15. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G. F.

    2018-05-01

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1 M⊙≲MPBH≲100 M⊙, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  16. Loop corrections to primordial non-Gaussianity

    Science.gov (United States)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  17. Towards Forming a Primordial Protostar in a Cosmological AMR Simulation

    Science.gov (United States)

    Turk, Matthew J.; Abel, Tom; O'Shea, Brian W.

    2008-03-01

    Modeling the formation of the first stars in the universe is a well-posed problem and ideally suited for computational investigation.We have conducted high-resolution numerical studies of the formation of primordial stars. Beginning with primordial initial conditions appropriate for a ΛCDM model, we used the Eulerian adaptive mesh refinement code (Enzo) to achieve unprecedented numerical resolution, resolving cosmological scales as well as sub-stellar scales simultaneously. Building on the work of Abel, Bryan and Norman (2002), we followed the evolution of the first collapsing cloud until molecular hydrogen is optically thick to cooling radiation. In addition, the calculations account for the process of collision-induced emission (CIE) and add approximations to the optical depth in both molecular hydrogen roto-vibrational cooling and CIE. Also considered are the effects of chemical heating/cooling from the formation/destruction of molecular hydrogen. We present the results of these simulations, showing the formation of a 10 Jupiter-mass protostellar core bounded by a strongly aspherical accretion shock. Accretion rates are found to be as high as one solar mass per year.

  18. The Formation of Primordial Luminous Objects

    International Nuclear Information System (INIS)

    Ripamonti, Emanuele; Kapteyn Astron. Inst., Groningen; Abel, Tom; KIPAC, Menlo Park

    2005-01-01

    The scientific belief that the universe evolves in time is one of the legacies of the theory of the Big Bang. The concept that the universe has an history started to attract the interest of cosmologists soon after the first formulation of the theory: already Gamow (1948; 1949) investigated how and when galaxies could have been formed in the context of the expanding Universe. However, the specific topic of the formation (and of the fate) of the first objects dates to two decades later, when no objects with metallicities as low as those predicted by primordial nucleosynthesis (Z ∼ -10 ∼ 10 -8 Z # circle d ot#) were found. Such concerns were addressed in two seminal papers by Peebles and Dicke (1968; hereafter PD68) and by Doroshkevich, Zel'Dovich and Novikov (1967; hereafter DZN67), introducing the idea that some objects could have formed before the stars we presently observe. (1) Both PD68 and DZN67 suggest a mass of ∼ 10 5 M # circle d ot# for the first generation of bound systems, based on the considerations on the cosmological Jeans length (Gamow 1948; Peebles 1965) and the possible shape of the power spectrum. (2) They point out the role of thermal instabilities in the formation of the proto-galactic bound object, and of the cooling of the gas inside it; in particular, PD68 introduces H 2 cooling and chemistry in the calculations about the contraction of the gas. (3) Even if they do not specifically address the occurrence of fragmentation, these papers make two very different assumptions: PD68 assumes that the gas will fragment into ''normal'' stars to form globular clusters, while DZN67 assumes that fragmentation does not occur, and that a single ''super-star'' forms. (4) Finally, some feedback effects as considered (e.g. Peebles and Dicke considered the effects of supernovae). Today most of the research focuses on the issues when fragmentation may occur, what objects are formed and how they influence subsequent structure formation. In these notes we will

  19. Effect of accretion on primordial black holes in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Nayak, B.; Singh, L. P.; Majumdar, A. S.

    2009-01-01

    We consider the effect of accretion of radiation in the early Universe on primordial black holes in Brans-Dicke theory. The rate of growth of a primordial black hole due to accretion of radiation in Brans-Dicke theory is considerably smaller than the rate of growth of the cosmological horizon, thus making available sufficient radiation density for the black hole to accrete causally. We show that accretion of radiation by Brans-Dicke black holes overrides the effect of Hawking evaporation during the radiation dominated era. The subsequent evaporation of the black holes in later eras is further modified due to the variable gravitational 'constant', and they could survive up to longer times compared to the case of standard cosmology. We estimate the impact of accretion on modification of the constraint on their initial mass fraction obtained from the γ-ray background limit from presently evaporating primordial black holes.

  20. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  1. Primordial spectra from sudden turning trajectory

    Science.gov (United States)

    Noumi, Toshifumi; Yamaguchi, Masahide

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  2. Primordial Prevention of Cardiometabolic Risk in Childhood.

    Science.gov (United States)

    Tanrikulu, Meryem A; Agirbasli, Mehmet; Berenson, Gerald

    2017-01-01

    Fetal life and childhood are important in the development of cardiometabolic risk and later clinical disease of atherosclerosis, hypertension and diabetes mellitus. Molecular and environmental conditions leading to cardiometabolic risk in early life bring us a challenge to develop effective prevention and intervention strategies to reduce cardiovascular (CV) risk in children and later disease. It is important that prevention strategies begin at an early age to reduce future CV morbidity and mortality. Pioneering work from longitudinal studies such as Bogalusa Heart Study (BHS), the Finnish Youth Study and other programs provide an awareness of the need for public and health services to begin primordial prevention. The impending CV risk beginning in childhood has a significant socioeconomic burden. Directions to achieve primordial prevention of cardiometabolic risk in children have been developed by prior longitudinal studies. Based on those studies that show risk factors in childhood as precursors of adult CV risk, implementation of primordial prevention will have effects at broad levels. Considering the epidemic of obesity, the high prevalence of hypertension and cardiometabolic risk, prevention early in life is valuable. Comprehensive health education, such as 'Health Ahead/Heart Smart', for all elementary school age children is one approach to begin primordial prevention and can be included in public education beginning in kindergarten along with the traditional education subject matter.

  3. Primordial braneworld black holes: significant enhancement of ...

    Indian Academy of Sciences (India)

    Abstract. The Randall-Sundrum (RS-II) braneworld cosmological model with a frac- tion of the total energy density in primordial black holes is considered. Due to their 5d geometry, these black holes undergo modified Hawking evaporation. It is shown that dur- ing the high-energy regime, accretion from the surrounding ...

  4. Primordial tensor modes from quantum corrected inflation

    DEFF Research Database (Denmark)

    Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole

    2014-01-01

    . Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...

  5. Nonthermal production of dark matter from primordial black holes

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  6. Primordial Black Holes from Supersymmetry in the Early Universe.

    Science.gov (United States)

    Cotner, Eric; Kusenko, Alexander

    2017-07-21

    Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 10^{23}  g. We also comment on the role that topological defects can play for PBH formation in a similar fashion.

  7. Primordial Black Holes as Generators of Cosmic Structures

    Science.gov (United States)

    Carr, Bernard; Silk, Joseph

    2018-05-01

    Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.

  8. Single field double inflation and primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H., E-mail: kristjan.kannike@cern.ch, E-mail: luca.marzola@cern.ch, E-mail: martti.raidal@cern.ch, E-mail: hardi.veermae@cern.ch [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-09-01

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by a polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.

  9. Neutrino burst of white dwarf being absorbed by a primordial black hole

    CERN Document Server

    Tikhomirov, V V

    2003-01-01

    Primordial black holes (PBHS) of masses M>=5x10 sup 4 g are able to absorb white dwarfs (WD), giving rise to formation of black holes of WD masses. The WD absorption is accomplained by up to 10 sup 5 sup 2 erg neutrino bursts which can be readily detected by modern neutrino detectors. We calculate time characteristics of such a burst in this paper. (authors)

  10. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    International Nuclear Information System (INIS)

    Dai, De-Chang; Stojkovic, Dejan; Freese, Katherine

    2009-01-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10 11 GeV–10 16 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes

  11. Solute segregation during irradiation

    International Nuclear Information System (INIS)

    Wiedersich, H.; Okamoto, P.R.; Lam, N.Q.

    1977-01-01

    Irradiation at elevated temperature induces redistribution of the elements in alloys on a microstructural level. This phenomenon is caused by differences in the coupling of the various alloy constituents to the radiation-induced defect fluxes. A simple model of the segregation process based on coupled reaction-rate and diffusion equations is discussed. The model gives a good description of the experimentally observed consequences of radiation-induced segregation, including enrichment or depletion of solute elements near defect sinks such as surfaces, voids and dislocations; precipitation of second phases in solid solutions; precipitate redistribution in two-phase alloys; and effects of defect-production rates on void-swelling rates in alloys with minor solute additions

  12. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  13. Segregation in Religion Networks

    OpenAIRE

    Hu, Jiantao; Zhang, Qian-Ming; Zhou, Tao

    2018-01-01

    Religious beliefs could facilitate human cooperation [1-6], promote civic engagement [7-10], improve life satisfaction [11-13] and even boom economic development [14-16]. On the other side, some aspects of religion may lead to regional violence, intergroup conflict and moral prejudice against atheists [17-23]. Analogous to the separation of races [24], the religious segregation is a major ingredient resulting in increasing alienation, misunderstanding, cultural conflict and even violence amon...

  14. Segregation by onset asynchrony.

    Science.gov (United States)

    Hancock, P J B; Walton, L; Mitchell, G; Plenderleith, Y; Phillips, W A

    2008-08-05

    We describe a simple psychophysical paradigm for studying figure-ground segregation by onset asynchrony. Two pseudorandom arrays of Gabor patches are displayed, to left and right of fixation. Within one array, a subset of elements form a figure, such as a randomly curving path, that can only be reliably detected when their onset is not synchronized with that of the background elements. Several findings are reported. First, for most participants, segregation required an onset asynchrony of 20-40 ms. Second, detection was no better when the figure was presented first, and thus by itself, than when the background elements were presented first, even though in the latter case the figure could not be detected in either of the two successive displays alone. Third, asynchrony segregated subsets of randomly oriented elements equally well. Fourth, asynchronous onsets aligned with the path could be discriminated from those lying on the path but not aligned with it. Fifth, both transient and sustained neural activity contribute to detection. We argue that these findings are compatible with neural signaling by synchronized rate codes. Finally, schizophrenic disorganization is associated with reduced sensitivity. Thus, in addition to bearing upon basic theoretical issues, this paradigm may have clinical utility.

  15. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  16. Shapes and features of the primordial bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Cheongam-ro 67, Pohang, 37673 (Korea, Republic of); Palma, Gonzalo A.; Sypsas, Spyros, E-mail: jinn-ouk.gong@apctp.org, E-mail: gpalmaquilod@ing.uchile.cl, E-mail: s.sypsas@gmail.com [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, 837.0415 Chile (Chile)

    2017-05-01

    If time-dependent disruptions from slow-roll occur during inflation, the correlation functions of the primordial curvature perturbation should have scale-dependent features, a case which is marginally supported from the cosmic microwave background (CMB) data. We offer a new approach to analyze the appearance of such features in the primordial bispectrum that yields new consistency relations and justifies the search of oscillating patterns modulated by orthogonal and local templates. Under the assumption of sharp features, we find that the cubic couplings of the curvature perturbation can be expressed in terms of the bispectrum in two specific momentum configurations, for example local and equilateral. This allows us to derive consistency relations among different bispectrum shapes, which in principle could be tested in future CMB surveys. Furthermore, based on the form of the consistency relations, we construct new two-parameter templates for features that include all the known shapes.

  17. Inflating Kahler moduli and primordial magnetic fields

    Directory of Open Access Journals (Sweden)

    Luis Aparicio

    2017-05-01

    Full Text Available We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  18. Inflating Kahler moduli and primordial magnetic fields

    International Nuclear Information System (INIS)

    Aparicio, Luis; Maharana, Anshuman

    2017-01-01

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  19. Inflating Kahler moduli and primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis, E-mail: laparici@ictp.it [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Maharana, Anshuman, E-mail: anshumanmaharana@hri.res.in [Harish Chandra Research Institute, HBNI, Chattnag Road, Jhunsi, Allahabad 211019 (India)

    2017-05-10

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  20. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  1. Finite temperature effects in primordial inflation

    Science.gov (United States)

    Gelmini, G. B.; Nanopoulos, D. V.; Olive, K. A.

    1983-11-01

    We present a detailed study of a recently proposed model for primordial inflation based on an N=1 locally supersymmetric potential. For a large class of parameters with which all cosmological constraints are satisfied, the temperature corrections can be neglected during the inflation period. At higher temperatures, the minimum is not at the origin, but very close to it. Address after July 1, 1983: Theory Group, Fermilab, PO Box 500, Batavia, IL 60510, USA.

  2. Primordial Inflation Polarization Explorer: Status and Plans

    Science.gov (United States)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  3. Primordial anisotropies in gauged hybrid inflation

    Science.gov (United States)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  4. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2014-01-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  5. Nuclear reaction rates and primordial 6Li

    International Nuclear Information System (INIS)

    Nollett, K.M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.

    1997-01-01

    We examine the possibility that big-bang nucleosynthesis (BBN) may produce nontrivial amounts of 6 Li. If a primordial component of this isotope could be observed, it would provide a new fundamental test of big-bang cosmology, as well as new constraints on the baryon density of the universe. At present, however, theoretical predictions of the primordial 6 Li abundance are extremely uncertain due to difficulties in both theoretical estimates and experimental determinations of the 2 H(α,γ) 6 Li radiative capture reaction cross section. We also argue that present observational capabilities do not yet allow the detection of primeval 6 Li in very metal-poor stars of the galactic halo. However, if the critical cross section is very high in its plausible range and the baryon density is relatively low, then improvements in 6 Li detection capabilities may allow the establishment of 6 Li as another product of BBN. It is also noted that a primordial 6 Li detection could help resolve current concerns about the extragalactic D/H determination. copyright 1997 The American Physical Society

  6. Primordial nucleosynthesis revisited via Trojan Horse Results

    Directory of Open Access Journals (Sweden)

    Pizzone R.G.

    2016-01-01

    Full Text Available Big Bang Nucleosynthesis (BBN requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,pt, d(d,n3He and 3He(d,p4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM to study reactions of relevance for the BBN and measure their astrophysical S(E-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. A comparison was also performed with calculations using other reaction rates compilations available in literature.

  7. The primordial helium abundance from updated emissivities

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L.

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y p . The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y p . In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y p = 0.2465 ± 0.0097, in good agreement with the BBN result, Y p = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  8. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    2010-01-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  9. Effect of nuclear reaction rates on primordial abundances

    International Nuclear Information System (INIS)

    Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li

  10. Patterns of Residential Segregation.

    Directory of Open Access Journals (Sweden)

    Rémi Louf

    Full Text Available The spatial distribution of income shapes the structure and organisation of cities and its understanding has broad societal implications. Despite an abundant literature, many issues remain unclear. In particular, all definitions of segregation are implicitely tied to a single indicator, usually rely on an ambiguous definition of income classes, without any consensus on how to define neighbourhoods and to deal with the polycentric organization of large cities. In this paper, we address all these questions within a unique conceptual framework. We avoid the challenge of providing a direct definition of segregation and instead start from a definition of what segregation is not. This naturally leads to the measure of representation that is able to identify locations where categories are over- or underrepresented. From there, we provide a new measure of exposure that discriminates between situations where categories co-locate or repel one another. We then use this feature to provide an unambiguous, parameter-free method to find meaningful breaks in the income distribution, thus defining classes. Applied to the 2014 American Community Survey, we find 3 emerging classes-low, middle and higher income-out of the original 16 income categories. The higher-income households are proportionally more present in larger cities, while lower-income households are not, invalidating the idea of an increased social polarisation. Finally, using the density-and not the distance to a center which is meaningless in polycentric cities-we find that the richer class is overrepresented in high density zones, especially for larger cities. This suggests that density is a relevant factor for understanding the income structure of cities and might explain some of the differences observed between US and European cities.

  11. Gravitational wave production by Hawking radiation from rotating primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-10-01

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.

  12. Primordial black hole formation during the QCD epoch

    International Nuclear Information System (INIS)

    Jedamzik, K.

    1997-01-01

    We consider the formation of horizon-size primordial black holes (PBH close-quote s) from pre-existing density fluctuations during cosmic phase transitions. It is pointed out that the formation of PBH close-quote s should be particularly efficient during the QCD epoch due to a substantial reduction of pressure forces during adiabatic collapse, or equivalently, a significant decrease in the effective speed of sound during the color-confinement transition. Our considerations imply that for generic initial density perturbation spectra PBH mass functions are expected to exhibit a pronounced peak on the QCD-horizon mass scale ∼1M circle-dot . This mass scale is roughly coincident with the estimated masses for compact objects recently observed in our galactic halo by the MACHO Collaboration. Black holes formed during the QCD epoch may offer an attractive explanation for the origin of halo dark matter evading possibly problematic nucleosynthesis and luminosity bounds on baryonic halo dark matter. copyright 1997 The American Physical Society

  13. Chiral primordial gravitational waves from a Lifshitz point.

    Science.gov (United States)

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  14. Waste segregation procedures and benefits

    International Nuclear Information System (INIS)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs

  15. Search for gravitational waves from primordial black hole binary coalescences in the galactic halo

    International Nuclear Information System (INIS)

    Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.

    2005-01-01

    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole binary coalescence with component masses in the range 0.2-1.0M · . The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing nonspinning black holes with masses in the range 0.2-1.0M · , we place an observational upper limit on the rate of primordial black hole coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence

  16. Fingerprints of primordial universe paradigms as features in density perturbations

    International Nuclear Information System (INIS)

    Chen Xingang

    2011-01-01

    Experimentally distinguishing different primordial universe paradigms that lead to the Big Bang model is an outstanding challenge in modern cosmology and astrophysics. We show that a generic type of signals that exist in primordial universe models can be used for such purpose. These signals are induced by tiny oscillations of massive fields and manifest as features in primordial density perturbations. They are capable of recording the time-dependence of the scale factor of the primordial universe, and therefore provide direct evidence for specific paradigm. These signals present special opportunities and challenges for experiments and data analyses.

  17. Gravitational Waves from Primordial Black Holes and New Weak Scale Phenomena

    OpenAIRE

    Davoudiasl, Hooman; Giardino, Pier Paolo

    2016-01-01

    We entertain the possibility that primordialblack holes of mass $\\sim (10^{26}$--$10^{29})$~g, with Schwarzschild radii of $\\mathcal{O}{\\text{cm}}$, constitute $\\sim 10\\%$ or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures $\\mathcal{O}{10-100}$~GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes g...

  18. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter.

    Science.gov (United States)

    Espinosa, J R; Racco, D; Riotto, A

    2018-03-23

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11}  GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  19. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Espinosa, J. R.; Racco, D.; Riotto, A.

    2018-03-01

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  20. Identifying the inflaton with primordial gravitational waves.

    Science.gov (United States)

    Easson, Damien A; Powell, Brian A

    2011-05-13

    We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.

  1. Primordial hadrosynthesis in the Little Bang

    CERN Document Server

    Heinz, Ulrich W

    1999-01-01

    The present status of soft hadron production in high energy heavy-ion collisions is summarized. In spite of strong evidence for extensive dynamical evolution and collective expansion of the fireball before freeze-out I argue that its chemical composition is hardly changed by hadronic final state interactions. The measured hadron yields thus reflect the primordial conditions at hadronization. The observed production pattern is consistent with statistical hadronization at the Hagedorn temperature from a state of uncorrelated, color deconfined quarks and antiquarks, but requires non-trivial chemical evolution of the fireball in a prehadronic (presumably QGP) stage before hadron formation.

  2. Resolving primordial physics through correlated signatures

    OpenAIRE

    Enqvist, Kari; Mulryne, David J.; Nurmi, Sami

    2014-01-01

    We discuss correlations among spectral observables as a new tool for differentiating between models for the primordial perturbation. We show that if generated in the isocurvature sector, a running of the scalar spectral index is correlated with the statistical properties of non-Gaussianities. In particular, we find a large running will inevitably be accompanied by a large running of $f_{\\rm NL}$ and enhanced $g_{\\rm NL}$, with $g_{\\rm NL}\\gg f_{\\rm NL}^2$. If the tensor to scalar ratio is lar...

  3. Conditions for spatial segregation: some European perspectives.

    NARCIS (Netherlands)

    Musterd, S.; de Winter, M.

    1998-01-01

    Evaluates some theses on the theme of spatial segregation in Europe. Spatial segregation as an important issue on the political agendas of European nations; Two views of segregation in Europe; Strategies of European nations to deal with segregation; Segregation in European cities

  4. Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter

    Energy Technology Data Exchange (ETDEWEB)

    García-Bellido, Juan [Instituto de Física Teórica UAM-CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, 28049 Spain (Spain); Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, and Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota, 55455 (United States)

    2017-09-01

    Primordial Black Holes (PBH) could be the cold dark matter of the universe. They could have arisen from large (order one) curvature fluctuations produced during inflation that reentered the horizon in the radiation era. At reentry, these fluctuations source gravitational waves (GW) via second order anisotropic stresses. These GW, together with those (possibly) sourced during inflation by the same mechanism responsible for the large curvature fluctuations, constitute a primordial stochastic GW background (SGWB) that unavoidably accompanies the PBH formation. We study how the amplitude and the range of frequencies of this signal depend on the statistics (Gaussian versus χ{sup 2}) of the primordial curvature fluctuations, and on the evolution of the PBH mass function due to accretion and merging. We then compare this signal with the sensitivity of present and future detectors, at PTA and LISA scales. We find that this SGWB will help to probe, or strongly constrain, the early universe mechanism of PBH production. The comparison between the peak mass of the PBH distribution and the peak frequency of this SGWB will provide important information on the merging and accretion evolution of the PBH mass distribution from their formation to the present era. Different assumptions on the statistics and on the PBH evolution also result in different amounts of CMB μ-distortions. Therefore the above results can be complemented by the detection (or the absence) of μ-distortions with an experiment such as PIXIE.

  5. Shaping Segregation: Convexity vs. concavity

    NARCIS (Netherlands)

    Gonzalez Briones, Sebastián; Windows-Yule, Kit; Luding, Stefan; Parker, D.J.; Thornton, Anthony Richard

    2014-01-01

    Controlling segregation is both a practical and a theoretical challenge. In this Letter we demonstrate a manner in which rotation-induced segregation may be controlled by altering the geometry of the rotating containers in which granular systems are housed. Using a novel drum design comprising

  6. Probing Primordial Black Hole Dark Matter with Gravitational Waves.

    Science.gov (United States)

    Kovetz, Ely D

    2017-09-29

    Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20  M_{⊙}≲M_{PBH}≲100  M_{⊙} mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ∼30  M_{⊙} by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ∼5  yr of aLIGO data can be used to detect a contribution of >20  M_{⊙} PBHs to dark matter down to f_{PBH}99.9% confidence level. Combined with other probes that already suggest tension with f_{PBH}=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.

