WorldWideScience

Sample records for prime-power lattice designs

  1. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  2. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  3. Fuel lattice design using heuristics and new strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2010-10-15

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  4. Fuel lattice design using heuristics and new strategies

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R.; Pelta, D. A.; Campos S, Y.

    2010-10-01

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  5. Design for an MHD power plant as a prime mover for a Naval Vessel

    International Nuclear Information System (INIS)

    Paluszek, M.A.

    1981-01-01

    A Magnetohydrodynamic Power Plant, designed to be the prime mover for a Naval Vessel, is presented. The system is an open cycle, fossil fueled, subsonic MHD Faraday generator with directly fired air preheaters. A superconducting electric transmission drives the propellers and a standard naval steam plant is used as a bottoming cycle. The increased overall efficiency achievable with this plant allows a lighter, smaller volume ship to accommodate the same payload and reduces the overall fuel cost of the vessel

  6. GST-PRIME: an algorithm for genome-wide primer design.

    Science.gov (United States)

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  7. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  8. Almost Fixed-Point-Free Automorphisms of Prime Power Order

    Directory of Open Access Journals (Sweden)

    B.A.F. Wehrfritz

    2016-06-01

    Full Text Available We study the effect under various rank restrictions of a group having an automorphism of prime power order whose fixed-point set is also finite of prime power order for the same prime. Generally our conclusions are that the group has a soluble normal subgroup of bounded derived length. Not surprisingly the bound gets larger as the rank restrictions get weaker.

  9. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    International Nuclear Information System (INIS)

    Tung, Wu-Hsiung; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-01-01

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U"2"3"5 enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4 lattice

  10. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-11-15

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U{sup 235} enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4

  11. Link lengths and their growth powers

    International Nuclear Information System (INIS)

    Huh, Youngsik; No, Sungjong; Oh, Seungsang; Rawdon, Eric J

    2015-01-01

    For a certain infinite family F of knots or links, we study the growth power ratios of their stick number, lattice stick number, minimum lattice length and minimum ropelength compared with their minimum crossing number c(K) for every K∈F. It is known that the stick number and lattice stick number grow between the (1/2) and linear power of the crossing number, and minimum lattice length and minimum ropelength grow with at least the (3/4) power of crossing number (which is called the four-thirds power law). Furthermore, the minimal lattice length and minimum ropelength grow at most as O (c(K)[ln(c(K))] 5 ), but it is unknown whether any family exhibits superlinear growth. For any real number r between (1/2) and 1, we give an infinite family of non-splittable prime links in which the stick number and lattice stick number grow exactly as the rth power of crossing number. Furthermore for any real number r between (3/4) and 1, we give another infinite family of non-splittable prime links in which the minimum lattice length and minimum ropelength grow exactly as the rth power of crossing number. (paper)

  12. Calculation Of A Lattice Physics Parameter For SBWR Fuel Bundle Design

    International Nuclear Information System (INIS)

    Sardjono, Y.

    1996-01-01

    The maximum power peaking factor for Nuclear Power Plant SBWR type is 1.5. The precision for that calculation is related with the result of unit cell analysis each rod in the fuel bundles. This analysis consist of lattice eigenvalue, lattice average diffusion cross section as well as relative power peaking factor in the fuel rod for each fuel bundles. The calculation by using TGBLA computer code which is based on the transport and 168 group diffusion theory. From this calculation can be concluded that the maximum relative power peaking factor is 1.304 and lower than design limit

  13. Stacking faults of {gamma}{prime}{prime} phase precipitated in a Ni-15Cr-8Fe-6Nb alloy; Ni-15Cr-8Fe-6Nb gokin ni sekishutsusuru {gamma}{prime}{prime} sonai no sekiso kekkan

    Energy Technology Data Exchange (ETDEWEB)

    Kusabiraki, K; Ikeuchi, S [Toyama University, Toyama (Japan). Faculty of Engineering

    1995-09-01

    The stacking faults of a metastable {gamma}{prime}{prime} phase precipitated in a nickel-base superalloy, a modified NCF 3 type alloy (X-750M) were investigated by transmission electron microscopy and X-ray diffraction method. The {gamma}{prime}{prime} precipitates are circular shaped plates at the early stage of aging and they become elliptic or irregular shaped plates at the latter stage of aging up to 1033K. Contrast which suggests the existence of stacking faults on {l_brace}112{r_brace}{sub {gamma}{prime}{prime}} planes can be seen in many of large {gamma}{prime}{prime} precipitates extracted from the specimens aged at 1033K. It is clear that the values of {gamma}{prime}{prime}/{gamma} lattice mismatch increase with increasing the aging time from the measurement of lattice constants of the {gamma} and the {gamma}{prime}{prime} phase. The formation of stacking faults on {l_brace}112{r_brace}{sub {gamma}{prime}{prime}} in the large {gamma}{prime}{prime} precipitates is due to the movement of an a/6 [111] partial dislocation introduced by {gamma}{prime}{prime} /{gamma} coherency strain. Since a part of stacking sequence has a similar crystal structure to that of a stable {delta} phase precipitates in {gamma} phase, the formation of stacking faults in the {gamma}{prime}{prime} precipitates is considered to be favorable for the stabilization of them. 14 refs., 10 figs., 1 tab.

  14. S-fuzzy Version of Stone's Theorem for Distributive Lattices

    Institute of Scientific and Technical Information of China (English)

    Y. S.Pawar; S. S.Khopade

    2011-01-01

    In this paper,we initiate a study of S-fuzzy ideal (filter) of a lattice where S stands for a meet semilattice.A S fuzzy prime ideal (filter) of a lattice is defined and it is proved that a S-fuzzy ideal (filter) of a lattice is S-fuzzy prime ideal (filter) if and only if any non-empty a-cut of it is a prime ideal (filter).Stone's theorem for a distributive lattice is extended by considering S-fuzzy ideals (filters).

  15. Minimizing the power peaking factor of fuel lattices using factors of group for boiling water reactors

    International Nuclear Information System (INIS)

    Guzman, J. R.; Longoria, L. C.; De la Cruz, E.; Arredondo, C.

    2010-10-01

    A method to design the distribution and composition of nuclear fuel for the array of fuel rods in a lattice for BWRs is presented in this work. The aim of the method is to minimize the power peaking factor until an adequate value is reached. Also, this method uses a few calculations of lattice. The method is based on the classification of the fuel rods in two groups: the group of fuel rods with the higher power level (group pow ), and the other group of fuel rods (no-group pow ). The enrichment of 235 U of each fuel rod of the group pow is multiplied by a factor called group fissile factor (f group ), and the enrichment of 235 U of each fuel rod of the no-group pow is multiplied by a factor called no-group fissile factor (f no-group ). These factors are fitted so that the power peaking factor is minimized. The importance of the method with the use of these two factors is applied to the design of a fuel lattice for BWRs as the Laguna Verde nuclear power plant. The calculations of lattice are made by means of the Helios code. (Author)

  16. Design of the SPEAR 3 magnet lattice

    International Nuclear Information System (INIS)

    Corbett, J.; Limborg, C.; Nosochkov, Y.; Safranek, J.

    1998-01-01

    The SPEAR 3 Upgrade Project seeks to replace the present 160 nm-rad FODO lattice with an 18 nm-rad double bend achromat (DBA) lattice. The new lattice must conform to the layout of the SPEAR racetrack tunnel and service the existing photon beamlines. Working within these constraints, the authors designed a lattice with 18 achromatic cells and 3 GeV beam energy. This paper reports on design of the main DBA cells, design of the matching cells leading into the 6.5 m racetrack straights, and simulation of the dynamic aperture. The new lattice has gradient dipoles, conventional quadrupoles, and provides horizontal dynamic aperture to ± 20 mm with conservative magnetic multipole errors

  17. About mutually unbiased bases in even and odd prime power dimensions

    Science.gov (United States)

    Durt, Thomas

    2005-06-01

    Mutually unbiased bases generalize the X, Y and Z qubit bases. They possess numerous applications in quantum information science. It is well known that in prime power dimensions N = pm (with p prime and m a positive integer), there exists a maximal set of N + 1 mutually unbiased bases. In the present paper, we derive an explicit expression for those bases, in terms of the (operations of the) associated finite field (Galois division ring) of N elements. This expression is shown to be equivalent to the expressions previously obtained by Ivanovic (1981 J. Phys. A: Math. Gen. 14 3241) in odd prime dimensions, and Wootters and Fields (1989 Ann. Phys. 191 363) in odd prime power dimensions. In even prime power dimensions, we derive a new explicit expression for the mutually unbiased bases. The new ingredients of our approach are, basically, the following: we provide a simple expression of the generalized Pauli group in terms of the additive characters of the field, and we derive an exact groupal composition law between the elements of the commuting subsets of the generalized Pauli group, renormalized by a well-chosen phase-factor.

  18. About mutually unbiased bases in even and odd prime power dimensions

    International Nuclear Information System (INIS)

    Durt, Thomas

    2005-01-01

    Mutually unbiased bases generalize the X, Y and Z qubit bases. They possess numerous applications in quantum information science. It is well known that in prime power dimensions N = p m (with p prime and m a positive integer), there exists a maximal set of N + 1 mutually unbiased bases. In the present paper, we derive an explicit expression for those bases, in terms of the (operations of the) associated finite field (Galois division ring) of N elements. This expression is shown to be equivalent to the expressions previously obtained by Ivanovic (1981 J. Phys. A: Math. Gen. 14 3241) in odd prime dimensions, and Wootters and Fields (1989 Ann. Phys. 191 363) in odd prime power dimensions. In even prime power dimensions, we derive a new explicit expression for the mutually unbiased bases. The new ingredients of our approach are, basically, the following: we provide a simple expression of the generalized Pauli group in terms of the additive characters of the field, and we derive an exact groupal composition law between the elements of the commuting subsets of the generalized Pauli group, renormalized by a well-chosen phase-factor

  19. Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

    Science.gov (United States)

    2018-03-01

    to develop novel co-prime sampling and array design strategies that achieve high-resolution estimation of spectral power distributions and signal...by the array geometry and the frequency offset. We overcome this limitation by introducing a novel sparsity-based multi-target localization approach...estimation using a sparse uniform linear array with two CW signals of co-prime frequencies,” IEEE International Workshop on Computational Advances

  20. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  1. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, T J; Conklin, J. C.; Thomas, John F.; Armstrong, T. R.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should

  2. Critical power characteristics in 37-rod tight lattice bundles under transient conditions

    International Nuclear Information System (INIS)

    Liu, Wei; Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Akimoto, Hajime

    2007-01-01

    Critical power characteristics in the postulated abnormal transient processes that may be possibly met in the operation of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) were investigated for the design of the FLWR core. Transient Boiling Transition (BT) tests were carried out using two sets of 37-rod tight lattice rod bundles (rod diameter: 13 mm; rod clearance: 1.3 mm or 1.0 mm) at Japan Atomic Energy Agency (JAEA) under the conditions covering the FLWR operating condition (P ex =7.2 MPa, T in =556 K) for mass velocity G=400-800 kg/(m 2 s). For the postulated power increase and flow decrease transients, no obvious change of the critical power against the steady one was observed. The traditional quasi-steady characteristic was confirmed to be working for the postulated power increase and flow decrease transients. The experiments were analyzed with TRAC-BF1 code, where the JAEA newest critical power correlation for the tight lattice rod bundles was implemented for the BT judgment. The TRAC-BF1 code showed good prediction for the occurrence or the non occurrence of the BT and for the exact BT starting time. The tranditional quasi-steady state prediction of the BT in transient process was confirmed to be applicable for the postulated abnormal transient processes in the tight lattice rod bundles. (author)

  3. Design of a minimum emittance nBA lattice

    Science.gov (United States)

    Lee, S. Y.

    1998-04-01

    An attempt to design a minimum emittance n-bend achromat (nBA) lattice has been made. One distinct feature is that dipoles with two different lengths were used. As a multiple bend achromat, five bend achromat lattices with six superperiod were designed. The obtained emittace is three times larger than the theoretical minimum. Tunes were chosen to avoid third order resonances. In order to correct first and second order chromaticities, eight family sextupoles were placed. The obtained emittance of five bend achromat lattices is almost equal to the minimum emittance of five bend achromat lattice consisting of dipoles with equal length.

  4. Lattice Design in High-energy Particle Accelerators

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.

  5. UniPrime2: a web service providing easier Universal Primer design.

    Science.gov (United States)

    Boutros, Robin; Stokes, Nicola; Bekaert, Michaël; Teeling, Emma C

    2009-07-01

    The UniPrime2 web server is a publicly available online resource which automatically designs large sets of universal primers when given a gene reference ID or Fasta sequence input by a user. UniPrime2 works by automatically retrieving and aligning homologous sequences from GenBank, identifying regions of conservation within the alignment, and generating suitable primers that can be used to amplify variable genomic regions. In essence, UniPrime2 is a suite of publicly available software packages (Blastn, T-Coffee, GramAlign, Primer3), which reduces the laborious process of primer design, by integrating these programs into a single software pipeline. Hence, UniPrime2 differs from previous primer design web services in that all steps are automated, linked, saved and phylogenetically delimited, only requiring a single user-defined gene reference ID or input sequence. We provide an overview of the web service and wet-laboratory validation of the primers generated. The system is freely accessible at: http://uniprime.batlab.eu. UniPrime2 is licenced under a Creative Commons Attribution Noncommercial-Share Alike 3.0 Licence.

  6. On prime ideals and associated spectrum of BCK-algebras

    International Nuclear Information System (INIS)

    Ahsan, J.; Thaheem, A.B.; Deeba, E.Y.

    1989-07-01

    In this paper we study prime ideals and define the spectrum of a bounded commutative BCK-algebra. We also obtain a characterization of minimal prime (lattice) ideals of these algebras. (author). 8 refs, 4 tabs

  7. NN-Es Fault Diagnosis Method in Nuclear Power Equipment Based on Concept Lattice

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Xia Hong

    2010-01-01

    In order to improve the fault diagnosis accuracy of nuclear power plant,neural network and expert systems were combined to give full play to their advantages. In this paper, the concept lattice was applied to get the object properties, extracting the core attributes, dispensable attributes and relative necessary attributes from a large number raw data of fault symptoms.Based on these attributes, neural networks with different levels of importance were designed to improve the learning speed and diagnosis accuracy, and the diagnosis results of the neural networks were verified by using rule-based reasoning expert system. To verify the accuracy of this method, some simulation experiments about the typical faults of nuclear power plant were conducted. And the simulation results show that it is feasible to diagnose nuclear power plant faults with the confederation diagnosis methods combined the neural networks based on the concept lattice theory and expert system, with the distinctive features such as the efficiency of neural network learning, less calculation and reliability of diagnosis results and so on. (authors)

  8. A review on the lattice design of large hadron colliders

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1987-01-01

    The conceptual evolution of the accelerator lattice design is discussed. Indicated are aspects of IR design. We emphasize the cancellation of stop-band width in the cluster design. The case of symmetric vs antisymmetric design is also discussed. The SSC lattice is used as an example. 9 refs

  9. Lattice design in high-energy particle accelerators

    CERN Document Server

    Holzer, B J

    2006-01-01

    This lecture introduces storage-ring lattice desing. Applying the formalism that has been established in transverse beam optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice structures: drifts, mini beta insertions, dispersion suppressors, etc. In addition to the exact calculations indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘on the back of an envelope’.

  10. Critical power experiment with a tight-lattice 37-rod bundle

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Sato, Takashi; Liu, Wei; Akimoto, Hajime

    2006-01-01

    Since most of critical power or CHF data have been collected in tube, annulus, or BWR geometries under BWR flow conditions, critical power data for highly tight and triangular lattice bundles under low mass velocity are indispensable for thermal-hydraulic design of Reduced-Moderation Water Reactor. Large-scale thermal-hydraulic experiments which use a basic 37-rod bundle test section (rod diameter: 13.0 mm, gap width between rods: 1.3 mm) were therefore carried out in this study within range of 2-9 MPa in pressure and 150-1,000 kg/(m 2 ·s) in mass velocity. Fundamental characteristics of boiling transition were investigated through effects of flow parameter on critical power and those of rod number. It was confirmed that the fundamental characteristics in 37-rod bundle are similar to those in 7-rod bundle and in case of the BWR geometry. The results of the transverse non-uniform power distribution test and subchannel analysis suggest that the critical power becomes higher when the transverse local quality distribution closes to uniform. (author)

  11. Apiary B Factory lattice design

    International Nuclear Information System (INIS)

    Donald, M.H.R.; Garren, A.A.

    1991-04-01

    The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab

  12. Lattice design for the CEPC double ring scheme

    Science.gov (United States)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  13. Designing machines for lattice physics and algorithm investigation

    International Nuclear Information System (INIS)

    Fischler, M.; Atac, R.; Cook, A.

    1989-10-01

    Special-purpose computers are appropriate tools for the study of lattice gauge theory. While these machines deliver considerable processing power, it is also important to be able to program complex physics ideas and investigate algorithms on them. We examine features that facilitate coding of physics problems, and flexibility in algorithms. Appropriate balances among power, memory, communications and I/O capabilities are presented. 10 refs

  14. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    International Nuclear Information System (INIS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  15. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1997-01-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 μm wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design

  16. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  17. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  18. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    OpenAIRE

    W. A. Stygar; T. J. Awe; J. E. Bailey; N. L. Bennett; E. W. Breden; E. M. Campbell; R. E. Clark; R. A. Cooper; M. E. Cuneo; J. B. Ennis; D. L. Fehl; T. C. Genoni; M. R. Gomez; G. W. Greiser; F. R. Gruner

    2015-01-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-G...

  19. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    Energy Technology Data Exchange (ETDEWEB)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  20. Geometrical approach to the discrete Wigner function in prime power dimensions

    International Nuclear Information System (INIS)

    Klimov, A B; Munoz, C; Romero, J L

    2006-01-01

    We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases

  1. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Science.gov (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  2. A power counting theorem for Feynman integrals on the lattice

    International Nuclear Information System (INIS)

    Reisz, T.

    1988-01-01

    A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which allows the formulation of the theorem in terms of power counting conditions. (orig.)

  3. Construction of Capacity Achieving Lattice Gaussian Codes

    KAUST Repository

    Alghamdi, Wael

    2016-04-01

    We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].

  4. Lattice design of beam transport system of FELI

    International Nuclear Information System (INIS)

    Miyauchi, Y.; Koga, A.; Morii, Y.; Sato, S.; Keishi, T.; Tomimasu, T.

    1994-01-01

    A plan of lasing wide range FEL (Free Electron Laser) is in progress at FELI. For this purpose, an S-band linac accelerator system of four output energy levels is under construction. This paper describes the lattice design of its beam transport (BT) system. (author)

  5. Prime Slaughter

    DEFF Research Database (Denmark)

    Valente, Andrea; Marchetti, Emanuela

    2011-01-01

    of primality and factorization into playful interactions, addressed to primary and early secondary school children. Taking into account individual needs expressed by children regarding play, during a participatory design processes aimed at enhancing learning in museums, Prime Slaughter allows for multiple......Starting from the difficulty of creating playful representation of domain-specific abstract concepts, this study discusses the design of Prime Slaughter, a computer game aimed at facilitating individual sense-making of abstract mathematical concepts. Specifically the game proposes a transposition...

  6. Critical heat flux experiments in tight lattice core

    Energy Technology Data Exchange (ETDEWEB)

    Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  7. Critical heat flux experiments in tight lattice core

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2002-01-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  8. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  9. Natural gas prime movers: A prime income opportunity?

    International Nuclear Information System (INIS)

    Katz, M.G.

    1997-01-01

    Although almost every factory, for example, uses compressed air to operate and control equipment--from power tools to packaging machinery--most air compressors are driven by electric motors. Similarly, although industry uses refrigeration for everything from freezing food to chilling warehouses to making chemicals and ice to operating skating rinks, natural gas powers only about 100 industrial refrigeration units in North America. But several factors are beginning to make natural gas more attractive as a prime mover. For one thing, the rising cost of electricity, with its demand or time-of-day and summer on-peak charges, has everyone looking for ways to cut their electric bills. At the same time, in the wake of deregulation of the nation's electric industry, customers can build on-site power plants that use natural gas to generate their own electricity, or have outside power suppliers or energy service companies (ESCOs) do it for them. Waste and exhaust heat, which can represent up to 60% of the total energy supplied from both engines and turbines, can be captured and used. Finally, growing concern over electric power outages has made natural gas more attractive for mission-critical operations, while new financing options let people buy and install natural gas prime movers more easily

  10. Computational tools and lattice design for the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Cai Yunhai; Irwin, John; Nosochkov, Yuri; Yan, Yiton

    1997-01-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT

  11. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  12. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  13. Priming methods in semantics and pragmatics.

    Science.gov (United States)

    Maldonado, Mora; Spector, Benjamin; Chemla, Emmanuel

    2017-01-01

    Structural priming is a powerful method to inform linguistic theories. We argue that this method extends nicely beyond syntax to theories of meaning. Priming, however, should still be seen as only one of the tools available for linguistic data collection. Specifically, because priming can occur at different, potentially conflicting levels, it cannot detect every aspect of linguistic representations.

  14. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Science.gov (United States)

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  15. Computational tools and lattice design for the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Cai, Y.; Irwin, J.; Nosochkov, Y.; Yan, Y.

    1997-01-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. copyright 1997 American Institute of Physics

  16. High order Fuchsian equations for the square lattice Ising model: χ-tilde(5)

    International Nuclear Information System (INIS)

    Bostan, A; Boukraa, S; Guttmann, A J; Jensen, I; Hassani, S; Zenine, N; Maillard, J-M

    2009-01-01

    We consider the Fuchsian linear differential equation obtained (modulo a prime) for χ-tilde (5) , the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the corresponding linear differential operator from calculations using just a single prime. A particular linear combination of χ-tilde (1) and χ-tilde (3) can be removed from χ-tilde (5) and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth-order linear differential operator occurs as the left-most factor of the 'depleted' differential operator and it is shown to be equivalent to the symmetric fourth power of L E , the linear differential operator corresponding to the elliptic integral E. This result generalizes what we have found for the lower order terms χ-tilde (3) and χ-tilde (4) . We conjecture that a linear differential operator equivalent to a symmetric (n - 1) th power of L E occurs as a left-most factor in the minimal order linear differential operators for all χ-tilde (n) 's

  17. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  18. Design and high order optimization of the ATF2 lattices

    CERN Document Server

    Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R

    2013-01-01

    The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....

  19. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  20. On the construction of capacity-achieving lattice Gaussian codes

    KAUST Repository

    Alghamdi, Wael Mohammed Abdullah

    2016-08-15

    In this paper, we propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3]. © 2016 IEEE.

  1. On the construction of capacity-achieving lattice Gaussian codes

    KAUST Repository

    Alghamdi, Wael; Abediseid, Walid; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3]. © 2016 IEEE.

  2. Lattice design for an ILC damping ring with 3 km circumference

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations

  3. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  4. Priming semantico e museografia / Semantic priming and museography

    Directory of Open Access Journals (Sweden)

    Annalisa Banzi

    2012-05-01

    Full Text Available Il priming è una tipologia di memoria implicita che facilita l’apprendimento di stimoli di diversa natura (stimoli visivi, semantici, etc.. Un allestimento museale che adotti strumenti basati sul priming potrebbe aiutare il pubblico a selezionare i contenuti relativi agli oggetti esposti. In questo articolo viene descritta l’applicazione del priming semantico allo spazio museale. Questa operazione in prima battutta potrebbe essere letta come una mancanza di fiducia nelle capacità cognitive del visitatore nel discriminare il significato delle informazioni. In realtà è una forma di sostegno per aiutare il visitatore a sviluppare gradualmente una propria metodologia di approccio ai contenuti proposti nel museo. Grazie al priming, il pubblico riceve una serie di stimoli che possono aiutare a costituire la base delle proprie conoscenze in ambito storico-artistico ed essere il punto di partenza sul quale costruire un metodo critico.   Many psychological aspects such as motivation, emotion, and attention, affect human learning. Among these, priming triggers and tunes implicit memory processes. Hence the goal of this paper is to check whether semantic priming can be used as an effective tool to design a supportive museum environment where people can easily learn. Moreover, the resulting stronger and more persistent memories could encourage museum visitors to learn more and better, and to develop a method to “read” the artworks. After a brief overview of current models of semantic priming, practical and theoretical issues are considered and discussed.

  5. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    Science.gov (United States)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  6. Automatic fuel lattice design in a boiling water reactor using a particle swarm optimization algorithm and local search

    International Nuclear Information System (INIS)

    Lin Chaung; Lin, Tung-Hsien

    2012-01-01

    Highlights: ► The automatic procedure was developed to design the radial enrichment and gadolinia (Gd) distribution of fuel lattice. ► The method is based on a particle swarm optimization algorithm and local search. ► The design goal were to achieve the minimum local peaking factor. ► The number of fuel pins with Gd and Gd concentration are fixed to reduce search complexity. ► In this study, three axial sections are design and lattice performance is calculated using CASMO-4. - Abstract: The axial section of fuel assembly in a boiling water reactor (BWR) consists of five or six different distributions; this requires a radial lattice design. In this study, an automatic procedure based on a particle swarm optimization (PSO) algorithm and local search was developed to design the radial enrichment and gadolinia (Gd) distribution of the fuel lattice. The design goals were to achieve the minimum local peaking factor (LPF), and to come as close as possible to the specified target average enrichment and target infinite multiplication factor (k ∞ ), in which the number of fuel pins with Gd and Gd concentration are fixed. In this study, three axial sections are designed, and lattice performance is calculated using CASMO-4. Finally, the neutron cross section library of the designed lattice is established by CMSLINK; the core status during depletion, such as thermal limits, cold shutdown margin and cycle length, are then calculated using SIMULATE-3 in order to confirm that the lattice design satisfies the design requirements.