  7. Summary of Recent Developments in Primordial Nucleosynthesis.

    Science.gov (United States)

    Schramm, D N

    1993-06-01

    This paper summarizes the recent observational and theoretical results on Big Bang Nucleosynthesis. In particular, it is shown that the new Pop II (6)Li results strongly support the argument that the Spite Plateau lithium is a good estimate of the primordial value. The (6)Li is consistent with the Be and Be found in Pop II stars, assuming those elements are cosmic ray produced. The HST (2)D value tightens the (2)D arguments and the observation of the (3)He in planetary nebula strengthens the (3)He +(2)D argument as a lower bound on Ωb. The new low metalicity (4)He determinations slightly raise the best primordial (4)He number and thus make a better fit and avoid a potential problem. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ωb are possible vis-à-vis the homogeneous model; hence, the robustness of Ωb∼ 0.05 is now apparent. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ωb∼ 1 seems to be definitely excluded, so, if Ω= 1, as some recent observations may hint, then non-baryonic dark matter is required.

  8. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism.

    Science.gov (United States)

    Mirzaa, Ghayda M; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G; Paciorkowski, Alex R; Cleveland, Don W; Dobyns, William B; O'Driscoll, Mark

    2014-08-01

    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to

  9. Phase-oriented surface segregation in an aluminium casting alloy

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Atanacio, Armand; Zhang, Wei; Prince, Kathryn E.; Hyland, Margaret M.; Metson, James B.

    2009-01-01

    There have been many reports of the surface segregation of minor elements, especially Mg, into surface layers and oxide films on the surface of Al alloys. LM6 casting alloy (Al-12%Si) represents a challenging system to examine such segregation as the alloy features a particularly inhomogeneous phase structure. The very low but mobile Mg content (approximately 0.001 wt.%), and the surface segregation of modifiers such as Na, mean the surface composition responds in a complex manner to thermal treatment conditions. X-ray photoelectron spectroscopy (XPS) has been used to determine the distribution of these elements within the oxide film. Further investigation by dynamic secondary ion mass spectrometry (DSIMS) confirmed a strong alignment of segregated Na and Mg into distinct phases of the structure.

  10. Multicollector High Precision Resolution of Primordial Kr and Xe in Mantle CO2 Well Gases

    Science.gov (United States)

    Holland, G.; Ballentine, C.; Cassidy, M.

    2008-12-01

    Noble gas isotopes in magmatic CO2 well gases provide a unique insight into mantle volatile origin and dynamics [1-3]. Previous work has resolved mantle 20Ne/22Ne ratios consistent with a solar wind irradiated meteoritic source for mantle He and Ne [1]. This is distinct from Solar Wind values that might be expected if the primary mechanism of terrestrial mantle volatile acquisition was through the gravitational capture of solar nebula gases [see 4]. Within the CO2 well gases a primordial component has also been resolved in the non- radiogenic Xe isotopic composition [2,3]. Using multicollector mass spectrometry we have observed a 124Xe/130Xe excess of 1.85 percent over air plus/minus 0.17 percent for the least air contaminated samples. At this level of precision we are for the first time able to differentiate between a trapped meteoritic origin (average carbonaceous chondrite or Q Xe) rather than Solar Wind origin as the primordial Xe component. The well gases also contain Kr which, in the least air contaminated sample, have a correlated 86Kr/82Kr excess of 0.55 percent over air plus/minus 0.04 percent. Whilst mass dependent fractionation can theoretically produce correlated excesses in 124Xe-128Xe and 82Kr-86Kr isotopes, no fractionation from air is observed in 38Ar/36Ar [3] and the Kr excesses are in the opposite sense to that of Xe. From 136Xe excesses, Kr fission yield from Pu and U can be calculated and subtracted from the Kr isotopic signature. This fission-corrected signature is most reasonably explained as a primordial component. This is the first time that primordial Kr has ever been resolved in a terrestrial sample. The primordial Kr isotopic signature is distinct from Solar Wind Kr and is consistent with the primordial Kr also originating as a trapped component within meteorites. We are now able to demonstrate that both the light (He and Ne) and Heavy (Kr and Xe) noble gas origin in the terrestrial mantle is consistent with a trapped component during the

  11. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  12. Primordial black holes from single field models of inflation

    CERN Document Server

    Garcia-Bellido, Juan

    Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...

  13. Gravitational wave bursts from Primordial Black Hole hyperbolic encounters

    CERN Document Server

    Garcia-Bellido, Juan

    2017-01-01

    We propose that Gravitational Wave (GW) bursts with millisecond durations can be explained by the GW emission from the hyperbolic encounters of Primordial Black Holes in dense clusters. These bursts are single events, with the bulk of the released energy happening during the closest approach, and emitted in frequencies within the AdvLIGO sensitivity range. We provide expressions for the shape of the GW emission in terms of the peak frequency and amplitude, and estimate the rates of these events for a variety of mass and velocity configurations. We study the regions of parameter space that will allow detection by both AdvLIGO and, in the future, LISA. We find for realistic configurations, with total mass M∼60 M⊙, relative velocities v∼0.01c, and impact parameters b∼10−3 AU, for AdvLIGO an expected event rate is O(10) events/yr/Gpc^3 with millisecond durations. For LISA, the typical duration is in the range of minutes to hours and the event-rate is O(10^3) events/yr/Gpc^3 for both 10^3 M⊙ IMBH and 1...

  14. Quantum diffusion during inflation and primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pattison, Chris; Assadullahi, Hooshyar; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Vennin, Vincent, E-mail: hooshyar.assadullahi@port.ac.uk, E-mail: christopher.pattison@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: david.wands@port.ac.uk [Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 75013 Paris (France)

    2017-10-01

    We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ∼ 1 e -fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.

  15. Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition

    Science.gov (United States)

    Bugaev, Edgar; Klimai, Peter

    2012-05-01

    We consider the process of primordial black hole (PBH) formation originated from primordial curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation amplitudes can be reached, which can potentially cause a significant PBH production in the early Universe. The probability distributions of density perturbation amplitudes in this case can be strongly non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra for the model and analyzed their dependence on model parameters. We obtained the constraints on the parameters of the inflationary potential, using the available limits on βPBH.

  16. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  17. Surface segregation during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Lam, N.Q.

    1985-10-01

    Gibbsian adsorption is known to alter the surface composition of many alloys. During irradiation, four additional processes that affect the near-surface alloy composition become operative: preferential sputtering, displacement mixing, radiation-enhanced diffusion and radiation-induced segregation. Because of the mutual competition of these five processes, near-surface compositional changes in an irradiation environment can be extremely complex. Although ion-beam induced surface compositional changes were noted as long as fifty years ago, it is only during the past several years that individual mechanisms have been clearly identified. In this paper, a simple physical description of each of the processes is given, and selected examples of recent important progress are discussed. With the notable exception of preferential sputtering, it is shown that a reasonable qualitative understanding of the relative contributions from the individual processes under various irradiation conditions has been attained. However, considerably more effort will be required before a quantitative, predictive capability can be achieved. 29 refs., 8 figs

  18. Schwinger-Keldysh diagrammatics for primordial perturbations

    Science.gov (United States)

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-12-01

    We present a systematic introduction to the diagrammatic method for practical calculations in inflationary cosmology, based on Schwinger-Keldysh path integral formalism. We show in particular that the diagrammatic rules can be derived directly from a classical Lagrangian even in the presence of derivative couplings. Furthermore, we use a quasi-single-field inflation model as an example to show how this formalism, combined with the trick of mixed propagator, can significantly simplify the calculation of some in-in correlation functions. The resulting bispectrum includes the lighter scalar case (mcase (m>3H/2) that has not been explicitly computed for this model. The latter provides a concrete example of quantum primordial standard clocks, in which the clock signals can be observably large.

  19. Primordial Evolution in the Finitary Process Soup

    Science.gov (United States)

    Görnerup, Olof; Crutchfield, James P.

    A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.

  20. The Search for Primordial Molecular Cloud Matter

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M M E

    evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state......Our Solar System today presents a somewhat static picture compared to the turbulent start of its existence. Meteorites are the left-over building blocks of planet formation and allow us to probe the chemical and physical processes that occurred during the first few million years of Solar System...... prebiotic species such as amino acids, determining the formation pathways of this organic matter is of utmost importance to understanding the habitability of Earth as well as exoplanetary systems. Hence, further detailed analyses of organic matter in some of the meteorites with primordial signatures have...

  1. Microcephalic osteodysplastic primordial dwarfism type 1.

    Science.gov (United States)

    Ferrell, Steven; Johnson, Aaron; Pearson, Waylon

    2016-06-16

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1) is an uncommon cause of microcephaly and intrauterine growth retardation in a newborn. Early identifying features include but are not limited to sloping forehead, micrognathia, sparse hair, including of eyebrows and short limbs. Immediate radiological findings may include partial or complete agenesis of the corpus callosum, interhemispheric cyst and shallow acetabula leading to dislocation. Genetic testing displaying a mutation in RNU4ATAC gene is necessary for definitive diagnosis. Early identification is important as MOPD1 is an autosomal recessive condition and could present in subsequent pregnancies. The purpose of this case is to both identify and describe some common physical findings related to MOPD1. We present a case of MOPD1 in a girl born to non-consanguineous parents that was distinct for subglottic stenosis and laryngeal cleft. 2016 BMJ Publishing Group Ltd.

  2. Spectrum evolution of primordial cosmic turbulence

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1980-01-01

    The evolution of primordial cosmic turbulence prior to the epoch of plasma recombination is investigated numerically using the Wiener-Hermite expansion technique which gives reasonable results for laboratory turbulence. It is found that the Kolmogorov spectrum is established only within a narrow range of wavenumber space for reasonable parameter sets, because the expansion of the Universe has a tendency to suppress an energy cascade from larger eddies to smaller ones. The present result does not agree with that obtained by Kurskov and Ozernoi, who computed the decay of turbulence in a fictitious non-expanding frame using the Heisenberg closure hypothesis, while it was done in a physical frame in the present work. (author)

  3. Primordial beryllium as a big bang calorimeter.

    Science.gov (United States)

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  4. Primordial nucleosynthesis in the new cosmology

    International Nuclear Information System (INIS)

    Cyburt, R.H.

    2003-01-01

    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies independently predict the universal baryon density. Comparing their predictions will provide a fundamental test on cosmology. Using BBN and the CMB together, we will be able to constrain particle physics, and predict the primordial, light element abundances. These future analyses hinge on new experimental and observational data. New experimental data on nuclear cross sections will help reduce theoretical uncertainties in BBN's predictions. New observations of light element abundances will further sharpen BBN's probe of the baryon density. Observations from the MAP and PLANCK satellites will measure the fluctuations in the CMB to unprecedented accuracy, allowing the precise determination of the baryon density. When combined, this data will present us with the opportunity to perform precision cosmology

  5. Applied thermodynamics: Grain boundary segregation

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír

    2014-01-01

    Roč. 16, č. 3 (2014), s. 1462-1484 ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  6. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  7. Grand unification scale primordial black holes: consequences and constraints.

    Science.gov (United States)

    Anantua, Richard; Easther, Richard; Giblin, John T

    2009-09-11

    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.

  8. Income Segregation between Schools and School Districts

    Science.gov (United States)

    Owens, Ann; Reardon, Sean F.; Jencks, Christopher

    2016-01-01

    Although trends in the racial segregation of schools are well documented, less is known about trends in income segregation. We use multiple data sources to document trends in income segregation between schools and school districts. Between-district income segregation of families with children enrolled in public school increased by over 15% from…

  9. Lyman-alpha clouds as a relic of primordial density fluctuations

    International Nuclear Information System (INIS)

    Bond, J.R.; Szalay, A.S.; Silk, J.

    1988-01-01

    Primordial density fluctuations are studied using a CDM model and primordial clouds some of which are expanding, driven by pressure gradients created when the medium is photionized, and some of which are massive enough to continue collapsing in spite of the pressure. Normalization of CDM models to the clustering properties on large scales are used to predict the parameters of collapsing clouds of subgalactic mass at early epochs. It is shown that the abundance and dimensions of these clouds are comparable to those of the Lyman-alpha systems. The evolutionary history of the clouds is computed, utilizing a spherically symmetric hydrodynamics code with the dark matter treated as a collisionless fluid, and the H I column density distribution is evaluated as a function of N(H I) and redshift. The observed cloud parameters come out naturally in the CDM model and suggest that Lyman-alpha clouds are the missing link between primordial density fluctuations and the formation of galaxies. 31 references

  10. Primordial Black Holes and r-Process Nucleosynthesis.

    Science.gov (United States)

    Fuller, George M; Kusenko, Alexander; Takhistov, Volodymyr

    2017-08-11

    We show that some or all of the inventory of r-process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10^{-14}  M_{⊙}

  11. Testing for new physics: neutrinos and the primordial power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Canac, Nicolas; Abazajian, Kevork N. [Department of Physics, University of California at Irvine, Irvine, CA 92697 (United States); Aslanyan, Grigor [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Easther, Richard [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Price, Layne C., E-mail: ncanac@uci.edu, E-mail: aslanyan@berkeley.edu, E-mail: kevork@uci.edu, E-mail: r.easther@auckland.ac.nz, E-mail: laynep@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2016-09-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.

  12. The origin and migration of primordial germ cells in sturgeons.

    Directory of Open Access Journals (Sweden)

    Taiju Saito

    Full Text Available Primordial germ cells (PGCs arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.

  13. THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN

    International Nuclear Information System (INIS)

    Deschamps, Frederic; Mousis, Olivier; Sanchez-Valle, Carmen; Lunine, Jonathan I.

    2010-01-01

    A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of ∼4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

  14. Segregative phase separation in aqueous mixtures of polydisperse biopolymers

    NARCIS (Netherlands)

    Edelman, M.W.

    2003-01-01

    Keywords: biopolymer, gelatine, dextran, PEO, phase separation, polydispersity, molar mass distribution, SEC-MALLS, CSLM The temperature-composition phase diagram of aqueous solutions of gelatine and dextran, which show liquid/liquid phase segregation, were explored at temperatures above the

  15. Cosmic microwave background constraints on primordial black hole dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aloni, Daniel; Blum, Kfir [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl 234, Rehovot (Israel); Flauger, Raphael, E-mail: daniel.aloni@weizmann.ac.il, E-mail: kfir.blum@weizmann.ac.il, E-mail: flauger@physics.ucsd.edu [University of California, 9500 Gilman Drive 0319, La Jolla, San Diego, CA, 92093 (United States)

    2017-05-01

    We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with m {sub BH}∼> 5 M {sub ⊙} are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.

  16. Image segregation in strabismic amblyopia.

    Science.gov (United States)

    Levi, Dennis M

    2007-06-01

    Humans with naturally occurring amblyopia show deficits thought to involve mechanisms downstream of V1. These include excessive crowding, abnormal global image processing, spatial sampling and symmetry detection and undercounting. Several recent studies suggest that humans with naturally occurring amblyopia show deficits in global image segregation. The current experiments were designed to study figure-ground segregation in amblyopic observers with documented deficits in crowding, symmetry detection, spatial sampling and counting, using similar stimuli. Observers had to discriminate the orientation of a figure (an "E"-like pattern made up of 17 horizontal Gabor patches), embedded in a 7x7 array of Gabor patches. When the 32 "background" patches are vertical, the "E" pops-out, due to segregation by orientation and performance is perfect; however, if the background patches are all, or mostly horizontal, the "E" is camouflaged, and performance is random. Using a method of constant stimuli, we varied the number of "background" patches that were vertical and measured the probability of correct discrimination of the global orientation of the E (up/down/left/right). Surprisingly, amblyopes who showed strong crowding and deficits in symmetry detection and counting, perform normally or very nearly so in this segregation task. I therefore conclude that these deficits are not a consequence of abnormal segregation of figure from background.

  17. Primordial non-Gaussianity from LAMOST surveys

    International Nuclear Information System (INIS)

    Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng

    2010-01-01

    The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.

  18. The Primordial Inflation Explorer (PIXIE) Mission

    Science.gov (United States)

    Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer

  19. The origin, evolution and signatures of primordial magnetic fields.

    Science.gov (United States)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  20. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation

    Directory of Open Access Journals (Sweden)

    Dorothy A. Lerit

    2017-01-01

    Full Text Available The primordial germ cells (PGCs specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl, is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.

  1. The influence of primordial magnetic fields on the spherical collapse model in cosmology

    International Nuclear Information System (INIS)

    Shibusawa, Y.; Ichiki, K.; Kadota, K.

    2014-01-01

    Despite the ever growing observational evidence for the existence of the large scale magnetic fields, their origin and the evolution are not fully understood. If the magnetic fields are of primordial origin, they result in the generation of the secondary matter density perturbations and the previous studies show that such density perturbations enhance the number of dark matter halos. We extend the conventional spherical collapse model by including the Lorentz force which has not been implemented in the previous analysis to study the evolution of density perturbations produced by primordial magnetic fields. The critical over-density δ c characterizing the halo mass function turns out to be a bigger value, δ c ≅ 1.78, than the conventional one δ c ≅ 1.69 for the perturbations evolved only by the gravitational force. The difference in δ c between our model and the fully matter dominated cosmological model is small at a low redshift and, hence, only the high mass tail of the mass function is affected by the magnetic fields. At a high redshift, on the other hand, the difference in δ c becomes large enough to suppress the halo abundance over a wide range of mass scales. The halo abundance is reduced for instance by as large a factor as ∼10 5 at z=9

  2. Segregation in a Galton Board

    International Nuclear Information System (INIS)

    Benito, J G; Vidales, A M; Ippolito, I

    2009-01-01

    This work deals with a numerical study of the problem of separation of particles with different elastic properties. The separation procedure uses a Galton Board which consist in a bidimensional system of obstacles arranged in a triangular lattice. Disks of equal diameters but different elastic properties are launched from the top of the device. The Galton Board is commonly used for mixing particles, but here, we intend to find special conditions under which one can use it as a segregating device. We introduce a mixture of particles and generate, through simulations, different conditions to favor the segregation process based on the different elastic coefficients of the particles. We inspect which is the best configuration of size, density of obstacles and wall separation to favor the separations of particles. Our results prove that the Galton Board can be used as a segregation device under certain conditions.

  3. Primordial black hole production in Critical Higgs Inflation

    Science.gov (United States)

    Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester

    2018-01-01

    Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  4. Primordial black hole production in Critical Higgs Inflation

    Directory of Open Access Journals (Sweden)

    Jose María Ezquiaga

    2018-01-01

    Full Text Available Primordial Black Holes (PBH arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI, where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ(μ and its non-minimal coupling to gravity ξ(μ. We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01–100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  5. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  6. Effects of rotation on the evolution of primordial stars

    Science.gov (United States)

    Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.

    2008-10-01

    Context: Although still beyond our observational abilities, Population III stars are interesting objects from many perspectives. They are responsible for the re-ionisation of the inter-galactic medium. They also left their chemical imprint in the early Universe, which can be deciphered in the most metal-poor stars in the halo of our Galaxy. Aims: Rotation has been shown to play a determinant role at very low metallicity, bringing heavy mass loss where almost none was expected. Is this still true when the metallicity strictly equals zero? The aim of our study is to answer this question, and to determine how rotation changes the evolution and the chemical signature of the primordial stars. Methods: We have calculated seven differentially-rotating stellar models at zero metallicity, with masses between 9 and 200 M⊙. For each mass, we also calculated a corresponding model without rotation. The evolution is followed up to the pre-supernova stage. Results: We find that Z=0 models rotate with an internal profile Ω(r) close to local angular momentum conservation, because of a very weak core-envelope coupling. Rotational mixing drives an H-shell boost due to a sudden onset of the CNO cycle in the shell. This boost leads to a high 14N production, which can be as much as 106 times higher than the production of the non-rotating models. Generally, the rotating models produce much more metal than their non-rotating counterparts. The mass loss is very low, even for the models that reach critical velocity during the main sequence. It may however have an impact on the chemical enrichment of the Universe, because some of the stars are supposed to collapse directly into black holes. They would contribute to the enrichment only through their winds. While in that case non-rotating stars would not contribute at all, rotating stars may leave an imprint on their surrounding. Due to the low mass loss and the weak coupling, the core retains a high angular momentum at the end of the

  7. Primordial Terrestrial Xe from the Viewpoint of CFF-Xe

    Science.gov (United States)

    Meshik, A. P.; Shukolyukov, Yu. A.; Jessberger, E. K.

    1995-09-01

    We have already reported [7, 23] on the non-linear isotope mass-fractionation of fission Xe by migration of the precursors I, Te, Sn, and Sb and simultaneous fission of heavy nuclei. Xe with anomalous isotopic pattern was found in a number of meteorites and terrestrial materials and was named CFF-Xe (Chemically Fractionated Fission Xe). It is characterized by an up eightfold ^132Xe and ^131Xe excesses coupled with smaller ^134Xe and ^129Xe excesses. The present work is aimed to estimate the role of CFF-Xe in the terrestrial lithosphere and specifically deals with the problem of the isotopic composition of primordial terrestrial Xe. Due to variations of the migration conditions the isotopic structure of CFF-Xe is not well established and is even not reproducible in the same rock [2]. Nevertheless, we have tried to estimate the composition of CFF-Xe by investigating all available isotopic data of Xe of presumable mantle origin. This is Xe in MORB [29, 1, 12] and ocean island glasses [1, 28], in diamonds [17], in volcanic rocks [29, 8, 9, 21], in volcanic glasses from pillow basalts [16, 6], continental igneous rocks [1, 24, 10, 22], carbonatites and granitoids [1] as well as Xe in natural gases [3, 24, 11, 4, 15]. All data are plotted Fig. 1 where we also suggest end members of the observed scattering. Optimized slopes of CFF-lines are shown as well as the position of the initial points which we regard as primordial terrestrial Xe (Xe0). The isotopic composition of CFF-Xe and Xe0 are given in Tab. 1. The abundances of ^124Xe and ^126Xe in mantle derived samples are very uncertain, but since ^128Xe/^130Xe in Xea and Xe0 is very similar we propose the same ^124Xe/^130Xe and ^126Xe/^130Xe ratios for both Xea and Xe0. If so, AVCC-Xe is simply Xe0 with an admixture of L-Xe, and atmospheric xenon Xea consists of Xe0, CFF-Xe and a small amount of fission Xe (92.5%Xe0 + 5.3%CFF-Xe + 2.2%XeF). Thus, a number of old problems in xenology are removed. The hypothetic components U

  8. Primordial black holes from scalar field evolution in the early universe

    Science.gov (United States)

    Cotner, Eric; Kusenko, Alexander

    2017-11-01

    Scalar condensates with large expectation values can form in the early universe, for example, in theories with supersymmetry. The condensate can undergo fragmentation into Q-balls before decaying. If the Q-balls dominate the energy density for some period of time, statistical fluctuations in their number density can lead to formation of primordial black holes (PBH). In the case of supersymmetry the mass range is limited from above by 1 023 g . For a general charged scalar field, this robust mechanism can generate black holes over a much broader mass range, including the black holes with masses of 1-100 solar masses, which is relevant for LIGO observations of gravitational waves. Topological defects can lead to formation of PBH in a similar fashion.