  7. Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core

    International Nuclear Information System (INIS)

    Mukherjee, Sushovan; Gopalakrishnan, S; Fabrizio Scarpa

    2016-01-01

    We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice. (paper)

  8. Density of primes in l-th power residues

    Indian Academy of Sciences (India)

    Given a prime number , a finite set of integers S={a1,…,am} and many -th roots of unity ril,i=1,…,m we study the distribution of primes in Q(l) such that the -th residue symbol of ai with respect to is ril, for all . We find out that this is related to the degree of the extension Q(a1l1,…,a1lm)/Q. We give an algorithm ...

  9. Development of structure design program for venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng

    2012-01-01

    A structure design program was developed for Venturi scrubber working at the self-priming mode. This program proposed a complete logic for thermal parameters calculation and structure design of the throat. A revised calculation for resistance relationship was carried out based on experimental study. The relative error between revised results and experimental values is within 8.6%. (authors)

  10. The priming of basic combinatory responses in MEG.

    Science.gov (United States)

    Blanco-Elorrieta, Esti; Ferreira, Victor S; Del Prato, Paul; Pylkkänen, Liina

    2018-01-01

    Priming has been a powerful tool for the study of human memory and especially the memory representations relevant for language. However, although it is well established that lexical access can be primed, we do not know exactly what types of computations can be primed above the word level. This work took a neurobiological approach and assessed the ways in which the complex representation of a minimal combinatory phrase, such as red boat, can be primed, as evidenced by the spatiotemporal profiles of magnetoencephalography (MEG) signals. Specifically, we built upon recent progress on the neural signatures of phrasal composition and tested whether the brain activities implicated for the basic combination of two words could be primed. In two experiments, MEG was recorded during a picture naming task where the prime trials were designed to replicate previously reported combinatory effects and the target trials to test whether those combinatory effects could be primed. The manipulation of the primes was successful in eliciting larger activity for adjective-noun combinations than single nouns in left anterior temporal and ventromedial prefrontal cortices, replicating prior MEG studies on parallel contrasts. Priming of similarly timed activity was observed during target trials in anterior temporal cortex, but only when the prime and target shared an adjective. No priming in temporal cortex was observed for single word repetition and two control tasks showed that the priming effect was not elicited if the prime pictures were simply viewed but not named. In sum, this work provides evidence that very basic combinatory operations can be primed, with the necessity for some lexical overlap between prime and target suggesting combinatory conceptual, as opposed to syntactic processing. Both our combinatory and priming effects were early, onsetting between 100 and 150ms after picture onset and thus are likely to reflect the very earliest planning stages of a combinatory message

  11. Lattices applied to coding for reliable and secure communications

    CERN Document Server

    Costa, Sueli I R; Campello, Antonio; Belfiore, Jean-Claude; Viterbo, Emanuele

    2017-01-01

    This book provides a first course on lattices – mathematical objects pertaining to the realm of discrete geometry, which are of interest to mathematicians for their structure and, at the same time, are used by electrical and computer engineers working on coding theory and cryptography. The book presents both fundamental concepts and a wealth of applications, including coding and transmission over Gaussian channels, techniques for obtaining lattices from finite prime fields and quadratic fields, constructions of spherical codes, and hard lattice problems used in cryptography. The topics selected are covered in a level of detail not usually found in reference books. As the range of applications of lattices continues to grow, this work will appeal to mathematicians, electrical and computer engineers, and graduate or advanced undergraduate in these fields.

  12. Efficient Offline Waveform Design Using Quincunx/Hexagonal Time-Frequency Lattices

    Directory of Open Access Journals (Sweden)

    Raouia Ayadi

    2017-01-01

    Full Text Available Conventional orthogonal frequency division multiplexing (OFDM may turn to be inappropriate for future wireless cellular systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization relaxation for closed-loop signaling overhead reduction. These severe impairments induce a dramatic loss in orthogonality between subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI and intersymbol interference (ISI. To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier (FBMC systems, with hexagonal time-frequency (TF lattices, operating over severe doubly dispersive channels. For this, we exploit the Ping-pong Optimized Pulse Shaping (POPS paradigm, recently applied to rectangular TF lattices, to design waveforms maximizing the signal-to-interference-plus-noise ratio (SINR for hexagonal TF lattices. We show that FBMC, with hexagonal lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMC brings more robustness to frequency synchronization errors and offers a 10 dB reduction in out-of-band (OOB emissions, with respect to rectangular POPS-FBMC.

  13. The Interdependence of Long- and Short-Term Components in Unmasked Repetition Priming: An Indication of Shared Resources.

    Science.gov (United States)

    Merema, Matt R; Speelman, Craig P

    2015-01-01

    It has been suggested that unmasked repetition priming is composed of distinct long-and short-term priming components. The current study sought to clarify the relationship between these components by examining the relationship between them. A total of 60 people (45 females, 15 males) participated in a computer-based lexical decision task designed to measure levels of short-term priming across different levels of long-term priming. The results revealed an interdependent relationship between the two components, whereby an increase in long-term priming prompted a decrease in short-term priming. Both long-term and short-term priming were accurately captured by a single power function over seven minutes post repetition, suggesting the two components may draw on the same resources. This interdependence between long- and short-term priming may serve to improve fluency in reading.

  14. The Interdependence of Long- and Short-Term Components in Unmasked Repetition Priming: An Indication of Shared Resources.

    Directory of Open Access Journals (Sweden)

    Matt R Merema

    Full Text Available It has been suggested that unmasked repetition priming is composed of distinct long-and short-term priming components. The current study sought to clarify the relationship between these components by examining the relationship between them. A total of 60 people (45 females, 15 males participated in a computer-based lexical decision task designed to measure levels of short-term priming across different levels of long-term priming. The results revealed an interdependent relationship between the two components, whereby an increase in long-term priming prompted a decrease in short-term priming. Both long-term and short-term priming were accurately captured by a single power function over seven minutes post repetition, suggesting the two components may draw on the same resources. This interdependence between long- and short-term priming may serve to improve fluency in reading.

  15. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  16. AGILE, a tool for interactive lattice design

    CERN Document Server

    Bryant, P J

    2000-01-01

    AGILE is a program that works in the IBM-PC, MS-Windows environment and is dedicated to the interactive design of alternating-gradient lattices for synchrotrons and transfer lines. The program was originally intended as a teaching tool, but has been used mostly for professional design work and is subject to continuous development. It contains original algorithms for coupling, scattering and eddy currents, and some slightly unusual algorithms for off-axis orbits and space charge. There are also additional features such as engineering design aids, calculators for relativistic and synchrotron radiation parameters, expert routines for optimising slow extraction, fitting and matching, and the internal storage of constants for over 1000 stable and quasi-stable charged particles. The program is object-oriented and fully integrated into the Windows environment - it is not a shell. Apart from office work, AGILE is ideal for home use, design workshops and when travelling. It is particularly suited to practical problems...

  17. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    Science.gov (United States)

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  18. Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations

    Directory of Open Access Journals (Sweden)

    Soheyb Milles

    2017-11-01

    Full Text Available In a recent paper, Thomas and Nair have introduced the notions of intuitionistic fuzzy ideal and intuitionistic fuzzy filter on a lattice and some basic properties were proved. In this paper, we characterize these notions in terms of the lattice operations and in terms of their associated crisp sets. We introduce the notions of prime intuitionistic fuzzy ideal and filter as interesting kinds, and then we investigate their various characterizations and different properties.

  19. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  20. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Solbrig, Stefan

    2008-01-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  1. Novel Design of Recursive Differentiator Based on Lattice Wave Digital Filter

    Directory of Open Access Journals (Sweden)

    R. Barsainya

    2017-04-01

    Full Text Available In this paper, a novel design of third and fifth order differentiator based on lattice wave digital filter (LWDF, established on optimizing L_1-error approximation function using cuckoo search algorithm (CSA is proposed. We present a novel realization of minimum multiplier differentiator using LWD structure leading to requirement of optimizing only N coefficients for Nth order differentiator. The gamma coefficients of lattice wave digital differentiator (LWDD are computed by minimizing the L_1-norm fitness function leading to a flat response. The superiority of the proposed LWDD is evident by comparing it with other differentiators mentioned in the literature. The magnitude response of the designed LWDD is found to be of high accuracy with flat response in a wide frequency range. The simulation and statistical results validates that the designed minimum multiplier LWDD circumvents the existing one in terms of minimum absolute magnitude error, mean relative error (dB and efficient structural realization, thereby making the proposed LWDD a promising approach to digital differentiator design.

  2. Inherent secure communications using lattice based waveform design

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Matthew Owen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The wireless communications channel is innately insecure due to the broadcast nature of the electromagnetic medium. Many techniques have been developed and implemented in order to combat insecurities and ensure the privacy of transmitted messages. Traditional methods include encrypting the data via cryptographic methods, hiding the data in the noise floor as in wideband communications, or nulling the signal in the spatial direction of the adversary using array processing techniques. This work analyzes the design of signaling constellations, i.e. modulation formats, to combat eavesdroppers from correctly decoding transmitted messages. It has been shown that in certain channel models the ability of an adversary to decode the transmitted messages can be degraded by a clever signaling constellation based on lattice theory. This work attempts to optimize certain lattice parameters in order to maximize the security of the data transmission. These techniques are of interest because they are orthogonal to, and can be used in conjunction with, traditional security techniques to create a more secure communication channel.

  3. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...

  4. A Low-Energy Ring Lattice Design

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2002-01-01

    The PEP-N project at SLAC [1] consists of a Very Low-Energy small electron Ring (VLER) that will collide with the low-energy 3.1 GeV positron beam (LER) of PEP-II, producing center-of-mass energies between the 1.1 GeV and the J/ψ. The beams will collide head-on and will be separated in the detector magnetic field which is part of the Interaction Region [2]. The IP β functions were chosen such as to optimize both luminosity and beam-beam tune shifts, while keeping the LER tune shifts small. This paper describes the lattice design of the VLER for the ''baseline'' at 500 MeV

  5. Preliminary design considerations for the stage 1 PEP lattice

    International Nuclear Information System (INIS)

    Helm, R.H.; Lee, M.J.

    1974-07-01

    A general description of the proposed PEP e + e - storage ring is discussed in the paper. We discuss the lattice and its operating characteristics in more detail, show how the design luminosity operative regions may be met and outline the limits of the operative regions of the beam parameters in several modes of operation. 18 refs., 16 figs., 1 tab

  6. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    Science.gov (United States)

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  7. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  8. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  9. NREL-Prime Next-Generation Drivetrain Dynamometer Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Erdman, Bill [Cinch, Inc., Moraga, CA (United States); Blodgett, Douglas [DNV KEMA Renewables, Burlington, VT (United States); Halse, Christopher [Romax Technology, Boulder, CO (United States)

    2016-08-01

    Advances in wind turbine drivetrain technologies are necessary to improve reliability and reduce the cost of energy for land-based and offshore wind turbines. The NREL-Prime Next-Generation Drivetrain team developed a geared, medium-speed drivetrain that is lighter, more reliable and more efficient than existing designs. One of the objectives of Phase II of the project was to complete the detailed design, fabrication, and dynamometer testing of a 750 kilowatt (kW) drivetrain that includes the key gearbox innovations designed by Romax Technology and power converter innovations designed by DNV Kema Renewables. The purpose of this document is to summarize these tests completed in NREL's National Wind Technology Center 2.5 megawatt (MW) dynamometer.

  10. Design of boat powered photovoltaic systems

    International Nuclear Information System (INIS)

    Syafaruddin; Galla, D; Ajami, W.A.F.A.

    2014-01-01

    The solar energy has high potential applications in Indonesia since the country is located close to the equatorial region that makes the sun is almost bright along the day. In this paper, the boat power photovoltaic system is proposed. Such design may promote new innovations technically and economically in water transportation system since the country demography is almost 75% surrounded by water. The electricity energy is harvested from the sun through the PV panel then stored in the battery by solar charge control mechanism in order to rotate the prime mover of the boat by means the DC motor. The shaft of the DC motor is directly connected to the boat propeller and the speed motor is regulated by the pulse width modulation (PWM) technique generated from the AVR microcontroller ATmega16. The final design is obtained that for the boat with the total weight of 531.1758 kg, it may operate for 1.26 hours with the knot speed of 3.11 when 2 PV panels of 50 W, 2 DC motor of 0.3 kW and battery of 100 Ah capacity are used with the overall efficiency performance not less than 87.4%. (author)

  11. Study of a cogeneration system (power and cooling) operating with two distinct prime-movers; Estudo de um sistema de cogeracao (potencia eletrica e refrigeracao) operando com dois motores termicos distintos

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Yipsy Roque; Parise, Jose Alberto Reis [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Mecanica], e-mail: gipsyrb@mec.puc-rio.br, e-mail: parise@mec.puc-rio.br; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEM/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], e-mail: jvargas@demec.ufpr.br

    2006-07-01

    When dealing with complex thermal systems generating different energy products from a single fuel source (for example, as in the present work, electric and refrigeration power, with two gas-powered prime movers), one has to find the most energy efficient production scheme. To that end, each load demand (power and cooling), the efficiencies of each component, the cooling to power load ratio and the power distribution among the prime-movers, all have to be considered. This work presents the main equations for the energy balance of a cogeneration system with two primemovers (a gas turbine and an internal combustion engine), a waste heat driven absorption chiller and an auxiliary vapor compression chiller. The energy conservation equation was applied for each control volume comprising the system. Three possible cases were defined according to how cooling power demand and cooling power produced by the waste heat driven absorption cycle compared. As a result, characteristic performance curves were obtained for a typical application, allowing for the determination of maximum global efficiency values (represented by an energy conversion ratio) as a function of: the electric power to cooling power demand ratio, of the power generation distribution ratio among the two prime-movers, and of the part-load ratio operation of each prime mover. The resulting system of equations was solved by the software EES (Engineering Equation Solver{sup R}). (author)

  12. An isochronous lattice design for a 50 on 50 GeV muon collider

    International Nuclear Information System (INIS)

    Johnstone, C.; Drozhdin, A.; Mokhov, N.; Wan, W.; Garren, A.

    1998-01-01

    Using local chromatic correction techniques, a lattice for a 50 on 5-GeV muon collider has been developed which can serve as a broad-band (broad momentum acceptance) or a high-resolution (narrow momentum acceptance) Higgs factory. To reach design luminosities of 13 32 and 10 31 cm -2 s -1 , a short bunch length, minimal ring circumference and a β* of 4 cm and 13 cm must be realized in the broad-band and high-resolution machines, respectively. In the broad-band machine, local chromatic correction of the Interaction Region is required to provide adequate momentum acceptance. However, local chromatic correction conflicts with demands for extreme compactness and isochronicity, making the lattice design challenging

  13. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  14. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  15. Reexamining unconscious response priming: A liminal-prime paradigm.

    Science.gov (United States)

    Avneon, Maayan; Lamy, Dominique

    2018-03-01

    Research on the limits of unconscious processing typically relies on the subliminal-prime paradigm. However, this paradigm is limited in the issues it can address. Here, we examined the implications of using the liminal-prime paradigm, which allows comparing unconscious and conscious priming with constant stimulation. We adapted an iconic demonstration of unconscious response priming to the liminal-prime paradigm. On the one hand, temporal attention allocated to the prime and its relevance to the task increased the magnitude of response priming. On the other hand, the longer RTs associated with the dual task inherent to the paradigm resulted in response priming being underestimated, because unconscious priming effects were shorter-lived than conscious-priming effects. Nevertheless, when the impact of long RTs was alleviated by considering the fastest trials or by imposing a response deadline, conscious response priming remained considerably larger than unconscious response priming. These findings suggest that conscious perception strongly modulates response priming. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  17. Cybersecurity Vulnerability Analysis of the PLC PRIME Standard

    Directory of Open Access Journals (Sweden)

    Miguel Seijo Simó

    2017-01-01

    Full Text Available Security in critical infrastructures such as the power grid is of vital importance. The Smart Grid puts power grid classical security approach on the ropes, since it introduces cyberphysical systems where devices, communications, and information systems must be protected. PoweRline Intelligent Metering Evolution (PRIME is a Narrowband Power-Line Communications (NB-PLC protocol widely used in the last mile of Advanced Metering Infrastructure (AMI deployments, playing a key role in the Smart Grid. Therefore, this work aims to unveil the cybersecurity vulnerabilities present in PRIME standard, proposing solutions and validating and discussing the results obtained.

  18. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  19. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  20. Multi-targeted priming for genome-wide gene expression assays

    Directory of Open Access Journals (Sweden)

    Adomas Aleksandra B

    2010-08-01

    Full Text Available Abstract Background Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. Results We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Conclusions Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and

  1. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    Science.gov (United States)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  2. Evaluation of the use of color-set geometry during lattice physics constants generation for boiling water reactor simulation

    International Nuclear Information System (INIS)

    Evans, S.; Ivanov, K.

    2013-01-01

    Current methods for BWR nuclear design and analysis consist of using lattice physics neutron transport methods to generate the two-group homogenized cross-sections that are then used in a nodal diffusion theory code. The lattice transport solutions are performed for a single assembly with reflective boundary conditions, which is a practical approximation. A method is developed to account for assembly exposure distributions (environment) in the core within the lattice transport calculations with the use of color-sets (2x2) geometry. The loading pattern is examined and an appropriate number of characteristic color-set cells are selected for analysis. Treatment of the co-resident exposed fuel within this method is also presented. The calculation process was followed for a recent BWR cycle design with comparisons being performed on both a lattice and core-wide basis to evaluate the proposed method. The lattice based comparisons show noticeable differences in the pin power distribution predictions, which require further investigation to see how this translates into core performance calculations. The core-wide comparisons show minor differences and are generally in a good agreement, which is expected with this small perturbation. A slight improvement was noticed in the reduction of the power distribution uncertainty. However, given the additional amount of work and computer run time increase, further evaluation, especially of core pin power predictions, is needed to consider this method for production level design and safety analysis calculations. (authors)

  3. On techniques of ATR lattice computation

    International Nuclear Information System (INIS)

    1997-08-01

    Lattice computation is to compute the average nuclear constants of unit fuel lattice which are required for computing core nuclear characteristics such as core power distribution and reactivity characteristics. The main nuclear constants are infinite multiplying rate, neutron movement area, cross section for diffusion computation, local power distribution and isotope composition. As for the lattice computation code, WIMS-ATR is used, which is based on the WIMS-D code developed in U.K., and for the purpose of heightening the accuracy of analysis, which was improved by adding heavy water scattering cross section considering the temperature dependence by Honeck model. For the computation of the neutron absorption by control rods, LOIEL BLUE code is used. The extrapolation distance of neutron flux on control rod surfaces is computed by using THERMOS and DTF codes, and the lattice constants of adjoining lattices are computed by using the WIMS-ATR code. As for the WIMS-ATR code, the computation flow and nuclear data library, and as for the LOIEL BLUE code, the computation flow are explained. The local power distribution in fuel assemblies determined by the WIMS-ATR code was verified with the measured data, and the results are reported. (K.I.)

  4. Masked priming effect reflects evidence accumulated by the prime.

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2010-01-01

    In the same-different match task, masked priming is observed with the same responses but not different responses. Norris and Kinoshita's (2008) Bayesian reader account of masked priming explains this pattern based on the same principle as that explaining the absence of priming for nonwords in the lexical decision task. The pattern of priming follows from the way the model makes optimal decisions in the two tasks; priming does not depend on first activating the prime and then the target. An alternative explanation is in terms of a bias towards responding "same" that exactly counters the facilitatory effect of lexical access. The present study tested these two views by varying both the degree to which the prime predicts the response and the visibility of the prime. Unmasked primes produced effects expected from the view that priming is influenced by the degree to which the prime predicts the response. In contrast, with masked primes, the size of priming for the same response was completely unaffected by predictability. These results rule out response bias as an explanation of the absence of masked priming for different responses and, in turn, indicate that masked priming is not a consequence of automatic lexical access of the prime.

  5. Statistical hydrodynamics of lattice-gas automata

    OpenAIRE

    Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.

    1993-01-01

    We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...

  6. Designing lattice structures with maximal nearest-neighbor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  7. Uniting individual and collective concerns through design: Priming across the senses

    DEFF Research Database (Denmark)

    Cash, Philip; Holm-Hansen, Christopher; Olsen, Sebastian Borum

    2017-01-01

    that unite individual and collective concerns. Two studies are reported. In the first, abstract representations of the target behaviour are elicited and incorporated into subconscious priming stimuli for each of the major senses: sight, hearing, touch, and smell. These primes are then evaluated...

  8. Comparison of square and hexagonal fuel lattices for high conversion PWRs

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2011-01-01

    This paper reports on an investigation into fuel design choices of a PWR operating in a self sustainable Th- 233 U fuel cycle. Achieving such self-sustainable with respect to fissile material fuel cycle would practically eliminate concerns over nuclear fuel supply hundreds of years into the future. Moreover, utilization of light water reactor technology and its associated vast experience would allow faster deployment of such fuel cycle without immediate need for development of fast reactor technology, which tends to be more complex and costly. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. Furthermore, hexagonal lattice may allow more uniform leakage of neutrons from fissile to fertile regions and therefore more uniform neutron captures in thorium blanket. The calculations were carried out with Monte-Carlo based BGCore system, which includes neutronic, fuel depletion and thermo-hydraulic modules. The results were compared to those obtained from Serpent Monte-Carlo code and deterministic fuel assembly transport code BOXER. One of the major design challenges associated with the square seed-blanket concept is high power peaking due to the high concentration of fissile material in the seed region. In order to explore feasibility of the studied designs, the calculations were extended to include 3D fuel assembly analysis with thermal-hydraulic feedback. The coupled neutronic - thermal-hydraulic calculations were performed with BGCore code system. The analysis showed that both hexagonal and square seed-blanket fuel assembly designs have a potential of achieving net breeding. While no major neutronic advantages were observed for either fuel

  9. Prime Slaughter

    DEFF Research Database (Denmark)

    Valente, Andrea; Marchetti, Emanuela

    2011-01-01

    of primality and factorization into playful interactions, addressed to primary and early secondary school children. Taking into account individual needs expressed by children regarding play, during a participatory design processes aimed at enhancing learning in museums, Prime Slaughter allows for multiple...... forms of play and their integration. A simple working prototype has already been developed; it will be tested and re-designed through participatory workshops, involving a group of children in our target group....

  10. BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs

    Science.gov (United States)

    Williams, Logan; Kioupakis, Emmanouil

    2017-11-01

    InGaN-based visible light-emitting diodes (LEDs) find commercial applications for solid-state lighting and displays, but lattice mismatch limits the thickness of InGaN quantum wells that can be grown on GaN with high crystalline quality. Since narrower wells operate at a higher carrier density for a given current density, they increase the fraction of carriers lost to Auger recombination and lower the efficiency. The incorporation of boron, a smaller group-III element, into InGaN alloys is a promising method to eliminate the lattice mismatch and realize high-power, high-efficiency visible LEDs with thick active regions. In this work, we apply predictive calculations based on hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BInGaN alloys. Our results show that BInGaN alloys with a B:In ratio of 2:3 are better lattice matched to GaN compared to InGaN and, for indium fractions less than 0.2, nearly lattice matched. Deviations from Vegard's law appear as bowing of the in-plane lattice constant with respect to composition. Our thermodynamics calculations demonstrate that the solubility of boron is higher in InGaN than in pure GaN. Varying the Ga mole fraction while keeping the B:In ratio constant enables the adjustment of the (direct) gap in the 1.75-3.39 eV range, which covers the entire visible spectrum. Holes are strongly localized in non-bonded N 2p states caused by local bond planarization near boron atoms. Our results indicate that BInGaN alloys are promising for fabricating nitride heterostructures with thick active regions for high-power, high-efficiency LEDs.

  11. Report of the workshop on realistic SSC lattices

    International Nuclear Information System (INIS)

    1985-10-01

    A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  12. Lattice Designs in Standard and Simple Implicit Multi-linear Regression

    OpenAIRE

    Wooten, Rebecca D.

    2016-01-01

    Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...

  13. Behind the scenes of the PRIME intervention: designing a complex intervention to improve malaria care at public health centres in Uganda

    Directory of Open Access Journals (Sweden)

    Deborah D. DiLiberto

    2015-10-01

    Full Text Available Background: In Uganda, health system challenges limit access to good quality healthcare and contribute to slow progress on malaria control. We developed a complex intervention (PRIME, which was designed to improve quality of care for malaria at public health centres. Objective: Responding to calls for increased transparency, we describe the PRIME intervention's design process, rationale, and final content and reflect on the choices and challenges encountered during the design of this complex intervention. Design: To develop the intervention, we followed a multistep approach, including the following: 1 formative research to identify intervention target areas and objectives; 2 prioritization of intervention components; 3 review of relevant evidence; 4 development of intervention components; 5 piloting and refinement of workshop modules; and 6 consolidation of the PRIME intervention theories of change to articulate why and how the intervention was hypothesized to produce desired outcomes. We aimed to develop an intervention that was evidence-based, grounded in theory, and appropriate for the study context; could be evaluated within a randomized controlled trial; and had the potential to be scaled up sustainably. Results: The process of developing the PRIME intervention package was lengthy and dynamic. The final intervention package consisted of four components: 1 training in fever case management and use of rapid diagnostic tests for malaria (mRDTs; 2 workshops in health centre management; 3 workshops in patient-centred services; and 4 provision of mRDTs and antimalarials when stocks ran low. Conclusions: The slow and iterative process of intervention design contrasted with the continually shifting study context. We highlight the considerations and choices made at each design stage, discussing elements we included and why, as well as those that were ultimately excluded. Reflection on and reporting of ‘behind the scenes’ accounts of intervention

  14. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  15. Lattice design of 3 GeV synchrotron for JAERI-KEK joint project

    Energy Technology Data Exchange (ETDEWEB)

    Noda, F. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This paper summarizes the Lattice of 3 GeV proton synchrotron for JAERI-KEK joint project. This 3 GeV ring provides 3 GeV proton beam for neutron science, muon science, exotic nuclear science facility and 50 GeV ring. The output beam power of this ring is 1 MW with 25 Hz operation. This beam power is a few times higher than that of the existing accelerators. To achieve this goal, it is important to cure an uncontrolled beam loss. A power of uncontrolled beam loss must be smaller than 1 W/m for hands-on maintenance. This uncontrolled beam loss is caused by beam injection, space-charge force, extraction and some known or unknown instability. The precise painting system, adequate aperture of ring and extraction line, and secure collimation systems are essential issues of this 3 GeV ring. (author)

  16. Elastic lattice in an incommensurate background

    International Nuclear Information System (INIS)

    Dickman, R.; Chudnovsky, E.M.

    1995-01-01

    We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices

  17. Toward lattice fractional vector calculus

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2014-01-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)

  18. Toward lattice fractional vector calculus

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  19. The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars

    Directory of Open Access Journals (Sweden)

    Juan Tang

    2014-01-01

    Full Text Available Purpose. The purpose of this paper is to study a class of the natural languages called the lattice-valued phrase structure languages, which can be generated by the lattice-valued type 0 grammars and recognized by the lattice-valued Turing machines. Design/Methodology/Approach. From the characteristic of natural language, this paper puts forward a new concept of the l-valued Turing machine. It can be used to characterize recognition, natural language processing, and dynamic characteristics. Findings. The mechanisms of both the generation of grammars for the lattice-valued type 0 grammar and the dynamic transformation of the lattice-valued Turing machines were given. Originality/Value. This paper gives a new approach to study a class of natural languages by using lattice-valued logic theory.

  20. Psychotherapy augmentation through preconscious priming

    Directory of Open Access Journals (Sweden)

    Francois eBorgeat

    2013-03-01

    Full Text Available Objective: To test the hypothesis that repeated preconscious (masked priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy.Methods: Twenty social phobic patients (13 women completed a 36 weeks study beginning by 12 weeks of group behavioural therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming condition involved listening twice daily with a passive attitude to a recording of individualized formulations of appropriate cognitions and attitudes masked by music. The Control condition involved listening to an indistinguishable recording where the formulations had been replaced by random numbers. Changes in social cognitions were measured by the Social Interaction Self Statements Test (SISST.Results: Patients improved following therapy. The Priming procedure was associated with increased positive cognitions and decreased negative cognitions on the SISST while the Control procedure was not. The Priming procedure induced more cognitive change when applied immediately after the group therapy. Conclusion: An effect of priming was observed on social phobia related cognitions in the expected direction. This self administered addition to a therapy could be seen as an augmentation strategy.

  1. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  2. Conflict processing in the anterior cingulate cortex constrains response priming.

    Science.gov (United States)

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  3. Global analysis of all linear stable settings of a storage ring lattice

    Directory of Open Access Journals (Sweden)

    David S Robin

    2008-02-01

    Full Text Available The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straightforward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS (GLobal scan of All Stable Settings that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices—the triple bend achromat of the Advanced Light Source and the double bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some cases previously unknown stability regions.

  4. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  5. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  6. Transposed-Letter Priming Effects with Masked Subset Primes: A Re-Examination of the "Relative Position Priming Constraint"

    Science.gov (United States)

    Stinchcombe, Eric J.; Lupker, Stephen J.; Davis, Colin J.

    2012-01-01

    Three experiments are reported investigating the role of letter order in orthographic subset priming (e.g., "grdn"-GARDEN) using both the conventional masked priming technique as well as the sandwich priming technique in a lexical decision task. In all three experiments, subset primes produced priming with the effect being considerably…

  7. Power-Efficient Design Challenges

    Science.gov (United States)

    Pangrle, Barry

    Design teams find themselves facing decreasing power budgets while simultaneously the products that they design continue to require the integration of increasingly complex levels of functionality. The market place (driven by consumer preferences) and new regulations and guidelines on energy efficiency and environmental impact are the key drivers. This in turn has generated new approaches in all IC and electronic system design domains from the architecture to the physical layout of ICs, to design-for-test, as well as for design verification to insure that the design implementation actually meets the intended requirements and specifications. This chapter covers key aspects of these forces from a technological and market perspective that are driving designers to produce more energy-efficient products. Observations by significant industry leaders from AMD, ARM, IBM, Intel, nVidia and TSMC are cited, and the emerging techniques and technologies used to address these issues now and into the future are explored. Topic areas include: System level: Architectural analysis and transaction-level modeling. How architectural decisions can dramatically reduce the design power and the importance of modeling hardware and software together. IC (Chip) level: The impact of creating on-chip power domains for selectively turning power off and/or multi-voltage operation on: (1) chip verification, (2) multi-corner multi-mode analysis during placement and routing of logic cells and (3) changes to design-for-test, all in order to accommodate for power-gating and multi-voltage control logic, retention registers, isolation cells and level shifters needed to implement these power saving techniques. Process level: The disappearing impact of body-bias techniques on leakage control and why new approaches like High-K Metal Gate (HKMG) technology help but don't eliminate power issues. Power-efficient design is impacting the way chip designers work today, and this chapter focuses on where the most

  8. Design of the muon collider lattice: Present status

    International Nuclear Information System (INIS)

    Garren, A.; Courant, E.; Gallardo, J.

    1996-05-01

    The last component of a muon collider facility, as presently envisioned, is a colliding-beam storage ring. Design studies on various problems for this ring have been in progress over the past year. In this paper we discuss the current status of the design. The projected muon currents require very low beta values at the IP, β* = 3 mm, in order to achieve the design luminosity of L = 10 35 cm -2 s -1 . The beta values in the final-focus quadrupoles are roughly 400 km. To cancel the corresponding chromaticities, sextupole schemes for local correction have been included in the optics of the experimental insertion. The hour-glass effect constraints the bunch length to be comparable too. To obtain such short bunches with reasonable rf voltage requires a very small value of the momentum compaction a, which can be obtained by using flexible momentum compaction (FMC) modules in the arcs. A preliminary design of a complete collider ring has now been made; it uses an experimental insertion and arc modules as well as a utility insertion. The layout of this ring is shown schematically, and its parameters are summarized. Though some engineering features are unrealistic, and the beam performance needs some improvement, we believe that this study can serve as the basis for a workable collider design. The remaining sections of the paper will describe the lattice, show beam behaviour, and discuss future design studies

  9. DNA polymerase preference determines PCR priming efficiency.

    Science.gov (United States)

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  10. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  11. Instant PrimeFaces starter

    CERN Document Server

    Hlavats, Ian

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Instant Primefaces Starter is a fast-paced, introductory guide designed to give you all the information you need to start using Primfaces, instantly.Instant PrimeFaces Starter is great for developers looking to get started quickly with PrimeFaces. It's assumed that you have some JSF experience already, as well as familiarity with other Java technologies such as CDI and JPA and an understanding of MVC principles, object-relational mapping (ORM),

  12. Numerically-based ducted propeller design using vortex lattice lifting line theory

    OpenAIRE

    Stubblefield, John M.

    2008-01-01

    CIVINS (Civilian Institutions) Thesis document This thesis used vortex lattice lifting line theory to model an axisymmetrical-ducted propeller with no gap between the duct and the propeller. The theory required to model the duct and its interaction with the propeller were discussed and implemented in Open-source Propeller Design and Analysis Program (OpenProp). Two routines for determining the optimum circulation distribution were considered, and a method based on calculus of variation...

  13. END FIELD EFFECTS IN BEND ONLY COOLING LATTICES

    International Nuclear Information System (INIS)

    BEERG, J.S.; KIRK, H.; GARREN, A.

    2003-01-01

    Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them

  14. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjoy Kumar, E-mail: sanjoydasju@gmail.com; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit{sup ®}RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8 h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2 ± 1.25 μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~ 90%), minimum loss (~ 10%) and prolonged drug release for 8 h (91.25%) which may be considered as favourable criteria of controlled release dosage form. - Graphical abstract: Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design. - Highlights: • Simplex lattice design was used to optimize ketoprofen-loaded microspheres. • Polymeric blend (Ethylcellulose and Eudragit® RL 100) was used. • Microspheres were prepared by oil-in-oil emulsion solvent evaporation method. • Optimized formulation depicted favourable

  15. Conscious, but not unconscious, logo priming of brands and related words.

    Science.gov (United States)

    Brintazzoli, Gigliola; Soetens, Eric; Deroost, Natacha; Van den Bussche, Eva

    2012-06-01

    This study assessed whether real-life stimulus material can elicit conscious and unconscious priming. A typical masked priming paradigm was used, with brand logo primes. We used a rigorous method to assess participants' awareness of the subliminal information. Our results show that shortly presented and masked brand logos (e.g., logo of McDonald's) have the power to prime their brand names (e.g., "McDonald's") and, remarkably, words associated to the brand (e.g., "hamburger"). However, this only occurred when the logos could be categorized clearly above the consciousness threshold. Once the primes were presented close to the consciousness threshold, no subliminal influences on behavior were observed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Lattice gravity near the continuum limit

    International Nuclear Information System (INIS)

    Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

    1984-01-01

    We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

  17. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  18. Essential PTC Mathcad Prime 3.0 a guide for new and current users

    CERN Document Server

    Maxfield, Brent

    2013-01-01

    Learn how to use PTC Mathcad Prime 3.0, one of the world's leading tools for technical computing, in the context of engineering, science, and math applications. Quickly harness the power of Mathcad to solve simple and complex problems. Essential PTC Mathcad is perfect for college students and first-time users as well as for experienced Mathcad users who are moving to Prime 3.0. The book introduces the most powerful functions and features of the new Prime 3.0 software and teaches how to apply them to create comprehensive calculations for any quantitative subject. Examples from several fields

  19. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    Science.gov (United States)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  20. Heavy water critical experiments on plutonium lattice

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Shiba, Kiminori

    1975-06-01

    This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)

  1. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  2. What Makes a Prime Minister Great?: A Leadership Trait Analysis of the effectiveness of British Prime Ministers from 1902 to 2004

    Directory of Open Access Journals (Sweden)

    Samuel R. Rohrer

    2014-10-01

    Full Text Available What role do the Leadership Trait Analysis (LTA criteria projected by a British Prime Minister (PM have on the perceived effectiveness of their time in office? In this paper, the analysis of 20th-century British PMs utilized automated at-a-distance content analysis and the LTA coding system to determine the conceptual complexity, ability to control events, and need for power scores projected by PMs. The impact these traits had on the perceived effectiveness of the totality of the PMs’ tenure in office, as measured by the 2004 MORI/University of Leeds survey, was then examined via one-tailed ordinary least squares regression. This project provides evidence that British PMs who project traits associated with the LTA measure regarding strong power motivation are significantly viewed as more effective while in office. These findings provide more than a novel historical profile of British PMs. The relationship between effective leadership and LTA traits could be utilized by political campaigns, especially given the introduction of prime ministerial debates, to portray a prime ministerial candidate as more politically effective than his/her competition.

  3. Priming Effect Induced by the Use of Different Fertilizers on Soil Functional Diversity

    Directory of Open Access Journals (Sweden)

    Bogdan Mihai ONICA

    2017-11-01

    Full Text Available Agricultural practices, such as the use of fertilizers, can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamics related to different factors can be a powerful tool for understanding basic and applied ecological contexts. The main objective of this paper was to assess the changes of carbon turnover rate and the microbial metabolic activity, when different types of fertilizers were used, process called priming effect. A microcosm experiment was designed and performed under controlled temperature and humidity and the soil samples were analyzed using the MicroResp technique. Results show that the integration in soil of different carbon sources, such as green manure, can lead to a positive priming effect and integration of mineral fertilizers can lead to negative priming effect. The carbon sources with the highest respiratory activity were α-ketoglutaric acid, malic acid, oxalic acid, citric acid, while the lowest respiratory activity was obtained in case of arginine.

  4. The Prime Numbers Hidden Symmetric Structure and its Relation to the Twin Prime Infinitude and an Improved Prime Number Theorem

    CERN Document Server

    Mikoss, I

    2006-01-01

    Due to the sieving process represented by a Secondary Sieving Map; during the generation of the prime numbers, geometric structures with definite symmetries are formed which become evident through their geometrical representations. The study of these structures allows the development of a constructive prime generating formula. This defines a mean prime density yielding a second order recursive and discrete prime producing formula and a second order differential equation whose solutions produce an improved Prime Number Theorem. Applying these results to twin prime pairs is possible to generate a Twin Prime Number Theorem and important conclusions about the infinitude of the twin primes.

  5. Design of a power amplifier for the LAMPF proton storage ring transverse damper system

    International Nuclear Information System (INIS)

    Lunsford, J.S.

    1981-01-01

    A power amplifier has been designed to drive the 50-Ω stripline deflection structures in the transverse active damper of the Los Alamos 800-MeV Proton Storage Ring (PSR). The unit will provide 600-V peak-to-peak with a dc-to-100-MHz bandwidth. Other important characteristics include < 40-ns delay time, 50-dB voltage gain, and 4-ns risetime with < 5% overshoot and ringing. Because of the current-drive properties of the amplifier, two amplifiers could be combined to provide over 1000-V peak-to-peak into 50 Ω, with very little bandwidth degradation. Components in the power amplifier that represent new designs are a 20-tube distributed-amplifier output stage; a driver stage, using VMOS FET and bipolar transistors; a high-voltage probe, with good dc stability and 150-MHz bandwidth; a transient suppressor circuit, using PIN diodes to protect the transistorized drivers from tube arcing; a nonlinear amplifier to compensate for the nonlinear characteristics of the distributed amplifier; and a first-fail indicator circuit to aid in locating the prime causes of equipment failures

  6. SSC lattice database and graphical interface

    International Nuclear Information System (INIS)

    Trahern, C.G.; Zhou, J.

    1991-11-01

    When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser

  7. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  8. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Directory of Open Access Journals (Sweden)

    Haolong Shangguan

    2018-03-01

    Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  9. The mechanical design for the WEAVE prime focus corrector system

    Science.gov (United States)

    Abrams, Don Carlos; Dee, Kevin; Agócs, Tibor; Lhome, Emilie; Peñate, José; Jaskó, Attila; Bányai, Evelin; Burgal, José A.; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Trager, S. C.; Balcells, Marc

    2014-08-01

    WEAVE is the next-generation, wide-field, optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. The WHT will undergo a significant adaptation to accommodate this facility. A two- degree Prime Focus Corrector (PFC), that includes an Atmospheric Dispersion Compensator, is being planned and is currently in its final design phase. To compensate for the effects of temperature-induced image degradation, the entire PFC system will be translated along the telescope optical axis. The optical system comprises six lenses, the largest of which will have a diameter of 1.1m. Now that the optical elements are in production, the designs for the lens cells and the mounting arrangements are being analysed to ensure that the image quality of the complete system is better than 1.0 arcsec (80% encircled energy diameter) over the full field of view. The new PFC system is designed to be routinely interchanged with the existing top-end ring. This will maximise the versatility of the WHT and allow the two top-end systems to be interchanged as dictated by the scientific needs of the astronomers that will use WEAVE and other instruments on the telescope. This manuscript describes the work that has been carried out in developing the designs for the mechanical subsystems and the plans for mounting the lenses to attain an optical performance that is commensurate with the requirements derived from planning the WEAVE surveys.

  10. Fractional Quantum Field Theory: From Lattice to Continuum

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2014-01-01

    Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

  11. Relationship between self-priming and hydraulic behavior in Venturi Scrubber

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    As revealed by Fukushima Daiichi nuclear disaster, countermeasures against severe accident in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting a containment and suppressing the diffusion of radioactive materials, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi Scrubbers System is used to realize filtered venting without any power supply (Lindau, 1988) (Rust, et al., 1995). The system operates with any power supply and high pressure gas filled in the containment. This system is able to define to be composed of Venturi Scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through a submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer parts of a throat part of the VS. This type of the VS is called self-priming ones. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. In this study, to understand the VS operation characteristics for the filtered venting, we discussed the mechanisms of the self-priming phenomena and the hydraulic behavior in the VS. In this paper, we conducted a visualized observation of the hydraulic behavior in the VS and measured liquid flow rate of the self-priming. As a result, it is shown that there is the possibility that the VS decontamination performance falls low level with no self-priming. (author)

  12. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  13. Innovations in lattice QCD algorithms

    International Nuclear Information System (INIS)

    Orginos, Konstantinos

    2006-01-01

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today

  14. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  15. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  16. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem.

    Science.gov (United States)

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2013-06-01

    A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold. In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%. A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters

  17. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  18. Italy's Prime Minister visits CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 7 July 2015, the Prime Minister of the Italian Republic, Matteo Renzi, visited CERN. He was accompanied by a delegation that included Italy's Minister for Education, University and Research, Stefania Giannini.   From left to right: Fernando Ferroni, President of the Istituto Nazionale di Fisica Nucleare (INFN); Sergio Bertolucci, CERN Director for Research and Scientific Computing; Stefania Giannini, Italy's Minister of Education, University and Research; Matteo Renzi, Prime Minister of the Italian Republic; Fabiola Gianotti, CERN Director-General Designate; Rolf Heuer, CERN Director-General.   The Prime Minister was welcomed by members of the CERN Management together with former CERN Director-General and Senator for Life of the Italian Republic, Carlo Rubbia. After a brief general introduction to CERN’s activities by Rolf Heuer, the Italian delegation visited LHC Point 1. After a tour of the ATLAS control room, they donned helmets to visit th...

  19. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

    OpenAIRE

    Kühn, J.

    2011-01-01

    This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.

  20. IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments

    International Nuclear Information System (INIS)

    2003-01-01

    plutonium utilisation in commercial reactors. A fourth report concerns Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel. The fifth report concerns critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins. The sixth report entitled 'Physics verification program', covers principally a series of experiments to measure the effect of lattice heterogeneities. The seventh report concerns Development and Demonstration of an Advanced Extended-Burnup Fuel- Assembly Design Incorporating Urania-Gadolinia. The eighth report concerns 'Urania-Gadolinia: Nuclear Model Development and Critical Experiment Benchmark'. The purpose was development and verification within an extended-burnup program for pressurised water reactors of advanced fuel assembly design. The ninth report concerns the Characterization and Irradiation Program: Extended-Burnup Gadolinia Lead Test Assembly (Mark GdB). The goal of the program was to extend the burnup of pressurized water reactor fuel assemblies to 50,000 MWd/mtU batch average burnup. The tenth report concerns the Hot Cell Examination of Gadolinia Lead Test Assembly Rods After One Cycle of Irradiation as described in the eighth and ninth report. The eleventh report covering April 1986 through March 1987, combines the progress report for the program entitled Development of an Advanced Extended Burnup Fuel Assembly Design Incorporating Urania-Gadolinia, and the final progress report for the program entitled Qualification of the B and W Mark B Fuel Assembly for High Burnup. The twelfth report describes five lead test assemblies designed, manufactured, characterized, and inserted for irradiation in Oconee Unit 1 cycle 8

  1. CORE DESIGNS OF ABWR FOR PROPOSED OF THE FIRST NUCLEAR POWER PLANT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2015-04-01

    Full Text Available Indonesia as an archipelago has been experiencing high growth industry and energy demand due to high population growth, dynamic economic activities. The total population is around 230 million people and 75 % to the total population is living in Java. The introduction of Nuclear Power Plant on Java Bali electricity grid will be possible in 2022 for 2 GWe, using proven technology reactor like ABWR or others light water reactor with nominal power 1000 MWe. In this case, the rated thermal power for the equilibrium cycles is 3926 MWt, the cycle length is 18 month and overall capacity factor is 87 %. The designs were performed for an 872-fuel bundles ABWR core using GE-11 fuel type in an 9×9 fuel rod arrays with 2 Large Central Water Rods (LCWR. The calculations were divided into two steps; the first is to generate bundle library and the other is to make the thermal and reactivity limits satisfied for the core designs. Toshiba General Electric Bundle lattice Analysis (TGBLA and PANACEA computer codes were used as designs tools. TGBLA is a General Electric proprietary computer code which is used to generate bundle lattice library for fuel designs. PANACEA is General Electric proprietary computer code which is used as thermal hydraulic and neutronic coupled BWR core simulator. This result of core designs describes reactivity and thermal margins i.e.; Maximum Linear Heat Generation rate (MLHGR is lower than 14.4 kW/ft, Minimum Critical Power Ratio (MCPR is upper than 1.25, Hot Excess Reactivity (HOTXS is upper than 1 %Dk at BOC and 0.8 %Dk at 200 MWD/ST and Cold Shutdown Margin Reactivity (CSDM is upper than 1 %Dk. It is concluded that the equilibrium core design using GE-11 fuel bundle type satisfies the core design objectives for the proposed of the firs Indonesia ABWR Nuclear Power Plant. Keywords: The first NPP in Indonesia, ABWR-1000 MWe, and core designs.   Indonesia adalah sebagai negara kepulauan yang laju pertumbuhan industri, energi, penduduk

  2. Precision probes of a leptophobic Z{sup Prime} boson

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Matthew R., E-mail: mbuckley@fnal.gov [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-06-06

    Extensions of the Standard Model that contain leptophobic Z{sup Prime} gauge bosons are theoretically interesting but difficult to probe directly in high-energy hadron colliders. However, precision measurements of Standard Model neutral current processes can provide powerful indirect tests. We demonstrate that parity-violating deep inelastic scattering of polarized electrons off of deuterium offer a unique probe leptophobic Z{sup Prime} bosons with axial quark couplings and masses above 100 GeV. In addition to covering a wide range of previously uncharted parameter space, planned measurements of the deep inelastic parity-violating eD asymmetry would be capable of testing leptophobic Z{sup Prime} scenarios proposed to explain the CDF W plus dijet anomaly.

  3. Plutonium fuel lattice neutron behavior in inert matrix

    International Nuclear Information System (INIS)

    Hernandez L, H.; Lucatero, M. A.

    2010-10-01

    In several countries is had been researching the possibility of using plutonium, as weapon degree as reactor degree, as fuel material in commercial reactors to generate electricity. In special a great development has been in Pressure Water Reactors. However, in Mexico the reactors are Boiling Water Reactors type, reason for which the necessity to considers feasibility to use this fuel type in the reactors of nuclear power plant of Laguna Verde. For this propose a comparison of fuel lattice that compose a fuel assembly is made. The fuel assembly will propose to be used whit in the reactor present different inert matrix, as well as burnable poison. The material that compose the inert matrices used are cerium and zirconia (CeO 2 and ZrO 2 ) and as burnable poisons have gadolinium and erbium (Gd 2 O 4 and ErO 2 ). As far as the hydraulic design used is a cell 10 X 10 with two water channels. The lattice calculations are made with the Helios code a library with 35 energy groups, having determined the pin power factors, the infinite multiplication factor and the neutron flux profiles. (Author)

  4. A new lattice for PEP

    International Nuclear Information System (INIS)

    Rees, J.; Wiedemann, H.

    1976-01-01

    A new low-beta configuration has been proposed for PEP which has a reduced β/sub y/* and is capable of delivering design luminosity with lower circulating beam currents that those required in the standard configuration described in the Conceptual Design Report of February, 1976. A feasibility study has been carried out and it is reported in PTM-65, September 8, 1976, by Lee, Morton and Wiedemann. The beam-stay-clear region is specified in PTM-66, September 3, 1976 by H. Wiedemann. The principal advantages of the new lattice are that the lower beam currents lead to lower higher-order-mode power and permit reduction of the total rf power required which in turn reduces both capital cost and operating cost. Its disadvantages stem primarily from the relatively high maximum beta values which occur in the interaction-region quadrupoles. These produce high chromaticities which require a generally stronger sextupole system for their compensation. The advantages outweigh the disadvantages and the new 11-cm-beta configuration has been adopted as the design configuration for energies of 15-GeV and lower. In the remainder of this report we shall discuss the implications of this new configuration for the various systems of PEP. 1 fig., 3 tabs

  5. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  6. Group theory and lattice gauge fields

    International Nuclear Information System (INIS)

    Creutz, M.