  9. New X-ray bound on density of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Institute of Space and Astronautical Science JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kusenko, Alexander, E-mail: yinoue@astro.isas.jaxa.jp, E-mail: kusenko@ucla.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States)

    2017-10-01

    We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number density of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few M {sub ⊙} to 2× 10{sup 7} M {sub ⊙}. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.

  10. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

    Directory of Open Access Journals (Sweden)

    Vincent Desjacques

    2010-01-01

    generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.

  11. Primordial power spectrum features and consequences

    Science.gov (United States)

    Goswami, G.

    2014-03-01

    The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?

  12. The Primordial Inflation Polarization Explorer (PIPER)

    Science.gov (United States)

    Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James; hide

    2014-01-01

    The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.

  13. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  14. Gender Segregation: Separate but Effective?

    Science.gov (United States)

    Holthouse, David

    2010-01-01

    In 2002, only 11 public schools in the United States had gender-segregated classrooms. As of December 2009, there were more than 550. The movement is based on the hypothesis that hard-wired differences in the ways that male and female brains develop and function in childhood through adolescence require classrooms in which boys and girls are not…

  15. Sexual orientation, prejudice and segregation

    NARCIS (Netherlands)

    Plug, E.; Webbink, D.; Martin, N.

    2014-01-01

    This article examines whether gay and lesbian workers sort into tolerant occupations. With information on sexual orientation, prejudice, and occupational choice taken from Australian Twin Registers, we find that gays and lesbians shy away from prejudiced occupations. We show that our segregation

  16. Morphological anomaly of primordial follicle in {gamma}-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, Chang Joo; Lee, Young Dal [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-08-01

    Ovarian follicles are faced with one of two fates, atresia or development. Up to 99% of follicles become degenerated rather than ovulated in female life span. Thus, atresia occurs at all stages of follicle development in mammalian ovaries. In the present experiment, the effect of {gamma}-radiation on primordial follicles was morphologically analyzed in a mouse ovary. Thirty-seven percent of the primordial follicles in the non-irradiated control mice ovaries were abnormal. At day 8 post irradiation, most of primordial follicles became atretic. They lost their integrity of architecture in the follicular shape. Then, all the oocytes disappeared from the follicles. And only 3 to 4 granulosa cells lay down onto the basement membrane. Disappearance of granulosa cells or oocytes resulted from the radiation-induced apoptotic process. It is definitely clear that {gamma}-radiation induces rapid apoptotic degeneration of the primordial follicles. The morphological degeneration induced by radiation in the primordial follicles can be used as an experimental model to draw out a deeper insight for radioprotectant researches. (author). 22 refs., 4 figs.

  17. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  18. 36 CFR 254.6 - Segregative effect.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Segregative effect. 254.6... ADJUSTMENTS Land Exchanges § 254.6 Segregative effect. (a) If a proposal is made to exchange Federal lands... segregative effect terminates as follows: (1) Automatically, upon issuance of a patent or other document of...

  19. Segregation in quasi-two-dimensional granular systems

    International Nuclear Information System (INIS)

    Rivas, Nicolas; Cordero, Patricio; Soto, Rodrigo; Risso, Dino

    2011-01-01

    Segregation for two granular species is studied numerically in a vertically vibrated quasi-two-dimensional (quasi-2D) box. The height of the box is smaller than two particle diameters so that particles are limited to a submonolayer. Two cases are considered: grains that differ in their density but have equal size, and grains that have equal density but different diameters, while keeping the quasi-2D condition. It is observed that in both cases, for vibration frequencies beyond a certain threshold-which depends on the density or diameter ratios-segregation takes place in the lateral directions. In the quasi-2D geometry, gravity does not play a direct role in the in-plane dynamics and gravity does not point to the segregation directions; hence, several known segregation mechanisms that rely on gravity are discarded. The segregation we observe is dominated by a lack of equipartition between the two species; the light particles exert a larger pressure than the heavier ones, inducing the latter to form clusters. This energy difference in the horizontal direction is due to the existence of a fixed point characterized by vertical motion and hence vanishing horizontal energy. Heavier and bigger grains are more rapidly attracted to the fixed point and the perturbations are less efficient in taking them off the fixed point when compared to the lighter grains. As a consequence, heavier and bigger grains have less horizontal agitation than lighter ones. Although limited by finite size effects, the simulations suggest that the two cases we consider differ in the transition character: one is continuous and the other is discontinuous. In the cases where grains differ in mass on varying the control parameter, partial segregation is first observed, presenting many clusters of heavier particles. Eventually, a global cluster is formed with impurities; namely lighter particles are present inside. The transition looks continuous when characterized by several segregation order

  20. Non-primordial origin of the cosmic background radiation and pregalactic density fluctuations

    International Nuclear Information System (INIS)

    Froehlich, H.E.; Mueller, V.; Oleak, H.

    1984-01-01

    Assumptions of a tepid Universe and a smaller primordial contribution to the 3 K background are made to show that Pop III stars may be responsible for the 3 K background and cosmic ray entropy. The 3 K background would be caused by thermalized stellar radiation produced by metallized intergalactic dust formed in first generation stars. A range of mass scales and amplification factors of density perturbations in the early Universe is examined below the Jeans mass for gravitational instabilities. The density perturbations that could have been present at small enough mass scales could have survived and generated sonic modes that propagated through the plasma era and, when combined with additional gravitationally unstable entropy disturbances after recombination, triggered the formation of Pop III stars. 13 references

  1. Mechanisms and pathways of growth failure in primordial dwarfism.

    Science.gov (United States)

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  2. Direct search for features in the primordial bispectrum

    Directory of Open Access Journals (Sweden)

    Stephen Appleby

    2016-09-01

    Full Text Available We study features in the bispectrum of the primordial curvature perturbation correlated with the reconstructed primordial power spectrum from the observed cosmic microwave background temperature data. We first show how the bispectrum can be completely specified in terms of the power spectrum and its first two derivatives, valid for any configuration of interest. Then using a model-independent reconstruction of the primordial power spectrum from the Planck angular power spectrum of temperature anisotropies, we compute the bispectrum in different triangular configurations. We find that in the squeezed limit at k∼0.06 Mpc−1 and k∼0.014 Mpc−1 there are marginal 2σ deviations from the standard featureless bispectrum, which meanwhile is consistent with the reconstructed bispectrum in the equilateral configuration.

  3. Standard Clock in primordial density perturbations and cosmic microwave background

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-01-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a(t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building

  4. DEEP MIPS OBSERVATIONS OF THE IC 348 NEBULA: CONSTRAINTS ON THE EVOLUTIONARY STATE OF ANEMIC CIRCUMSTELLAR DISKS AND THE PRIMORDIAL-TO-DEBRIS DISK TRANSITION

    International Nuclear Information System (INIS)

    Currie, Thayne; Kenyon, Scott J.

    2009-01-01

    We describe new, deep MIPS photometry and new high signal-to-noise optical spectroscopy of the 2.5 Myr old IC 348 Nebula. To probe the properties of the IC 348 disk population, we combine these data with previous optical/infrared photometry and spectroscopy to identify stars with gas accretion, to examine their mid-IR colors, and to model their spectral energy distributions. IC 348 contains many sources in different evolutionary states, including protostars and stars surrounded by primordial disks, two kinds of transitional disks, and debris disks. Most disks surrounding early/intermediate spectral-type stars (>1.4 M sun at 2.5 Myr) are debris disks; most disks surrounding solar and subsolar-mass stars are primordial disks. At the 1-2 σ level, more massive stars also have a smaller frequency of gas accretion and smaller mid-IR luminosities than lower-mass stars. These trends are suggestive of a stellar mass-dependent evolution of disks, where most disks around high/intermediate-mass stars shed their primordial disks on rapid, 2.5 Myr timescales. The frequency of MIPS-detected transitional disks is ∼15%-35% for stars plausibly more massive than 0.5 M sun . The relative frequency of transitional disks in IC 348 compared to that for 1 Myr old Taurus and 5 Myr old NGC 2362 is consistent with a transition timescale that is a significant fraction of the total primordial disk lifetime.

  5. Astrochemistry: From primordial gas to present-day clouds

    OpenAIRE

    Schleicher, Dominik R. G.; Bovino, Stefano; Körtgen, Bastian; Grassi, Tommaso; Banerjee, Robi

    2017-01-01

    Astrochemistry plays a central role during the process of star formation, both in the primordial regime as well as in the present-day Universe. We revisit here the chemistry in both regimes, focusing first on the chemistry under close to primordial conditions, as observed in the so-called Caffau star SDSS J102915+172927, and subsequently discuss deuteration processes in present-day star-forming cores. In models of the high-redshift Universe, the chemistry is particularly relevant to determine...

  6. Chirality oscillation of primordial gravitational waves during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-03-06

    We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  7. Primordial lithium and the standard model(s)

    International Nuclear Information System (INIS)

    Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.

    1989-01-01

    We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios

  8. Limits to the primordial helium abundance in the baryon-inhomogeneous big bang

    Science.gov (United States)

    Mathews, G. J.; Schramm, D. N.; Meyer, B. S.

    1993-01-01

    The parameter space for baryon inhomogeneous big bang models is explored with the goal of determining the minimum helium abundance obtainable in such models while still satisfying the other light-element constraints. We find that the constraint of (D + He-3)/H less than 10 exp -4 restricts the primordial helium mass fraction from baryon-inhomogeneous big bang models to be greater than 0.231 even for a scenario which optimizes the effects of the inhomogeneities and destroys the excess lithium production. Thus, this modification to the standard big bang as well as the standard homogeneous big bang model itself would be falsifiable by observation if the primordial He-4 abundance were observed to be less than 0.231. Furthermore, a present upper limit to the observed helium mass fraction of Y(obs)(p) less than 0.24 implies that the maximum baryon-to-photon ratio allowable in the inhomogeneous models corresponds to eta less than 2.3 x 10 exp -9 (omega(b) h-squared less than 0.088) even if all conditions are optimized.

  9. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  10. Nonequilibrium Segregation in Petroleum Reservoirs

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  11. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    Science.gov (United States)

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  12. The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish.

    Directory of Open Access Journals (Sweden)

    Taiju Saito

    Full Text Available Primordial germ cells (PGCs are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4 are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders.

  13. Molecular mechanisms governing primordial germ cell migration in zebrafish

    NARCIS (Netherlands)

    Doitsidou, M.

    2005-01-01

    In most sexually reproducing organisms primordial germ cells (pGCs) are specified early in development in places that are distinct from the region where the somatic part of the gonad develops. From their places of specification they have to migrate towards the site where they associate with somatic

  14. Primordial germ cells and amnion development in the avian embryo

    NARCIS (Netherlands)

    De Melo Bernardo, Ana

    2016-01-01

    Primordial germ cells (PGCs) are the progenitors of the gametes, responsible for transmitting genetic information from generation to generation. Although there is a long history of gamete biology research, there is still a lot to be learned about many of the mechanisms underlying germ cell

  15. Lifting Primordial Non-Gaussianity Above the Noise

    NARCIS (Netherlands)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico

    2016-01-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen

  16. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism

  17. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Doerfler, Arnd; Kinning, Esther; Megarbane, Andre; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Doerr, Helmuth-Guenther; Reis, Andre

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss- of- function mutations in the centrosomal pericentrin ( PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial

  18. Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry.

    Science.gov (United States)

    Saladino, Raffaele; Šponer, Judit E; Šponer, Jiří; Di Mauro, Ernesto

    2018-01-04

    A short history of Campbell's primordial soup: In this essay we try to disclose some of the historical connections between the studies that have contributed to our current understanding of the emergence of catalytic RNA molecules and their components from an inanimate matter. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordiallocal, equilateral, an...

  20. Cosmic microwave background trispectrum and primordial magnetic field limits.

    Science.gov (United States)

    Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy

    2012-06-08

    Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

  1. In silico ionomics segregates parasitic from free-living eukaryotes.

    Science.gov (United States)

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.

  2. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins

    Science.gov (United States)

    Neish, Catherine D.; Somogyi, Árpád; Smith, Mark A.

    2010-04-01

    Titan organic haze analogues, or "tholins," produce biomolecules when hydrolyzed at low temperature over long timescales. By using a combination of high-resolution mass spectroscopy and tandem mass spectrometry fragmentation techniques, four amino acids were identified in a tholin sample that had been hydrolyzed in a 13 wt % ammonia-water solution at 253 ± 1 K and 293 ± 1 K for 1 year. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions thought to be similar to those found in impact melt pools and cryolavas on Titan, which are at a stage of chemical evolution not unlike the "primordial soup" of the early Earth. Future missions to Titan should therefore carry instrumentation capable of, but certainly not limited to, detecting amino acids and other prebiotic molecules on Titan's surface.

  3. Selections from 2016: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background AnisotropiesPublished May2016Main takeaway:A study by Alexander Kashlinsky (NASA Goddard SFC) proposes that the cold dark matter that makes up the majority of the universes matter may be made of black holes. These black holes, Kashlinsky suggests, are primordial: they collapsed directly from dense regions of the universe soon after the Big Bang.Why its interesting:This model would simultaneously explain several observations. In particular, we see similarities in patterns between the cosmic infrared and X-ray backgrounds. This would make sense if accretion onto primordial black holes in halos produced the X-ray background in the same regions where the first stars also formed, producing the infrared background.What this means for current events:In Kashlinskys model, primordial black holes would occasionally form binary pairs and eventually spiral in and merge. The release of energy from such an event would then be observable by gravitational-wave detectors. Could the gravitational-wave signal that LIGO detected last year have been two primordial black holes merging? More observations will be needed to find out.CitationA. Kashlinsky 2016 ApJL 823 L25. doi:10.3847/2041-8205/823/2/L25

  4. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...... temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus......, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie...

  5. Primordial nucleosynthesis in the Rh = ct cosmology: pouring cold water on the simmering Universe

    Science.gov (United States)

    Lewis, Geraint F.; Barnes, Luke A.; Kaushik, Rajesh

    2016-07-01

    Primordial nucleosynthesis is rightly hailed as one of the great successes of the standard cosmological model. Here we consider the initial forging of elements in the recently proposed Rh = ct universe, a cosmology that demands linear evolution of the scale factor. Such a universe cools extremely slowly compared to standard cosmologies, considerably depleting the available neutrons during nucleosynthesis; this has significant implications for the resultant primordial abundances of elements, predicting a minuscule quantity of helium which is profoundly at odds with observations. The production of helium can be enhanced in such a `simmering universe' by boosting the baryon to photon ratio, although more than an order of magnitude increase is required to bring the helium mass fraction into accordance with observations. However, in this scenario, the prolonged period of nucleosynthesis results of the efficient cooking of lighter into heavier elements, impacting the resultant abundances of all elements so that, other than hydrogen and helium, there are virtually no light elements present in the universe. Without the addition of substantial new physics in the early universe, it is difficult to see how the Rh = ct universe can be considered a viable cosmological model.

  6. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    International Nuclear Information System (INIS)

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-01-01

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f NL = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f NL = ±100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f NL = 0 peak function to the f NL = ±100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f NL can be measured with an error Δf NL ∼ 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  7. Are segregated sports classes scientifically justified?

    OpenAIRE

    Lawson, Sian; Hall, Edward

    2014-01-01

    School sports classes are a key part of physical and mental development, yet in many countries these classes are gender segregated. Before institutionalised segregation can be condoned it is important to tackle assumptions and check for an evidence-based rationale. This presentation aims to analyse the key arguments for segregation given in comment-form response to a recent media article discussing mixed school sports (Lawson, 2013).\\ud \\ud The primary argument given was division for strength...

  8. Digital morphogenesis via Schelling segregation

    Science.gov (United States)

    Barmpalias, George; Elwes, Richard; Lewis-Pye, Andrew

    2018-04-01

    Schelling’s model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In Brandt et al (2012 Proc. 44th Annual ACM Symp. on Theory of Computing) provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model’s behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation.

  9. From particle segregation to the granular clock

    International Nuclear Information System (INIS)

    Lambiotte, R.; Salazar, J.M.; Brenig, L.

    2005-01-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations

  10. From particle segregation to the granular clock

    Energy Technology Data Exchange (ETDEWEB)

    Lambiotte, R. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: rlambiot@ulb.ac.be; Salazar, J.M. [Universite De Bougogne-LRRS UMR-5613 CNRS, Faculte des Sciences Mirande, 9 Av. Alain Savary, 21078 Dijon Cedex (France)]. E-mail: jmarcos@u-bourgogne.fr; Brenig, L. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: lbrenig@ulb.ac.be

    2005-08-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations.

  11. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    Science.gov (United States)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  12. The development of primordial black holes and a possibility of the black-holes dominant era

    International Nuclear Information System (INIS)

    Byalko, A.V.

    1977-12-01

    The equation, describing primordial black-holes (PBH) with small masses in a media with high density and temperature is suggested. Its solution for a single PBH-mass in an early stage of the universe is increasing when the temperature of the media is greater than PBH-temperature, and then descreasing due to the Hawking evaporation. The case of a great number of PBH with equal and extremely large masses is examined. We suggest that the evaporation process is symmetric with respect to particle-antiparticle creation and mainly baryons existed in the very beginning of the universe. Only one parameter zeta = N 0 (2PI 0 )sup(-3/2) (where N 0 is the PBH number in a 3 volume and PI 0 = d(a 2 /2)/dt| sub(t→0)) describes all the functions of time: PBH-mass m(t), the PBH average energy density, the rate of the cosmic expansion and the ratio of baryons to radiation densities α(t). Case of zeta -8 that only small PBH with maximum masses of order of 10 2 gr were existing and they died before t sub(fin) -- 10 -23 s. The process of collision of black holes is hot studied here. Case of any other PBH-masses destribution only decreases the values of m sub(max) and t sub(fin) if the final baryon-radiation ratio is fixed. (auth.)

  13. Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Pani, Paolo [CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, Lisboa, 1049 Portugal (Portugal); Loeb, Abraham, E-mail: paolo.pani@tecnico.ulisboa.pt, E-mail: aloeb@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian CfA, 60 Garden Street, Cambridge, MA, 02138 (United States)

    2014-06-01

    In a close encounter with a neutron star, a primordial black hole can get gravitationally captured by depositing a considerable amount of energy into nonradial stellar modes of very high angular number l. If the neutron-star equation of state is sufficiently stiff, we show that the total energy loss in the point-particle approximation is formally divergent. Various mechanisms — including viscosity, finite-size effects and the elasticity of the crust — can damp high-l modes and regularize the total energy loss. Within a short time, the black hole is trapped inside the star and disrupts it by rapid accretion. Estimating these effects, we predict that the existence of old neutron stars in regions where the dark-matter density ρ{sub DM}∼>10{sup 2}(σ/km s{sup −1}) GeV cm{sup −3} (where σ is the dark-matter velocity dispersion) limits the abundance of primordial black holes in the mass range 10{sup 17} g∼primordial black holes cannot be the dominant dark matter constituent.

  14. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  15. Superheavy thermal dark matter and primordial asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bramante, Joseph [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Unwin, James [Department of Physics, University of Illinois at Chicago,845 W Taylor St, Chicago, IL 60607 (United States)

    2017-02-23

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10{sup 10} GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  16. Superheavy thermal dark matter and primordial asymmetries

    International Nuclear Information System (INIS)

    Bramante, Joseph; Unwin, James

    2017-01-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  17. Primordial statistical anisotropy generated at the end of inflation

    International Nuclear Information System (INIS)

    Yokoyama, Shuichiro; Soda, Jiro

    2008-01-01

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum

  18. Primordial statistical anisotropy generated at the end of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shuichiro [Department of Physics and Astrophysics, Nagoya University, Aichi 464-8602 (Japan); Soda, Jiro, E-mail: shu@a.phys.nagoya-u.ac.jp, E-mail: jiro@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8501 (Japan)

    2008-08-15

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.

  19. Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.

    Science.gov (United States)

    Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka

    2016-08-01

    In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.

  20. Microcephalic Osteodysplastic Primordial Dwarfism, Type II: a Clinical Review.

    Science.gov (United States)

    Bober, Michael B; Jackson, Andrew P

    2017-04-01

    This review will provide an overview of the microcephalic primordial dwarfism (MPD) class of disorders and provide the reader comprehensive clinical review with suggested care guidelines for patients with microcephalic osteodysplastic primordial dwarfism, type II (MOPDII). Over the last 15 years, significant strides have been made in the diagnosis, natural history, and management of MOPDII. MOPDII is the most common and well described form of MPD. The classic features of the MPD group are severe pre- and postnatal growth retardation, with marked microcephaly. In addition to these features, individuals with MOPDII have characteristic facies, skeletal dysplasia, abnormal dentition, and an increased risk for cerebrovascular disease and insulin resistance. Biallelic loss-of-function mutations in the pericentrin gene cause MOPDII, which is inherited in an autosomal recessive manner.

  1. Primordial helium abundance determination using sulphur as metallicity tracer

    Science.gov (United States)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  2. Inflation, Reionization, and All That: The Primordial Inflation Explorer

    Science.gov (United States)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  3. Testing the Standard Model with the Primordial Inflation Explorer

    Science.gov (United States)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10A{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  4. On the evolution of the primordial cosmic turbulence

    International Nuclear Information System (INIS)

    Tanabe, Kenji.

    1980-09-01

    The evolution of the primordial cosmic turbulence in the big-bang universe is studied by numerical integration of the spectral equation derived by Nariai and closed by Heisenberg's hypothesis. In order to examine whether the turbulence can survive by the epoch of the plasma recombination, the equation is dealt with by taking full account of the viscosity effect. The main conclusion is that the resulting spectrum survived against the viscous decay depends on the initial spectral shape which is assumed at the epoch t sub(eq) when the density of matter is equal to that of radiation. The Taylor's micro-scale is also calculated which is available to determine the fate of the primordial cosmic turbulence. (author)

  5. Primordial non-Gaussian features from DBI Galileon inflation

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Supratik

    2015-01-01

    We have studied primordial non-Gaussian features of a model of potential-driven single field DBI Galileon inflation. We have computed the bispectrum from the three-point correlation function considering all possible cross correlations between the scalar and tensor modes of the proposed setup. Further, we have computed the trispectrum from a four-point correlation function considering the contribution from contact interaction, and scalar and graviton exchange diagrams in the in-in picture. Finally we have obtained the non-Gaussian consistency conditions from the four-point correlator, which results in partial violation of the Suyama-Yamaguchi four-point consistency relation. This further leads to the conclusion that sufficient primordial non-Gaussianities can be obtained from DBI Galileon inflation. (orig.)