    1988-09-01

    Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs

  7. Vortex lattice modelling of winglets on wind turbine blades. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2007-08-15

    The power production of wind turbines can be increased by the use of winglets without increasing the swept area. This makes them suitable for sites with restrictions in rotor diameter and in wind farms. The present project aims at understanding how winglets influences the flow and the aerodynamic forces on wind turbine blades. A free wake vortex lattice code and a fast design algorithm for a horizontal axis wind turbine under steady conditions has been developed. 2 winglet designs are treated in detail. (au)

  8. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  9. HANJUNG`s overseas marketing for power industry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, B.K. [Korea Heavy Industries and Construction Co., Ltd., Hanjung (Korea, Democratic People`s Republic of)

    1994-12-31

    The Korean government has a strong policy for developing local industries for producing power plant facilities. Korea Heavy Industries and Construction Co. Ltd. (HANJUNG) is a prime contractor for the design, construction, and installation of power plant facilities. The following topics are discussed: history of the electric power in Korea, the fabrication and supply of power plants in Korea, changing factors of the power plant business around the world, HANJUNG`s overseas marketing strategy, and Korea-US cooperation in third world countries.

  10. An Active Lattice Model in a Bayesian Framework

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    1996-01-01

    A Markov Random Field is used as a structural model of a deformable rectangular lattice. When used as a template prior in a Bayesian framework this model is powerful for making inferences about lattice structures in images. The model assigns maximum probability to the perfect regular lattice...... by penalizing deviations in alignment and lattice node distance. The Markov random field represents prior knowledge about the lattice structure, and through an observation model that incorporates the visual appearance of the nodes, we can simulate realizations from the posterior distribution. A maximum...... a posteriori (MAP) estimate, found by simulated annealing, is used as the reconstructed lattice. The model was developed as a central part of an algorithm for automatic analylsis of genetic experiments, positioned in a lattice structure by a robot. The algorithm has been successfully applied to many images...

  11. Six-Dimensional Modeling of Coherent Bunch Instabilities and Related Feedback Systems using Power-Series Maps for the Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, D.

    2003-07-07

    The authors have developed 6-dimensional phase-space code that tracks macroparticles for the study of coherent bunch instabilities and related feedback systems. The model is based on power-series maps to represent the lattice, and allows for straightforward inclusion of effects such as amplitude dependent tune shift, chromaticity, synchrotron oscillations, and synchrotron radiation. It simulates long range wake fields such as resistive-wall effects as well as the higher order modes in cavities. The model has served to study the dynamics relevant to the transverse feedback system currently being commissioned for the Advanced Light Source (ALS). Current work integrates earlier versions into a modular system that includes models for transverse and longitudinal feedback systems. It is designed to provide a modular approach to the dynamics and diagnostics, allowing a user to modify the model of a storage ring at run-time without recompilation.

  12. Introduction to lattice gauge theory

    International Nuclear Information System (INIS)

    Gupta, R.

    1987-01-01

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs

  13. Smelly primes – when olfactory primes do or do not work

    Directory of Open Access Journals (Sweden)

    Monique A Smeets

    2014-02-01

    Full Text Available In applied olfactory cognition the effects that olfactory stimulation can have on (human behavior are investigated. To enable an efficient application of olfactory stimuli a model of how they may lead to a change in behavior is proposed. To this end we use the concept of olfactory priming. Olfactory priming may prompt a special view on priming as the olfactory sense has some unique properties which make odors special types of primes. Examples of such properties are the ability of odors to influence our behavior outside of awareness, to lead to strong affective evaluations, to evoke specific memories, and to associate easily and quickly to other environmental stimuli. Opportunities and limitations for using odors as primes are related to these properties, and alternative explanations for reported findings are offered. Implications for olfactory semantic, construal, behavior and goal priming are given based on a brief overview of the priming literature from social psychology and from olfactory perception science. We end by formulating recommendations and ideas for a future research agenda and applications for olfactory priming.

  14. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  15. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    Science.gov (United States)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  16. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  17. Quantum Electric Dipole Lattice - Water Molecules Confined to Nanocavities in Beryl

    Science.gov (United States)

    Dressel, Martin; Zhukova, Elena S.; Thomas, Victor G.; Gorshunov, Boris P.

    2018-02-01

    Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

  18. Convolution equations on lattices: periodic solutions with values in a prime characteristic field

    OpenAIRE

    Zaidenberg, Mikhail

    2006-01-01

    These notes are inspired by the theory of cellular automata. A linear cellular automaton on a lattice of finite rank or on a toric grid is a discrete dinamical system generated by a convolution operator with kernel concentrated in the nearest neighborhood of the origin. In the present paper we deal with general convolution operators. We propose an approach via harmonic analysis which works over a field of positive characteristic. It occurs that a standard spectral problem for a convolution op...

  19. Diphasic flow downstream of circulation-water condenser during priming

    International Nuclear Information System (INIS)

    Ibler, B.; Sabaton, M.; Canavelis, R.

    1982-01-01

    The experimental study presented here describes the experiments for visualizing diphasic flow carried out on a 1/10 model of a circulation-water condenser for a 1,300-MW nuclear power unit. The essential object of the experiments was to validate the layout for the tubing proposed by the Design Office, from the point of view of its incidence on the stability of the flows and the mechanical solidity of the structures during the relatively anarchical phase of automatic priming of the condenser. The observations made have rendered it possible firstly to analyse the pattern of flows in greater detail and secondly to conclude that a simplified and cheaper layout of pipes is acceptable without great risk [fr

  20. Affective Priming in Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Joelle eLeMoult

    2012-10-01

    Full Text Available Research on cognitive biases in depression has provided considerable evidence for the impact of emotion on cognition. Individuals with depression tend to preferentially process mood-congruent material and to show deficits in the processing of positive material leading to biases in attention, memory, and judgments. More research is needed, however, to fully understand which cognitive processes are affected. The current study further examines the impact of emotion on cognition using a priming design with facial expressions of emotion. Specifically, this study tested whether the presentation of facial expressions of emotion affects subsequent processing of affective material in participants with major depressive disorder (MDD and healthy controls (CTL. Facial expressions displaying happy, sad, angry, disgusted, or neutral expressions were presented as primes for 500ms, and participants’ speed to identify a subsequent target’s emotional expression was assessed. All participants displayed greater interference from emotional versus neutral primes, marked by slower response times to judge the emotion of the target face when it was preceded by an emotional prime. Importantly, the CTL group showed the strongest interference when happy emotional expressions served as primes whereas the MDD group failed to show this bias. These results add to a growing literature that shows that depression is associated with difficulties in the processing of positive material.

  1. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  2. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  3. Note on the power divergence in lattice calculations of ΔI=1/2 K→ππ amplitudes at MK=Mπ

    International Nuclear Information System (INIS)

    Golterman, Maarten; Lin, C.-J. David; Pallante, Elisabetta

    2004-01-01

    In this Brief Report, we clarify a point concerning the power divergence in lattice calculations of ΔI=1/2 K→ππ decay amplitudes. There have been worries that this divergence might show up in the Minkowski amplitudes at M K =M π with all the mesons at rest. Here we demonstrate, via an explicit calculation in leading-order chiral perturbation theory, that the power divergence is absent at the above kinematic point, as predicted by CPS symmetry

  4. Prime Time Power: Women Producers, Writers and Directors on TV.

    Science.gov (United States)

    Steenland, Sally

    This report analyzes the number of women working in the following six decision making jobs in prime time television: (1) executive producer; (2) supervising producer; (3) producer; (4) co-producer; (5) writer; and (6) director. The women who hold these positions are able to influence the portrayal of women on television as well as to improve the…

  5. Machines for lattice gauge theory

    International Nuclear Information System (INIS)

    Mackenzie, P.B.

    1989-05-01

    The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig

  6. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  7. A physical review on power system reliability factors

    International Nuclear Information System (INIS)

    Navid, Taghizadegan; Ahmad Reza, Zentabchi; Mohammad Ali, Tavakoli; Nader, Samsunchi; Mohammad Ali, Tavakoli

    2005-01-01

    Full text : Planning and design engineers and management must necessarily take into consideration the funds available, the requirements of regulatory agencies and other restrictions that may be imposed, as well as availability of equipment and supplies. A well-designed electrical power system strikes a reasonable between reliability and cost. A prime responsibility of power system operators is to operate their systems in such a way that will provide the maximum reliability of service possible with the facilities under their control

  8. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  9. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  10. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  11. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  12. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  13. IAEA Delivers Report on Nuclear Power Development to Belarus Deputy Prime Minister

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency today delivered the final report from an IAEA Integrated Nuclear Infrastructure Review (INIR) mission to Belarus. The report concludes that Belarus has made important progress in its development of nuclear infrastructure for a nuclear power programme and that Belarus is on its way to being well-prepared with its infrastructure to support the construction of a nuclear power plant. The report makes 16 recommendations and 22 specific recommendations to assist the national authorities in preparing the infrastructure necessary for the project. ''Belarus has already implemented some of the recommendations that we shared with them in June, and the Government plans to implement all the remaining ones,'' IAEA Deputy Director General Alexander Bychkov said after delivering the document to Belarusian Deputy Prime Minister Anatoly Tozik. ''This shows that the country is taking the report seriously.'' The main recommendations in the report include to revise Belarusian nuclear legislation to adequately address issues such as radioactive waste and spent fuel management, review the enforcement process, and norms relevant to civil liability for nuclear damage; to strengthen the regulatory body and the regulatory framework for licensing; and to develop comprehensive management systems for the nuclear project. Additionally, specific suggestions were made about its infrastructure development activities based on guidance contained in the publication Milestones in the Development of a National Infrastructure for Nuclear Power. ''The report acknowledges Belarus' strong expertise in radiation protection and environmental monitoring and recognizes that good coordination in the development of Belarus' nuclear power programme is beneficial,'' Bychkov said. Belarus began considering nuclear power in the 1980s and recently renewed its efforts. The Concept of Energy Security of the Republic of Belarus, promulgated in September 2007, called for

  14. The mechanical design for the WEAVE prime focus corrector system

    NARCIS (Netherlands)

    Abrams, Don Carlos; Dee, Kevin; Agócs, Tibor; Lhome, Emilie; Peñate, José; Jaskó, Attila; Bányai, Evelin; Burgal, José A.; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Trager, S. C.; Balcells, Marc

    WEAVE is the next-generation, wide-field, optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. The WHT will undergo a significant adaptation to accommodate this facility. A two- degree Prime Focus Corrector (PFC), that includes an Atmospheric

  15. Designed defects in 2D antidot lattices for quantum information processing

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger

    2008-01-01

    We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices defined in the two-dimensional electron gas (2DEG) at a semiconductor heterostructure. Calculations of the band structure of a periodic antidot lattice are presented...

  16. Prime tight frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Miller, Christopher; Okoudjou, Kasso A.

    2014-01-01

    to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.......We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization...

  17. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus

    2015-01-01

    Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740

  18. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    Full Text Available Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area. Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.

  19. Lattice worldline representation of correlators in a background field

    International Nuclear Information System (INIS)

    Epelbaum, Thomas; Gelis, François; Wu, Bin

    2015-01-01

    We use a discrete worldline representation in order to study the continuum limit of the one-loop expectation value of dimension two and four local operators in a background field. We illustrate this technique in the case of a scalar field coupled to a non-Abelian background gauge field. The first two coefficients of the expansion in powers of the lattice spacing can be expressed as sums over random walks on a d-dimensional cubic lattice. Using combinatorial identities for the distribution of the areas of closed random walks on a lattice, these coefficients can be turned into simple integrals. Our results are valid for an anisotropic lattice, with arbitrary lattice spacings in each direction.

  20. Colorimetry and prime colours--a theorem.

    Science.gov (United States)

    Hornaes, Hans Petter; Wold, Jan Henrik; Farup, Ivar

    2005-08-01

    Human colour vision is the result of a complex process involving topics ranging from physics of light to perception. Whereas the diversity of light entering the eye in principle span an infinite-dimensional vector space in terms of the spectral power distributions, the space of human colour perceptions is three dimensional. One important consequence of this is that a variety of colours can be visually matched by a mixture of only three adequately chosen reference lights. It has been observed that there exists one particular set of monochromatic reference lights that, according to a certain definition, is optimal for producing colour matches. These reference lights are commonly denoted prime colours. In the present paper, we intend to rigorously show that the existence of prime colours is not particular to the human visual system as sometimes stated, but rather an algebraic consequence of the manner in which a kind of colorimetric functions called colour-matching functions are defined and transformed. The solution is based on maximisation of a determinant determining the gamut size of the colour space spanned by the prime colours. Cramer's rule for solving a set of linear equations is an essential part of the proof. By means of examples, it is shown that mathematically the optimal set of reference lights is not unique in general, and that the existence of a maximum determinant is not a necessary condition for the existence of prime colours.

  1. Non-cognate translation priming in masked priming lexical decision experiments: A meta-analysis.

    Science.gov (United States)

    Wen, Yun; van Heuven, Walter J B

    2017-06-01

    The masked translation priming paradigm has been widely used in the last 25 years to investigate word processing in bilinguals. Motivated by studies reporting mixed findings, in particular for second language (L2) to first language (L1) translation priming, we conducted, for the first time in the literature, a meta-analysis of 64 masked priming lexical decision experiments across 24 studies to assess the effect sizes of L1-L2 and L2-L1 non-cognate translation priming effects in bilinguals. Our meta-analysis also investigated the influence of potential moderators of translation priming effects. The results provided clear evidence of significant translation priming effects for both directions, with L1-L2 translation priming significantly larger than L2-L1 translation priming (i.e., effect size of 0.86 vs. 0.31). The analyses also revealed that L1-L2 translation effect sizes were moderated by the interval between prime and target (ISI), whereas L2-L1 translation effect sizes were modulated by the number of items per cell. Theoretical and methodological implications of this meta-analysis are discussed and recommendations for future studies are provided.

  2. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  3. Trade-off between positive and negative design of protein stability: from lattice models to real proteins.

    Directory of Open Access Journals (Sweden)

    Orly Noivirt-Brik

    2009-12-01

    Full Text Available Two different strategies for stabilizing proteins are (i positive design in which the native state is stabilized and (ii negative design in which competing non-native conformations are destabilized. Here, the circumstances under which one strategy might be favored over the other are explored in the case of lattice models of proteins and then generalized and discussed with regard to real proteins. The balance between positive and negative design of proteins is found to be determined by their average "contact-frequency", a property that corresponds to the fraction of states in the conformational ensemble of the sequence in which a pair of residues is in contact. Lattice model proteins with a high average contact-frequency are found to use negative design more than model proteins with a low average contact-frequency. A mathematical derivation of this result indicates that it is general and likely to hold also for real proteins. Comparison of the results of correlated mutation analysis for real proteins with typical contact-frequencies to those of proteins likely to have high contact-frequencies (such as disordered proteins and proteins that are dependent on chaperonins for their folding indicates that the latter tend to have stronger interactions between residues that are not in contact in their native conformation. Hence, our work indicates that negative design is employed when insufficient stabilization is achieved via positive design owing to high contact-frequencies.

  4. Logic gates realized by nonvolatile GeTe/Sb2Te3 super lattice phase-change memory with a magnetic field input

    Science.gov (United States)

    Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui

    2016-07-01

    Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.

  5. Origami lattices with free-form surface ornaments

    NARCIS (Netherlands)

    Janbaz, S.; Noordzij, N.; Widyaratih, Dwisetya Safirna; Hagen, C.W.; Fratila-Apachitei, E.L.; Zadpoor, A.A.

    2017-01-01

    Lattice structures are used in the design of metamaterials to achieve unusual physical, mechanical, or biological properties. The properties of such metamaterials result from the topology of the lattice structures, which are usually three-dimensionally (3D) printed. To incorporate advanced

  6. The coupled cluster theory of quantum lattice systems

    International Nuclear Information System (INIS)

    Bishop, R.; Xian, Yang

    1994-01-01

    The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory

  7. A systematic method for correlating measurements of channel powers with the lattice constants in the neutron diffusion equations

    International Nuclear Information System (INIS)

    Buckler, A.N.

    1978-10-01

    The report describes the theoretical basis of the methods that have been developed for correlating measurements of spatially distributed quantities taken on the reactor with the lattice constants in the diffusion equations. The method can be used with any thermal reactor system of current interest, but the first application is to provide a replacement for the SAMSON code for Winfrith SGHW studies, where the measurements of interest are channel powers. (author)

  8. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  9. Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters

    International Nuclear Information System (INIS)

    Zareian Ronizi, F.; Fadaei, A.H.; Setayeshi, S.; Shahidi, A.R.

    2015-01-01

    Highlights: • One of the most complex issues that Nu-engineers deal with is the design of NR core. • Numerous factors in nuclear core design depend on Fuel-to-Moderator volume ratio. • Aim of this research is to investigate RX performance for different lattice pitches. - Abstract: Nuclear reactor core design is one of the most complex issues that nuclear engineers deal with. The number and complexity of effective parameters and their impact on reactor design, which makes the problem difficult to solve, require precise knowledge of these parameters and their influence on the reactor operation. Numerous factors in a nuclear reactor core design depend on the Fuel-to-Moderator volume ratio, V F /V M , in a fuel cell. This ratio can be modified by changing the lattice pitch which is the thickness of water channels between fuels plates while keeping fuel slab dimensions fixed. Cooling and moderating properties of water are affected by such a change in a reactor core, and hence some parameters related to these properties might be changed. The aim of this research is to provide the suitable knowledge for nuclear core designing. To reach this goal, the first operating core of Tehran Research Reactor (TRR) with different lattice pitches is simulated, and the effect of different lattice pitches on some parameters such as effective multiplication factor (K eff ), reactor life time, distribution of neutron flux and power density in the core, as well as moderator temperature and density coefficient of reactivity are evaluated. The nuclear reactor analysis code, MTR-PC package is employed to carry out the considered calculation. Finally, the results are presented in some tables and graphs that provide useful information for nuclear engineers in the nuclear reactor core design

  10. As prime minister during the Fukushima crisis

    International Nuclear Information System (INIS)

    Kan, Naoto

    2015-01-01

    Naoto Kan was the acting Japanese Prime Minister during the Tohoku earthquake and the resulting Fukushima reactor accident. After demission in September 2011 he decided to document the facts according to his knowledge and the memorized thoughts during the course of the accident, his decision making and his own emotions. The first chapter covers the daily documentation until March 19th, the second chapter deals with nuclear power phaseout and Kan's demission, the third chapter covers the issues nuclear power phaseout - politics - citizens.

  11. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  12. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  13. Layer features of the lattice gas model for self-organized criticality

    International Nuclear Information System (INIS)

    Pesheva, N.C.; Brankov, J.G.

    1995-06-01

    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different β x exponents such that β x → 1.9 as one approaches the outer boundary. (author). 10 refs, 6 figs

  14. Priming in concert: Assimilation and contrast with multiple affective and gender primes.

    NARCIS (Netherlands)

    Fockenberg, D.A.; Koole, S.L.; Semin, G.R.

    2008-01-01

    The present research investigated the influence of multiple sequential primes on social categorization processes. Study 1 examined an evaluative decision task in which targets were preceded and succeeded by two primes. As expected, the temporally closest forward primes had assimilative effects on

  15. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E K; Jonsson, A

    1967-05-15

    Spectral indices have been measured by foil activation technique in a number of different D{sub 2}O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D{sub 2}O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF.

  16. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    International Nuclear Information System (INIS)

    Sokolowski, E.K.; Jonsson, A.

    1967-05-01

    Spectral indices have been measured by foil activation technique in a number of different D 2 O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D 2 O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF

  17. The 2-D lattice theory of Flower Constellations

    Science.gov (United States)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  18. STEP--a System for Teaching Experimental Psychology using E-Prime.

    Science.gov (United States)

    MacWhinney, B; St James, J; Schunn, C; Li, P; Schneider, W

    2001-05-01

    Students in psychology need to learn to design and analyze their own experiments. However, software that allows students to build experiments on their own has been limited in a variety of ways. The shipping of the first full release of the E-Prime system later this year will open up a new opportunity for addressing this problem. Because E-Prime promises to become the standard for building experiments in psychology, it is now possible to construct a Web-based resource that uses E-Prime as the delivery engine for a wide variety of instructional materials. This new system, funded by the National Science Foundation, is called STEP (System for the Teaching of Experimental Psychology). The goal of the STEP Project is to provide instructional materials that will facilitate the use of E-Prime in various learning contexts. We are now compiling a large set of classic experiments implemented in E-Prime and available over the Internet from http://step.psy.cmu.edu. The Web site also distributes instructional materials for building courses in experimental psychology based on E-Prime.

  19. The elimination of positive priming with increasing prime duration reflects a transition from perceptual fluency to disfluency rather than bias against primed words.

    Science.gov (United States)

    Potter, Kevin W; Donkin, Chris; Huber, David E

    2018-03-01

    With immediate repetition priming of forced choice perceptual identification, short prime durations produce positive priming (i.e., priming the target leads to higher accuracy, while priming the foil leads to lower accuracy). Many theories explain positive priming following short duration primes as reflecting increased perceptual fluency for the primed target (i.e., decreased identification latency). However, most studies only examine either accuracy or response times, rather than considering the joint constraints of response times and accuracy to properly address the role of decision biases and response caution. This is a critical oversight because several theories propose that the transition to negative priming following a long duration prime reflects a decision strategy to compensate for the effect of increased perceptual fluency. In contrast, the nROUSE model of Huber and O'Reilly (2003) explains this transition as reflecting perceptual habituation, and thus a change to perceptual disfluency. We confirmed this prediction by applying a sequential sampling model (the diffusion race model) to accuracy and response time distributions from a new single item same-different version of the priming task. In this way, we measured strategic biases and perceptual fluency in each condition for each subject. The nROUSE model was only applied to accuracy from the original forced-choice version of the priming task. This application of nROUSE produced separate predictions for each subject regarding the degree of fluency and disfluency in each condition, and these predictions were confirmed by the drift rate parameters (i.e., fluency) from the response time model in contrast to the threshold parameters (i.e., bias). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  1. Axial and Radial Forces of Cross-Bridges Depend on Lattice Spacing

    Science.gov (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.

    2010-01-01

    Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production. PMID:21152002

  2. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    Science.gov (United States)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  3. On the Control of Single-Prime Negative Priming: The Effects of Practice and Time Course

    Science.gov (United States)

    Chao, Hsuan-Fu

    2009-01-01

    Single-prime negative priming refers to the phenomenon wherein repetition of a prime as the probe target results in delayed response. Sometimes this effect has been found to be contingent on participants' unawareness of the primes, and sometimes it has not. Further, sometimes this effect has been found to be eliminated when the prime could predict…

  4. On Traveling Waves in Lattices: The Case of Riccati Lattices

    Science.gov (United States)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  5. Self-organized critical behavior in pinned flux lattices

    International Nuclear Information System (INIS)

    Pla, O.; Nori, F.

    1991-01-01

    We study the response of pinned fluxed lattices, under small perturbations in the driving force, below and close to the pinning-depinning transition. For driving Lorentz forces below F c (the depinning force at which the whole flux lattice slides), the system has instabilities against small force increases, with a power-law distribution characteristic of self-organized criticality. Specifically, D(d)∼d -1,3 , where d is the displacement of a flux line after a very small force increase. We also study the initial stages of the motion of the lattice once the driving force overcomes the pinning forces

  6. Facilitating Tough Conversations: Using an Innovative Simulation-Primed Qualitative Inquiry in Pediatric Research.

    Science.gov (United States)

    Wong, Ambrose H; Tiyyagura, Gunjan K; Dodington, James M; Hawkins, Bonnie; Hersey, Denise; Auerbach, Marc A

    Deep exploration of a complex health care issue in pediatrics might be hindered by the sensitive or infrequent nature of a particular topic in pediatrics. Health care simulation builds on constructivist theories to guide individuals through an experiential cycle of action, self-reflection, and open discussion, but has traditionally been applied to the educational domain in health sciences. Leveraging the emotional activation of a simulated experience, investigators can prime participants to engage in open dialogue for the purposes of qualitative research. The framework of simulation-primed qualitative inquiry consists of 3 main iterative steps. First, researchers determine applicability by consideration of the need for an exploratory approach and potential to enrich data through simulation priming of participants. Next, careful attention is needed to design the simulation, with consideration of medium, technology, theoretical frameworks, and quality to create simulated reality relevant to the research question. Finally, data collection planning consists of a qualitative approach and method selection, with particular attention paid to psychological safety of subjects participating in the simulation. A literature review revealed 37 articles that used this newly described method across a variety of clinical and educational research topics and used a spectrum of simulation modalities and qualitative methods. Although some potential limitations and pitfalls might exist with regard to resources, fidelity, and psychological safety under the auspices of educational research, simulation-primed qualitative inquiry can be a powerful technique to explore difficult topics when subjects might experience vulnerability or hesitation. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  7. Subliminal semantic priming in speech.

    Directory of Open Access Journals (Sweden)

    Jérôme Daltrozzo

    Full Text Available Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction and participants performed a lexical decision task (LDT. Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets and negative repetition priming (slower reaction times for repeated compared to semantically related targets. This is the first report of semantic priming in the auditory modality without conscious categorization of the prime.

  8. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  9. A New Prime Code for Synchronous Optical Code Division Multiple-Access Networks

    Directory of Open Access Journals (Sweden)

    Huda Saleh Abbas

    2018-01-01

    Full Text Available A new spreading code based on a prime code for synchronous optical code-division multiple-access networks that can be used in monitoring applications has been proposed. The new code is referred to as “extended grouped new modified prime code.” This new code has the ability to support more terminal devices than other prime codes. In addition, it patches subsequences with “0s” leading to lower power consumption. The proposed code has an improved cross-correlation resulting in enhanced BER performance. The code construction and parameters are provided. The operating performance, using incoherent on-off keying modulation and incoherent pulse position modulation systems, has been analyzed. The performance of the code was compared with other prime codes. The results demonstrate an improved performance, and a BER floor of 10−9 was achieved.

  10. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  11. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  12. Dynamic Aperture Improvement of PEP-II Lattices Using Resonance Basis Lie Generators

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiton T

    2003-08-11

    To simplify the engineering efforts of implementing the PEP-II lattices, many modifications have been made to these lattices since the conceptual design report. During the development and evolution of the lattices, changes in a lattice would often result in a significant reduction in the dynamic aperture. At such times, we often relied on a non-linear analysis using the one-turn resonance basis Lie generator to identify the cause of the degradation. In this paper, we will present such examples to facilitate the usage of map for diagnosing the problems in lattice design.

  13. Dynamics of surface solitons at the edge of chirped optical lattices

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2007-01-01

    We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it

  14. TurkPrime.com: A versatile crowdsourcing data acquisition platform for the behavioral sciences.

    Science.gov (United States)

    Litman, Leib; Robinson, Jonathan; Abberbock, Tzvi

    2017-04-01

    In recent years, Mechanical Turk (MTurk) has revolutionized social science by providing a way to collect behavioral data with unprecedented speed and efficiency. However, MTurk was not intended to be a research tool, and many common research tasks are difficult and time-consuming to implement as a result. TurkPrime was designed as a research platform that integrates with MTurk and supports tasks that are common to the social and behavioral sciences. Like MTurk, TurkPrime is an Internet-based platform that runs on any browser and does not require any downloads or installation. Tasks that can be implemented with TurkPrime include: excluding participants on the basis of previous participation, longitudinal studies, making changes to a study while it is running, automating the approval process, increasing the speed of data collection, sending bulk e-mails and bonuses, enhancing communication with participants, monitoring dropout and engagement rates, providing enhanced sampling options, and many others. This article describes how TurkPrime saves time and resources, improves data quality, and allows researchers to design and implement studies that were previously very difficult or impossible to carry out on MTurk. TurkPrime is designed as a research tool whose aim is to improve the quality of the crowdsourcing data collection process. Various features have been and continue to be implemented on the basis of feedback from the research community. TurkPrime is a free research platform.

  15. Lattice calculations in gauge theory

    International Nuclear Information System (INIS)

    Rebbi, C.

    1985-01-01

    The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD

  16. Indirect Goal Priming Is More Powerful than Explicit Instruction in Children

    Science.gov (United States)

    Kesek, Amanda; Cunningham, William A.; Packer, Dominic J.; Zelazo, Philip David

    2011-01-01

    This study examined the relative efficacy of explicit instruction and indirect priming on young children's behavior in a task that required a series of choices between a small immediate reward and a larger delayed reward. One hundred and six 4-year-old children were randomly assigned to one of four conditions involving one of two goals (maximize…

  17. First multi-bend achromat lattice consideration

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)

    2014-08-27

    The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.

  18. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  19. Seed priming improves salinity tolerance of wheat varieties

    International Nuclear Information System (INIS)

    Jamal, Y.; Shafi, M.; Arif, M.

    2011-01-01

    To evaluate the response of wheat varieties to seed priming and salinity, an experiment was conducted in completely randomized design (CRD) with three replications at Institute of Biotechnology and Genetic Engineering (IBGE), KPK Agricultural University, Peshawar, Pakistan. The performance of 6 wheat varieties (Tatara-96, Ghaznavi-98, Fakhri Sarhad, Bakhtawar-92, Pirsabaq-2004 and Auqab-2000) at two seed conditions (primed with 30 mM NaCl and un primed) under four salinity levels (0, 40, 80 and 120 mM) was studied. Statistical analysis of the data revealed that salinity, seed priming and varieties had significantly (P= 0.05) affected shoot fresh weight plant/sup -1/ shoot dry weight plant/sup -1/, shoot Na/sup +/ contents (mg g/sup -1/ dry weight), shoot K/sup +/ contents (mg g/sup -1/ dry weight) and shoot K/sup +/Na/sup +/ ratio. Maximum shoot fresh weight plant/sup -1/ (7.71 g), shoot dry weight plant/sup -1/ (1.68 g), shoot K/sup +/ contents (1.39 mg g/sup -1/ dry weight) and shoot K/sup +/ Na/sup +/ratio (1.45) were recorded from Bakhtawar-92 as compared with other varieties. Highest shoot Na/sup +/ contents (1.43 mg g/sup -1/ dry weight) were recorded from Auqab-2000 when compared with other varieties. All parameters were enhanced with seed priming except shoot Na/sup +/ contents, which reduced significantly (p= 0.05) with seed priming. (author)

  20. Fermion Bag Approach to Lattice Hamiltonian Field Theories

    Science.gov (United States)

    Huffman, Emilie

    2018-03-01

    Using a model in the Gross-Neveu Ising universality class, we show how the fermion bag idea can be applied to develop algorithms to Hamiltonian lattice field theories. We argue that fermion world lines suggest an alternative method to the traditional techniques for calculating ratios of determinants in a stable manner. We show the power behind these ideas by extracting the physics of the model on large lattices.

  1. Behavioral Priming 2.0: Enter a Dynamical Systems Perspective

    Science.gov (United States)

    Krpan, Dario

    2017-01-01

    On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP). The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications. PMID:28769846

  2. Behavioral Priming 2.0: Enter a Dynamical Systems Perspective

    Directory of Open Access Journals (Sweden)

    Dario Krpan

    2017-07-01

    Full Text Available On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP. The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications.

  3. Cognate status and cross-script translation priming.

    Science.gov (United States)

    Voga, Madeleine; Grainger, Jonathan

    2007-07-01

    Greek-French bilinguals were tested in three masked priming experiments with Greek primes and French targets. Related primes were the translation equivalents of target words, morphologically related to targets, or phonologically related to targets. In Experiment 1, cognate translation equivalents (phonologically similar translations) showed facilitatory priming, relative to matched phonologically related primes, in conditions in which morphologically related primes showed no effect (50-msec prime exposure). Cross-language morphological priming emerged at longer prime exposure durations (66 msec), but cognate primes continued to generate more priming than did those in the morphological condition. In Experiments 2 and 3, the level of phonological overlap across translation equivalents was varied, and priming effects were measured against those for matched phonologically related primes and those in an unrelated prime condition. When measured against the unrelated baseline, cognate primes showed the typical advantage over noncognate primes. However, this cognate advantage disappeared when priming was measured against the phonologically related prime condition. The results are discussed in terms of how translation equivalents are represented in bilingual memory.

  4. False memories and lexical decision: even twelve primes do not cause long-term semantic priming.

    Science.gov (United States)

    Zeelenberg, René; Pecher, Diane

    2002-03-01

    Semantic priming effects are usually obtained only if the prime is presented shortly before the target stimulus. Recent evidence obtained with the so-called false memory paradigm suggests, however, that in both explicit and implicit memory tasks semantic relations between words can result in long-lasting effects when multiple 'primes' are presented. The aim of the present study was to investigate whether these effects would generalize to lexical decision. In four experiments we showed that even as many as 12 primes do not cause long-term semantic priming. In all experiments, however, a repetition priming effect was obtained. The present results are consistent with a number of other results showing that semantic information plays a minimal role in long-term priming in visual word recognition.

  5. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  6. Prime Numbers Comparison using Sieve of Eratosthenes and Sieve of Sundaram Algorithm

    Science.gov (United States)

    Abdullah, D.; Rahim, R.; Apdilah, D.; Efendi, S.; Tulus, T.; Suwilo, S.

    2018-03-01

    Prime numbers are numbers that have their appeal to researchers due to the complexity of these numbers, many algorithms that can be used to generate prime numbers ranging from simple to complex computations, Sieve of Eratosthenes and Sieve of Sundaram are two algorithm that can be used to generate Prime numbers of randomly generated or sequential numbered random numbers, testing in this study to find out which algorithm is better used for large primes in terms of time complexity, the test also assisted with applications designed using Java language with code optimization and Maximum memory usage so that the testing process can be simultaneously and the results obtained can be objective

  7. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  8. Six-dimensional modeling of coherent bunch instabilities and related freedback systems in storage rings with power-series maps for the lattice

    International Nuclear Information System (INIS)

    Bengtsson, J.; Briggs, D.; Meddahi, M.

    1994-06-01

    The authors have developed 6-dimensional phase-space code that tracks macroparticles for the study of coherent bunch instabilities and related feedback systems. The model is based on power-series maps to represent the lattice, and allows for straightforward inclusion of effects such as amplitude dependent tune shift, chromaticity, synchrotron oscillations, and synchrotron radiation. It simulates long range wake fields such as resistive-wall effects as well as the higher order modes in cavities. The model has served to study the dynamics relevant to the transverse feedback system currently being commissioned for the Advanced Light Source (ALS). Current work integrates earlier versions into a modular system that includes models for transverse and longitudinal feedback systems. It is designed to provide a modular approach to the dynamics and diagnostics, allowing a user to modify the model of a storage ring at run-time without recompilation

  9. A low-emittance lattice for SPEAR

    International Nuclear Information System (INIS)

    Safranek, J.; Wiedemann, H.

    1992-01-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented (J. Safranek, Ph. D. thesis, Stanford University, 1991). The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129 π nm rad, which makes the low emittance lattice the lowest emittance, runnning synchroton radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further incrased by reducing β y at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal despersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave resonable agreement with the design . The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992. (orig.)

  10. Optical Lattice Design Assisted by Non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Rodríguez-Lara, B M

    2016-01-01

    A brief introduction to non-Hermitian arrays of coupled waveguides is presented. The PT-symmetric dimer is revisited for the sake of clarity. It belongs to the class of photonic lattices with underlying SO(2,1) symmetry that have been shown to provide all-optical conversion from phase to amplitude. (paper)

  11. Infinitesimal diffeomorfisms on the lattice

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...

  12. A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter

    DEFF Research Database (Denmark)

    Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios

    2017-01-01

    approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...

  13. Frequency-Division Power Sharing and Hierarchical Control Design for DC Shipboard Microgrids with Hybrid Energy Storage Systems

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Quintero, Juan Carlos Vasquez

    2017-01-01

    Due to the increasing need to reduce the cost and emission of ships, shipboard applications are calling advanced technologies to go onboard. Recently, cleaner power sources (i.e. gas turbines, fuel cell, solar and wind power), energy storage, advanced control and power/energy management......, the operation point of prime movers can be maintained at their optimal area, meanwhile, different energy storages will provide characteristic based response. On the basis of the proposed power sharing method, voltage restoration and power management-level control methods are also introduced to form hierarchical...

  14. Development of design technology on thermal-hydraulic performance in tight-lattice rod bundles. II-rod bowing effect on boiling transition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Takase, Kazuyuki; Akimoto, Hajime

    2007-01-01

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R and D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we will describe the critical power characteristics in a 37-rod tight-lattice bundle with rod-bowing under both steady and transient states. It is observed that no matter it is run under a steady or a transient state, boiling transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle. Steady critical power increases monotonically with the increase of mass velocity, with the decrease of inlet water temperature and with the decrease of exit pressure. These trends are same as those in the base case test without rod-bowing. The steady critical power with rod-bowing is about 10% lower than that without rod-bowing. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transitions are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with TRAC-BF1 code. The TRAC-BF1 code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time within the accuracy of critical power correlation. Traditional quasi - steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight lattice bundle with rod - bowing. (author)

  15. Sequential Stereotype Priming: A Meta-Analysis.

    Science.gov (United States)

    Kidder, Ciara K; White, Katherine R; Hinojos, Michelle R; Sandoval, Mayra; Crites, Stephen L

    2017-08-01

    Psychological interest in stereotype measurement has spanned nearly a century, with researchers adopting implicit measures in the 1980s to complement explicit measures. One of the most frequently used implicit measures of stereotypes is the sequential priming paradigm. The current meta-analysis examines stereotype priming, focusing specifically on this paradigm. To contribute to ongoing discussions regarding methodological rigor in social psychology, one primary goal was to identify methodological moderators of the stereotype priming effect-whether priming is due to a relation between the prime and target stimuli, the prime and target response, participant task, stereotype dimension, stimulus onset asynchrony (SOA), and stimuli type. Data from 39 studies yielded 87 individual effect sizes from 5,497 participants. Analyses revealed that stereotype priming is significantly moderated by the presence of prime-response relations, participant task, stereotype dimension, target stimulus type, SOA, and prime repetition. These results carry both practical and theoretical implications for future research on stereotype priming.

  16. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1996-01-01

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  17. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  18. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  19. Bottomonium above Deconfinement in Lattice Nonrelativistic QCD

    International Nuclear Information System (INIS)

    Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.

    2011-01-01

    We study the temperature dependence of bottomonium for temperatures in the range 0.4T c c , using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for N f =2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χ b propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T≅2T c .

  20. Power, Ethnic Origin, and Sexual Objectification

    Directory of Open Access Journals (Sweden)

    Ciro Civile

    2016-04-01

    Full Text Available In this study, we investigated the effects of primed power on sexual objectification of Caucasian and Asian men and women. As in previous studies, sexual objectification was assessed using an inversion paradigm with face–body compound stimuli. Previous work has shown that participants primed to power do not show the typical drop in recognition performance for inverted face–body compound stimuli, suggesting that they process these stimuli in terms of their individual features, in a manner akin to objects, and quite different from the way in which faces and bodies are normally processed (i.e., configurally. Caucasian male and female participants were primed to high or neutral-power before engaging in an old/new recognition task involving sexualized face–body compound images of Caucasian and Asian men and women. Participants primed to high-power showed a decreased inversion effect for Caucasian models of the opposite gender, but not for Asian models. Thus, power exerts different effects on this specific type of social perception, depending on the ethnic origin of the target. We discuss our results in the context of the extant literature on power and with reference to media stereotyping of Caucasians and Asians.

  1. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    Science.gov (United States)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  2. A technique for analytical calculation of observables in lattice gauge theories

    International Nuclear Information System (INIS)

    Narayanan, R.; Vranas, P.

    1990-01-01

    It is shown that the partition function for a finite lattice factorizes into terms that can be associated with each vertex in the finite lattice. This factorization property forms the basis of well defined and efficient technique developed to calculate partition functions to high accuracy, on finite lattices for gauge theories. This technique along with the expansion in finite lattices, provides a powerful means for calculating observables in lattice gauge theories. This is applied to SU(2) lattice gauge theory in four dimensions. The free energy, expectation value of a plaquette and specific heat are calculated. The results are very good in the strong coupling region, succeed in entering the weak coupling region and describe the crossover region quite well, agreeing all the way with the Monte Carlo data. (orig.)

  3. Unconscious Congruency Priming from Unpracticed Words Is Modulated by Prime-Target Semantic Relatedness

    Science.gov (United States)

    Ortells, Juan J.; Mari-Beffa, Paloma; Plaza-Ayllon, Vanesa

    2013-01-01

    Participants performed a 2-choice categorization task on visible word targets that were preceded by novel (unpracticed) prime words. The prime words were presented for 33 ms and followed either immediately (Experiments 1-3) or after a variable delay (Experiments 1 and 4) by a pattern mask. Both subjective and objective measures of prime visibility…

  4. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  5. Leading, but not trailing, primes influence temporal order perception: further evidence for an attentional account of perceptual latency priming.

    Science.gov (United States)

    Scharlau, Ingrid

    2002-11-01

    Presenting a masked prime leading a target influences the perceived onset of the masking target (perceptual latency priming; Scharlau & Neumann, in press). This priming effect is explained by the asynchronous updating model (Neumann, 1982; Scharlau & Neumann, in press): The prime initiates attentional allocation toward its location, which renders a trailing target at the same place consciously available earlier. In three experiments, this perceptual latency priming by leading primes was examined jointly with the effects of trailing primes in order to compare the explanation of the asynchronous updating model with the onset-averaging and the P-center hypotheses. Experiment 1 showed that an attended, as well as an unattended, prime leads to perceptual latency priming. In addition, a large effect of trailing primes on the onset of a target was found. As Experiment 2 demonstrated, this effect is quite robust, although smaller than that of a leading prime. In Experiment 3, masked primes were used. Under these conditions, no influence of trailing primes could be found, whereas perceptual latency priming persisted. Thus, a nonattentional explanation for the effect of trailing primes seems likely.

  6. Mechanisms of subliminal response priming.

    Science.gov (United States)

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-07-15

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes' impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these "action triggers" directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting.

  7. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  8. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  9. Topology optimization and lattice Boltzmann methods

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund

    This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...

  10. Status and future of lattice gauge theory

    International Nuclear Information System (INIS)

    Hoek, J.

    1989-07-01

    The current status of lattice Quantum Chromo Dynamics (QCD) calculations, the computer requirements to obtain physical results and the direction computing is taking are described. First of all, there is a lot of evidence that QCD is the correct theory of strong interactions. Since it is an asymptotically free theory we can use perturbation theory to solve it in the regime of very hard collisions. However even in the case of very hard parton collisions the end-results of the collisions are bound states of quarks and perturbation theory is not sufficient to calculate these final stages. The way to solve the theory in this regime was opened by Wilson. He contemplated replacing the space-time continuum by a discrete lattice, with a lattice spacing a. Continuum physics is then recovered in the limit where the correlation length of the theory, say ξ. is large with respect to the lattice spacing. This will be true if the lattice spacing becomes very small, which for asymptotically free theories also implies that the coupling g becomes small. The lattice approach to QCD is in many respects analogous to the use of finite element methods to solve classical field theories. These finite element methods are easy to apply in 2-dimensional simulations but are computationally demanding in the 3-dimensional case. Therefore it is not unexpected that the 4-dimensional simulations needed for lattice gauge theories have led to an explosion in demand for computing power by theorists. (author)

  11. Tarapur Atomic Power Station - - an overview of experience

    International Nuclear Information System (INIS)

    Shah, J.C.

    1979-01-01

    A broad overview of the experience and performance of the Tarapur Atomic Power Station (TAPS) in its role as the developing world's first foray in commercial atomic power has been attempted. The prime objective was not just generation of power but assimilation of an advanced technology on an economically viable basis in the underdeveloped environment compounded with governmental organisational culture. Scientific and technical advances registered through the TAPS experience in the area of design, operation and maintenance are mentioned. Aspects of station performance, management and even economics are also covered. (auth.)

  12. Comparing Repetition Priming Effects in Words and Arithmetic Equations: Robust Priming Regardless of Color or Response Hand Change

    Directory of Open Access Journals (Sweden)

    Ailsa Humphries

    2018-01-01

    Full Text Available Previous studies have shown that stimulus repetition can lead to reliable behavioral improvements. Although this repetition priming (RP effect has been reported in a number of paradigms using a variety of stimuli including words, objects, and faces, only a few studies have investigated mathematical cognition involving arithmetic computation, and no prior research has directly compared RP effects in a linguistic task with an arithmetic task. In two experiments, we used a within-subjects design to investigate and compare the magnitude of RP, and the effects of changing the color or the response hand for repeated, otherwise identical, stimuli in a word and an arithmetic categorization task. The results show that the magnitude of RP was comparable between the two tasks and that changing the color or the response hand had a negligible effect on priming in either task. These results extended previous findings in mathematical cognition. They also indicate that priming does not vary with stimulus domain. The implications of the results were discussed with reference to both facilitation of component processes and episodic memory retrieval of stimulus–response binding.

  13. Comparing Repetition Priming Effects in Words and Arithmetic Equations: Robust Priming Regardless of Color or Response Hand Change.

    Science.gov (United States)

    Humphries, Ailsa; Chen, Zhe; Neumann, Ewald

    2017-01-01

    Previous studies have shown that stimulus repetition can lead to reliable behavioral improvements. Although this repetition priming (RP) effect has been reported in a number of paradigms using a variety of stimuli including words, objects, and faces, only a few studies have investigated mathematical cognition involving arithmetic computation, and no prior research has directly compared RP effects in a linguistic task with an arithmetic task. In two experiments, we used a within-subjects design to investigate and compare the magnitude of RP, and the effects of changing the color or the response hand for repeated, otherwise identical, stimuli in a word and an arithmetic categorization task. The results show that the magnitude of RP was comparable between the two tasks and that changing the color or the response hand had a negligible effect on priming in either task. These results extended previous findings in mathematical cognition. They also indicate that priming does not vary with stimulus domain. The implications of the results were discussed with reference to both facilitation of component processes and episodic memory retrieval of stimulus-response binding.

  14. Low energy ring lattice of the PEP-II asymmetric B-Factory

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Helm, R.; Irwin, J.; Nosochkov, Y.; Ritson, D.M.; Yan, Y.

    1995-01-01

    Developing a lattice that contains a very low beta value at the interaction point (IP) and has adequate dynamic aperture is one of the major challenges in designing the PEP-II asymmetric B-factory. For the Low Energy Ring (LER) the authors have studied several different chromatic correction schemes since the conceptual design report (CDR). Based on these studies, a hybrid solution with local and semi-local chromatic sextupoles has been selected as the new baseline lattice to replace the local scheme in the CDR. The new design simplifies the interaction region (IR) and reduces the number of sextupoles in the arcs. Arc sextupoles are paired at π phase difference and are not interleaved. In this paper the authors describe the baseline lattice with the emphasis on the lattice changes made since the CDR

  15. The CCAT-prime Extreme Field-of-View Submillimeter Telescope on Cerro Chajnantor

    Science.gov (United States)

    Koopman, Brian; Bertoldi, Frank; Chapman, Scott; Fich, Michel; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry L.; Murray, Norman W.; Niemack, Michael D.; Riechers, Dominik; Schilke, Peter; Stacey, Gordon J.; Stutzki, Juergen; CCAT-prime Collaboration

    2017-01-01

    CCAT-prime is a six meter aperture off-axis submillimeter telescope that we plan to build at 5600m elevation on Cerro Chajnantor in Chile. The CCAT-prime optics are based on a cross-Dragone design with high throughput and a wide field-of-view optimized to increase the mapping speed of next generation cosmic microwave background (CMB) observations. These characteristics make CCAT-prime an excellent platform for a wide range of next generation millimeter and submillimeter science goals, and a potential platform for CMB stage-IV measurements. Here we present the telescope design for CCAT-prime and review the science goals.Taking advantage of the high elevation site, the first generation instrument for CCAT-prime will measure seven different frequency bands from 350um to 3mm. These seven bands will enable precise measurements of the Sunyaev-Zel’dovich effects (SZE) by separating contributions from CMB, thermal SZE, kinetic SZE, bright submm galaxies, and radio sources with a goal of extracting the peculiar velocities from a large number of galaxy clusters. Additional science priorities for CCAT-prime include: Galactic Ecology studies of the dynamic intersteller medium by mapping the fine structure lines [CI], [CII] and [NII] as well as high-excitation CO lines at the shortest wavelength bands; high redshift intensity mapping of [CII] emission from star-forming galaxies that likely dominates cosmic reionization at z~5-9 to probe the Epoch of Reionization; and next generation CMB polarization measurements to constrain inflation and cosmological models. The CCAT-prime facility will further our understanding of astrophysical processes from moments after the Big Bang to the present-day evolution of the Milky Way.

  16. Waveform Design for Wireless Power Transfer

    Science.gov (United States)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  17. Seed Priming to Overcome Salinity Stress in Persian Cultivars of Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Ali SEPEHRI

    2015-03-01

    Full Text Available In order to investigate the effect of hydro-priming on seed germination with distilled water on germination of five Alfalfa cultivars under salinity stress, an experiment was conducted as a factorial experiment based on a completely randomized design with three replications. Seven levels of hydro-priming and salinity of NaCl including prime and non-salinity, prime and 50 mM salinity, prime and 100 mM salinity, prime and 150 mM salinity, prime and 200 mM salinity, prime and 250 mM salinity and without prime and salinity and five alfalfa varieties, including ‘Hamedani’, ‘Isfahani’, ‘Bami’, ‘Yazdi’ and ‘Ghareh Yonjeh’ were used. The results showed that the main effect of prime, salinity and cultivars and their interaction in all studied traits were significantly affected at the 5% probability level. Priming treatments in non-salinity of all cultivars were the highest. In all cultivars, final germination percentage, length and weight of radicle, plumule and seedling, germination rate and time, relative radicle elongation, vigor index and stress index, were significantly improved in response to priming in salinity levels of 50-200 mM, compared to control. Radicle produced higher length and weight than the plumule in hydro- priming and salinity treatments. ‘Hamedani’ cultivar in most of studied characteristics had a better response than others. The lowest response to salinity stress and priming was observed in ‘Yazdi’ cultivar.