  6. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans.

    Science.gov (United States)

    Shamseldin, Hanan; Alazami, Anas M; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P; Alkuraya, Fowzan S

    2015-12-03

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: membiela@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-04-20

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant {lambda}{sub 0}. Using the gravitoelectromagnetic inflationary formalism with A{sub 0}=0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  8. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Science.gov (United States)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  9. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2009-01-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ 0 . Using the gravitoelectromagnetic inflationary formalism with A 0 =0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  10. Tracing primordial black holes in nonsingular bouncing cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie-Wen, E-mail: chjw@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Junyu, E-mail: junyu@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Xu, Hao-Lan, E-mail: xhl1995@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Cai, Yi-Fu, E-mail: yifucai@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-06-10

    We in this paper investigate the formation and evolution of primordial black holes (PBHs) in nonsingular bouncing cosmologies. We discuss the formation of PBH in the contracting phase and calculate the PBH abundance as a function of the sound speed and Hubble parameter. Afterwards, by taking into account the subsequent PBH evolution during the bouncing phase, we derive the density of PBHs and their Hawking radiation. Our analysis shows that nonsingular bounce models can be constrained from the backreaction of PBHs.

  11. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  12. Residential Segregation in Texas in 1980.

    Science.gov (United States)

    Hwang, Sean-Shong; Murdock, Steve H.

    1982-01-01

    Between 1970 and 1980 racial and ethnic segregation for major Texas cities declined for all groups, but declines were small between Anglo and Spanish groups. Segregation is unaffected by variation in size of city, percent of population that is Spanish or Black, or central city status. (Author/AM)

  13. Housing Systems and Ethnic Spatial Segregation

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter; Andersson, Roger; Wessel, Terje

    Residential spatial segregation is related to housing markets and housing policies. In this paper, ethnic segregation is compared across four Nordic capitals and explanations for the differences are examined by comparing the housing markets and housing policies of the countries. The housing markets...

  14. Losing Ground: School Segregation in Massachuestts

    Science.gov (United States)

    Ayscue, Jennifer B.; Greenberg, Alyssa

    2013-01-01

    Though once a leader in school integration, Massachusetts has regressed over the last two decades as its students of color have experienced intensifying school segregation. This report investigates trends in school segregation in Massachusetts by examining concentration, exposure, and evenness measures by both race and class. First, the report…

  15. Occupational Segregation by Sex: Determinants and Changes.

    Science.gov (United States)

    Beller, Andrea H.

    1982-01-01

    This study found that occupational sex segregation began to diminish during the 1970s, in conjunction with enforcement of the equal employment opportunity laws against sex discrimination in employment. The success of these laws suggests that discrimination was originally a determinant of occupational segregation. (Author/SK)

  16. Sex Segregation in Undergraduate Engineering Majors

    Science.gov (United States)

    Litzler, Elizabeth

    2010-01-01

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher…

  17. Administrative Segregation for Mentally Ill Inmates

    Science.gov (United States)

    O'Keefe, Maureen L.

    2007-01-01

    Largely the result of prison officials needing to safely and efficiently manage a volatile inmate population, administrative segregation or supermax facilities are criticized as violating basic human needs, particularly for mentally ill inmates. The present study compared Colorado offenders with mental illness (OMIs) to nonOMIs in segregated and…

  18. Class, Kinship Density, and Conjugal Role Segregation.

    Science.gov (United States)

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  19. A sexy spin on nonrandom chromosome segregation.

    Science.gov (United States)

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Assumptions of the primordial spectrum and cosmological parameter estimation

    International Nuclear Information System (INIS)

    Shafieloo, Arman; Souradeep, Tarun

    2011-01-01

    The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)

  1. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Tasinato, Gianmassimo, E-mail: matteo.tellarini@port.ac.uk, E-mail: ross.1333@osu.edu, E-mail: g.tasinato@swansea.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f {sub NL}, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f {sub NL}. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f {sub NL} from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ {sub f} {sub N{sub L}}—the accuracy of the determination of local non-linear parameter f {sub NL}—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f {sub NL} constraints competitive with Planck , and future surveys could improve them further.

  2. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    International Nuclear Information System (INIS)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David; Tasinato, Gianmassimo

    2016-01-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f NL , which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f NL . We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f NL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ f NL —the accuracy of the determination of local non-linear parameter f NL —from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f NL constraints competitive with Planck , and future surveys could improve them further.

  3. Reconstructing the size distribution of the primordial Main Belt

    Science.gov (United States)

    Tsirvoulis, G.; Morbidelli, A.; Delbo, M.; Tsiganis, K.

    2018-04-01

    In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96 AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17 size distribution slope q = - 1.43 . In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones.

  4. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  5. arXiv Gravitational wave energy emission and detection rates of Primordial Black Hole hyperbolic encounters

    CERN Document Server

    García-Bellido, Juan

    2018-01-01

    We describe in detail gravitational wave bursts from Primordial Black Hole (PBH) hyperbolic encounters. The bursts are one-time events, with the bulk of the released energy happening during the closest approach, which can be emitted in frequencies that could be within the range of both LIGO (10-1000Hz) and LISA ($10^{-6}-1$ Hz). Furthermore, we correct the results for the power spectrum of hyperbolic encounters found in the literature and present new exact and approximate expressions for the peak frequency of the emission. Note that these GW bursts from hyperbolic encounters between PBH are complementary to the GW emission from the bounded orbits of BHB mergers detected by LIGO, and help breaking degeneracies in the determination of the PBH mass, spin and spatial distributions.

  6. Can massive primordial black holes be produced in mild waterfall hybrid inflation?

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro; Tada, Yuichiro

    2016-01-01

    We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δ N formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when the waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.

  7. Small-scale structure and 21cm fluctuations by primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk; Kitajima, Naoya, E-mail: jinn-ouk.gong@apctp.org, E-mail: kitajima.naoya@f.mbox.nagoya-u.ac.jp [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of)

    2017-08-01

    We discuss early structure formation of small scales sourced by primordial black holes (PBHs) which constitute a small part of present cold dark matter component. We calculate the mass function and power spectrum of haloes originated from the Poisson fluctuations of PBH number and show that the number of small haloes is significantly modified in the presence of PBHs even if their fraction accounts for only 10{sup −4}–10{sup −3} of total dark matter abundance. We then compute the subsequent 21cm signature from those haloes. We find that PBHs can provide major contributions at high redshifts within the detectability of future experiments such as Square Kilometer Array, and provide a forecast constraint on the PBH fraction.

  8. Effect of primordial non-Gaussianities on galaxy clusters scaling relations

    Science.gov (United States)

    Trindade, A. M. M.; da Silva, Antonio

    2017-07-01

    Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. Here we investigate the impact of primordial non-Gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussianity within the Λ cold dark matter framework. We focus on the T-M, S-M, Y-M and YX-M scalings relating the total cluster mass with temperature, entropy and Sunyaev-Zeld'ovich integrated pressure that reflect the thermodynamic state of the intracluster medium. Our results show that PNG have an impact on cluster scalings laws. The scalings mass power-law indexes are almost unaffected by the existence of PNG, but the amplitude and redshift evolution of their normalizations are clearly affected. Changes in the Y-M and YX-M normalizations are as high as 22 per cent and 16 per cent when fNL varies from -500 to 500, respectively. Results are consistent with the view that positive/negative fNL affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of fNL, as suggested by present Planck constraints on a scale invariant fNL, the impact on the scaling normalizations is only a few per cent. However, if fNL varies with scale, PNG may have larger amplitudes at clusters scales; thus, our results suggest that PNG should be taken into account when cluster data are used to infer or forecast cosmological parameters from existing or future cluster surveys.

  9. Gibbsian and radiation-induced segregation in Cu--Li and Al--Li alloys

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Susman, S.; Venugopalan, M.; Ron, M.

    1983-01-01

    Previous experiments on segregation in dilute alloys of lithium in aluminum have demonstrated rapid enrichment of lithium in the uppermost monolayer, as well as a slower buildup in the subsurface region as a result of radiation-induced segregation effects during sputtering. Surface and subsurface enrichment of lithium in copper and aluminum alloys has been observed by secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS). The activation energies for lithium diffusion in Cu and Al have been measured and segregation kinetics are compared for dilute alloys of Li in Cu and Al, and a high lithium content copper alloy. The results are interpreted in terms of both Gibbsian and radiation-induced segregation effects

  10. Diffusion and segregation of substrate copper in electrodeposited Ni-Fe thin films

    International Nuclear Information System (INIS)

    Ahadian, M.M.; Iraji zad, A.; Nouri, E.; Ranjbar, M.; Dolati, A.

    2007-01-01

    The Cu surface segregation is investigated in the electrodeposited Ni-Fe layers using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and atomic force microscopy (AFM). The results indicate that Cu segregation and accumulation take place in areated and deareated baths and the amount of segregated copper increases after air exposure. This phenomenon is explained by lower interfacial tension of the Cu in comparison with Ni and Fe. Our results reveal more surface segregation in the electrodeposit than vacuum reported results. This should be due to interface charging and higher surface diffusion in applied potential. The effect of interface charging on the interfacial tension is discussed based on Lippmann equation. Increasing of the Cu accumulation after air exposure is related to selective oxidation in alloys and higher tendency of Cu to surface oxidation

  11. Observational constraints on the primordial curvature power spectrum

    Science.gov (United States)

    Emami, Razieh; Smoot, George F.

    2018-01-01

    CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would

  12. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    Science.gov (United States)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  13. Limits from primordial nucleosynthesis on the properties of massive neutral leptons

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Teplitz, V.L.; Wagoner, R.V.

    1977-11-01

    If there exist neutral leptons with masses in the range 50 eV to 5 GeV, they would have been present in thermal equilibrium in the early stages of the hot big bang. In the subsequent evolution of the universe, if their lifetime is sufficiently long, their mass dominated the energy density of the universe. The effect of their presence on the synthesis of elements in the early universe is considered. Of the observed primordial abundances, the helium abundance was found to be independent of their existence, but the deuterium abundance was found to be sufficiently sensitive to allow bounds to be placed on the mass, lifetime, and decay modes of any heavy neutrinos. In particular, on the basis of present best estimates of astrophysical parameters, previous radiative lifetime bounds on the order of months are reduced to bounds on the order of hours, and expand the range of masses for which no radiatively decaying massive neutral leptons are allowed, to 50 to 100 keV

  14. Seven Hints for Primordial Black Hole Dark Matter arXiv

    CERN Document Server

    Clesse, Sebastien

    Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of micro-lensing events of distant quasars and stars in M31, the non-detection of ultra-faint dwarf satellite galaxies with radius below 15 parsecs, evidences for core galactic dark matter profiles, the correlation between X-ray and infrared cosmic backgrounds, and the existence of super-massive black holes very early in the Universe's history. Some of these hints are newly identified and they are all intriguingly compatible with the re-constructed broad PBH mass distribution from LIGO events, peaking on PBH mass $m_{\\rm PBH} \\approx 3 M_\\odot$ and passing all other constraints on PBH abundances. PBH dark matter also provides a new mechanism to explain the mass-to-light ratios of dwarf galaxies, including the recent detection of a diffuse galaxy not dominated by dark ma...

  15. Controlling mixing and segregation in time periodic granular flows

    Science.gov (United States)

    Bhattacharya, Tathagata

    Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement

  16. Cross-sectional measurement of grain boundary segregation using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Christien, F., E-mail: frederic.christien@emse.fr [Laboratoire Georges Friedel, CNRS, Ecole des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne (France); Risch, P. [Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, Rue Christian Pauc, 44306 Nantes (France)

    2016-11-15

    A new method is proposed for the quantification of grain boundary segregation using Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM). Analyses are undertaken on a simple metallographically polished section of material. The method is demonstrated for the model system of sulphur segregation to nickel grain boundaries. Quantification was carried out from sulphur concentration profiles acquired across 11 grain boundaries of a nickel specimen containing 5.4 wt ppm of sulphur in the bulk and equilibrated at 550 °C. The average sulphur grain boundary concentration determined is µ=35.2 ng cm{sup −2}=6.6×10{sup 14} atoms cm{sup −2}≈0.5 monolayer, which is in good agreement with a previous quantification obtained from SIMS (Secondary Ion Mass Spectrometry) on the same material. However this is lower by a factor of two than the quantification obtained using “surface” techniques on fractured specimens of the same material. With the conditions of analysis used in this study, the limit of detection of the method developed is found to be better than 10% of a sulphur monolayer. - Highlights: • Impurity grain boundary segregation can be measured using WDS in a SEM. • The method proposed is quantitative. • The specimen preparation is simple: metallographical section.

  17. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  18. Genes that bias Mendelian segregation.

    Science.gov (United States)

    Grognet, Pierre; Lalucque, Hervé; Malagnac, Fabienne; Silar, Philippe

    2014-01-01

    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  19. Genes that bias Mendelian segregation.

    Directory of Open Access Journals (Sweden)

    Pierre Grognet

    Full Text Available Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs, complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  20. Veil: A Wall of Segregation

    Directory of Open Access Journals (Sweden)

    Tayebeh Nowrouzi

    2015-08-01

    Full Text Available Moving behind the confines of the race has been the continuous efforts of African-Americans so as to reveal and confirm their true humanity and abilities to white race as well as their own race. African-Americans, Dubois posited, are shut out of the white America, inhabiting behind a vast veil which creates a deep division between the races. Veil is made of the fabric of racism interwoven thread by thread and imposed by white world. It is thrown discourteously and forcibly to the African-Americans whom their distorted images are imposed on them and their true humanity and identity are hidden behind the veil. This study overtakes to present how Loraine Hansberry, in her first and the most outstanding drama, A Raisin in the Sun examines the world within the veil. She demonstrated that Duboisian metaphoric veil is operating in the racist American society so that not only African-Americans are segregated physically and psychologically from the rest of the world but also are inflicted with obscurity of vision that are neither able to see themselves clearly nor be seen truly. On the other hand, it presents how the veil provides blacks with the second sight to observe and comprehend the racist nature of whites which is hidden and incomprehensible for them.

  1. The statistics of maxima in primordial density perturbations

    International Nuclear Information System (INIS)

    Peacock, J.A.; Heavens, A.F.

    1985-01-01

    An investigation has been made of the hypothesis that protogalaxies/protoclusters form at the sites of maxima in a primordial field of normally distributed density perturbations. Using a mixture of analytic and numerical techniques, the properties of the maxima, have been studied. The results provide a natural mechanism for biased galaxy formation in which galaxies do not necessarily follow the large-scale density. Methods for obtained the true autocorrelation function of the density field and implications for Microwave Background studies are discussed. (author)

  2. Bicycling to Work and Primordial Prevention of Cardiovascular Risk

    DEFF Research Database (Denmark)

    Grøntved, Anders; Koivula, Robert W; Johansson, Ingegerd

    2016-01-01

    of incident obesity, hypertension, hypertriglyceridemia, and impaired glucose tolerance, comparing individuals who commuted to work by bicycle with those who used passive modes of transportation. We also examined the relationship of change in commuting mode with incidence of these clinical risk factors......% CI 0.74-0.91) compared with participants not cycling to work at both times points or who switched from cycling to other modes of transport during follow-up. CONCLUSIONS: These data suggest that commuting by bicycle to work is an important strategy for primordial prevention of clinical cardiovascular...... risk factors among middle-aged men and women....

  3. Les Houches 1999 Summer School, Session 71 : The Primordial Universe

    CERN Document Server

    Schäffer, R; Silk, J; David, F

    2000-01-01

    This book reviews the interconnection of cosmology and particle physics over the last decade. It provides introductory courses in supersymmetry, superstring and M-theory, responding to an increasing interest to evaluate the cosmological consequences of these theories. Based on a series of extended courses providing an introduction to the physics of the very early universe, in the light of the most recent advances in our understanding of the fundamental interactions, it reviews all the classical issues (inflation, primordial fluctuations, dark matter, baryogenesis), but also introduces the most

  4. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  5. The quark-hadron phase transition and primordial nucleosynthesis

    Science.gov (United States)

    Hogan, Craig J.

    1987-01-01

    After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.

  6. Cosmic gamma radiation of ultra high energy of primordial origin

    International Nuclear Information System (INIS)

    Aquino Filho, F.G. de.

    1984-01-01

    The quantum mechanical effects near a collapsing black hole as shown by Stephen W.Hawking in 1974 to produce streaming particles through tunneling effect was explored in the context of cosmic gamma ray production. In this thesis, we show the possible production of gamma rays of high energies (ν approx 10 41 Hz) in the initial stages of the formation of the Universe by the explosion of primordial mini black holes. These mini black hole explosions happening at 10 -43 s to 10 -37 s after the start perhaps may account for the existing universal cosmic background radiation of 2.7 0 K. (Author) [pt

  7. Baryogenesis in extended inflation. II. Baryogenesis via primordial black holes

    International Nuclear Information System (INIS)

    Barrow, J.D.; Copeland, E.J.; Kolb, E.W.; Liddle, A.R.

    1991-01-01

    This is the second of two papers devoted to the study of baryogenesis at the end of extended inflation. Extended inflation is brought to an end by the collisions of bubble walls surrounding regions of true vacuum, a process which produces particles well out of thermal equilibrium. In the first paper we considered baryogenesis via direct production and subsequent decay of baryon-number-violating bosons. In this paper we consider the further possibility that the wall collisions may provide a significant density of primordial black holes and examine their possible role in generating a baryon asymmetry

  8. Gender Differences in the Effect of Residential Segregation on Workplace Segregation among Newly Arrived Immigrants

    OpenAIRE

    Tammaru, Tiit; Strömgren, Magnus; van Ham, Maarten; Danzer, Alexander M.

    2015-01-01

    Contemporary cities are becoming more and more diverse in population as a result of immigration. Research also shows that within cities residential neighborhoods are becoming ethnically more diverse, but that residential segregation has remained persistently high. High levels of segregation are often seen as negative, preventing integration of immigrants in their host society and having a negative impact on people's lives. Segregation research often focuses on residential neighborhoods, but i...

  9. Gender Segregation in the Retail Industry

    OpenAIRE

    Lynch, Samantha

    2002-01-01

    This paper examines the phenomenon of occupational gender segregation in the retail industry, with a particular focus on part time working. The empirical data was gathered through a series of 59 interviews, and a small survey of employees, with store level managers in three UK retail organisations. The paper illustrates the extent of occupational gender segregation and considers the impact of such stereotyping on the gender pay gap, training and career development.\\ud \\ud Occupational gender ...

  10. Racial segregation patterns in selective universities

    OpenAIRE

    Peter Arcidiacono; Esteban M. Aucejo; Andrew Hussey; Kenneth Spenner

    2013-01-01

    This paper examines sorting into interracial friendships at selective universities. We show significant friendship segregation, particularly for blacks. Indeed, blacks' friendships are no more diverse in college than in high school, despite the fact that the colleges that blacks attend have substantially smaller black populations. We demonstrate that the segregation patterns occur in part because affirmative action results in large differences in the academic backgrounds of students of differ...

  11. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    Science.gov (United States)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; Ayala Solares, H. A.; hide

    2014-01-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of approx.5.0 x 10(exp 14) g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV-TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  12. Gender Segregation in the Spanish Labor Market: An Alternative Approach

    Science.gov (United States)

    del Rio, Coral; Alonso-Villar, Olga

    2010-01-01

    The aim of this paper is to study occupational segregation by gender in Spain, which is a country where occupational segregation explains a large part of the gender wage gap. As opposed to previous studies, this paper measures not only overall segregation, but also the segregation of several population subgroups. For this purpose, this paper uses…

  13. Non-standard primordial fluctuations and nongaussianity in string inflation

    International Nuclear Information System (INIS)

    Burgess, C.P.; Cicoli, M.; Gomez-Reino, M.; Tasinato, G.; Zavala, I.

    2010-05-01

    Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kaehler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f NL ≅O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe. (orig.)

  14. Non-Standard Primordial Fluctuations and Nongaussianity in String Inflation

    International Nuclear Information System (INIS)

    Burgess, C.P.; Cicoli, M.; Gomez-Reino, M.; Quevedo, F.; Tasinato, G.; Zavala, I.

    2010-05-01

    Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kaehler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f NL ≅ O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe. (author)

  15. Primordial linkage of β2-microglobulin to the MHC.

    Science.gov (United States)

    Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F

    2011-03-15

    β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.

  16. Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Smith, K.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNL^local= 2.7+/-5.8, fNL^equil= -42+/-75, and fNL^ortho= -25+\\-39 (68% CL statistical). NG is detected in the data; using skew-C_l statistics we find a nonzero bispectrum from residual point sources, and the ISW-lensing bispectrum at a level expected in the LambdaCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C_l, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, 3-dimensional...

  17. Constraining the primordial power spectrum from SNIa lensing dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2013-09-15

    The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}primordial power spectrum. The probe extends our handle on the spectrum to a total of 12-15 inflation e-folds. These constraints are so strong that they are already ruling out a large portion of the parameter space allowed by PLANCK for running {alpha}{identical_to}dn{sub s}/d ln k and running of running {beta}{identical_to}d{sup 2}n{sub s}/d ln k{sup 2}. The bounds follow a linear relation to a very good accuracy. A conservative bound disfavours any enhancement above the line {beta}(k{sub 0})=0.032-0.41{alpha}(k{sub 0}) and a realistic estimate disfavours any enhancement above the line {beta}(k{sub 0})=0.019-0.45{alpha}(k{sub 0}).

  18. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  19. Experimental analysis of segregation and porosity during the transient unidirectional solidification of an Al-9%Si-3%Cu ternary

    International Nuclear Information System (INIS)

    Gomes, L.G.; Moutinho, D.J.; Rocha, O.L.; Ferreira, I.L.; Garcia, A.

    2010-01-01

    The solute macro segregation and formation of micro porosity were experimental y investigated in the transient unidirectional solidification of a ternary league. The solute macro segregation profile, the specific theoretical mass and the apparent specific mass are presented alongside of ingot length. The experimental segregation profile of the solute were obtained through the X ray fluorescence spectrometry technique. The micro porosity measurements were performed by using the technique of picnometry. The presence of silicon on the league acted as inhibitor of inverse segregation of the copper, which is a typically observed in the transient unidirectional solidified of Al-Cu leagues. The volumetric fractions of porous has shown a ascendent tendency from the base to the top of ingot

  20. THE ACCRETION OF DARK MATTER SUBHALOS WITHIN THE COSMIC WEB: PRIMORDIAL ANISOTROPIC DISTRIBUTION AND ITS UNIVERSALITY

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xi; Wang, Peng, E-mail: kangxi@pmo.ac.cn [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China)

    2015-11-01

    The distribution of galaxies displays anisotropy on different scales and it is often referred to as galaxy alignment. To understand the origin of galaxy alignments on small scales, one must investigate how galaxies were accreted in the early universe and quantify their primordial anisotropy at the time of accretion. In this paper we use N-body simulations to investigate the accretion of subhalos, focusing on their alignment with halo shape and the orientation of mass distribution on the large scale, defined using the Hessian matrix of the density field. The large/small (e1/e3) eigenvalues of the Hessian matrix define the fast/slow collapse direction of matter on the large scale. We find that: (1) the halo major axis is well aligned with the e3 (slow collapse) direction, and it is stronger for massive halos; (2) subhalos are predominantly accreted along the major axis of the host halo, and the alignment increases with the host halo mass. Most importantly, this alignment is universal; (3) accretion of subhalos with respect to the e3 direction is not universal. In massive halos, subhalos are accreted along the e3 (even more strongly than the alignment with the halo major axis), but in low-mass halos subhalos are accreted perpendicular to e3. The transitional mass is lower at high redshift. The last result well explains the puzzling correlation (both in recent observations and simulations) that massive galaxies/halos have their spin perpendicular to the filament, and the spin of low-mass galaxies/halos is slightly aligned with the filament, under the assumption that the orbital angular momentum of subhalos is converted to halo spin.

  1. Racial Segregation and the American Foreclosure Crisis.

    Science.gov (United States)

    Rugh, Jacob S; Massey, Douglas S

    2010-10-01

    Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble.

  2. Racial Segregation and the American Foreclosure Crisis

    Science.gov (United States)

    Rugh, Jacob S.; Massey, Douglas S.

    2013-01-01

    Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble. PMID:25308973

  3. Towards deep learning with segregated dendrites.

    Science.gov (United States)

    Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A

    2017-12-05

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.

  4. School Segregation and Racial Academic Achievement Gaps

    Directory of Open Access Journals (Sweden)

    Sean F. Reardon

    2016-09-01

    Full Text Available Although it is clear that racial segregation is linked to academic achievement gaps, the mechanisms underlying this link have been debated since James Coleman published his eponymous 1966 report. In this paper, I examine sixteen distinct measures of segregation to determine which is most strongly associated with academic achievement gaps. I find clear evidence that one aspect of segregation in particular—the disparity in average school poverty rates between white and black students’ schools—is consistently the single most powerful correlate of achievement gaps, a pattern that holds in both bivariate and multivariate analyses. This implies that high-poverty schools are, on average, much less effective than lower-poverty schools and suggests that strategies that reduce the differential exposure of black, Hispanic, and white students to poor schoolmates may lead to meaningful reductions in academic achievement gaps.

  5. Issues on generating primordial anisotropies at the end of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@mail.ipm.ir, E-mail: firouz@mail.ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  6. Issues on generating primordial anisotropies at the end of inflation

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background

  7. Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?

    International Nuclear Information System (INIS)

    Chu Yizen; Cirelli, Marco

    2006-01-01

    We investigate quantitatively the extent to which having a primordial leptonic asymmetry (n ν ≠n ν ) relaxes the bounds on light sterile neutrinos imposed by BBN and LSS. We adopt a few assumptions that allow us to solve the neutrino evolution equations over a broad range of mixing parameters and asymmetries. For the general cases of sterile mixing with the electron or muon neutrino, we identify the regions that can be reopened. For the particular case of a LSND-like sterile neutrino, soon to be rejected or confirmed by MiniBooNE, we find that an asymmetry of the order of 10 -4 is needed to lift the conflicts with cosmology

  8. Lifting primordial non-Gaussianity above the noise

    International Nuclear Information System (INIS)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico

    2016-01-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approach and discuss the details of its implementation in Fisher forecasts.

  9. The Primordial Role of Stories in Human Self-Creation

    Directory of Open Access Journals (Sweden)

    Arran Gare

    2007-08-01

    Full Text Available We now have a paradoxical situation where the place and status of stories is in decline within the humanities, while scientists are increasingly recognizing their importance. Here the attitude towards narratives of these scientists is defended. It is argued that stories play a primordial role in human self-creation, underpinning more abstract discourses such as mathematics, logic and science. To uphold the consistency of this claim, this thesis is defended by telling a story of the evolution of European culture from Ancient Greece to the present, including an account of the rise of the notion of culture and its relation to the development of history, thereby showing how stories function to justify beliefs, situate people as agents within history and orient them to create the future.

  10. The standard and degenerate primordial nucleosynthesis versus recent experimental data

    International Nuclear Information System (INIS)

    Esposito, S.; Mangano, G.; Miele, G.; Pisanti, O.

    2000-01-01

    We report the results on Big Bang Nucleosynthesis (BBN) based on an updated code, with accuracy of the order of 0.1% on He4 abundance, compared with the predictions of other recent similar analysis. We discuss the compatibility of the theoretical results, for vanishing neutrino chemical potentials, with the observational data. Bounds on the number of relativistic neutrinos and baryon abundance are obtained by a likelihood analysis. We also analyze the effect of large neutrino chemical potentials on primordial nucleosynthesis, motivated by the recent results on the Cosmic Microwave Background Radiation spectrum. The BBN exclusion plots for electron neutrino chemical potential and the effective number of relativistic neutrinos are reported. We find that the standard BBN seems to be only marginally in agreement with the recent BOOMERANG and MAXIMA-1 results, while the agreement is much better for degenerate BBN scenarios for large effective number of neutrinos, N ν ∼ 10. (author)

  11. Primordial Pb, radiogenic Pb and lunar soil maturity

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1978-01-01

    The soil maturity index I/sub s//FeO does not apply to either 204 Pb/sub r/ or C/sub hyd/; both are directly correlated with the submicron Fe 0 (I/sub s/) content. They act as an index of soil maturity which is independent of soil composition. In contrast to primordial Pb, radiogenic Pb is lost during soil maturation. Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. 204 Pb coating grain surfaces acts as a reservoir to provide the 204 Pb being extracted in the Fe 0 formation process. Venting or some other volatile source may replenish the surface 204 Pb. 1 figure

  12. Nuclear Physics Solutions to the Primordial Lithium Problem

    Directory of Open Access Journals (Sweden)

    Williams E.

    2012-10-01

    Full Text Available The primordial lithium problem is one of the major outstanding issues in the standard model of the Big Bang. Measurements of the baryon to photon ratio in the cosmic microwave background constrain model predictions, giving abundances of 7Li two to four times larger than observed via spectroscopic measurements of metal-poor stars. In an attempt to reconcile this discrepancy, significant effort has been directed at measuring reaction cross sections of light nuclei at astrophysically relevant energies. However, there remain reaction cross sections with large uncertainties, and some that have not yet been measured. Particularly relevant are those involving the destruction of 7Be, a progenitor of 7Li. Key issues that can be improved by nuclear physics input will be highlighted, and the applicability of detectors and event reconstruction techniques recently developed at the ANU will be discussed.

  13. Lensing of 21-cm fluctuations by primordial gravitational waves.

    Science.gov (United States)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  14. One Percent Determination of the Primordial Deuterium Abundance

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.

    2018-03-01

    We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. Primordial dwarfism: overview of clinical and genetic aspects.

    Science.gov (United States)

    Khetarpal, Preeti; Das, Satrupa; Panigrahi, Inusha; Munshi, Anjana

    2016-02-01

    Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders

  16. Cosmological cosmic rays: Sharpening the primordial lithium problem

    International Nuclear Information System (INIS)

    Prodanovic, Tijana; Fields, Brian D.

    2007-01-01

    Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via α+α→ 6,7 Li. This pre-galactic (but nonprimordial) lithium should contribute to the primordial 7 Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6 Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6 Li is from cosmic-ray interactions. We find that the putative 6 Li plateau, if due to pre-galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li SFCR /Li plateau ≅15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7 Li, we find a revised (and slightly worsened) discrepancy between the Li observations and big bang nucleosynthesis predictions by a factor of 7 Li BBN / 7 Li plateau ≅3.7. Moreover, SFCRs would also contribute to the extragalactic gamma-ray background (EGRB) through neutral pion production. This gamma-ray production is tightly related to the amount of lithium produced by the same cosmic rays; the 6 Li plateau limits the pre-galactic (high-redshift) SFCR contribution to be at the level of I γ π SFCR /I EGRB < or approx. 5% of the currently observed EGRB

  17. Primordial nucleosynthesis as a probe of particle physics and cosmology

    International Nuclear Information System (INIS)

    Walker, T.P.

    1987-01-01

    In this dissertation, the author uses the success of the standard model of big-bang nucleosynthesis to examine the effects of interacting particle species and the effect of varying coupling constants, predicted by theories set in extra dimensions, on primordial nucleosynthesis. A review is given of the standard model and of the abundances of the light elements expected to be produced in the early Universe. The weakest piece of the concordance between the standard model of big-bang nucleosynthesis and observation is the production and primordial abundance of 7 Li. Therefore he discusses the production of 7 Li in astrophysical environments other than the early Universe and shows that the predictions of big-bang nucleosynthesis, when supplemented by those due to astrophysical sources, are in good agreement with observation. He then shows that the effect on big-bang nucleosynthesis of an additional particle species which remains coupled to either photons or light neutrinos can be quite different from that predicted by the equivalent number of neutrino species parameterization, which does work for decoupled additional species. In particular he considers the case of an additional axion-like particle and shows that its effect is to decrease the amount of 4 He produced in the big-bang. In addition, he considers the effects of varying coupling constants on 4 He production in the big-bang and shows that constraining Y p = 0.24 ± 0.01 leads to a constraint on the time variation of the fine-structure constant of |dln α/dt| ≤ x 10 -14

  18. Magnification bias as a novel probe for primordial magnetic fields

    International Nuclear Information System (INIS)

    Camera, S.; Fedeli, C.; Moscardini, L.

    2014-01-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10 −4 nG for values of the PMF power spectral index n B ∼ 0

  19. Chemical segregation and self polarisation in ferroelectrics

    Directory of Open Access Journals (Sweden)

    Bernard E. Watts

    2009-06-01

    Full Text Available Chemical partitioning or segregation is commonly encountered in solid-state syntheses. It is driven by compositional, thermal and electric field gradients. These phenomena can be quite extreme in thin films and lead to notable effects on the electrical properties of ferroelectrics. The segregation in ferroelectric thin films will be illustrated and the mechanisms explained in terms of diffusion processes driven by a potential gradient of the oxygen. The hypothesis can also explain self polarisation and imprint in ferroelectric hysteresis.

  20. Particle segregation in pneumatic conveying lines

    Energy Technology Data Exchange (ETDEWEB)

    McGlinchey, D.; Marjanovic, P.; Cook, S.; Jones, M.G. [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2000-07-01

    This investigation studied segregation of particles during pneumatic transport from a theoretical and experimental perspective. Dilute phase or suspension flow and dense phase (non-suspension flow) were both considered. A computer model was generated based on the conservation equations to investigate dilute phase conditions; an initial qualitative investigation of material behaviour being conveyed in dense phase was made with plastic pellets and salt as a segregating mixture in a small test rig and the results from a full scale test rig conveying two grades of coal of different size distributions are discussed. 11 refs., 9 figs., 1 tab.

  1. Primordial blackholes and gravitational waves for an inflection-point model of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108 (India); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University, LA1 4YB (United Kingdom)

    2014-06-02

    In this article we provide a new closed relationship between cosmic abundance of primordial gravitational waves and primordial blackholes that originated from initial inflationary perturbations for inflection-point models of inflation where inflation occurs below the Planck scale. The current Planck constraint on tensor-to-scalar ratio, running of the spectral tilt, and from the abundance of dark matter content in the universe, we can deduce a strict bound on the current abundance of primordial blackholes to be within a range, 9.99712×10{sup −3}<Ω{sub PBH}h{sup 2}<9.99736×10{sup −3}.

  2. Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies

    International Nuclear Information System (INIS)

    Finelli, Fabio; Paci, Francesco; Paoletti, Daniela

    2008-01-01

    We study the impact of a stochastic background of primordial magnetic fields on the scalar contribution of cosmic microwave background (CMB) anisotropies and on the matter power spectrum. We give the correct initial conditions for cosmological perturbations and the exact expressions for the energy density and Lorentz force associated to the stochastic background of primordial magnetic fields, given a power-law for their spectra cut at a damping scale. The dependence of the CMB temperature and polarization spectra on the relevant parameters of the primordial magnetic fields is illustrated.

  3. Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario

    Directory of Open Access Journals (Sweden)

    Asuka Ito

    2017-08-01

    Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.

  4. Surface segregation of low-Z elements on plasma-facing materials

    International Nuclear Information System (INIS)

    Qian Jiapu; Liu Xiang

    1994-10-01

    Surface segregation behavior of low-Z elements, e.g., lithium and beryllium on ternary alloy Al-Li-Mg and Binary alloy Cu-Be has been observed. The experiments were performed by means of Secondary Ion Mass Spectroscopy (SIMS) and Auger Electron Spectroscopy (AEA). The experimental results of Al-Li-Mg alloy indicated that lithium concentration on the specimen surface reached approximately 100% in the temperature range of 150 to 300 degree C, which can be explained by Gibbsian segregation theory. The depth profile of Li showed that there was some broadening resulting from recoil implantation by high energy Ar ion bombardment. When the specimen temperature exceeded 360 degree C, beryllium, the impurity element in the alloy was found to segregate to the surface. For this reason, another experiment on surface segregation of Cu-Be alloy was carried out by SIMS and AES, the surface analysis utilizing in-situ AES analysis revealed that the surface was enriched by Be and O at elevated temperature, considering the chemical affinity of Be and O, the principal driving force of segregation was attributed to the oxygen partial pressure in the atmosphere. The depth profile of Be in the alloy was also investigated. (9 figs.)

  5. Engineering economic evaluations of trash segregation alternatives

    International Nuclear Information System (INIS)

    Collins, H.E.

    1987-01-01

    Health physicists are becoming increasingly involved in the selection of equipment to segregate a contaminated trash from clean trash in the effort to reduce low level waste disposal costs. Although well qualified to evaluate the technical merits of different equipment, health physicists also need to be aware of the elements of economic comparisons of different alternatives that meet all technical requirements

  6. Koedukation oder Geschlechtertrennung = Coeducation or Gender Segregation.

    Science.gov (United States)

    Baumert, Jurgen

    1992-01-01

    Presents study results examining recruitment practice differences between coeducational and gender segregated secondary schools in Germany. Discusses the impact of organizational form on teacher judgments, achievement in specific subjects, school subject-related interests, and school commitment. Reports that under conditions of free school choice,…

  7. Segregation reinforced by urban planning | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-10-28

    Oct 28, 2015 ... ... What is driving urban violence? Segregated urban planning can leave a legacy of community tension and insecurity. Potential solutions? Include vulnerable communities in city planning decisions; invest in transport infrastructure; and regularly update city development plans to reflect population growth.

  8. 49 CFR 176.83 - Segregation.

    Science.gov (United States)

    2010-10-01

    ... presence of one or more steel bulkheads or decks between them or a combination thereof. Intervening spaces... substance but vary only in their water content (for example, sodium sulfide in Division 4.2 or Class 8) or... applied. (11) Certain exceptions from segregation for waste cyanides or waste cyanide mixtures or...

  9. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic...

  10. Educational Justice, Segregated Schooling and Vocational Education

    Science.gov (United States)

    Giesinger, Johannes

    2017-01-01

    The philosophical debate on educational justice currently focusses on the Anglo-American situation. This essay brings in an additional perspective. It provides a justice-oriented critique of the segregated education systems in German-speaking countries. First, arguments that are commonly put forward in favour of these systems are rejected. Second,…

  11. A Social Network Analysis of Occupational Segregation

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; van der Leij, Marco

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...

  12. Sex segregation in undergraduate engineering majors

    Science.gov (United States)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not

  13. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  14. Ab-initio study of surface segregation in aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yifa, E-mail: yfqin10s@imr.ac.cn; Wang, Shaoqing

    2017-03-31

    Highlights: • A thorough study of surface segregation energies of 41 elements in Al is performed. • Segregation energies vary periodically with the atomic numbers of impurities. • 41 elements are classified into 3 groups according to the signs of segregation energies. • The results are validated by the surface/total concentration ratio in Al alloys. - Abstract: We have calculated surface segregation energies of 41 impurities by means of density functional theory calculations. An interesting periodical variation tendency was found for surface segregation energies derived. For the majority of main group elements, segregation energies are negative which means solute elements enrichment at Al surface is energetically more favorable than uniformly dissolution. Half of transition elements possess positive segregation energies and the energies are sensitive to surface crystallographic orientations. A strong correlation is found between the segregation energies at the Al surface and the surface energ of solute elements.

  15. Charles J. McMahon Interfacial Segregation and Embrittlement Symposium

    National Research Council Canada - National Science Library

    Vitek, Vaclav

    2003-01-01

    .... McMahon Interfacial Segregation and Embrittlement Symposium: Grain Boundary Segregation and Fracture in Steels was sponsored by ASM International, Materials Science Critical Technology Sector, Structural Materials Division, Materials Processing...

  16. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    Science.gov (United States)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  17. The formation of massive primordial stars in the presence of moderate UV backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S. [Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Grassi, T. [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Spaans, M., E-mail: mlatif@astro.physik.uni-goettingen.de [Kapteyn Astronomical Institute, University of Groningen, 9700-AV Groningen (Netherlands)

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  18. Primordial black holes as seeds of magnetic fields in the universe

    Science.gov (United States)

    Safarzadeh, Mohammadtaher

    2018-06-01

    Although it is assumed that magnetic fields in accretion disks are dragged from the interstellar medium, the idea is likely not applicable to primordial black holes (PBHs) formed in the early universe. Here we show that magnetic fields can be generated in initially unmagnetized accretion disks around PBHs through the Biermann battery mechanism, and therefore provide the small scale seeds of magnetic field in the universe. The radial temperature and vertical density profiles of these disks provide the necessary conditions for the battery to operate naturally. The generated seed fields have a toroidal structure with opposite sign in the upper and lower half of the disk. In the case of a thin accretion disk around a rotating PBH, the field generation rate increases with increasing PBH spin. At a fixed r/risco, where r is the radial distance from the PBH and risco is the radius of the innermost stable circular orbit, the battery scales as M-9/4, where M is the PBH's mass. The very weak dependency of the battery on accretion rate, makes this mechanism a viable candidate to provide seed fields in an initially unmagnetized accretion disk, following which the magnetorotational instability could take over.

  19. Primordial black holes and uncertainties in the choice of the window function

    Science.gov (United States)

    Ando, Kenta; Inomata, Keisuke; Kawasaki, Masahiro

    2018-05-01

    Primordial black holes (PBHs) can be produced by the perturbations that exit the horizon during the inflationary phase. While inflation models predict the power spectrum of the perturbations in Fourier space, the PBH abundance depends on the probability distribution function of density perturbations in real space. To estimate the PBH abundance in a given inflation model, we must relate the power spectrum in Fourier space to the probability density function in real space by coarse graining the perturbations with a window function. However, there are uncertainties on what window function should be used, which could change the relation between the PBH abundance and the power spectrum. This is particularly important in considering PBHs with mass 30 M⊙, which account for the LIGO events because the required power spectrum is severely constrained by the observations. In this paper, we investigate how large an influence the uncertainties on the choice of a window function has over the power spectrum required for LIGO PBHs. As a result, it is found that the uncertainties significantly affect the prediction for the stochastic gravitational waves induced by the second-order effect of the perturbations. In particular, the pulsar timing array constraints on the produced gravitational waves could disappear for the real-space top-hat window function.

  20. An MCMC determination of the primordial helium abundance

    Science.gov (United States)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-04-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement

  1. An MCMC determination of the primordial helium abundance

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-01-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, and Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ 2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Y p = 0.2534 ± 0.0083, in broad

  2. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Zhengpin Wang

    Full Text Available In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β family member activin (ACT contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST, during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.

  3. The Effect of Aqueous Alteration on Primordial Noble Gases in CM Chondrites

    Science.gov (United States)

    Weimer, D.; Busemann, H.; Alexander, C. M. O'D.; Maden, C.

    2017-07-01

    We have analyzed 32 CM chondrites for their noble gas contents and isotopic compositions and calculated CRE ages. Correlated effects of parent body aqueous alteration with primordial noble gas contents were detected.

  4. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda

    2012-06-01

    Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  5. "Ocular moyamoya" syndrome in a patient with features of microcephalic osteodysplastic primordial dwarfism type II.

    Science.gov (United States)

    Bang, Genie M; Kirmani, Salman; Patton, Alice; Pulido, Jose S; Brodsky, Michael C

    2013-02-01

    Primordial dwarfism refers to severely impaired growth beginning early in fetal life. There are many genetic causes of primordial dwarfism, including disorders classified as microcephalic osteodysplastic primordial dwarfism. Microcephalic osteodysplastic primordial dwarfism type II is an autosomal-recessive disease characterized by small stature, bone and dental anomalies, and characteristic facies. Affected patients have a high risk of stroke secondary to progressive cerebral vascular anomalies, which often are classified as moyamoya disease. We present the case of a boy with features suggestive of MOPD II with unilateral moyamoya cerebrovascular changes and correlative moyamoya collaterals involving the iris of the ipsilateral eye. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  6. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    Directory of Open Access Journals (Sweden)

    Evelyn Rabelo Andrade

    2011-01-01

    Full Text Available The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA, Epidermal Growth Factor (EGF, and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.

  7. 41 CFR 60-1.8 - Segregated facilities.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Segregated facilities. 60...; Compliance Reports § 60-1.8 Segregated facilities. To comply with its obligations under the Order, a contractor must ensure that facilities provided for employees are provided in such a manner that segregation...