  18. CROSS-TOLERANCE MECHANISM INDUCTION IN MELON SEEDS BY PRIMING PRIOR DRYING

    Directory of Open Access Journals (Sweden)

    Jean Marcel Sousa Lira

    2015-04-01

    Full Text Available The loss of benefits after re-drying is one of the drawbacks of the seed priming technique. Different types of stresses have been used before re-drying to preserve the priming benefits. This process may be seen as promoting cross tolerance to increase the defense mechanisms that prevent loss of viability in seeds primed after drying. We tested the effect of some stresses to induce cross-tolerance and different drying conditions with the aim of maintaining priming benefits in melon seeds. The seeds were primed in an aerated KNO3 solution (0.35M, -1.7MPa, 25 °C, in the dark for six days. The primed seeds were then submitted to slow drying, fast drying, cold shock + slow drying, cold shock + fast drying, heat shock + slow drying, heat shock + fast drying, PEG + slow drying, PEG + fast drying, ABA + slow drying, ABA + fast drying and no drying (planted directly after priming. We evaluated antioxidant enzyme activities (SOD, CAT and APX, germinability, mean time of germination (MTG and mean rate of germination (MRG. A completely randomized design was used with three repetitions of 50 seeds in each treatment. Data were analyzed by ANOVA and means were compared by the Scott-Knott test (p ≤ 0.05. ABA increased SOD activity after drying and CAT activity was reduced by priming. APX activity was not observed. The stress submission prior to re-drying improved the MRG and reduced MTG. Therefore, the induction of the cross-tolerance mechanism could be effective to maintain priming benefits in melon seeds.

  19. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  20. Lattice gas simulations of dynamical geometry in one dimension.

    Science.gov (United States)

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  1. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    Science.gov (United States)

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  3. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  4. g-PRIME: A Free, Windows Based Data Acquisition and Event Analysis Software Package for Physiology in Classrooms and Research Labs.

    Science.gov (United States)

    Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R

    2009-01-01

    We present g-PRIME, a software based tool for physiology data acquisition, analysis, and stimulus generation in education and research. This software was developed in an undergraduate neurophysiology course and strongly influenced by instructor and student feedback. g-PRIME is a free, stand-alone, windows application coded and "compiled" in Matlab (does not require a Matlab license). g-PRIME supports many data acquisition interfaces from the PC sound card to expensive high throughput calibrated equipment. The program is designed as a software oscilloscope with standard trigger modes, multi-channel visualization controls, and data logging features. Extensive analysis options allow real time and offline filtering of signals, multi-parameter threshold-and-window based event detection, and two-dimensional display of a variety of parameters including event time, energy density, maximum FFT frequency component, max/min amplitudes, and inter-event rate and intervals. The software also correlates detected events with another simultaneously acquired source (event triggered average) in real time or offline. g-PRIME supports parameter histogram production and a variety of elegant publication quality graphics outputs. A major goal of this software is to merge powerful engineering acquisition and analysis tools with a biological approach to studies of nervous system function.

  5. Mito-priming as a method to engineer Bcl-2 addiction.

    Science.gov (United States)

    Lopez, Jonathan; Bessou, Margaux; Riley, Joel S; Giampazolias, Evangelos; Todt, Franziska; Rochegüe, Tony; Oberst, Andrew; Green, Douglas R; Edlich, Frank; Ichim, Gabriel; Tait, Stephen W G

    2016-02-02

    Most apoptotic stimuli require mitochondrial outer membrane permeabilization (MOMP) in order to execute cell death. As such, MOMP is subject to tight control by Bcl-2 family proteins. We have developed a powerful new technique to investigate Bcl-2-mediated regulation of MOMP. This method, called mito-priming, uses co-expression of pro- and anti-apoptotic Bcl-2 proteins to engineer Bcl-2 addiction. On addition of Bcl-2 targeting BH3 mimetics, mito-primed cells undergo apoptosis in a rapid and synchronous manner. Using this method we have comprehensively surveyed the efficacy of BH3 mimetic compounds, identifying potent and specific MCL-1 inhibitors. Furthermore, by combining different pro- and anti-apoptotic Bcl-2 pairings together with CRISPR/Cas9-based genome editing, we find that tBID and PUMA can preferentially kill in a BAK-dependent manner. In summary, mito-priming represents a facile and robust means to trigger mitochondrial apoptosis.

  6. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  7. Degree of handedness and priming: Further evidence for a distinction between production and identification priming mechanisms.

    Directory of Open Access Journals (Sweden)

    Donna J. LaVoie

    2015-02-01

    Full Text Available The distinction between implicit and explicit forms of memory retrieval is long-standing, and important to the extent it reveals how different neural architecture supports different aspects of memory function. Similarly, distinctions have been made between kinds of repetition priming, a form of implicit memory retrieval. This study focuses on the production-identification priming distinction, which delineates priming tasks involving verification of stimulus features as compared to priming tasks that require use of a cue to guide response retrieval. Studies investigating this dissociation in dementia or similar patient populations indicate that these forms of priming may differ in their neural bases. The current study looks at degree of handedness as a way of investigating inferred neural architecture supporting these two forms of priming. A growing body of research indicates that degree of handedness (consistent, or CH, versus inconsistent, or ICH is associated with greater interhemispheric interaction and functional access to right hemisphere processing in ICH, with superior performance seen in ICH on memory tasks reliant on this processing. Arguments about the theoretical mechanisms underlying identification and production forms of perceptual priming tasks suggest that performance on these tasks will differ as a function of degree of handedness. We tested this question in a group of CH and ICH young adults, who were asked to study lists of words prior to performing a production priming task (word stem completion, a perceptual word identification task, and a word stem cued recall task. While both handedness groups exhibited reliable priming across tasks, word stem completion priming was greater in ICH than CH participants, with identification priming not differing between groups. This dissociation supports the argument that production and identification forms of priming have different underlying neural bases.

  8. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  9. Rapid response learning of brand logo priming: Evidence that brand priming is not dominated by rapid response learning.

    Science.gov (United States)

    Boehm, Stephan G; Smith, Ciaran; Muench, Niklas; Noble, Kirsty; Atherton, Catherine

    2017-08-31

    Repetition priming increases the accuracy and speed of responses to repeatedly processed stimuli. Repetition priming can result from two complementary sources: rapid response learning and facilitation within perceptual and conceptual networks. In conceptual classification tasks, rapid response learning dominates priming of object recognition, but it does not dominate priming of person recognition. This suggests that the relative engagement of network facilitation and rapid response learning depends on the stimulus domain. Here, we addressed the importance of the stimulus domain for rapid response learning by investigating priming in another domain, brands. In three experiments, participants performed conceptual decisions for brand logos. Strong priming was present, but it was not dominated by rapid response learning. These findings add further support to the importance of the stimulus domain for the relative importance of network facilitation and rapid response learning, and they indicate that brand priming is more similar to person recognition priming than object recognition priming, perhaps because priming of both brands and persons requires individuation.

  10. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  11. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially.

    Science.gov (United States)

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-04-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Design of ultra-low power impulse radios

    CERN Document Server

    Apsel, Alyssa; Dokania, Rajeev

    2014-01-01

    This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead.  This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs.  Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.   • Enables detailed understanding of the design space for ultra-low power radio; • Provides detailed discussion and examples of the design of a practical low power ...

  13. A Prime Example of the Maluma/Takete Effect? Testing for Sound Symbolic Priming.

    Science.gov (United States)

    Sidhu, David M; Pexman, Penny M

    2017-09-01

    Certain nonwords, like maluma and takete, are associated with roundness and sharpness, respectively. However, this has typically been demonstrated using explicit tasks. We investigated whether this association would be detectable using a more implicit measure-a sequential priming task. We began with a replication of the standard Maluma/Takete effect (Experiments 1a and 1b) before examining whether round and sharp nonword primes facilitated the categorization of congruent shapes (Experiment 2). We found modest evidence of a priming effect in response accuracy. We next examined whether nonword primes affected categorization of ambiguous shapes, using visual (Experiment 3) and auditory primes (Experiment 4). We found that ambiguous shapes were categorized as round (sharp) more often following the presentation of a round (sharp) nonword. This suggests that phonemes may activate related shape information which then affects the processing of shapes, and that this association emerges even when participants are not explicitly searching for it. Copyright © 2016 Cognitive Science Society, Inc.

  14. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    International Nuclear Information System (INIS)

    Beloy, K.

    2010-01-01

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  15. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  16. Characterization and design of a low-power wireless power delivery system

    Science.gov (United States)

    Falkenstein, Erez Avigdor

    There is an increased demand for wireless sensors for data gathering and transmission where running wires to power a device or changing/charging batteries is difficult. Often the data is gathered at locations that are difficult to access, that need to be covert, and/or where the sensors cannot be easily maintained. Some examples are implanted sensors for medical diagnostics and therapy, structural monitoring sensors, sensors inside hazardous manufacturing or other hazardous environments, etc. For any low power sensor that operates at a low duty cycle, and in an environment with low levels of light or vibration, RF wireless powering offers the potential for maintenance-free operation. The thesis focuses on a design methodology for low-power non-directional far-field wireless powering. The power receiver consists of one or more antennae which receive plane waves transmitted by the powering source, and deliver the RF power to a rectifying element. The resulting DC power is optimally transferred to the electronic application via a power management circuit. The powering is independent of the electronic application which can include wireless transmission of sensor data. The design and implementation of an integrated rectifier-antenna at low incident power densities (from 25--200 muW/cm2) is presented. Nonlinear source-pull measurements and harmonic balance simulations are used for finding the optimal rectifying device RF and DC impedances for efficient rectification. Experimental results show that an antenna design with a specific complex impedance reaches the highest rectification efficiency. Several examples of the design methodology will be shown. In specific, characterization of a rectifying patch antenna at frequency of 2.45GHz will be detailed, with an optimal RF impedance of 137+j149O and an optimal DC load of 365O resulting in RF to DC conversion efficiency of 63% for the rectifier alone and 56% for the total rectifying antenna.

  17. Los Alamos high-power proton linac designs

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  18. Symmetry of semi-reduced lattices.

    Science.gov (United States)

    Stróż, Kazimierz

    2015-05-01

    The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the `geometric' operations in Bravais lattices map the basis vectors into themselves, the `arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\\bb M}(p,q,r), where {\\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations

  19. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  20. Power management techniques for integrated circuit design

    CERN Document Server

    Chen, Ke-Horng

    2016-01-01

    This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. * A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management * Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes * Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience * Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors manuals, and program downloads.

  1. Power electronic modules design and manufacture

    CERN Document Server

    Sheng, William W

    2004-01-01

    IntroductionSelection ProcedureMaterialsInsulating Substrate and MetallizationBase PlateBonding MaterialPower Interconnection and TerminalEncapsulantPlastic Case and Cover Manufacturing of Power IGBT ModulesManufacturing Process Process Control/Long-Term ReliabilityManufacturing FacilitiesManufacturing Flow Charts DesignThermal ManagementCircuit PartitioningDesign Guidelines and ConsiderationsThermal Results of Different Samples

  2. IRIS Nuclear Power Plant design

    International Nuclear Information System (INIS)

    Carelli, M. D.; Cobian, J.

    2002-01-01

    IRIS(International Reactor Innovative and Secure) is a novel light water reactor with a modular, integral primary system configuration. This concept, initially developed in response to the first NERI solicitation, is now being pursued by an international consortium of 20 participants from seven countries. IRIS is designed to satisfy the four key requirements for Generation IV systems: enhanced safety, improved economics, proliferation resistance and waste minimization. Its main features are: small-to-medium power (100-335 MWe/module); long life core 5 to 10 years) without shuffling or refueling; optimized maintenance with repair shutdown intervals of a least four years; simplified compact design with the primary vessel housing steam generators, pressurizer and pumps; safety by design where accidents are positively eliminated by design rather than engineering to cope with their consequences; loss of coolant accidents of any size and loss of low accidents are eliminated as major safety concerns; estimated power generation total cost is projected to be competitive with other power options. IRIS is one of four new reactor designs currently under NRC review. Projected schedule calls for design certification by 2008 and being ready for deployment by 2001 or later. This rather short schedule is made possible by the fact that IRIS is based on proven light water technology and new technology development is not required. (Author)

  3. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  4. Discovery: Prime Numbers

    Science.gov (United States)

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  5. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  6. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  7. Influence of priming on the physiological traits of corn seed germination under drought stress

    Directory of Open Access Journals (Sweden)

    Seyyedeh Roghayyeh KHATAMI

    2015-06-01

    Full Text Available This study was performed to investigate the effect of drought stress and priming on germination of corn seeds (cultivar SC704 as a factorial experiment based on completely randomized design with three replications. Treatments were drought stress in four levels including 0,-3,-6 and -9 bar and priming as control, hydro, osmo, vitamin and hormone priming. Results showed that interaction of two factors was significant on radicle and plumule dry weight, seedling vigor and germination rate. Osmo-priming remained the radicle dry weight and seedling vigor index same to control but germination rate decreased in this treatment about 38% to control. Drought stress at any severity caused seed reservoirs were not use inefficiently. In conclusion, osmo and hormone primings were the best treatments for seed invigoration under severe drought stress.

  8. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  9. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  10. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  11. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  12. Design consideration of solar powered cars

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment, it is important to develop new technologies that reduce both energy consumption and pollution at the same time. Using solar energy is a good solution which could meet the world's energy needs. The aim of this study is to present the design process in the production of a solar powered car. Designing a solar powered car is a difficult task as there are strict requirements in term of efficiency: the car must have low drag resistance, be light-weight, and have low rolling resistance. In addition this paper presents the use of the solar powered Stirling engine technology rather than a photovoltaic conversion system for vehicle propulsion. This study presented a design process in the construction of a solar powered car and is expected to provide a new topic of research in the transportation field.

  13. Computing for Lattice QCD: new developments from the APE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Biagioni, A; De Luca, S [INFN, Sezione di Roma, Roma (Italy)

    2008-06-15

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  14. Computing for Lattice QCD: new developments from the APE experiment

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; De Luca, S.

    2008-01-01

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  15. Nucleon structure functions from lattice operator product expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-15

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  16. Nucleon structure functions from lattice operator product expansion

    International Nuclear Information System (INIS)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.

    2017-03-01

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  17. Hadronic corrections to electroweak observables from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Pientka, Grit

    2015-01-01

    For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.

  18. Proceedings of the SLAC/KEK ATF lattice workshop

    International Nuclear Information System (INIS)

    Urakawa, Junji

    1993-04-01

    The SLAC/KEK ATF Lattice Workshop was held on December 8-11, 1992 at KEK, National Laboratory for High Energy Physics. The purpose of this workshop is to critically review the ATF lattice design for any possible improvements, and also to bring SLAC colleagues up to date on recent progress at KEK. At KEK studies on intense multi-bunch beam acceleration and emittance reduction have been actively pursued, evolving into the ATF project since 1990. In 1991 we have launched a large scale reconstruction of the experimental hall. This is to build the shielded housing for the 1.54 GeV injector linac and the test damping ring. Our plan is to begin construction of the linac in March 1993. Some results from the discussions during the Workshop have been already incorporated in the revised ATF lattice design. (J.P.N.)

  19. Superficial Priming in Episodic Recognition

    Science.gov (United States)

    Dopkins, Stephen; Sargent, Jesse; Ngo, Catherine T.

    2010-01-01

    We explored the effect of superficial priming in episodic recognition and found it to be different from the effect of semantic priming in episodic recognition. Participants made recognition judgments to pairs of items, with each pair consisting of a prime item and a test item. Correct positive responses to the test item were impeded if the prime…

  20. Design study on a high brilliance lattice of the PF storage ring

    International Nuclear Information System (INIS)

    Katoh, M.; Araki, A.; Kobayashi, Y.; Hori, Y.

    1994-01-01

    A high brilliance lattice of the PF storage ring is proposed. A small beam emittance of 27 nm-rad (about one fifth of the present value) can be achieved by doubling the number of the quadrupoles in the FODO cells. This emittance reduction will result in ten times brighter synchrotron light from the existing insertion devices. The problems incidental to the low emittance lattice, the small dynamic aperture and the short Touschek lifetime, will be discussed. (author)

  1. Waveform design for wireless power transfer

    OpenAIRE

    Clerckx, B; Bayguzina, E

    2016-01-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity ...

  2. Harnessing the power of disgust: a randomized trial to reduce high-calorie food appeal through implicit priming.

    Science.gov (United States)

    Legget, Kristina T; Cornier, Marc-Andre; Rojas, Donald C; Lawful, Benjamin; Tregellas, Jason R

    2015-08-01

    In our increasingly obesogenic environment, in which high-calorie convenience foods are readily available, food choices can drastically affect weight and overall health. Learned food preferences, which are developed through repeated pairings with positively and negatively valenced stimuli, can contribute to obesity susceptibility if positive attitudes toward high-calorie foods are developed. Thus, the modification of automatic associations with food may be a viable strategy to promote healthier eating behaviors. In this study, we investigated the ability of an implicit priming (IP) intervention to alter responses to visual food cues by using an evaluative conditioning approach. The main objective was to implicitly (i.e., below conscious perception) associate disgust with high-calorie foods with the aim of reducing liking of these foods. Participants were randomly assigned to active or control IP. In active IP (n = 22), high-calorie food images were implicitly primed with negatively valenced images, and low-calorie food images were implicitly primed with positively valenced images. In control IP (n = 20), all food images were primed with neutral images of fixation crosses. Food images were rated on the desire to eat immediately before and after IP. A significant main effect of calorie (high compared with low; P habits. © 2015 American Society for Nutrition.

  3. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  4. Syntactic priming in American Sign Language.

    Science.gov (United States)

    Hall, Matthew L; Ferreira, Victor S; Mayberry, Rachel I

    2015-01-01

    Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL). Experiment 1 shows that second language (L2) signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect). Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming) operates similarly in sign and speech.

  5. Repetition Priming Magnitude Depends on Affirmative Prime Responses: A Test of Two Congruity Explanations.

    Science.gov (United States)

    Fiet, Paula; Sorensen, Linda; Mayne, Zachary; Corgiat, Damon; Woltz, Dan

    2016-01-01

    We conducted 2 experiments to evaluate the impact of positive prime responses on repetition priming effects while decoupling this impact from content congruity and specific evaluation operations. Our first experiment consisted of word-meaning comparison trials that required participants to evaluate synonyms or antonyms. A crossing of evaluation operation with semantic content allowed us to test the goal-content congruity hypothesis against the semantic congruity explanation for greater facilitation from positive response primes. Results suggested that operation-based priming is affected by goal-content congruity. A second experiment tested the observed effect of positive responses on repetition priming using mental rotation of irregular shapes, affording a test of the impact of congruity in evaluation goals and content in a nonverbal stimulus domain. Both experiments produced a pattern of results inconsistent with Schulman's (1974) semantic congruity account and instead implicated a different form of congruity that affects memory for prior operations rather than memory for semantic and episodic content.

  6. Complex architecture of primes and natural numbers.

    Science.gov (United States)

    García-Pérez, Guillermo; Serrano, M Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.

  7. A mechatronic power boosting design for piezoelectric generators

    International Nuclear Information System (INIS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-01-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation

  8. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  9. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  10. FPGA Based Low Power ROM Design Using Capacitance Scaling

    DEFF Research Database (Denmark)

    Bansal, Meenakshi; Bansal, Neha; Saini, Rishita

    2015-01-01

    An ideal capacitor will not dissipate any power, but a real capacitor wil l have some power dissipation. In this work, we are going to design capacitance scaling based low power ROM design. In order to test the compatibility of this ROM design with latest i7 Processor, we are operating this ROM w...... in I/O Power, saving of 0.2% occur in Leakage Power, there will be a saving of 11.54% occur in Total Power. This design is implemented on Virtex-5 FPGA using Xilinx ISE and Verilog....

  11. Design and fabrication of self-powered micro-harvesters rotating and vibrated micro-power systems

    CERN Document Server

    Pan, C T; Lin, Liwei; Chen, Ying-Chung

    2013-01-01

    Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with

  12. Z(prime) Phenomenology and the LHC

    International Nuclear Information System (INIS)

    Rizzo, Thomas G.

    2006-01-01

    A brief pedagogical overview of the phenomenology of Z(prime) gauge bosons is ILC in determining Z(prime) properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z(prime) nature of these new particles. We provide an overview of the Z(prime) studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z(prime)

  13. Designing control of a power system

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, A.; Nemeth, A.

    1980-01-01

    With the development of Hungary's electric power system (EES) the problems of the EROTERV Institute in designing mode regulation systems grew. These systems determine the balance between the production and demand for electric power, which supports not only the maintenance of the frequency and level of voltage in the electrical grid, but also determines the stability of the operation of the electric power system as a whole. A review is cited of the design solutions to control systems in a chronological order. Certain characteristic problems in contemporary control of operational modes of the electric power system are examined and their the trends in their future improvement are determined. The structural layout of mode control systems are cited.

  14. Transposed-letter priming of prelexical orthographic representations.

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2009-01-01

    A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian Reader theory of masked priming (D. Norris & S. Kinoshita, 2008), which explains why nonwords do not show priming in lexical decision but why they do in the cross-case same-different task. This analysis is followed by 3 experiments that show that priming in this task is not based on low-level perceptual similarity between the prime and target, or on phonology, to make the case that priming is based on prelexical orthographic representation. The authors then use this task to demonstrate equivalent TL priming effects for nonwords and words. The results are interpreted as the first reliable evidence based on the masked priming procedure that letter position is not coded absolutely within the prelexical, orthographic representation. The implications of the results for current letter position coding schemes are discussed.

  15. Wrath of God: religious primes and punishment.

    Science.gov (United States)

    McKay, Ryan; Efferson, Charles; Whitehouse, Harvey; Fehr, Ernst

    2011-06-22

    Recent evidence indicates that priming participants with religious concepts promotes prosocial sharing behaviour. In the present study, we investigated whether religious priming also promotes the costly punishment of unfair behaviour. A total of 304 participants played a punishment game. Before the punishment stage began, participants were subliminally primed with religion primes, secular punishment primes or control primes. We found that religious primes strongly increased the costly punishment of unfair behaviours for a subset of our participants--those who had previously donated to a religious organization. We discuss two proximate mechanisms potentially underpinning this effect. The first is a 'supernatural watcher' mechanism, whereby religious participants punish unfair behaviours when primed because they sense that not doing so will enrage or disappoint an observing supernatural agent. The second is a 'behavioural priming' mechanism, whereby religious primes activate cultural norms pertaining to fairness and its enforcement and occasion behaviour consistent with those norms. We conclude that our results are consistent with dual inheritance proposals about religion and cooperation, whereby religions harness the byproducts of genetically inherited cognitive mechanisms in ways that enhance the survival prospects of their adherents.

  16. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  17. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  18. Inexpensive chirality on the lattice

    International Nuclear Information System (INIS)

    Kamleh, W.; Williams, A.G.; Adams, D.

    2000-01-01

    Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic

  19. Power and death: Mortality salience increases power seeking while feeling powerful reduces death anxiety.

    Science.gov (United States)

    Belmi, Peter; Pfeffer, Jeffrey

    2016-05-01

    According to Terror Management Theory, people respond to reminders of mortality by seeking psychological security and bolstering their self-esteem. Because previous research suggests that having power can provide individuals a sense of security and self-worth, we hypothesize that mortality salience leads to an increased motivation to acquire power, especially among men. Study 1 found that men (but not women) who wrote about their death reported more interest in acquiring power. Study 2A and Study 2B demonstrated that when primed with reminders of death, men (but not women) reported behaving more dominantly during the subsequent week, while both men and women reported behaving more prosocially during that week. Thus, mortality salience prompts people to respond in ways that help them manage their death anxiety but in ways consistent with normative gender expectations. Furthermore, Studies 3-5 showed that feeling powerful reduces anxiety when mortality is salient. Specifically, we found that when primed to feel more powerful, both men and women experienced less mortality anxiety. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    Science.gov (United States)

    Lahwal, Ali Sadek

    Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the

  1. Design characteristics of EU-APR1400 on-site power system

    International Nuclear Information System (INIS)

    Kim, D.H.; Kim, Y.S.; Kim, Y.S.

    2014-01-01

    In the global nuclear market, US and European design requirements have been largely used to develop the design of nuclear power plants(NPPs). The APR1400 design was developed on the basis of US regulatory guide and EPRI utility requirements document(URD). In order to enlarge the export market of APR1400, KHNP (Korea Hydro & Nuclear Power Co., Ltd) has developed the EU-APR1400 design which complies with the European nuclear design requirements. In this paper, the design characteristics of EU-APR1400 on-site power system developed according to the European design requirements of electrical power system are described. The European main design requirements of electrical power system involve 50 Hz rated frequency, 400/110 kV grid voltage, the application of the diversity and the redundancy, and so on. The EU-APR1400 on-site power system has been developed on the basis of these requirements. The representative designs include the redundancy, diversity, independence design, the emergency power supply design, the design for providing electrical power to the dedicated severe accident systems, and the design for European grid requirements. (author)

  2. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  3. Recognizing Plant Defense Priming

    NARCIS (Netherlands)

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in

  4. Recognizing plant defense priming

    NARCIS (Netherlands)

    Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; Van Dam, N.M.; Conrath, U.

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in

  5. Syntactic priming in American Sign Language.

    Directory of Open Access Journals (Sweden)

    Matthew L Hall

    Full Text Available Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL. Experiment 1 shows that second language (L2 signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect. Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming operates similarly in sign and speech.