  8. Gender Segregation in Nursery School: Predictors and Outcomes.

    Science.gov (United States)

    Maccoby, Eleanor E.; Jacklin, Carol Nagy

    Sex segregation is a powerful phenomenon in childhood. It occurs universally whenever children have a choice of playmates and is found in sub-human primates too. Adults are not directly responsible for sex segregation. Data do not support the hypothesis that the most ladylike girls and the most rough and active boys first form the segregated play…

  9. "E Pluribus"... Separation: Deepening Double Segregation for More Students

    Science.gov (United States)

    Orfield, Gary; Kucsera, John; Siegel-Hawley, Genevieve

    2012-01-01

    This report shows segregation has increased dramatically across the country for Latino students, who are attending more intensely segregated and impoverished schools than they have for generations. The segregation increases have been the most dramatic in the West. The typical Latino student in the region attends a school where less than a quarter…

  10. Segregation effects and phase developments during solidification of alloy 625

    DEFF Research Database (Denmark)

    Højerslev, Christian; Tiedje, Niels Skat; Hald, John

    2006-01-01

    contained gamma-phase, Laves phase and, if carbon was dissolved in the liquid, niobium rich carbides formed. Molybdenum and niobium showed strong tendencies to segregate. Their segregation was balanced by inverse segregation of nickel and iron. The chromium concentration remained almost constant in gamma...

  11. Requirements for the evaluation of computational speech segregation systems

    DEFF Research Database (Denmark)

    May, Tobias; Dau, Torsten

    2014-01-01

    Recent studies on computational speech segregation reported improved speech intelligibility in noise when estimating and applying an ideal binary mask with supervised learning algorithms. However, an important requirement for such systems in technical applications is their robustness to acoustic...... associated with perceptual attributes in speech segregation. The results could help establish a framework for a systematic evaluation of future segregation systems....

  12. Residential segregation of socioeconomic variables and health indices in Iran

    Directory of Open Access Journals (Sweden)

    Seyed Saeed Hashemi Nazari

    2013-01-01

    Conclusions: Correlation of segregation of determinants of socioeconomic status with segregation of health indices is an indicator of existence of hot zones of health problems across some provinces. Further studies using multilevel modeling and individual data in health outcomes at individual level and segregation measures at appropriate geographic levels are required to confirm these relations.

  13. MAJEWSKI OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II: CLINICAL FINDINGS AND DENTAL MANAGEMENT OF A CHILD PATIENT

    OpenAIRE

    Terlemez, Arslan; Altunsoy, Mustafa; Çelebi, Hakkı

    2015-01-01

    Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular prima...

  14. Primordial nucleosynthesis in inhomogeneous cosmologies: Ω = 1 with baryonic dark matter

    International Nuclear Information System (INIS)

    Mathews, G.J.; Sale, K.E.

    1986-09-01

    We consider the constraints on Ω from primordial nucleosynthesis in inhomogeneous cosmologies. We find that allowance for isothermal fluctuations significantly weakens the upper bound on the average value of Ω derived from the standard big bang. Under the plausible additional assumption that regions of high baryon density are preferentially absorbed into cold dark matter, the constraints from primordial nucleosynthesis can be satisfied for large values of Ω, including Ω = 1. 22 refs., 2 figs

  15. Pregnancy in a woman with proportionate (primordial) dwarfism: a case report and literature review

    OpenAIRE

    Vance, C E; Desmond, M; Robinson, A; Johns, J; Zacharin, M; Savarirayan, R; König, K; Warrillow, S; Walker, S P

    2012-01-01

    Primordial dwarfism is a rare form of severe proportionate dwarfism which poses significant challenges in pregnancy. A 27-year-old with primordial dwarfism (height 97 cm, weight 22 kg) and coexisting morbidities of familial hypercholesterolaemia and hypertension presented to our unit. Early pregnancy was complicated by difficult blood pressure control, sinus tachycardia, biochemical hyperthyroidism and insulin-requiring gestational diabetes. Delivery was indicated at 24 weeks with uncontrolla...

  16. Primordial lithium: New reaction rates, new abundances, new constraints

    International Nuclear Information System (INIS)

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for 3 H(α,γ) 7 Li (higher than previous values) and 7 Li(p,α) 4 He (lower than previous values) are shown to increase the 7 Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta ≤ 4 x 10 -10 ); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of 7 Li in big bang baryon density determinations. The new 7 Li constraints imply a lower limit on eta of 2 x 10 -10 and an upper limit of 5 x 10 -10 . This lower limit to eta is concordant with that obtained from considerations of D + 3 He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10 -10 would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,γ) 4 He reaction. 28 refs., 1 fig

  17. Curvature profiles as initial conditions for primordial black hole formation

    International Nuclear Information System (INIS)

    Polnarev, Alexander G; Musco, Ilia

    2007-01-01

    This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations

  18. Primordial black holes formation from particle production during inflation

    International Nuclear Information System (INIS)

    Erfani, Encieh

    2016-01-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations

  19. Microcephalic primordial dwarfism in an Emirati patient with PNKP mutation.

    Science.gov (United States)

    Nair, Pratibha; Hamzeh, Abdul Rezzak; Mohamed, Madiha; Saif, Fatima; Tawfiq, Nafisa; El Halik, Majdi; Al-Ali, Mahmoud Taleb; Bastaki, Fatma

    2016-08-01

    Microcephaly is a rare neurological condition, both in isolation and when it occurs as part of a syndrome. One of the syndromic forms of microcephaly is microcephaly, seizures and developmental delay (MCSZ) (OMIM #613402), a rare autosomal recessive neurodevelopmental disorder with a range of phenotypic severity, and known to be caused by mutations in the polynucleotide kinase 3' phosphatase (PNKP) gene. The PNK protein is a key enzyme involved in the repair of single and double stranded DNA breaks, a process which is particularly important in the nervous system. We describe an Emirati patient who presented with microcephaly, short stature, uncontrollable tonic-clonic seizures, facial dysmorphism, and developmental delay, while at the same time showing evidence of brain atrophy and agenesis of the corpus callosum. We used whole exome sequencing to identify homozygosity for a missense c.1385G > C (p.Arg462Pro) mutation in PNKP in the patient and heterozygosity for this mutation in her consanguineous parents. The Arg 462 residue forms a part of the lid subdomain helix of the P-loop Kinase domain. Although our patient's phenotype resembled that of MCSZ, the short stature and evidence of brain atrophy distinguished it from other classic cases of the condition. The report raises the question of whether to consider this case as an atypical variant of MCSZ or as a novel form of microcephalic primordial dwarfism. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Primordial black holes from polynomial potentials in single field inflation

    Science.gov (United States)

    Hertzberg, Mark P.; Yamada, Masaki

    2018-04-01

    Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.

  1. A pilgrim's progress: Seeking meaning in primordial germ cell migration.

    Science.gov (United States)

    Cantú, Andrea V; Laird, Diana J

    2017-10-01

    Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  3. Reduced bispectrum seeded by helical primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hortúa, Héctor Javier [Universidad Nacional de Colombia-Bogotá, Facultad de Ciencias, Departamento de Física, Carrera 30 Calle 45-03, C.P. 111321 Bogotá (Colombia); Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co [Grupo de Gravitación y Cosmología, Observatorio Astronómico Nacional, Universidad Nacional de Colombia, cra 45 No 26-85, Edificio Uriel Gutierréz, Bogotá, D.C. (Colombia)

    2017-06-01

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlation case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.

  4. New cosmic microwave background constraint to primordial gravitational waves.

    Science.gov (United States)

    Smith, Tristan L; Pierpaoli, Elena; Kamionkowski, Marc

    2006-07-14

    Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2)

  5. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  6. Quantum origin of the primordial fluctuation spectrum and its statistics

    Science.gov (United States)

    Landau, Susana; León, Gabriel; Sudarsky, Daniel

    2013-07-01

    The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. The proposal in [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.

  7. Relic gravitational waves from light primordial black holes

    International Nuclear Information System (INIS)

    Dolgov, Alexander D.; Ejlli, Damian

    2011-01-01

    The energy density of relic gravitational waves (GWs) emitted by primordial black holes (PBHs) is calculated. We estimate the intensity of GWs produced at quantum and classical scattering of PBHs, the classical graviton emission from the PBH binaries in the early Universe, and the graviton emission due to PBH evaporation. If nonrelativistic PBHs dominated the cosmological energy density prior to their evaporation, the probability of formation of dense clusters of PBHs and their binaries in such clusters would be significant and the energy density of the generated gravitational waves in the present-day universe could exceed that produced by other known mechanisms. The intensity of these gravitational waves would be maximal in the GHz frequency band of the spectrum or higher and makes their observation very difficult by present detectors but also gives a rather good possibility to investigate it by present and future high-frequency gravitational waves electromagnetic detectors. However, the low-frequency part of the spectrum in the range f∼0.1-10 Hz may be detectable by the planned space interferometers DECIGO/BBO. For sufficiently long duration of the PBH matter-dominated stage, the cosmological energy fraction of GWs from inflation would be noticeably diluted.

  8. Planck 2015 results. XIX. Constraints on primordial magnetic fields

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1\\,\\mathrm{Mpc}}< 4.4$ nG (where $B_{1\\,\\mathrm{Mpc}}$ is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity, and $B_{1\\,\\mathrm{Mpc}}< 5.6$ nG when we consider a maximally helical field. For nearly scale-invariant PMFs we obtain $B_{1\\,\\mathrm{Mpc}}<2.1$ nG and $B_{1\\,\\mathrm{Mpc}}<0.7$ nG if the impact of PMFs on the ionization history of the Universe is included in the analysis...

  9. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Smith, K.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone fNL^local=2.5+\\-5.7, fNL^equil=-16+\\-70 and fNL^ortho=-34+\\-33(68%CL). Combining temperature and polarization data we obtain fNL^local=0.8+\\-5.0, fNL^equil=-4+\\-43 and fNL^ortho=-26+\\-21 (68%CL). The results are based on cross-validation of these estimators on simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with Minkowski functionals based measurements. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization da...

  10. On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt

    International Nuclear Information System (INIS)

    Verde, Licia; Peiris, Hiranya

    2008-01-01

    The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters

  11. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  12. Photon mass and electrogenesis

    International Nuclear Information System (INIS)

    Dolgov, Alexander; Pelliccia, Diego N.

    2007-01-01

    We show that if the photon possesses a tiny but non-vanishing mass, the universe cannot be electrically neutral. A cosmological electric asymmetry could be generated either at an early stage by the different evaporation rates of the primordial black holes with respect to positively and negatively charged particles or by a predominant capture of protons in comparison to electrons by the heavy galactic black holes in the contemporary universe. An impact of this phenomenon on the generation of large scale magnetic fields and on the acceleration of the universe is considered

  13. Surface segregation in binary alloy first wall candidate materials

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Mendelsohn, M.H.; Susman, S.; Argonne National Lab., IL

    1982-01-01

    We have been studying the conditions necessary to produce a self-sustaining stable lithium monolayer on a metal substrate as a means of creating a low-Z film which sputters primarily as secondary ions. It is expected that because of the toroidal field, secondary ions originating at the first wall will be returned and contribute little to the plasma impurity influx. Aluminum and copper have, because of their high thermal conductivity and low induced radioactivity, been proposed as first wall candidate materials. The mechanical properties of the pure metals are very poorly suited to structural applications and an alloy must be used to obtain adequate hardness and tensile strength. In the case of aluminum, mechanical properties suitable for aircraft manufacture are obtained by the addition of a few at% Li. In order to investigate alloys of a similar nature as candidate structural materials for fusion machines we have prepared samples of Li-doped aluminum using both a pyro-metallurgical and a vapor-diffusion technique. The sputtering properties and surface composition have been studied as a function of sample temperature and heating time, and ion beam mass. The erosion rate and secondary ion yield of both the sputtered Al and Li have been monitored by secondary ion mass spectroscopy and Auger analysis providing information on surface segregation, depth composition profiles, and diffusion rates. The surface composition ahd lithium depth profiles are compared with previously obtained computational results based on a regular solution model of segregation, while the partial sputtering yields of Al and Li are compared with results obtained with a modified version of the TRIM computer program. (orig.)

  14. Sister chromatid segregation in meiosis II

    Science.gov (United States)

    Wassmann, Katja

    2013-01-01

    Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed—deprotected”—for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection. PMID:23574717

  15. Segregation effects in welded stainless steels

    International Nuclear Information System (INIS)

    Akhter, J.I.; Shoaid, K.A.; Ahmed, M.; Malik, A.Q.

    1987-01-01

    Welding of steels causes changes in the microstructure and chemical composition which could adversely affect the mechanical and corrosion properties. The report describes the experimental results of an investigation of segregation effects in welded austenitic stainless steels of AISI type 304, 304L, 316 and 316L using the techniques of scanning electron microscopy and electron probe microanalysis. Considerable enhancement of chromium and carbon has been observed in certain well-defined zones on the parent metal and on composition, particularly in the parent metal, in attributed to the formation of (M 23 C 6 ) precipitates. The formation of geometrically well-defined segregation zones is explained on the basis of the time-temperature-precipitation curve of (M 23 C 6 ). (author)

  16. Phase Segregation in Polystyrene?Polylactide Blends

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  17. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  18. Underemployment in a gender segregated labour market

    OpenAIRE

    Kjeldstad, Randi; Nymoen, Erik H.

    2010-01-01

    This article analyses factors behind underemployment in Norway and has a focus on gender. The analysis, based on Labour Force Survey data, shows that economic fluctuations during the latest one and a half decade bring about changing underemployment levels of both women and men. The Norwegian labour market is strongly gender segregated and the processes and characteristics of underemployment differ between male and female dominated labour market sectors. The former sectors are generally more e...

  19. Blood Cell Interactions and Segregation in Flow

    OpenAIRE

    Munn, Lance L.; Dupin, Michael M.

    2008-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allo...

  20. Chromosomal organization and segregation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Isabelle Vallet-Gely

    2013-05-01

    Full Text Available The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed.

  1. Wages, Promotions, and Gender Workplace Segregation (Japanese)

    OpenAIRE

    HASHIMOTO Yuki; SATO Kaori

    2014-01-01

    In this paper, we examine how job assignments affect gender pay gap and the promotion rate of female workers using personnel records from a large Japanese manufacturing firm, where newly-hired male and female workers are systematically assigned to different workplaces ("gender job segregation"). According to our gender pay gap analysis, we find that controlling for workplace heterogeneity leads to a larger, rather than smaller, gender pay gap, implying that female workers are sorted into work...

  2. Wages, Promotions, and Gender Workplace Segregation

    OpenAIRE

    橋本, 由紀; 佐藤, 香織

    2014-01-01

    In this paper, we examine how job assignments affect gender pay gap and the promotion rate of female workers using personnel records from a large Japanese manufacturing firm, where newly-hired male and female workers are systematically assigned to different workplaces ("gender job segregation"). According to our gender pay gap analysis, we find that controlling for workplace heterogeneity leads to a larger, rather than smaller, gender pay gap, implying that female workers are sorted into work...

  3. Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets

    Science.gov (United States)

    Jaupart, Etienne; Charnoz, Sebatien; Moreira, Manuel

    2017-09-01

    The presence of Neon in terrestrial planet mantles may be attributed to the implantation of solar wind in planetary precursors or to the dissolution of primordial solar gases captured from the accretionary disk into an early magma ocean. This is suggested by the Neon isotopic ratio similar to those of the Sun observed in the Earth mantle. Here, we evaluate the second hypothesis. We use general considerations of planetary accretion and atmospheric science. Using current models of terrestrial planet formation, we study the evolution of standard planetary embryos with masses in a range of 0.1-0.2 MEarth, where MEarth is the Earth's mass, in an annular region at distances between 0.5 and 1.5 Astronomical Units from the star. We determine the characteristics of atmospheres that can be captured by such embryos for a wide range of parameters and calculate the maximum amount of Neon that can be dissolved in the planet. Our calculations may be directly transposed to any other planet. However, we only know of the amount of Neon in the Earth's solid mantle. Thus we use Earth to discuss our results. We find that the amount of dissolved Neon is too small to account for the present-day Neon contents of the Earth's mantle, if the nebular gas disk completely disappears before the largest planetary embryos grow to be ∼0.2 MEarth. This leaves solar irradiation as the most likely source of Neon in terrestrial planets for the most standard case of planetary formation models.

  4. Self-organized Segregation on the Grid

    Science.gov (United States)

    Omidvar, Hamed; Franceschetti, Massimo

    2018-02-01

    We consider an agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold τ , decide whether to change their types. This is equivalent to a zero-temperature ising model with Glauber dynamics, an asynchronous cellular automaton with extended Moore neighborhoods, or a Schelling model of self-organized segregation in an open system, and has applications in the analysis of social and biological networks, and spin glasses systems. Some rigorous results were recently obtained in the theoretical computer science literature, and this work provides several extensions. We enlarge the intolerance interval leading to the expected formation of large segregated regions of agents of a single type from the known size ɛ >0 to size ≈ 0.134. Namely, we show that for 0.433sites can be observed within any sufficiently large region of the occupied percolation cluster. The exponential bounds that we provide also imply that complete segregation, where agents of a single type cover the whole grid, does not occur with high probability for p=1/2 and the range of intolerance considered.

  5. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  6. Audiovisual segregation in cochlear implant users.

    Directory of Open Access Journals (Sweden)

    Simon Landry

    Full Text Available It has traditionally been assumed that cochlear implant users de facto perform atypically in audiovisual tasks. However, a recent study that combined an auditory task with visual distractors suggests that only those cochlear implant users that are not proficient at recognizing speech sounds might show abnormal audiovisual interactions. The present study aims at reinforcing this notion by investigating the audiovisual segregation abilities of cochlear implant users in a visual task with auditory distractors. Speechreading was assessed in two groups of cochlear implant users (proficient and non-proficient at sound recognition, as well as in normal controls. A visual speech recognition task (i.e. speechreading was administered either in silence or in combination with three types of auditory distractors: i noise ii reverse speech sound and iii non-altered speech sound. Cochlear implant users proficient at speech recognition performed like normal controls in all conditions, whereas non-proficient users showed significantly different audiovisual segregation patterns in both speech conditions. These results confirm that normal-like audiovisual segregation is possible in highly skilled cochlear implant users and, consequently, that proficient and non-proficient CI users cannot be lumped into a single group. This important feature must be taken into account in further studies of audiovisual interactions in cochlear implant users.

  7. Purely temporal figure-ground segregation.

    Science.gov (United States)

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  8. Minimization and segregation of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    The report will serve as one of a series of technical manuals providing reference material and direct know-how to staff in radioisotope user establishments and research centres in Member States without nuclear power and the associated range of complex waste management operations. Considerations are limited to the minimization and segregation of wastes, these being initial steps on which the efficiency of the whole waste management system depends. The minimization and segregation operations are examined in the context of the restricted quantities and predominantly shorter lived activities of wastes from nuclear research, production and usage of radioisotopes. Liquid and solid wastes only are considered in the report. Gaseous waste minimization and treatment are specialized subjects and are not examined in this document. Gaseous effluent treatment in facilities handling low and intermediate level radioactive materials has been already the subject of a detailed IAEA report. Management of spent sealed sources has specifically been covered in a previous manual. Conditioned sealed sources must be taken into account in segregation arrangements for interim storage and disposal where there are exceptional long lived highly radiotoxic isotopes, particularly radium or americium. These are unlikely ever to be suitable for shallow land burial along with the remaining wastes. 30 refs, 5 figs, 8 tabs

  9. Implementing spatial segregation measures in R.

    Directory of Open Access Journals (Sweden)

    Seong-Yun Hong

    Full Text Available Reliable and accurate estimation of residential segregation between population groups is important for understanding the extent of social cohesion and integration in our society. Although there have been considerable methodological advances in the measurement of segregation over the last several decades, the recently developed measures have not been widely used in the literature, in part due to their complex calculation. To address this problem, we have implemented several newly proposed segregation indices in R, an open source software environment for statistical computing and graphics, as a package called seg. Although there are already a few standalone applications and add-on packages that provide access to similar methods, our implementation has a number of advantages over the existing tools. First, our implementation is flexible in the sense that it provides detailed control over the calculation process with a wide range of input parameters. Most of the parameters have carefully chosen defaults, which perform acceptably in many situations, so less experienced users can also use the implemented functions without too much difficulty. Second, there is no need to export results to other software programs for further analysis. We provide coercion methods that enable the transformation of our output classes into general R classes, so the user can use thousands of standard and modern statistical techniques, which are already available in R, for the post-processing of the results. Third, our implementation does not require commercial software to operate, so it is accessible to a wider group of people.

  10. Segregation in handling processes of blended industrial coal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.G.; Marjanovic, P.; McGlinchy, D.; McLaren, R. [Glasgow Caledonian University, Glasgow (United Kingdom). Department of Physical Sciences, Centre for Industrial Bulk Solids Handling

    1998-09-01

    A comparison was made between two belt blending methods; using either a compartment hopper or feeder belts. The results indicated that in this case the system with feeder belts gave a more consistent proportioning of materials. Coal when formed into a heap was shown to segregate dependent on size fraction. The level of segregation for each size fraction was quantified using ANOVA statistics. Any measure taken to mitigate this segregation could then be properly assessed. Some aspects of the segregation evident in the heap arose in previous handling steps showing that such effects are transmittable along a process stream. Singles coal when pneumatically conveyed in dilute phase will segregate in the conveying pipeline. Segregation in the direction of travel was minimal in dense phase conveying although the materials tested separated through the depth of the pipe. A full scale experimental programme investigating segregation in both dense and dilute phase is currently underway. 7 refs., 2 figs., 4 tabs.

  11. Analysis of Minor Component Segregation in Ternary Powder Mixtures

    Directory of Open Access Journals (Sweden)

    Asachi Maryam

    2017-01-01

    Full Text Available In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.

  12. Racial Residential Segregation: Measuring Location Choice Attributes of Environmental Quality and Self-Segregation

    Directory of Open Access Journals (Sweden)

    Zhaohua Zhang

    2018-04-01

    Full Text Available Both sorting on public goods and tastes for segregation contribute to the persistence of segregation in America. Incorporating Schelling’s (1969, 1971 concept of “neighborhood tipping” into a two-stage equilibrium sorting model, in which both neighborhood demographic composition and public goods (e.g., environmental quality affect households’ residential location choice, this study investigates how preferences for neighborhood demographic composition could obscure the role of exogenous public goods on segregation. The results reveal that non-white households face higher level of exposure to air pollution, suggesting the presence of environmental injustice in Franklin County, OH. Using a counterfactual scenario of switching off heterogeneous taste for environmental quality, this study identifies that sorting on Toxic Release Inventory (TRI emissions drives little correlations between emissions and demographics. However, when taste parameters of the interactions between neighborhood demographic composition and household race are eliminated, segregation (as measured by over-exposure to households of the same race of black and white households decreases by 7.63% and 16.36%, respectively, and own-race neighbor preferences contribute to segregation differently according to household income. These results may help explain some recent puzzles in the relationship between environmental quality and demographics.

  13. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    Science.gov (United States)

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  15. Hip pathology in Majewski osteodysplastic primordial dwarfism type II.

    Science.gov (United States)

    Karatas, Ali F; Bober, Michael B; Rogers, Kenneth; Duker, Angela L; Ditro, Colleen P; Mackenzie, William G

    2014-09-01

    Majewski osteodysplastic primordial dwarfism type II (MOPDII) is characterized by severe prenatal and postnatal growth failure with microcephaly, characteristic skeletal dysplasia, an increased risk for cerebrovascular disease, and insulin resistance. MOPDII is caused by mutations in the pericentrin (PCNT) gene and is inherited in an autosomal-recessive manner. This study aimed to determine the incidence of hip pathology in patients with molecularly confirmed MOPDII and to describe the functional outcomes of surgical treatment. Thirty-three enrolled patients had a clinical diagnosis of MOPDII. Biallelic PCNT mutations or absent pericentrin protein was confirmed in 25 of these patients. Twelve patients (7 female) had appropriate clinical and radiographic records at this institution and were included in this study. The data collected included age at presentation, age at surgery, sex, body weight and height, weight-bearing status at diagnosis, and the clinical examination. Four patients (31%) had coxa vara: 3 unilateral and 1 bilateral. Three unilateral patients had in situ pinning at a mean age 4 years. The patient with bilateral coxa vara had valgus osteotomy at the age of 5 years. Two children had bilateral hip dysplasia and subluxation with no surgery. One patient had bilateral developmental hip dislocations. The patient was treated by open reduction-spica cast and 2 years after surgery, coxa valga was noted. Another patient was diagnosed at an age of 12 years with bilateral avascular necrosis of the hips. Four patients did not have hip pathology. Hip pathology is common among children with MOPDII; coxa vara is the most frequent diagnosis. Routine clinical and radiographic hip evaluation is important. The capital femoral epiphysis appears to slip down along the shaft, giving the appearance of a proximal femoral epiphysiolysis. A hip diagnosed with slipped capital femoral epiphysis in early life may progress to severe coxa vara. Level IV.

  16. Specification of primordial germ cells in medaka (Oryzias latipes

    Directory of Open Access Journals (Sweden)

    Raz Erez

    2007-01-01

    Full Text Available Abstract Background Primordial germ cells (PGCs give rise to gametes that are responsible for the development of a new organism in the next generation. Two modes of germ line specification have been described: the inheritance of asymmetrically-localized maternally provided cytoplasmic determinants and the induction of the PGC fate by other cell types. PGCs specification in zebrafish appears to depend on inheritance of germ plasm in which several RNA molecules such as vasa and nanos reside. Whether the specification mode of PGCs found in zebrafish is general for other fish species was brought into question upon analysis of olvas expression – the vasa homologue in another teleost, medaka (Oryzias latipes. Here, in contrast to the findings in zebrafish, the PGCs are found in a predictable position relative to a somatic structure, the embryonic shield. This finding, coupled with the fact that vasa mRNA, which is localized to the germ plasm of zebrafish but does not label a similar structure in medaka opened the possibility of fundamentally different mechanisms governing PGC specification in these two fish species. Results In this study we addressed the question concerning the mode of PGC specification in medaka using embryological experiments, analysis of RNA stability in the PGCs and electron microscopy observations. Dramatic alterations in the somatic environment, i.e. induction of a secondary axis or mesoderm formation alteration, did not affect the PGC number. Furthermore, the PGCs of medaka are capable of protecting specific RNA molecules from degradation and could therefore exhibit a specific mRNA expression pattern controlled by posttrancriptional mechanisms. Subsequent analysis of 4-cell stage medaka embryos using electron microscopy revealed germ plasm-like structures located at a region corresponding to that of zebrafish germ plasm. Conclusion Taken together, these results are consistent with the idea that in medaka the inheritance of

  17. Sound segregation via embedded repetition is robust to inattention.

    Science.gov (United States)

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  18. Continuum modelling of segregating tridisperse granular chute flow

    Science.gov (United States)

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  19. Correlation between brain circuit segregation and obesity.

    Science.gov (United States)

    Chao, Seh-Huang; Liao, Yin-To; Chen, Vincent Chin-Hung; Li, Cheng-Jui; McIntyre, Roger S; Lee, Yena; Weng, Jun-Cheng

    2018-01-30

    Obesity is a major public health problem. Herein, we aim to identify the correlation between brain circuit segregation and obesity using multimodal functional magnetic resonance imaging (fMRI) techniques and analysis. Twenty obese patients (BMI=37.66±5.07) and 30 healthy controls (BMI=22.64±3.45) were compared using neuroimaging and assessed for symptoms of anxiety and depression using the Hospital Anxiety and Depression Scale (HADS). All participants underwent resting-state fMRI (rs-fMRI) and T1-weighted imaging using a 1.5T MRI. Multimodal MRI techniques and analyses were used to assess obese patients, including the functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), graph theoretical analysis (GTA), and voxel-based morphometry (VBM). Correlations between brain circuit segregation and obesity were also calculated. In the VBM, obese patients showed altered gray matter volumes in the amygdala, thalamus and putamen. In the FC, the obesity group showed increased functional connectivity in the bilateral anterior cingulate cortex and decreased functional connectivity in the frontal gyrus of default mode network. The obesity group also exhibited altered ALFF and ReHo in the prefrontal cortex and precuneus. In the GTA, the obese patients showed a significant decrease in local segregation and a significant increase in global integration, suggesting a shift toward randomization in their functional networks. Our results may provide additional evidence for potential structural and functional imaging markers for clinical diagnosis and future research, and they may improve our understanding of the underlying pathophysiology of obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Components of segregation distortion in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ganetzky, B.

    1977-01-01

    The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp-sensitive (Rsp/sup sens/) and insensitive (Rsp/sup ins/); a chromosome carrying Rsp/sup ins/ is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of x-ray-induced mutations at each locus. The results indicate the following: the Rsp locus is located in the proximal heterochromatin of 2R; a deletion for the Rsp locus renders a chromosome insensitive to distortion; the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; an SD chromosome deleted for Sd loses its ability to distort; there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion

  1. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

    Science.gov (United States)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; hide

    2011-01-01

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.

  2. THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2012-04-10

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.

  3. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  4. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  5. Black Holes: Physics and Astrophysics - Stellar-mass, supermassive and primordial black holes

    OpenAIRE

    Bekenstein, Jacob D.

    2004-01-01

    I present an elementary primer of black hole physics, including its general relativity basis, all peppered with astrophysical illustrations. Following a brief review of the process stellar collapse to a black hole, I discuss the gravitational redshift, particle trajectories in gravitational fields, the Schwarzschild and Kerr solutions to Einstein's equations, orbits in Schwarzschild and in Kerr geometry, and the dragging of inertial frames. I follow with a brief review of galactic X-ray binar...

  6. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  7. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  8. Cost segregation of assets offers tax benefits.

    Science.gov (United States)

    Grant, D A

    2001-04-01

    A cost-segregation study is an asset-reclassification strategy that accelerates tax-depreciation deductions. By using this strategy, healthcare facility owners can lower their current income-tax liability and increase current cash flow. Simply put, certain real estate is reclassified from long-lived real property to shorter-lived personal property for depreciation purposes. Depreciation deductions for the personal property then can be greatly accelerated, thereby producing greater present-value tax savings. An analysis of costs can be conducted from either detailed construction records, when such records are available, or by using qualified appraisers, architects, or engineers to perform the allocation analysis.

  9. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  10. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  11. Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites

    International Nuclear Information System (INIS)

    Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi

    2016-01-01

    The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.

  12. Segregation 2.0: The New Generation of School Segregation in the 21st Century

    Science.gov (United States)

    Thompson Dorsey, Dana N.

    2013-01-01

    Students are more racially segregated in schools today than they were in the late 1960s and prior to the enforcement of court-ordered desegregation in school districts across the country. This special issue addresses the overarching theme of policies, practices, or roles and responsibilities of various stakeholders that may directly or indirectly…

  13. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation

    DEFF Research Database (Denmark)

    Shebelut, Conrad W.; Jensen, Rasmus Bugge; Gitai, Zemer

    2009-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation...... determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated....

  14. Segregation-mobility feedback for bidisperse shallow granular flows: Towards understanding segregation in geophysical flows

    Science.gov (United States)

    Thornton, A.; Denissen, I.; Weinhart, T.; Van der Vaart, K.

    2017-12-01

    The flow behaviour of shallow granular chute flows for uniform particles is well-described by the hstop-rheology [1]. Geophysical flows, however, are often composed of highly non-uniform particles that differ in particle (size, shape, composition) or contact (friction, dissipation, cohesion) properties. The flow behaviour of such mixtures can be strongly influenced by particle segregation effects. Here, we study the influence of particle size-segregation on the flow behaviour of bidisperse flows using experiments and the discrete particle method. We use periodic DPM to derive hstop-rheology for the bi-dispersed granular shallow layer equations, and study their dependence on the segregation profile. In the periodic box simulations, size-segregation results in an upward coarsening of the size distribution with the largest grains collecting at the top of the flow. In geophysical flows, the fact the flow velocity is greatest at the top couples with the vertical segregation to preferentially transported large particles to the front. The large grains may be overrun, resegregated towards the surface and recirculated before being shouldered aside into lateral levees. Theoretically it has been suggested this process should lead to a breaking size-segregation (BSS) wave located between a large-particle-rich front and a small-particle-rich tail [2,3]. In the BSS wave large particles that have been overrun rise up again to the free-surface while small particles sink to the bed. We present evidence for the existences of the BSS wave. This is achieved through the study of three-dimensional bidisperse granular flows in a moving-bed channel. Our analysis demonstrates a relation between the concentration of small particles in the flow and the amount of basal slip, in which the structure of the BSS wave plays a key role. This leads to a feedback between the mean bulk flow velocity and the process of size-segregation. Ultimately, these findings shed new light on the recirculation of

  15. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    Science.gov (United States)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    be modeled. Such models show that if the magma ocean coexisted with a primordial atmosphere having a nitrogen partial pressure of just a few bars, several times the current atmospheric mass of nitrogen must have been trapped in the deep mantle. It is therefore plausible that the apparent depletion of nitrogen relative to other volatiles in the near-surface reservoirs reflects the storage of a larger reservoir of nitrogen in the solid Earth. Dynamic exchange between these reservoirs may have induced major fluctuations of bulk atmospheric pressure over Earth's history.

  16. Imprint of primordial non-Gaussianity on dark matter halo profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio

    2013-09-01

    We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.

  17. Relativistic effects and primordial non-Gaussianity in the galaxy bias

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2011-01-01

    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated

  18. Searching for Primordial Black Holes in the Radio and X-Ray Sky.

    Science.gov (United States)

    Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma

    2017-06-16

    We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.

  19. Pregnancy in a woman with proportionate (primordial) dwarfism: a case report and literature review.

    Science.gov (United States)

    Vance, C E; Desmond, M; Robinson, A; Johns, J; Zacharin, M; Savarirayan, R; König, K; Warrillow, S; Walker, S P

    2012-09-01

    Primordial dwarfism is a rare form of severe proportionate dwarfism which poses significant challenges in pregnancy. A 27-year-old with primordial dwarfism (height 97 cm, weight 22 kg) and coexisting morbidities of familial hypercholesterolaemia and hypertension presented to our unit. Early pregnancy was complicated by difficult blood pressure control, sinus tachycardia, biochemical hyperthyroidism and insulin-requiring gestational diabetes. Delivery was indicated at 24 weeks with uncontrollable hypertension, progressive renal impairment and intrauterine growth restriction. A caesarean section was performed under general anaesthesia, resulting in the delivery of a 486 g male infant. This case highlights the difficulties of managing pregnancy in a woman with primordial dwarfism. Her limited capacity to respond to the physiological demands of pregnancy created a life-threatening situation, culminating in profound preterm birth.

  20. SPRAI: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics

    Science.gov (United States)

    Jaura, O.; Glover, S. C. O.; Klessen, R. S.; Paardekooper, J.-P.

    2018-04-01

    In this paper, we introduce a new radiative transfer code SPRAI (Simplex Photon Radiation in the Arepo Implementation) based on the SIMPLEX radiation transfer method. This method, originally used only for post-processing, is now directly integrated into the AREPO code and takes advantage of its adaptive unstructured mesh. Radiated photons are transferred from the sources through the series of Voronoi gas cells within a specific solid angle. From the photon attenuation, we derive corresponding photon fluxes and ionization rates and feed them to a primordial chemistry module. This gives us a self-consistent method for studying dynamical and chemical processes caused by ionizing sources in primordial gas. Since the computational cost of the SIMPLEX method does not scale directly with the number of sources, it is convenient for studying systems such as primordial star-forming haloes that may form multiple ionizing sources.

  1. Ultrastructure of sheep primordial follicles cultured in the presence of indol acetic acid, EGF, and FSH

    DEFF Research Database (Denmark)

    Andrade, Evelyn Rabelo; Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured...... in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6¿d were ultrastructurally normal. They had oocyte with intact nucleus...... and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion...

  2. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...

  3. Features in the primordial power spectrum of double D-term inflation

    International Nuclear Information System (INIS)

    Lesgourgues, Julien

    2000-01-01

    Recently, there has been some interest for building supersymmetric models of double inflation. These models, realistic from a particle physics point of view, predict a broken-scale-invariant power spectrum of primordial cosmological perturbations, that may explain eventual nontrivial features in the present matter power spectrum. In previous works, the primordial spectrum was calculated using analytic slow-roll approximations. However, these models involve a fast second-order phase transition during inflation, with a stage of spinodal instability, and an interruption of slow-roll. For our previous model of double D-term inflation, we simulate numerically the evolution of quantum fluctuations, taking into account the spinodal modes, and we show that the semiclassical approximation can be employed even during the transition, due to the presence of a second inflaton field. The primordial power spectrum possesses a rich structure, and possibly, a non-Gaussian spike on observable scales

  4. Decentralization as a Cause of Spatial Segregation

    Directory of Open Access Journals (Sweden)

    Jasarovic Ema Alihodzic

    2016-01-01

    Full Text Available City represents an incomplete dynamic process prone to the expansion with a causal link between urban expansion and socio-spatial segregation. The socio-spatial distribution in the city is mostly related to the increased social polarization and inequality. There is a clear connection between divided society and divided city: if society is divided, urban space must be divided. It is the question of the relations between the social inequalities on one hand, and spatial segregation on the other. In the last 10 years, Podgorica is the city that shows alarming statistic values when it comes to demographic trends and the influx of the residents from the northern municipalities, which necessarily causes the city sprawl. Past experiences show that city is unevenly expanding, creating new functions and zones expressed by socio-spatial differences. The beginning of this process lies in modernist conception of the city, by which city was mostly developed, while the current functional organization is based on the same concept. With the first urban plans, which carried similarproblems mentioned in previous section, Podgorica was divided into three clearly differentiated zones: Stara Varoš, Nova Varoš and Novi grad, which became a platform for hierarchical divisions within the space, reflecting them in the society.

  5. Binaural segregation in multisource reverberant environments.

    Science.gov (United States)

    Roman, Nicoleta; Srinivasan, Soundararajan; Wang, DeLiang

    2006-12-01

    In a natural environment, speech signals are degraded by both reverberation and concurrent noise sources. While human listening is robust under these conditions using only two ears, current two-microphone algorithms perform poorly. The psychological process of figure-ground segregation suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask, which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a binaural segregation system that extracts the reverberant target signal from multisource reverberant mixtures by utilizing only the location information of target source is proposed. The proposed system combines target cancellation through adaptive filtering and a binary decision rule to estimate the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A comprehensive evaluation shows that the proposed system results in large SNR gains. In addition, comparisons using SNR as well as automatic speech recognition measures show that this system outperforms standard two-microphone beamforming approaches and a recent binaural processor.

  6. Sound source localization and segregation with internally coupled ears

    DEFF Research Database (Denmark)

    Bee, Mark A; Christensen-Dalsgaard, Jakob

    2016-01-01

    to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla......, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating...

  7. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Kruse, Thomas; Møller-Jensen, Jakob; Løbner-Olesen, Anders

    2003-01-01

    The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow...... cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell...... that MreB filaments participate in directional chromosome movement and segregation....

  8. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  9. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  10. Segregation of antimony in InP in MOVPE

    International Nuclear Information System (INIS)

    Weeke, Stefan

    2008-01-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  11. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  12. Microcephalic osteodysplastic primordial dwarfism, with the fascinating history of "Mademoiselle Crachami".

    Science.gov (United States)

    Bozkaya, O Giray

    2013-01-01

    This review critically examines the findings which characterize the dysmorphic, radiologic and behavioral phenotype of Microcephalic Osteodysplastic Primordial Dwarfism (MOPD) and has an historical perspective on it. MOPD is a group of primordial dwarfism syndromes with prenatal onset growth retardation, a typical craniofacial appearance and behavioral phenotype. In 1959, Mann and Russell have described the first case in a detailed report, and named "microcephalic midget of extreme type". In their report; based on historical records and a small painting, they pointed "Mademoiselle Crachami" as the oldest known case.

  13. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.

    Science.gov (United States)

    Copi, C J; Olive, K A; Schramm, D N

    1998-03-17

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.

  14. Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Rolfs, C.; California Inst. of Tech., Pasadena

    1986-01-01

    Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)

  15. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    Science.gov (United States)

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  16. Inflation with primordial broken power law spectrum as an alternative to the concordance cosmological model

    International Nuclear Information System (INIS)

    Pandolfi, Stefania; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro

    2010-01-01

    We consider cosmological models with a non-scale-invariant spectrum of primordial perturbations and assess whether they represent a viable alternative to the concordance ΛCDM model. We find that in the framework of a model selection analysis, the WMAP and 2dF data do not provide any conclusive evidence in favor of one or the other kind of model. However, when a marginalization over the entire space of nuisance parameters is performed, models with a modified primordial spectrum and Ω Λ =0 are strongly disfavored.

  17. Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gouda, Naoteru; Sugiyama, Naoshi

    1990-01-01

    Microwave background anisotropies in various cosmological scenarios are studied. In particular, the extent to which nonscale-invariant spectra of the primordial density fluctuations are consistent with the observational upper limits is examined. The resultant constraints are summarized as contours on (n, Omega)-plane, where n is the power-law index of the primordial spectrum of density fuctuations and Omega is the cosmological density parameter. They are compared also with the constraints from the cosmic Mach number test, recently proposed by Ostriker and Suto (1990). The parameter regions which pass both tests are not consistent with the theoretical prejudice inspired by the inflationary model. 44 refs

  18. From electroweak theory to the primordial universe. A synthesis of some experimental results; De la theorie electrofaible a l'univers primordial. Synthese de quelques resultats experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Ealet, A

    2004-12-15

    Particle physic is based on a theory which can be tested on the current large colliders. Measurements are in a very good agreement with this electroweak theory and no deviation is observed to indicate new physics. What is surprising today is that none of its results agrees with what is known from our universe, neither to explain the primordial baryogenesis, neither to explain the acceleration of the expansion of the Universe. In this work, I come back on some results obtained in the Lep collider, to test the electroweak theory (Higgs and W boson production) and on some measurements of CP violation. I compare them with what can be extrapolated in term of primordial baryogenesis and dark energy density and show that there is no possible agreement in the Standard Model. I finish by some experimental and theoretical views to answer this fundamental question. (author)

  19. Preservation of primordial follicles from lions by slow freezing and xenotransplantation of ovarian cortex into an immunodeficient mouse

    DEFF Research Database (Denmark)

    Wiedemann, C; Hribal, R; Ringleb, J

    2012-01-01

    follicles within the ovarian cortex survived culture when the original sample was from a young healthy lion collected immediately after euthanasia. Within the xenotransplants, the number of primordial follicles decreased after 28 days by 20%, but the relation between primordial and growing follicles changed...

  20. Auditory stream segregation using amplitude modulated bandpass noise

    Directory of Open Access Journals (Sweden)

    Yingjiu eNie

    2015-08-01

    Full Text Available The purpose of this study was to investigate the roles of spectral overlap and amplitude modulation (AM rate for stream segregation for noise signals, as well as to test the build-up effect based on these two cues. Segregation ability was evaluated using an objective paradigm with listeners’ attention focused on stream segregation. Stimulus sequences consisted of two interleaved sets of bandpass noise bursts (A and B bursts. The A and B bursts differed in spectrum, AM-rate, or both. The amount of the difference between the two sets of noise bursts was varied. Long and short sequences were studied to investigate the build-up effect for segregation based on spectral and AM-rate differences. Results showed the following: 1. Stream segregation ability increased with greater spectral separation. 2. Larger AM-rate separations were associated with stronger segregation abilities. 3. Spectral separation was found to elicit the build-up effect for the range of spectral differences assessed in the current study. 4. AM-rate separation interacted with spectral separation suggesting an additive effect of spectral separation and AM-rate separation on segregation build-up. The findings suggest that, when normal-hearing listeners direct their attention toward segregation, they are able to segregate auditory streams based on reduced spectral contrast cues that vary by the amount of spectral overlap. Further, regardless of the spectral separation they were able to use AM-rate difference as a secondary/weaker cue. Based on the spectral differences, listeners can segregate auditory streams better as the listening duration is prolonged—i.e. sparse spectral cues elicit build-up segregation; however, AM-rate differences only appear to elicit build-up when in combination with spectral difference cues.

  1. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  2. Healthy lifestyle in the primordial prevention of cardiovascular disease among young women.