  6. Recursive evaluation of space-time lattice Green's functions

    International Nuclear Information System (INIS)

    De Hon, Bastiaan P; Arnold, John M

    2012-01-01

    Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly

  7. Multisensory Flavor Priming

    DEFF Research Database (Denmark)

    Dijksterhuis, Garmt Bernard

    2016-01-01

    with a taxonomy of different priming situations. In food-related applications of flavor, both bottom-up (sensory) as well as top-down (expectations) processes are at play. Most of the complex interactions that this leads to take place outside the awareness of the perceiving subject. A model is presented where...... many, past and current, aspects (sensory, surroundings, social, somatic, sentimental) of a (flavor) perception, together result in the perception of a flavor, its liking. or its choice. This model borrows on ideas from priming, situated/embodied cognition, and (food-related) perception.......Flavor is multisensory; several interacting sensory systems-taste, smell, and mouthfeel-together comprise "flavor," making it a cognitively constructed percept rather than a bottom-up sensory one. In this chapter, some of the complications this entails for flavor priming are introduced, along...

  8. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  9. Seismic design for Monju FBR power plant

    International Nuclear Information System (INIS)

    1982-01-01

    This technical report introduces the basic concept on the aseismatic design of the FBR ''Monju'' power station, of which the construction in Tsuruga is planned by the Power Reactor and Nuclear Fuel Development Corp. The safety design of Monju has been performed according to ''The concept of evaluating the safety of fast breeder reactors'', and the thought concerning the aseismatic design also is written in it. According to it, ''The guide for the examination of aseismatic design regarding power reactor facilities'' should be referred to, and the classification according to the importance in aseismatic design must be made, taking the features in the design of liquid metal-cooled FBRs fully in consideration. In the aseismatic design of Monju performed according to these basic concept, the following two points were examined. In the aseismatic design of the equipment and piping, the difference of construction from LWRs such as low pressure, thin walled and high temperature construction is taken in consideration. The classification according to the aseismatic importance of the system and equipment is made on the basis of the features in the design of Monju. The classification according to aseismatic importance, the method of calculating earthquake power, the combination of loads and the allowable limit, and the aseismatic construction of the main facilities are reported. (Kako, I.)

  10. Improved methods for the study of hadronic physics from lattice QCD

    International Nuclear Information System (INIS)

    Orginos, Kostas; Richards, David

    2015-01-01

    The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD. (paper)

  11. Improved methods for the study of hadronic physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-02-05

    The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.

  12. Semantic priming, not repetition priming, is to blame for false hearing.

    Science.gov (United States)

    Rogers, Chad S

    2017-08-01

    Contextual and sensory information are combined in speech perception. Conflict between the two can lead to false hearing, defined as a high-confidence misidentification of a spoken word. Rogers, Jacoby, and Sommers (Psychology and Aging, 27(1), 33-45, 2012) found that older adults are more susceptible to false hearing than are young adults, using a combination of semantic priming and repetition priming to create context. In this study, the type of context (repetition vs. sematic priming) responsible for false hearing was examined. Older and young adult participants read and listened to a list of paired associates (e.g., ROW-BOAT) and were told to remember the pairs for a later memory test. Following the memory test, participants identified words masked in noise that were preceded by a cue word in the clear. Targets were semantically associated to the cue (e.g., ROW-BOAT), unrelated to the cue (e.g., JAW-PASS), or phonologically related to a semantic associate of the cue (e.g., ROW-GOAT). How often each cue word and its paired associate were presented prior to the memory test was manipulated (0, 3, or 5 times) to test effects of repetition priming. Results showed repetitions had no effect on rates of context-based listening or false hearing. However, repetition did significantly increase sensory information as a basis for metacognitive judgments in young and older adults. This pattern suggests that semantic priming dominates as the basis for false hearing and highlights context and sensory information operating as qualitatively different bases for listening and metacognition.

  13. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  14. Modified Multi Prime RSA Cryptosystem

    Science.gov (United States)

    Ghazali Kamardan, M.; Aminudin, N.; Che-Him, Norziha; Sufahani, Suliadi; Khalid, Kamil; Roslan, Rozaini

    2018-04-01

    RSA [1] is one of the mostly used cryptosystem in securing data and information. Though, it has been recently discovered that RSA has some weaknesses and in advance technology, RSA is believed to be inefficient especially when it comes to decryption. Thus, a new algorithm called Multi prime RSA, an extended version of the standard RSA is studied. Then, a modification is made to the Multi prime RSA where another keys is shared secretly between the receiver and the sender to increase the securerity. As in RSA, the methodology used for modified Multi-prime RSA also consists of three phases; 1. Key Generation in which the secret and public keys are generated and published. In this phase, the secrecy is improved by adding more prime numbers and addition of secret keys. 2. Encryption of the message using the public and secret keys given. 3. Decryption of the secret message using the secret key generated. For the decryption phase, a method called Chinese Remainder Theorem is used which helps to fasten the computation. Since Multi prime RSA use more than two prime numbers, the algorithm is more efficient and secure when compared to the standard RSA. Furthermore, in modified Multi prime RSA another secret key is introduced to increase the obstacle to the attacker. Therefore, it is strongly believed that this new algorithm is better and can be an alternative to the RSA.

  15. The pros and cons of masked priming.

    Science.gov (United States)

    Forster, K I

    1998-03-01

    Masked priming paradigms offer the promise of tapping automatic, strategy-free lexical processing, as evidenced by the lack of expectancy disconfirmation effects, and proportionality effects in semantic priming experiments. But several recent findings suggest the effects may be prelexical. These findings concern nonword priming effects in lexical decision and naming, the effects of mixed-case presentation on nonword priming, and the dependence of priming on the nature of the distractors in lexical decision, suggesting possible strategy effects. The theory underlying each of these effects is discussed, and alternative explanations are developed that do not preclude a lexical basis for masked priming effects.

  16. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d-dimensional regular lattices.

    Science.gov (United States)

    Dias, W S; Bertrand, D; Lyra, M L

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.

  17. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d -dimensional regular lattices

    Science.gov (United States)

    Dias, W. S.; Bertrand, D.; Lyra, M. L.

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .

  18. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  19. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  20. A transitionless lattice for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Ng, K.Y.; Trbojevic, D.; Lee, S.Y.

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the γ t is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs

  1. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  2. Lattice fermions

    Energy Technology Data Exchange (ETDEWEB)

    Randjbar-Daemi, S

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.

  3. Lattice fermions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs

  4. On the characterization and software implementation of general protein lattice models.

    Directory of Open Access Journals (Sweden)

    Alessio Bechini

    Full Text Available models of proteins have been widely used as a practical means to computationally investigate general properties of the system. In lattice models any sterically feasible conformation is represented as a self-avoiding walk on a lattice, and residue types are limited in number. So far, only two- or three-dimensional lattices have been used. The inspection of the neighborhood of alpha carbons in the core of real proteins reveals that also lattices with higher coordination numbers, possibly in higher dimensional spaces, can be adopted. In this paper, a new general parametric lattice model for simplified protein conformations is proposed and investigated. It is shown how the supporting software can be consistently designed to let algorithms that operate on protein structures be implemented in a lattice-agnostic way. The necessary theoretical foundations are developed and organically presented, pinpointing the role of the concept of main directions in lattice-agnostic model handling. Subsequently, the model features across dimensions and lattice types are explored in tests performed on benchmark protein sequences, using a Python implementation. Simulations give insights on the use of square and triangular lattices in a range of dimensions. The trend of potential minimum for sequences of different lengths, varying the lattice dimension, is uncovered. Moreover, an extensive quantitative characterization of the usage of the so-called "move types" is reported for the first time. The proposed general framework for the development of lattice models is simple yet complete, and an object-oriented architecture can be proficiently employed for the supporting software, by designing ad-hoc classes. The proposed framework represents a new general viewpoint that potentially subsumes a number of solutions previously studied. The adoption of the described model pushes to look at protein structure issues from a more general and essential perspective, making

  5. Effect of Seed Priming on Germination Properties and Seedling Establishment of Cowpea (Vigna sinensis

    Directory of Open Access Journals (Sweden)

    Hamdollah ESKANDARI

    2011-11-01

    Full Text Available Early emergence and stand establishment of cowpea are considered to be the most important yield-contributing factors in rainfed areas. Laboratory tests and afield experiment were conducted in RCB design in 2011 at a research farm in Ramhormoz, Iran, to evaluate the effects of hydropriming (8, 12 and 16 hours duration and halo priming (solutions of 1.5% KNO3 and 0.8% NaCl on seedling vigor and field establishment of cowpea. Analysis of variance of laboratory data showed that hydropriming significantly improved germination rate, seed vigor index, and seedling dry weights. However, germination percentage for seeds primed with KNO3 and non-primed seeds were statistically similar, but higher than those for NaCl priming. Overall, hydropriming treatment was comparatively superior in the laboratory tests. Invigoration of cowpea seeds by hydropriming and NaCl priming resulted in higher seedling emergence and establishment in the field, compared to control and seed priming with KNO3. Seedling emergence rate was also enhanced by priming seeds with water, suggesting that hydropriming is a simple, low cost and environmentally friendly technique for improving seed and seedling vigor of cowpea.

  6. Experimental study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Gulhane, N.P.; Landge, A.D.; Shukla, D.S.; Kale, S.S.

    2015-01-01

    Highlights: • Fabrication, erection of experimental set up and carrying out experimentation with self priming venturi scrubber. • Predicting solubility of iodine in water and its pH dependency. • Increasing pH of water increases iodine removal efficiency. • Maximum iodine removal efficiency is obtained at 10 pH of water using sodium thiosulphate. - Abstract: The objective of present experimental study is to examine the iodine removal efficiency of a self-priming venturi scrubber for submerged operating condition. The venturi scrubber is used in Containment Filtered Venting System of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. The experiment consists of mixing the iodine vapours with the air using suction venturi and pressure cooker system. The purpose of iodine mixing with air is to examine scrubbing performance of the designed venturi scrubber with water as scrubbing liquid. The performance parameters of venturi scrubber are expressed mainly in terms of pressure drop and iodine removal efficiency. The iodine removal efficiency of venturi scrubber is estimated for a series of two experiments by measuring the quantity of iodine in water from iodometric titration with four distinct pH of water. It has been experimentally observed that iodine removal efficiency is improved by using higher pH value of scrubbing liquid since solubility of iodine gets improved at higher pH

  7. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  8. Priming Ability Emotional Intelligence

    Science.gov (United States)

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  9. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  10. "Cloud" functions and templates of engineering calculations for nuclear power plants

    Science.gov (United States)

    Ochkov, V. F.; Orlov, K. A.; Ko, Chzho Ko

    2014-10-01

    The article deals with an important problem of setting up computer-aided design calculations of various circuit configurations and power equipment carried out using the templates and standard computer programs available in the Internet. Information about the developed Internet-based technology for carrying out such calculations using the templates accessible in the Mathcad Prime software package is given. The technology is considered taking as an example the solution of two problems relating to the field of nuclear power engineering.

  11. Design of 120 MW beam power electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Dong Dong

    2005-01-01

    An electron gun was designed and the beam optics for a China-made 50 MW klystron was simulated. The electron gun ceramic cylinder was designed and optimized. The China-made cathode was replaced with an imported one to lessen evaporation and arcing. The high voltage (320 kV) of the cathode was increased to meet the klystron output power demand and a low electric field strength (22.1 kV/mm) electron gun was designed to avoid the high power operation which damaged the ceramic cylinder. The klystron output power was increased and life span extended. (authors)

  12. Prime time news: the influence of primed positive and negative emotion on susceptibility to false memories.

    Science.gov (United States)

    Porter, Stephen; ten Brinke, Leanne; Riley, Sean N; Baker, Alysha

    2014-01-01

    We examined the relation between emotion and susceptibility to misinformation using a novel paradigm, the ambiguous stimuli affective priming (ASAP) paradigm. Participants (N = 88) viewed ambiguous neutral images primed either at encoding or retrieval to be interpreted as either highly positive or negative (or neutral/not primed). After viewing the images, they either were asked misleading or non-leading questions. Following a delay, memory accuracy for the original images was assessed. Results indicated that any emotional priming at encoding led to a higher susceptibility to misinformation relative to priming at recall. In particular, inducing a negative interpretation of the image at encoding led to an increased susceptibility of false memories for major misinformation (an entire object not actually present in the scene). In contrast, this pattern was reversed when priming was used at recall; a negative reinterpretation of the image decreased memory distortion relative to unprimed images. These findings suggest that, with precise experimental control, the experience of emotion at event encoding, in particular, is implicated in false memory susceptibility.

  13. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with 50microm core and 420microm cladding, we have achieved 70% optical-to-optical efficiency at 1018nm. The

  14. Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation

    International Nuclear Information System (INIS)

    Yang Hongxiang; Xu Xixiang; Sun Yepeng; Ding Haiyong

    2006-01-01

    Starting from a discrete isospectral problem, integrable positive and negative relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies are proven to have discrete zero-curvature representations associated with a discrete spectral problem, and the positive and negative lattice hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The integrable positive and negative coupling systems of the resulting hierarchies are constructed through enlarging Lax pairs. In addition, with the help of gauge transformations of spectral problems, a Darboux transformation is established for the relativistic Toda type lattice. As an application, an exact solution is explicitly presented

  15. Space-Valence Priming with Subliminal and Supraliminal Words

    Directory of Open Access Journals (Sweden)

    Ulrich eAnsorge

    2013-02-01

    Full Text Available To date it is unclear whether (1 awareness-independent non-evaluative semantic processes influence affective semantics and whether (2 awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked primes and visible targets in a space-valence across-category congruence effect. In line with (1, we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1: Classifications were faster with a congruent prime (e.g., the prime ‘up’ before the target ‘happy’ than with an incongruent prime (e.g., the prime ‘up’ before the target ‘sad’. In contrast to (2, no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2. Control conditions showed that standard masked response-priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1 that awareness-independent non-evaluative semantic priming influences valence judgments.

  16. Status of the Fermilab lattice supercomputer project

    International Nuclear Information System (INIS)

    Mackenzie, P.; Eichten, E.; Hockney, G.

    1988-10-01

    Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs

  17. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  18. Distributed and hierarchical control techniques for large-scale power plant systems

    International Nuclear Information System (INIS)

    Raju, G.V.S.; Kisner, R.A.

    1985-08-01

    In large-scale systems, integrated and coordinated control functions are required to maximize plant availability, to allow maneuverability through various power levels, and to meet externally imposed regulatory limitations. Nuclear power plants are large-scale systems. Prime subsystems are those that contribute directly to the behavior of the plant's ultimate output. The prime subsystems in a nuclear power plant include reactor, primary and intermediate heat transport, steam generator, turbine generator, and feedwater system. This paper describes and discusses the continuous-variable control system developed to supervise prime plant subsystems for optimal control and coordination

  19. The Andrea Yates Effect: Priming Mental Illness Stereotypes Through Exemplification of Postpartum Disorders.

    Science.gov (United States)

    Holman, Lynette; McKeever, Robert

    2017-10-01

    In a randomized between-subjects design, participants (N = 80) were assigned to one of four conditions, 2 (pregnant, not pregnant) × 2 (extreme prime, moderate prime). It was hypothesized that primes involving moderate mental illness would be positively associated with increased perceived risk of developing postpartum depression. Hayes and Preacher's bootstrapping procedure was used to test the direct, indirect, and conditional indirect effects related to the hypothesized model. In addition, further analyses evaluated whether implicitly activated goals (to be healthy or to be a good mother) were positively associated with increased perceptions of risk and engagement of downstream avoidance behavioral intentions. Findings show that for pregnant participants, the effect of the prime condition on perceived personal risk of developing postpartum depression was mediated by perceptions about the target character's sanity. However, activated "healthy" and "good mother" goals are not influencing behavioral intentions.

  20. Design of photovoltaic central power station concentrator array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  1. Lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1982-01-01

    After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)

  2. Building Numbers from Primes

    Science.gov (United States)

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  3. Recognizing Plant Defense Priming.

    Science.gov (United States)

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-10-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The structure factor of primes

    Science.gov (United States)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  5. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    International Nuclear Information System (INIS)

    Luz, Fernando H. P.; Mendes, Tereza

    2010-01-01

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  6. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  7. Interconnected power systems

    International Nuclear Information System (INIS)

    Fassina, E.

    2001-01-01

    The import of electric power from foreign countries at profitable prices is today a determinant factor to prime the competition in a national free trade. It is important to define the power transmission capacity and economic regulations for import forms in 2001 [it

  8. Determination of the linear aperture of the SSC [Superconducting Supercollider] clustered lattice used for the conceptual design report

    International Nuclear Information System (INIS)

    Dell, G.F.

    1986-01-01

    A study is made of the linear aperture for the clustered lattice used for the SSC Conceptual Design Report. Random multipole errors are included in all magnetic elements including the insertion dipoles and quadrupoles. Based on the concept of smear, the linear aperture is equal to the dynamic aperture in the range -0.1 ≤ ΔP/P ≤ 0.03%. Strong coupling for ΔP/P > 0% produces large smears. A variation of the smear parameter that is insensitive to coupling is proposed. A comparison is made with results reported in the SSC Conceptual Design Report

  9. Transitionless lattices for LAMPF II

    International Nuclear Information System (INIS)

    Franczak, B.J.

    1984-10-01

    Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties

  10. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  11. PrimeFaces beginner's guide

    CERN Document Server

    Reddy, K Siva Prasad

    2013-01-01

    A guide for beginner's with step-by-step instructions and an easy-to-follow approach.PrimeFaces Beginners Guide is a simple and effective guide for beginners, wanting to learn and implement PrimeFaces in their JSF-based applications. Some basic JSF and jQuery skills are required before you start working through the book.

  12. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)

  13. Development of design technology on thermal-hydraulic performance in tight-lattice rod bundle. III - Numerical estimation on rod bowing effect based on X-ray CT data

    International Nuclear Information System (INIS)

    Misawa, Takeharu; Ohnuki, Akira; Katsuyama, Kozo; Nagamine, Tsuyoshi; Nakamura, Yasuo; Akimoto, Hajime; Mitsutake, Toru; Misawa, Susumu

    2007-01-01

    Design studies of the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) are being carried out at the Japan Atomic Energy Agency (JAEA) as one candidate for the future reactors. In actual core design, it is precondition to prevent fuel rods contact due to fuel rod bowing. However, the FLWR cores have nonconventional characteristics such as a hexagonal tight lattice arrangement and a high enrichment fuel loading. Therefore, as conservative evaluation, it is important to investigate influence of fuel rod bowing upon the boiling transition. In the JAEA, a 37-rod bundle experiments (base case test section (1.3mm gap width), gap width effect test section (1.0mm gap width), and rod bowing test section) were performed in order to investigate the thermal hydraulic characteristics in the tight lattice bundle. In this paper, the rod bowing effect test is paid attention. It is suspected that the actual fuel rod positions in the rod bowing test section may be different from the design-based positions. Even a slight displacement from the design-based position of fuel rod may occur variation of flow area, and give influence upon the thermal hydraulic characteristics in the rod bundle. Therefore, if the critical power in the rod bundle is evaluated by an analytical approach, the analysis based on more correct input can be performed by using actual fuel rod position data. In this study, the rod positions in the rod bowing test section were measured using the high energy X-ray computer tomography (Xray-CT). Based on the measured rod positions data, the subchannel analysis by the NASCA code was performed, in order to investigate applicability of the NASCA code to BT estimation of the rod bowing test section, and influence of displacement from design-based rod position upon BT estimation by the NASCA code. The predicted critical powers are agreement with those obtained by the experiment. The analysis based on the design-based rod positions is also performed, and the result is

  14. Design of The High Efficiency Power Factor Correction Circuit for Power Supply

    Directory of Open Access Journals (Sweden)

    Atiye Hülya OBDAN

    2017-12-01

    Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented

  15. Semantic priming without association: a meta-analytic review.

    Science.gov (United States)

    Lucas, M

    2000-12-01

    A meta-analysis of 26 studies indicated that automatic semantic priming can occur without association. Priming did not vary substantially with differences in variables that affect automatic versus strategic processing, such as time spent processing the prime and target, relationship proportion, and task (except that average effects were smaller in the naming task). Although category coordinates were investigated in the majority of studies, synonyms, antonyms, and script relations also demonstrated priming; functional relations showed greater priming, and essential and perceptual relations showed less. The average effect size for semantic priming was smaller than that for associative priming, suggesting that there is an "associative boost" from adding an associative relationship to a semantic one. The implications of these findings for the modularity thesis and for models of semantic priming are discussed.

  16. Neutronic calculations of hexagonal lattice nuclear reactors: Modelling of the CAREM-25 reactor

    International Nuclear Information System (INIS)

    Pacio, Julio Cesar

    2008-01-01

    This work was carried out in the frame of the Cnea CAREM-25 project (Central Argentina de Elementos Modulares).This project involves the development and construction of an argentinian design nuclear reactor for producing electricity. It's a PWR type (light water moderated and enriched U02 fueled) integrated reactor in an hexagonal lattice.The total power of this prototype is 100 MW thermal. In this frame, the main objective of this work is to consolidate and validate a neutronic line of calculus which can be applied to the CAREM-25 core.At a first analysis at cell level, the different fuel elements were modeled with the Dragon code, obtaining homogenised and condensed cross sections.Then a core level analysis with the Puma code was performed at full power condition and room temperature. A comparison of the obtained results is needed.For this reason, a Monte Carlo analysis (at room temperature) was performed.Also a validation of the Dragon code was carried out on the base of experimental data of WWER type lattices (similars to CAREM).The confidence on the results is then granted and their uncertainties were quantified.The Dragon-Puma line of calculus is then established and the main objective of this work is achieved. A full neutronic analysis should be followed by thermohydraulics calculations in an iterative procedure, and it would be the objective of future works.Finally, a burnup analysis was performed, at cell and core level.The design condition for extraction burnup and fuel cycle duration were verified. [es

  17. A novel optical beam splitter based on photonic crystal with hybrid lattices

    International Nuclear Information System (INIS)

    Zhu Qing-Yi; Fu Yong-Qi; Zhang Zhi-Min; Hu De-Qing

    2012-01-01

    A novel optical beam splitter constructed on the basis of photonic crystal (PC) with hybrid lattices is proposed in this paper. The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams. Triangular-lattice graded-index PCs are combined for focusing each branch. Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design. The waveguide is unnecessary in the design. Thus the device has functions of both splitting and focusing beams. Size of the divided beam at site of full-width at half-maximum is of the order of λ/2. The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. The nature of turbulence in a triangular lattice gas automaton

    Science.gov (United States)

    Duong-Van, Minh; Feit, M. D.; Keller, P.; Pound, M.

    1986-12-01

    Power spectra calculated from the coarse-graining of a simple lattice gas automaton, and those of time averaging other stochastic times series that we have investigated, have exponents in the range -1.6 to -2, consistent with observation of fully developed turbulence. This power spectrum is a natural consequence of coarse-graining; the exponent -2 represents the continuum limit.

  19. Universality and the approach to the continuum limit in lattice gauge theory

    CERN Document Server

    De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U

    1995-01-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  20. Comparing different kinds of words and word-word relations to test an habituation model of priming.

    Science.gov (United States)

    Rieth, Cory A; Huber, David E

    2017-06-01

    Huber and O'Reilly (2003) proposed that neural habituation exists to solve a temporal parsing problem, minimizing blending between one word and the next when words are visually presented in rapid succession. They developed a neural dynamics habituation model, explaining the finding that short duration primes produce positive priming whereas long duration primes produce negative repetition priming. The model contains three layers of processing, including a visual input layer, an orthographic layer, and a lexical-semantic layer. The predicted effect of prime duration depends both on this assumed representational hierarchy and the assumption that synaptic depression underlies habituation. The current study tested these assumptions by comparing different kinds of words (e.g., words versus non-words) and different kinds of word-word relations (e.g., associative versus repetition). For each experiment, the predictions of the original model were compared to an alternative model with different representational assumptions. Experiment 1 confirmed the prediction that non-words and inverted words require longer prime durations to eliminate positive repetition priming (i.e., a slower transition from positive to negative priming). Experiment 2 confirmed the prediction that associative priming increases and then decreases with increasing prime duration, but remains positive even with long duration primes. Experiment 3 replicated the effects of repetition and associative priming using a within-subjects design and combined these effects by examining target words that were expected to repeat (e.g., viewing the target word 'BACK' after the prime phrase 'back to'). These results support the originally assumed representational hierarchy and more generally the role of habituation in temporal parsing and priming. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Virtual environments for nuclear power plant design

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-01-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP)

  2. Area of Lattice Polygons

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  3. Evidence for lattice-polarization-enhanced field effects at the SrTiO3-based heterointerface

    DEFF Research Database (Denmark)

    Li, Y.; R. Zhang, H.; Lei, Y.

    2016-01-01

    Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensionalelectron liquid between two insulating oxides. For the LaAlO3/SrTiO3 (LAO/STO) interface, suchgating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneousappl......Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensionalelectron liquid between two insulating oxides. For the LaAlO3/SrTiO3 (LAO/STO) interface, suchgating effect could be further enhanced by a strong lattice polarization of STO caused...... expansion of the out-of-plane lattice of STO. Photo excitation affects the polarizationprocess by accelerating the field-induced lattice expansion. The present work demonstrates the greatpotential of combined stimuli in exploring emergent phenomenon at complex oxide interfaces....

  4. Conceptual design of autonomous operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Endou, A.; Saiki, A.; Miki, T.; Himeno, Y.