    Science.gov (United States)

    Chomistek, Andrea K; Chiuve, Stephanie E; Eliassen, A Heather; Mukamal, Kenneth J; Willett, Walter C; Rimm, Eric B

    2015-01-06

    Overall mortality rates from coronary heart disease (CHD) in the United States have declined in recent decades, but the rate has plateaued among younger women. The potential for further reductions in mortality rates among young women through changes in lifestyle is unknown. The aim of this study was to estimate the proportion of CHD cases and clinical cardiovascular disease (CVD) risk factors among young women that might be attributable to poor adherence to a healthy lifestyle. A prospective analysis was conducted among 88,940 women ages 27 to 44 years at baseline in the Nurses' Health Study II who were followed from 1991 to 2011. Lifestyle factors were updated repeatedly by questionnaire. A healthy lifestyle was defined as not smoking, a normal body mass index, physical activity ≥ 2.5 h/week, television viewing ≤ 7 h/week, diet in the top 40% of the Alternative Healthy Eating Index-2010, and 0.1 to 14.9 g/day of alcohol. To estimate the proportion of CHD and clinical CVD risk factors (diabetes, hypertension, and hypercholesterolemia) that could be attributed to poor adherence to a healthy lifestyle, we calculated the population-attributable risk percent. During 20 years of follow-up, we documented 456 incident CHD cases. In multivariable-adjusted models, nonsmoking, a healthy body mass index, exercise, and a healthy diet were independently and significantly associated with lower CHD risk. Compared with women with no healthy lifestyle factors, the hazard ratio for CHD for women with 6 lifestyle factors was 0.08 (95% confidence interval: 0.03 to 0.22). Approximately 73% (95% confidence interval: 39% to 89%) of CHD cases were attributable to poor adherence to a healthy lifestyle. Similarly, 46% (95% confidence interval: 43% to 49%) of clinical CVD risk factor cases were attributable to a poor lifestyle. Primordial prevention through maintenance of a healthy lifestyle among young women may substantially lower the burden of CVD. Copyright © 2015 American College

  3. Segregation and differential settling in flocculated tailings

    Energy Technology Data Exchange (ETDEWEB)

    Farinato, R.S.; Mahmoudkhani, A.; Fenderson, T.; Watson, P. [Kemira, Atlanta, GA (United States)

    2010-07-01

    Untreated oil sands tailings have a high solids content, have poor dewaterability, and contain no aggregates. This PowerPoint presentation investigated segregation and differential settling in flocculated tailings. Tailings were treated with gypsum and various polymers. Cylinder settling, dynamic rheometry, particle size analysis, and microscopy techniques were used to characterize the composite tailings. The particles sizes of the samples were evaluated in relation to shear rate, bed depth, and treatment. The study showed that the gypsum-treated tailings had small aggregates, size stratification, a high solids content, and poor dewaterability. The polymer N-treated tailings had the lowest solids content, good dewaterability, and weak aggregates. The polymer A-treated tailings had a low solids content, very good dewaterability, and strong aggregates. The addition of a coagulant to the polymer-A treated tailings provided weaker aggregates and a higher solids content. tabs., figs.

  4. Blood cell interactions and segregation in flow.

    Science.gov (United States)

    Munn, Lance L; Dupin, Michael M

    2008-04-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.

  5. Heider balance, asymmetric ties, and gender segregation

    Science.gov (United States)

    Krawczyk, Małgorzata J.; del Castillo-Mussot, Marcelo; Hernández-Ramírez, Eric; Naumis, Gerardo G.; Kułakowski, Krzysztof

    2015-12-01

    To remove a cognitive dissonance in interpersonal relations, people tend to divide their acquaintances into friendly and hostile parts, both groups internally friendly and mutually hostile. This process is modeled as an evolution toward the Heider balance. A set of differential equations have been proposed and validated (Kułakowski et al., 2005) to model the Heider dynamics of this social and psychological process. Here we generalize the model by including the initial asymmetry of the interpersonal relations and the direct reciprocity effect which removes this asymmetry. Our model is applied to the data on enmity and friendship in 37 school classes and 4 groups of teachers in México. For each class, a stable balanced partition is obtained into two groups. The gender structure of the groups reveals stronger gender segregation in younger classes, i.e. of age below 12 years, a fact consistent with other general empirical results.

  6. Radiation-induced segregation in model alloys

    Science.gov (United States)

    Ezawa, T.; Wakai, E.; Oshima, R.

    2000-12-01

    The dependence of the size factor of solutes on radiation-induced segregation (RIS) was studied. Ni-Si, Ni-Co, Ni-Cu, Ni-Mn, Ni-Pd, and Ni-Nb binary solid solution alloys were irradiated with electrons in a high voltage electron microscope at the same irradiation conditions. A focused beam and a grain boundary were utilized to generate a flow of point defects to cause RIS. From the concentration profile obtained by an energy dispersive X-ray analysis, the amount of RIS was calculated. The amount of RIS decreased as the size of the solute increased up to about 10%. However, as the size increased further, the amount of RIS increased. This result shows that RIS is not simply determined by the size effect rule.

  7. Morphological Segregation in the Surroundings of Cosmic Voids

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardelli, Elena; Tamone, Amelie [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny (Switzerland); Cava, Antonio [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Varela, Jesus, E-mail: elena.ricciardelli@epfl.ch [Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, E-44001 Teruel (Spain)

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  8. Figure-ground segregation in a recurrent network architecture

    NARCIS (Netherlands)

    Lamme, V.A.F.; Roelfsema, P.R.; Spekreijse, H.; Bosch, H.

    2002-01-01

    Proposes a model of how the visual brain segregate textured scenes into figures and background. During texture segregation, locations where the properties of texture elements change abruptly are assigned to boundaries, whereas image regions that are relatively homogeneous are grouped together

  9. Figure-ground segregation in a recurrent network architecture

    NARCIS (Netherlands)

    Roelfsema, Pieter R.; Lamme, Victor A. F.; Spekreijse, Henk; Bosch, Holger

    2002-01-01

    Here we propose a model of how the visual brain segregates textured scenes into figures and background. During texture segregation, locations where the properties of texture elements change abruptly are assigned to boundaries, whereas image regions that are relatively homogeneous are grouped

  10. Seeing Race: Teaching Residential Segregation with the Racial Dot Map

    Science.gov (United States)

    Seguin, Charles; Nierobisz, Annette; Kozlowski, Karen Phelan

    2017-01-01

    Students commonly hold erroneous notions of a "post-racial" world and individualistic worldviews that discount the role of structure in social outcomes. Jointly, these two preconceived beliefs can be powerful barriers to effective teaching of racial segregation: Students may be skeptical that racial segregation continues to exist, and…

  11. "Brown" at 62: School Segregation by Race, Poverty and State

    Science.gov (United States)

    Orfield, Gary; Ee, Jongyeon; Frankenberg, Erica; Siegel-Hawley, Genevieve

    2016-01-01

    As the anniversary of "Brown v. Board of Education" decision arrives again without any major initiatives to mitigate spreading and deepening segregation in the nation's schools, the Civil Rights Project adds to a growing national discussion with a research brief drawn from a much broader study of school segregation to be published in…

  12. A new principle of figure-ground segregation : The accentuation

    NARCIS (Netherlands)

    Pinna, Baingio; Reeves, Adam; Koenderink, Jan; van Doorn, Andrea; Deiana, Katia

    2018-01-01

    The problem of perceptual organization was studied by Gestalt psychologists in terms of figure-ground segregation. In this paper we explore a new principle of figure-ground segregation: accentuation. We demonstrate the effectiveness of accentuation relative to other Gestalt principles, and also

  13. The Emergence of Gender Segregation in Toddler Playgroups.

    Science.gov (United States)

    Serbin, Lisa A.; And Others

    1994-01-01

    A naturalistic study of toddler playgroups examined factors that might encourage gender segregation. Results revealed that play in same-sex contexts facilitates social interaction, whereas in mixed-sex contexts, play leads to passive social relations. Toddlers who segregated were more behaviorally sex-typed. Preferences for sex-typed toys did not…

  14. Monte Carlo simulations of adsorption-induced segregation

    DEFF Research Database (Denmark)

    Christoffersen, Ebbe; Stoltze, Per; Nørskov, Jens Kehlet

    2002-01-01

    Through the use of Monte Carlo simulations we study the effect of adsorption-induced segregation. From the bulk composition, degree of dispersion and the partial pressure of the gas phase species we calculate the surface composition of bimetallic alloys. We show that both segregation and adsorption...

  15. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  16. Standardized Testing and School Segregation: Like Tinder for Fire?

    Science.gov (United States)

    Knoester, Matthew; Au, Wayne

    2017-01-01

    Recent research suggests that high-stakes standardized testing has played a negative role in the segregation of children by race and class in schools. In this article we review research on the overall effects of segregation, the positive and negative aspects of how desegregation plans were carried out following the 1954 Supreme Court decision…

  17. 7 CFR 58.332 - Segregation of raw material.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Segregation of raw material. 58.332 Section 58.332... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Operations and Operating Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet...

  18. Improvement in dry active waste segregation and processing

    International Nuclear Information System (INIS)

    Hillmer, T.P.; Anderson, K.D.; Dahlen, D.E.

    1989-01-01

    At the Palo Verde Nuclear Generating Station (PVNGS) the majority of dry active waste (DAW) volume reduction activities are performed in the site's new DAW processing and storage facility. This facility houses an interim storage area for a five year volume of compacted DAW, a shredder/compactor, and a DAW segregation area. The DAW segregation program locates and separates non-radioactive and reusable materials from DAW generated at the three unit PVNGS site. This program has saved more than 24,000 cubic feet of burial space and has reclaimed more than $1,000,000 worth of materials. Palo Verde has made numerous changes to the DAW segregation program since its inception. To ensure that the DAW segregation program remained cost effective and in compliance with applicable regulatory guidance, segregation techniques were revised and new equipment was evaluated and procured. This paper details that effort and summarizes the operational data that has been collected

  19. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  20. Identification of two novel critical mutations in PCNT gene resulting in microcephalic osteodysplastic primordial dwarfism type II associated with multiple intracranial aneurysms.

    Science.gov (United States)

    Li, Fei-Feng; Wang, Xu-Dong; Zhu, Min-Wei; Lou, Zhi-Hong; Zhang, Qiong; Zhu, Chun-Yu; Feng, Hong-Lin; Lin, Zhi-Guo; Liu, Shu-Lin

    2015-12-01

    Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is a highly detrimental human autosomal inherited recessive disorder. The hallmark characteristics of this disease are intrauterine and postnatal growth restrictions, with some patients also having cerebrovascular problems such as cerebral aneurysms. The genomic basis behind most clinical features of MOPD II remains largely unclear. The aim of this work was to identify the genetic defects in a Chinese family with MOPD II associated with multiple intracranial aneurysms. The patient had typical MOPD II syndrome, with subarachnoid hemorrhage and multiple intracranial aneurysms. We identified three novel mutations in the PCNT gene, including one single base alteration (9842A>C in exon 45) and two deletions (Del-C in exon 30 and Del-16 in exon 41). The deletions were co-segregated with the affected individual in the family and were not present in the control population. Computer modeling demonstrated that the deletions may cause drastic changes on the secondary and tertiary structures, affecting the hydrophilicity and hydrophobicity of the mutant proteins. In conclusion, we identified two novel mutations in the PCNT gene associated with MOPD II and intracranial aneurysms, and the mutations were expected to alter the stability and functioning of the protein by computer modeling.

  1. The future of primordial features with large-scale structure surveys

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia

    2016-01-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  2. Meier-Gorlin syndrome: Growth and secondary sexual development of a microcephalic primordial dwarfism disorder

    NARCIS (Netherlands)

    de Munnik, Sonja A.; Otten, Barto J.; Schoots, Jeroen; Bicknell, Louise S.; Aftimos, Salim; Al-Aama, Jumana Y.; van Bever, Yolande; Bober, Michael B.; Borm, George F.; Clayton-Smith, Jill; Deal, Cheri L.; Edrees, Alaa Y.; Feingold, Murray; Fryer, Alan; van Hagen, Johanna M.; Hennekam, Raoul C.; Jansweijer, Maaike C. E.; Johnson, Diana; Kant, Sarina G.; Opitz, John M.; Ramadevi, A. Radha; Reardon, Willie; Ross, Alison; Sarda, Pierre; Schrander-Stumpel, Constance T. R. M.; Sluiter, A. Erik; Temple, I. Karen; Terhal, Paulien A.; Toutain, Annick; Wise, Carol A.; Wright, Michael; Skidmore, David L.; Samuels, Mark E.; Hoefsloot, Lies H.; Knoers, Nine V. A. M.; Brunner, Han G.; Jackson, Andrew P.; Bongers, Ernie M. H. F.

    2012-01-01

    MeierGorlin syndrome (MGS) is a rare autosomal recessive disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recently, mutations in the ORC1, ORC4, ORC6, CDT1, and CDC6 genes, encoding components of the pre-replication complex, have been identified. This complex

  3. Meier-Gorlin syndrome: Growth and secondary sexual development of a microcephalic primordial dwarfism disorder

    NARCIS (Netherlands)

    de Munnik, S.A.; Otten, B.J.; Schoots, J.; Bicknell, L.S.; Aftimos, S.; Al-Aama, J.Y.; van Bever, Y.; Bober, M.B.; Borm, G.F.; Clayton-Smith, J.; Deal, C.L.; Edrees, A.Y.; Feingold, M.; Fryer, A.; van Hagen, J.M.; Hennekam, R.C.M.; Jansweijer, M.C.E.; Johnson, D.; Kant, S.G.; Opitz, J.M.; Ramadevi, A.R.; Reardon, W.; Ross, A.; Sarda, P.; Schrander-Stumpel, C.T.R.M.; Sluiter, A.E.; Temple, I.K.; Terhal, P.A.; Toutain, A.; Wise, C.A.; Wright, M.; Skidmore, D.L.; Samuels, M.E.; Hoefsloot, L.H.; Knoers, N.V.A.M.; Brunner, H.G.; Jackson, A.P.; Bongers, M.H.F.

    2012-01-01

    Meier-Gorlin syndrome (MGS) is a rare autosomal recessive disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recently, mutations in the ORC1, ORC4, ORC6, CDT1, and CDC6 genes, encoding components of the pre-replication complex, have been identified. This

  4. The Primordial Soup Algorithm : a systematic approach to the specification of parallel parsers

    NARCIS (Netherlands)

    Janssen, Wil; Janssen, W.P.M.; Poel, Mannes; Sikkel, Nicolaas; Zwiers, Jakob

    1992-01-01

    A general framework for parallel parsing is presented, which allows for a unitied, systematic approach to parallel parsing. The Primordial Soup Algorithm creates trees by allowing partial parse trees to combine arbitrarily. By adding constraints to the general algorithm, a large, class of parallel

  5. Planck 2015 results: XVII. Constraints on primordial non-Gaussianity

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators – separable template-fitting (KSW), binned, and modal – we obtain consiste...

  6. The Observational Determination of the Primordial Helium Abundance: a Y2K Status Report

    Science.gov (United States)

    Skillman, Evan D.

    I review observational progress and assess the current state of the determination of the primordial helium abundance, Yp. At present there are two determinations with non-overlapping errors. My impression is that the errors have been under-estimated in both studies. I review recent work on errors assessment and give suggestions for decreasing systematic errors in future studies.

  7. Genetic Testing for Type 2 Diabetes in High-Risk Children: the Case for Primordial Prevention

    Directory of Open Access Journals (Sweden)

    Jennifer Wessel

    2017-09-01

    Full Text Available Extensive research now demonstrates that lifestyle modification can significantly lower risk of developing type 2 diabetes (T2D in high-risk adults. In children, the evidence for lifestyle modification is not as robust, but the rapidly rising rate of obesity in children coupled with the substantial difficulty in changing behaviors later in life illuminates the need to implement prevention efforts early in the life course of children. Genetic data can now be used early in the life course to identify children at high-risk of developing T2D before traditional clinical measures can detect the presence of prediabetes; a metabolic condition associated with obesity that significantly increases risk for developing T2D.  Such early detection of risk may enable the promotion of “primordial prevention” in which parents implement behavior change for their at risk children.  Young children with genetic risk are a novel target population.  Here we review the literature on genetic testing for prevention as it relates to chronic diseases and specifically use T2D as a model. We discuss the history of primordial prevention, the need for primordial prevention of T2D and the role genetic testing has in primordial prevention of high-risk families.

  8. The atmospheric Cherenkov technique in searches for exploding primordial black holes

    International Nuclear Information System (INIS)

    Danaher, S.; Fegan, D.J.; Porter, N.A.; Weekes, T.C.

    1981-01-01

    The Cherenkov technique has been used with a number of detectors, ranging from 1.5 m 2 mirrors to the Central Receiver Test Facility of 8400 m 2 . Limits have been set to the flux of primordial black holes for various models of the evaporation process. (author)

  9. The future of primordial features with large-scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  10. Novel Microcephalic Primordial Dwarfism Disorder Associated with Variants in the Centrosomal Protein Ninein

    DEFF Research Database (Denmark)

    Dauber, Andrew; LaFranchi, Stephen H.; Maliga, Zoltan

    2012-01-01

    Context: Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental...

  11. Segregation and Socialization: Academic Segregation and Citizenship Attitudes of Adolescents in Comparative Perspective?

    Directory of Open Access Journals (Sweden)

    Dimokritos Kavadias

    2017-07-01

    Full Text Available Purpose: There is a tendency to assess educational systems in terms of their efficiency in gaining high scores on cognitive skills. Schools perform, however, also a socializing function. The whole policy debate tends to ignore the impact of educational systems on attitudes or democratic values. This contribution focuses on the impact of the organization of education in European societies on the civic attitudes of adolescents. Design/methodology/approach: We explore the impact of academic segregation – the practice of segregating children on the basis of their scholastic achievement – on attitudes of adolescents living in different educational systems. We use the International Civic and Citizenship Education Study (2009 relying on multilevel models. Findings: Pupils differ in their outlook on fellow citizens, according to the ways in which educational systems select and differentiate throughout school careers. More specifically, there is a negative impact of academic segregation on the attitudes towards immigrants and ethnic minorities. Research limitations/implications: The experience of adolescents based on their educational achievement seems to affect how they perceive other people. We have not answered the question why this is the case. We hope to have provided a minimal indication of the impact of inequality on social outcomes.

  12. Evolution of Primordial Black Holes in Loop Quantum Cosmology D ...

    Indian Academy of Sciences (India)

    on initial mass fraction of presently evaporating PBHs are much greater ... that the black holes emit thermal radiation due to quantum effects (Hawking 1975). .... Here one can notice that the scale factor in LQC varies at a slower rate than .... where aH ∼ is the black body constant and TBH ∼ is the Hawking temperature = 1.

  13. The role of primordial emotions in the evolutionary origin of consciousness.

    Science.gov (United States)

    Denton, D A; McKinley, M J; Farrell, M; Egan, G F

    2009-06-01

    Primordial emotions are the subjective element of the instincts which are the genetically programmed behaviour patterns which contrive homeostasis. They include thirst, hunger for air, hunger for food, pain and hunger for specific minerals etc. There are two constituents of a primordial emotion--the specific sensation which when severe may be imperious, and the compelling intention for gratification by a consummatory act. They may dominate the stream of consciousness, and can have plenipotentiary power over behaviour. It is hypothesized that early in animal evolution complex reflex mechanisms in the basal brain subserving homeostatic responses, in concert with elements of the reticular activating system subserving arousal, melded functionally with regions embodied in the progressive rostral development of the telencephalon. This included the emergent limbic and paralimbic areas, and the insula. This phylogenetically ancient organization subserved the origin of consciousness as the primordial emotion, which signalled that the organisms existence was immediately threatened. Neuroimaging confirms major activations in regions of the basal brain during primordial emotions in humans. The behaviour of decorticate humans and animals is discussed in relation to the possible existence of primitive awareness. Neuroimaging of the primordial emotions reveals that rapid gratification of intention by a consummatory act such as ingestion causes precipitate decline of both the initiating sensation and the intention. There is contemporaneous rapid disappearance of particular regions of brain activation which suggests they may be part of the jointly sufficient and severally necessary activations and deactivations which correlate with consciousness [Crick, F. & Koch, C. (2003). A framework for consciousness. NatureNeuroscience,6, 119-126].

  14. Selective mobility, segregation and neighbourhood effects

    Directory of Open Access Journals (Sweden)

    Sanne Boschman

    2015-11-01

    Full Text Available Introduction The residential neighbourhood is thought to affect residents because of presumed neighbourhood effects; the independent effects of a neighbourhood’s characteristics on the life chances of its residents. An enormous body of research has tried to measure neighbourhood effects, however, there are no clear conclusions on how much, if any, effect the neighbourhood has on its residents. There is non-random selection of people into neighbourhoods which causes a bias in the modelling of neighbourhood effects. Any correlation found between neighbourhood characteristics and individual outcomes might be explained by selection bias and can therefore not prove the existence of a causal neighbourhood effect. The question is; do poor neighbourhoods make people poor, or do poor people live in unattractive neighbourhoods because they cannot afford to live elsewhere (Cheshire, 2007. Therefore, insight in selection is important to gain more insight in neighbourhood effects (Van Ham and Manley, 2012. For neighbourhood effects research it is important to study selective mobility and neighbourhood choice and to combine neighbourhood effects research with neighbourhood selection research (Doff, 2010a; Van Ham and Manley, 2012; Van Ham et al., 2012; Galster, 2003; Hedman, 2011. The aim of this thesis therefore is to gain more insight in both the causes and the consequences of segregation and thus to study both individual residential mobility and neighbourhood selection and neighbourhood effects. Besides the neighbourhood effects literature, also the segregation literature will benefit from better insights in selective residential mobility because selective residential mobility is one of the main driving forces of segregation.  There are two main research questions for this thesis. Firstly, I try to give insight in selective mobility and neighbourhood choice and thus to study where, when and why which people move. What is the effect of personal

  15. Primordial black hole and wormhole formation by domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Heling; Garriga, Jaume; Vilenkin, Alexander, E-mail: heling.deng@tufts.edu, E-mail: garriga@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2017-04-01

    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ''supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.

  16. Taylor revisited: Gender segregation and division of labour in the ICT - sector (information and communication technology)

    DEFF Research Database (Denmark)

    Nygaard, Else

    2001-01-01

    Information and communication technology, division of labour, gender segregation, working conditions......Information and communication technology, division of labour, gender segregation, working conditions...

  17. Texture segregation, surface representation and figure-ground separation.

    Science.gov (United States)

    Grossberg, S; Pessoa, L

    1998-09-01

    A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.

  18. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  19. Blue straggler stars beyond the Milky Way: a non-segregated population in the Large Magellanic Cloud cluster NGC 2213

    Science.gov (United States)

    Li, Chengyuan; Hong, Jongsuk

    2018-06-01

    Using the high-resolution observations obtained by the Hubble Space Telescope, we analysed the blue straggler stars (BSSs) in the Large Magellanic Cloud cluster NGC 2213. We found that the radial distribution of BSSs is consistent with that of the normal giant stars in NGC 2213, showing no evidence of mass segregation. However, an analytic calculation carried out for these BSSs shows that they are already dynamically old, because the estimated half-mass relaxation time for these BSSs is significantly shorter than the isochronal age of the cluster. We also performed direct N-body simulations for an NGC 2213-like cluster to understand the dynamical processes that lead to this non-segregated radial distribution of BSSs. Our numerical simulation shows that the presence of black hole subsystems inside the cluster centre can significantly affect the dynamical evolution of BSSs. The combined effects of the delayed segregation, binary disruption, and exchange interactions of BSS progenitor binaries may result in this non-segregated radial distribution of BSSs in NGC 2213.

  20. Mechanisms of time-based figure-ground segregation.

    Science.gov (United States)

    Kandil, Farid I; Fahle, Manfred

    2003-11-01

    Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.