    1993-01-01

    Conceptual design of an autonomous operation system for nuclear power plants has been carried out. Prime objective is to grade up operation reliability by eliminating human factors and enhancing control capabilities. For this objective, operators' role and traditional controllers are replaced with artificial intelligence (AI). Norms of autonomy are defined as (a) to maintain its own basic functions, (b) to protect oneself from catastrophic events, (c) to reorganize oneself in case of its partial failure, (d) to harmonize with the environment, and (e) to improve its performance by itself. For the present, a great emphasis is put on realizing humanlike knowledge-based decision-making process by AI in accordance with the norms (a) and (c). To do this, the authors take a model-based approach and it is intended to make modeling of a problem-solving process from multiple viewpoints and structurization of knowledge used in the process. A hierarchical distributed cooperative system configuration is adopted to allow to dynamically reorganize system functions and it is realized by an object-oriented multi-agent system. Plural agents based on different methodology from each other are applied to individual function or methodology diversity is assured to prevent loss of system functions by common cause failure and to reorganize integrant agents. A prototype autonomous operation system is now under development. (orig.)

  5. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem

    International Nuclear Information System (INIS)

    Li Xinyue; Xu Xixiang; Zhao Qiulan

    2008-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice models are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws of the positive hierarchy, then, the integrable coupling systems of the positive hierarchy are derived from enlarging Lax pair

  6. The impact of depressed mood, working memory capacity, and priming on delay discounting.

    Science.gov (United States)

    Szuhany, Kristin L; MacKenzie, Danny; Otto, Michael W

    2018-09-01

    The impaired ability to delay rewards, delay discounting (DD), is associated with several problematic conditions in which impulsive decision-making derails long-term goals. Working memory (WM), the ability to actively store and manipulate information, is associated with DD. The purpose of this study was to examine the effect of cognitive priming on DD and to identify moderation of this effect dependent on degree of WM capacity (WMC) and depressed mood. A WM task (n-back) was used as a cognitive prime before assessment of DD (Monetary Choice Questionnaire) and was compared to a similar prime from an inhibition task in a factorial design in 183 community participants. All participants completed a DD task and assessment of depressive symptoms (Beck Depression Inventory-II). Priming effects were evaluated relative to WMC of participants. Higher WMC and lower depression scores were associated with greater relative preference for larger, delayed rewards. The effects of a WM prime were moderated by WMC; benefits of the prime were only evident for individuals with lower WMC. No effects were found for an alternative inhibition task. Limitations included depression scores mainly in subclinical range, use of hypothetical instead of real rewards in the DD task, and no examination of the time course of effects. This study provides support for the effectiveness of a brief WM prime in enhancing ability to delay rewards. Priming may be a useful adjunctive intervention for individuals with WM dysfunction or conditions in which impulsive decision-making may derail long-term goals. Copyright © 2018. Published by Elsevier Ltd.

  7. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    Science.gov (United States)

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  8. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2018-05-01

    Full Text Available Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG time frequency (TF analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  9. Nuclear power plant equipment design and construction rules

    International Nuclear Information System (INIS)

    Boiron, P.

    1983-03-01

    Presentation of the AFCEN (French association for nuclear power plant equipment design and construction rules) working, of its edition activity and of somes of its edited documents such as RCC-C (design and construction rules for PWR power plant fuel assemblies) and RCC-E (design and construction rules for nuclear facility electrical equipments) [fr

  10. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  11. New design procedure development of future reactor critical power estimation. (1) Practical design-by-analysis method for BWR critical power design correlation

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Mitsutake, Toru

    2007-01-01

    For present BWR fuels, the full mock-up thermal-hydraulic test, such as the critical power measurement test, pressure drop measurement test and so on, has been needed. However, the full mock-up test required the high costs and large-scale test facility. At present, there are only a few test facilities to perform the full mock-up thermal-hydraulic test in the world. Moreover, for future BWR, the bundle size tends to be larger, because of reducing the plant construction costs and minimizing the routine check period. For instance, AB1600, improved ABWR, was proposed from Toshiba, whose bundle size was 1.2 times larger than the conventional BWR fuel size. It is too expensive and far from realistic to perform the full mock-up thermal-hydraulic test for such a large size fuel bundle. The new design procedure is required to realize the large scale bundle design development, especially for the future reactor. Therefore, the new design procedure, Practical Design-by-Analysis (PDBA) method, has been developed. This new procedure consists of the partial mock-up test and numerical analysis. At present, the subchannel analysis method based on three-fluid two-phase flow model only is a realistic choice. Firstly, the partial mock-up test is performed, for instance, the 1/4 partial mock-up bundle. Then, the first-step critical power correlation coefficients are evaluated with the measured data. The input data, such as the spacer effect model coefficient, on the subchannel analysis are also estimated with the data. Next, the radial power effect on the critical power of the full-bundle size was estimated with the subchannel analysis. Finally, the critical power correlation is modified by the subchannel analysis results. In the present study, the critical power correlation of the conventional 8x8 BWR fuel was developed with the PDBA method by 4x4 partial mock-up tests and the subchannel analysis code. The accuracy of the estimated critical power was 3.8%. The several themes remain to

  12. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  13. Structural priming, action planning, and grammar.

    Science.gov (United States)

    MacDonald, Maryellen C; Weiss, Daniel J

    2017-01-01

    Structural priming is poorly understood and cannot inform accounts of grammar for two reasons. First, those who view performance as grammar + processing will always be able to attribute psycholinguistic data to processing rather than grammar. Second, structural priming may be simply an example of hysteresis effects in general action planning. If so, then priming offers no special insight into grammar.

  14. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  15. Social priming increases nonverbal expressive behaviors in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jonathan Del-Monte

    Full Text Available Semantic priming tasks are classically used to influence and implicitly promote target behaviors. Recently, several studies have demonstrated that prosocial semantic priming modulated feelings of social affiliation. The main aim of this study was to determine whether inducing feelings of social affiliation using priming tasks could modulate nonverbal social behaviors in schizophrenia. We used the Scrambled Sentence Task to prime schizophrenia patients according to three priming group conditions: pro-social, non-social or anti-social. Forty-five schizophrenia patients, diagnosed according to DSM-IV-TR, were randomly assigned to one of the three priming groups of 15 participants. We evaluated nonverbal social behaviors using the Motor-Affective subscale of the Motor-Affective-Social-Scale. Results showed that schizophrenia patients with pro-social priming had significantly more nonverbal behaviors than schizophrenia patients with anti-social and non-social priming conditions. Schizophrenia patient behaviors are affected by social priming. Our results have several clinical implications for the rehabilitation of social skills impairments frequently encountered among individuals with schizophrenia.

  16. Power electronics basics operating principles, design, formulas, and applications

    CERN Document Server

    Rozanov, Yuriy; Chaplygin, Evgeny; Voronin, Pavel

    2015-01-01

    Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive components of semiconductor power switchesCovers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processesAddresses pulse-width modulation, power quality control, and multilevel, modular, and multicell

  17. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  18. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  19. New designs of medium power WWER reactor plants

    International Nuclear Information System (INIS)

    Ryzhov, S.B.; Mokhov, V.A.; Nikitenko, M.P.; Chetverikov, A.E.; Veselov, D.O.; Shchekin, I.G.; Petrov, V.V.

    2010-01-01

    The task of constructing NPPs as the objects of regional power industry is included into the Federal Target Program on nuclear power technologies of new generation for the period till 2020. Such NPPs are considered as perspective sources of energy for solution of the problems concerning provision of electric energy, household and industrial heat to the regions with limited capabilities of the power grid. OKB 'GIDROPRESS' present the conceptual study of RP design for the Unit of 600 MW (el.) power, taking into account their long-term experience in the field of development and operation of WWER reactor plants. Practical implementation of WWER-600 and WWER-300 RP designs seems to be feasible: practice in manufacturing the main equipment is available; cooperation of design, scientific organizations and manufacturers of equipment; is established; basic design solutions for equipment are of reference character

  20. DIII-D power supply, design, and development

    International Nuclear Information System (INIS)

    Nerem, A.

    1995-02-01

    An overview of the DIII-D power supply system with information details concerning the configuration, power ratings, acquisition costs, and cost scaling relevant to the design of ITER and other tokamaks is presented. The power supplies for the DIII-D tokamak were installed and commissioned during the late 1970's and the beginning of the 1980's. Several upgrades have been implemented during the last two years to solve increasing reliability problems encountered as the equipment aged, to provide enhanced operational flexibilities, and to enable operation at the higher power levels needed to provide experimental data relevant to the ITER and TPX design activities. These upgrades ranged from redesign of the power supply control systems to the replacement of vacuum circuit breakers which had become unreliable in service. A new interlock and protection system has also been implemented using the latest programmable logic controllers (PLC) and computer technology. These upgrades have been highly successful and are described to provide insight to many issues in the specification of high power converters. Power supply models used in the design of the DIII-D Plasma Control System are also described along with model verification test data. These models are being used in the development of a new advanced plasma control system for the DIII-D tokamak. Recent operational experience and results are presented

  1. Priming of antiherbivore defensive responses in plants

    Institute of Scientific and Technical Information of China (English)

    Jinwon Kim; Gary W.Felton

    2013-01-01

    Defense priming is defined as increased readiness of defense induction.A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses,both biotic and abiotic,and upon the following stimulus,induce defenses more quickly and strongly.For instance,some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding.Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently,but significant advances were made in the past three years,including non-HIPV-mediated defense priming,epigenetic modifications as the molecular mechanism of priming,and others.It is timely to consider the advances in research on defense priming in the plantinsect interactions.

  2. Bidirectional semantic associations between social power and weight.

    Science.gov (United States)

    He, Xiaoling; Chen, Jun; Li, Jianan

    2018-02-01

    Two experiments were conducted to examine bidirectional semantic associations between power and weight using a priming paradigm. Bidirectionality in the relationship between power and weight was demonstrated, utilising tasks that were identical except that the orders in which the stimuli were presented were reversed. In Experiment 1, an empty scale leaning either leftward or rightward was used as a priming stimulus, and a scale that appeared in equilibrium with a pair of power words was used as a target stimulus. In Experiment 2, a scale with a pair of words that appeared in equilibrium was used as a priming stimulus, and an empty scale leaning either leftward or rightward was used as a target stimulus. We identified interaction effects between power and weight in both experiments. Associations between power and weight provide evidence for both conceptual metaphor views and evolutionary theory. The bidirectionality of metaphorical effects is in line with the strong version of metaphoric structuring. Both language and experiential correlations play important roles in the development of the mapping between power and weight. © 2016 International Union of Psychological Science.

  3. A UV prime focus spectrograph for the CFHT

    International Nuclear Information System (INIS)

    Boulade, O.; Vigroux, L.

    1986-03-01

    The UV prime spectrograph at the Canada-France-Hawaii Telescope is the first instrument to be designed with an aspherized diffraction grating. This technique leads to all reflective Schmidt designs with a very small amount of optical surface on fast aperture ratio. A thin backside illuminated RCA CCD is now used as the detector. Since the detector is at the focus of an f/1 mounting, within the optical path, a minicryostat (5 cm x 5 cm x 3 cm) was designed to minimize the central obscuration. This paper describes this new instrument and its performances

  4. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  5. Individual Differences in Automatic Emotion Regulation Interact with Primed Emotion Regulation during an Anger Provocation

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2017-04-01

    Full Text Available The current study investigated the interactive effects of individual differences in automatic emotion regulation (AER and primed emotion regulation strategy on skin conductance level (SCL and heart rate during provoked anger. The study was a 2 × 2 [AER tendency (expression vs. control × priming (expression vs. control] between subject design. Participants were assigned to two groups according to their performance on an emotion regulation-IAT (differentiating automatic emotion control tendency and automatic emotion expression tendency. Then participants of the two groups were randomly assigned to two emotion regulation priming conditions (emotion control priming or emotion expression priming. Anger was provoked by blaming participants for slow performance during a subsequent backward subtraction task. In anger provocation, SCL of individuals with automatic emotion control tendencies in the control priming condition was lower than of those with automatic emotion control tendencies in the expression priming condition. However, SCL of individuals with automatic emotion expression tendencies did no differ in the automatic emotion control priming or the automatic emotion expression priming condition. Heart rate during anger provocation was higher in individuals with automatic emotion expression tendencies than in individuals with automatic emotion control tendencies regardless of priming condition. This pattern indicates an interactive effect of individual differences in AER and emotion regulation priming on SCL, which is an index of emotional arousal. Heart rate was only sensitive to the individual differences in AER, and did not reflect this interaction. This finding has implications for clinical studies of the use of emotion regulation strategy training suggesting that different practices are optimal for individuals who differ in AER tendencies.

  6. Optimization design for drain to nuclear power condenser

    International Nuclear Information System (INIS)

    Ding Jiapeng; Jiang Chengren

    2010-01-01

    Characters and varieties of drain to nuclear power condenser are discussed in this paper. Take the main steam system of a nuclear power as an example, normal and detailed optimization design are introduced, related expatiate are used as a reference for the drain of other systems. According to the characters of nuclear power instant operation, the influence and needed actions related with the optimization design are also analyzed. Based on the above research, the scheme has been carried out in a nuclear power station and safety for the condenser operation of the nuclear power has been improved largely. (authors)

  7. Towards the petaflop for Lattice QCD simulations the PetaQCD project

    International Nuclear Information System (INIS)

    D'Auriac, Jean-Christian Angles; Carbonell, Jaume; Barthou, Denis

    2010-01-01

    The study and design of a very ambitious petaflop cluster exclusively dedicated to Lattice QCD simulations started in early '08 among a consortium of 7 laboratories (IN2P3, CNRS, INRIA, CEA) and 2 SMEs. This consortium received a grant from the French ANR agency in July '08, and the PetaQCD project kickoff took place in January '09. Building upon several years of fruitful collaborative studies in this area, the aim of this project is to demonstrate that the simulation of a 256 x 128 3 lattice can be achieved through the HMC/ETMC software, using a machine with efficient speed/cost/reliability/power consumption ratios. It is expected that this machine can be built out of a rather limited number of processors (e.g. between 1000 and 4000), although capable of a sustained petaflop CPU performance. The proof-of-concept should be a mock-up cluster built as much as possible with off-the-shelf components, and 2 particularly attractive axis will be mainly investigated, in addition to fast all-purpose multi-core processors: the use of the new brand of IBM-Cell processors (with on-chip accelerators) and the very recent Nvidia GP-GPUs (off-chip co-processors). This cluster will obviously be massively parallel, and heterogeneous. Communication issues between processors, implied by the Physics of the simulation and the lattice partitioning, will certainly be a major key to the project.

  8. Random reward priming is task-contingent: The robustness of the 1-trial reward priming effect

    Directory of Open Access Journals (Sweden)

    Árni Gunnar Ásgeirsson

    2014-04-01

    Full Text Available Consistent financial reward of particular features influences the allocation of visual attention in many ways. More surprising are 1-trial reward priming effects on attention where reward schedules are random and reward on one trial influences attentional allocation on the next. Those findings are thought to reflect that rewarded features become more salient than unrewarded ones on the subsequent trial. Here we attempt to conceptually replicate this effect, testing its generalizability. In three versions of an analogous paradigm to the additional singleton paradigm involving singleton search for a Gabor patch of odd spatial frequency we found no evidence of reward priming, while we only partially replicate the reward priming in the exact original paradigm tested by Hickey and colleagues. The results cast doubt on the proposal that random reward enhances salience, suggested in the original papers, and highlight the need for a more nuanced account. In many other paradigms reward effects have been found to progress gradually, becoming stronger as they build up, and we argue that for robust reward priming, reward schedules need to be more consistent than in the original 1-trial reward priming paradigm.

  9. Effect of Aging and Priming on Physiological and Biochemical Traits of Common Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Bahman AMANPOUR-BALANEJI

    2012-05-01

    Full Text Available Aging and deterioration (artificial aging are the most effective factors on the seed vigour. In order to study the changes in physiological and biochemical characteristics of common bean under aging and priming treatments a factorial experiment based on completely randomized design conducted with three replications. Seed aging (control, 90 and 80% of control germination and seed invigoration with priming including control, hydro (distilled water, osmo (PEG 6000, hormone (gibberellic acid and halo (NaCl priming were considered as experimental factors. Results showed that osmo-priming had the ability to relatively ameliorate the aging effect and recover some of the seed aspects like germination rate, protein and phytin content for invigorate germination and seedling establishment. Priming indirectly increased seed vigour via germination rate and it can provide homogeny of emergence in the field and obtaining appropriate plant population.

  10. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  11. Design concept of HYPER (HYbrid Power Extraction Reactor)

    International Nuclear Information System (INIS)

    Park, Won S.; Song, Tae Y.; Yu, Dong H.; Kim, Chang H.

    1999-01-01

    Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development called HYPER for the transmutation of nuclear waste and energy production through the transmutation process. Some major design features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Pb-Bi is adopted as a coolant and spallation target material. 1 GeV 13 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MWth power. The support ratio of HYPER for LWR units producing the same power is believed to be 5 to 6. (author)

  12. New integrable lattice hierarchies

    International Nuclear Information System (INIS)

    Pickering, Andrew; Zhu Zuonong

    2006-01-01

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula

  13. Designing nuclear power plants for improved operation and maintenance

    International Nuclear Information System (INIS)

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig

  14. Designing nuclear power plants for improved operation and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig.

  15. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  16. Self-construal priming selectively modulates the scope of visual attention

    Directory of Open Access Journals (Sweden)

    Zhuozhuo eLiu

    2015-09-01

    Full Text Available Self-concept is one of the major factors to explain the cultural differences between East Asians and Westerners. In the field of visual attention, most studies have focused on the modulation of visual spatial-based attention, whereas possible influences of culture or self-concept on other types of visual attention remain largely unexplored. The present study investigated the possible modulation of visual feature-based attention by self-concept, using a within-group self-construal priming design. The experiment paradigm employed visual stimuli consisted of two intermixing random dot clouds presented in the focal visual field with red and green colors. After primed with an interdependent, independent or neutral self-construal, the participants were instructed to attend to one of the focally presented dot cloud and respond to occasional luminance decrement events of the attended dot cloud. The detection of the focal events was found to be significantly faster when exogenously cued by a peripheral dot cloud of either the same or different colors as the attended focal dot cloud (congruent / incongruent, compared to the uncued condition. More importantly, the self-construal priming took effect only on the reaction time (RT differences between the congruent and incongruent cued conditions: the participants responded much slower to incongruent cued events than congruent cued events under interdependent self-construal priming, while the RT difference was significantly smaller under independent self-construal priming. A closer look on the results suggests that the attention scope is selectively modulated by self-construal priming, and the modulation is mainly reflected by varying the degree of suppression on the processing of the incongruent contextual stimuli that do not share visual features with the focal object. Our findings provide new evidences that could possibly extend the current understanding on the cultural influence on visual attention.

  17. Lattice gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1983-04-01

    In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed

  18. The Steiner ratio for points on a triangular lattice

    Directory of Open Access Journals (Sweden)

    PO de Wet

    2008-12-01

    Full Text Available The study of spanning trees and Steiner trees arises naturally in applications, such as in the design of integrated circuit boards, communication networks, power networks and pipelines of minimum cost. In such applications the Steiner ratio is an indication of how badly a minimum spanning tree performs compared to a Steiner minimal tree. In this paper a short proof is presented for the Steiner ratio for points on a triangular lattice in the Euclidean plane. A Steiner tree in two dimensions is "lifted" to become a rectilinear tree in three dimensions, where it is altered. The rectilinear tree is then projected back into the plane and the result readily follows. A short note at the end of the paper compares our three-dimensional rectilinear trees to "impossible objects" such as Escher's "Waterfall."

  19. Experimental Evaluation of Performance of Constant Power Prime-Mover Driven Isolated 3-φ SEIG for Pico-Hydro Power Generation System in Remote Mountainous Region of Himalayas

    Directory of Open Access Journals (Sweden)

    Rathore Umesh C.

    2016-01-01

    Full Text Available This paper presents the experimental evaluation of the performance of 3-φ self-excited induction generator (SEIG suitable for pico-hydro power generation system feeding domestic load in remote mountainous region. The use of induction generators is most suitable for renewable energy conversion systems due to their enormous advantages over conventional synchronous generators. Important features of induction generators include the simplicity in construction, ruggedness, simplified control, ease in maintenance and small size per generated kW. The performance characteristics of 3-φ SEIG feeding isolated load are evaluated using MATLAB-Simulink model based on the prevalent renewable energy sources inputs and loading conditions in mountainous terrain of Himalayas. The results are validated using an experimental set-up comprising of 3-φ, 3 HP induction motor run as 3- φ induction generator driven by 5HP, 4-pole DC shunt motor acting as prime-mover.

  20. Primed for Discovery: Atomic-Resolution Cryo-EM Structure of a Reovirus Entry Intermediate

    Directory of Open Access Journals (Sweden)

    Shane D. Trask

    2010-06-01

    Full Text Available A recently solved structure of the aquareovirus virion (Zhang, X; Jin, L.; Fang, Q; Hui, W.H.; Zhou Z.H. 3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell 2010, 141, 472-482 [1] provides new insights into the order of entry events, as well as confirming and refining several aspects of the entry mechanism, for aquareovirus and the related orthoreovirus. In particular, the structure provides evidence of a defined order for the progressive proteolytic cleavages of myristoylated penetration protein VP5 that prime the virion for membrane penetration. These observations reinforce the concept that, much like enveloped viruses, nonenveloped virions often undergo priming events that lead to a meta-stable state, preparing the virus for membrane penetration under the appropriate circumstances. In addition, this and other recent studies highlight the increasing power of electron cryomicroscopy to analyze large, geometrically regular structures, such as icosahedral viruses, at atomic resolution.

  1. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...

  2. Experimental mathematics on the magnetic susceptibility of the square lattice Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Boukraa, S [LPTHIRM and Departement d' Aeronautique, Universite de Blida (Algeria); Guttmann, A J; Jensen, I [ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Hassani, S; Zenine, N [Centre de Recherche Nucleaire d' Alger, 2 Bd. Frantz Fanon, BP 399, 16000 Alger (Algeria); Maillard, J-M [LPTMC, Universite de Paris, Tour 24, 4eme etage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Nickel, B [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)], E-mail: boukraa@mail.univ-blida.dz, E-mail: tonyg@ms.unimelb.edu.au, E-mail: I.Jensen@ms.unimelb.edu.au, E-mail: maillard@lptmc.jussieu.fr, E-mail: maillard@lptl.jussieu.fr, E-mail: njzenine@yahoo.com

    2008-11-14

    We calculate very long low- and high-temperature series for the susceptibility {chi} of the square lattice Ising model as well as very long series for the five-particle contribution {chi}{sup (5)} and six-particle contribution {chi}{sup (6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150 000 CPU hours on computer clusters. The series for {chi} (low- and high-temperature regimes), {chi}{sup (5)} and {chi}{sup (6)} are now extended to 2000 terms. In addition, for {chi}{sup (5)}, 10 000 terms of the series are calculated modulo a single prime, and have been used to find the linear ODE satisfied by {chi}{sup (5)} modulo a prime. A diff-Pade analysis of the 2000 terms series for {chi}{sup (5)} and {chi}{sup (6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the n-particle components of the susceptibility, up to a small set of 'additional' singularities. The exponents at all the singularities of the Fuchsian linear ODE of {chi}{sup (5)} and the (as yet unknown) ODE of {chi}{sup (6)} are given: they are all rational numbers. We find the presence of singularities at w = 1/2 for the linear ODE of {chi}{sup (5)}, and w{sup 2} = 1/8 for the ODE of {chi}{sup (6)}, which are not singularities of the 'physical' {chi}{sup (5)} and {chi}{sup (6)}, that is to say the series solutions of the ODE's which are analytic at w = 0. Furthermore, analysis of the long series for {chi}{sup (5)} (and {chi}{sup (6)}) combined with the corresponding long series for the full susceptibility {chi} yields previously conjectured singularities in some {chi}{sup (n)}, n {>=} 7. The exponents at all these singularities are also seen to be rational numbers. We also present a mechanism of resummation of the logarithmic singularities of the {chi}{sup (n)} leading to the known power-law critical behaviour occurring in

  3. Design Provisions for Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duchac, Alexander

    2015-01-01

    A station blackout (SBO) is generally known as 'a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and un-interruptible AC power supplies may be available as long as batteries can supply the loads. Alternate AC power supplies are available'. A draft Safety Guide DS 430 'Design of Electrical Power Systems for Nuclear Power Plants' provides recommendations regarding the implementation of Specific Safety Requirements: Design: Requirement 68 for emergency power systems. The Safety Guide outlines several design measures which are possible as a means of increasing the capability of the electrical power systems to cope with a station blackout, without providing detailed implementation guidance. A committee of international experts and advisors from numerous countries is currently working on an IAEA Technical Document (TECDOC) whose objective is to provide a common international technical basis from which the various criteria for SBO events need to be established, to support operation under design basis and design extension conditions (DEC) at nuclear power plants, to document in a comprehensive manner, all relevant aspects of SBO events at NPPs, and to outline critical issues which reflect the lessons learned from the Fukushima Dai-ichi accident. This paper discusses the commonly encountered difficulties associated with establishing the SBO criteria, shares the best practices, and current strategies used in the design and implementation of SBO provisions and outline the structure of the IAEA's SBO TECDOC under development. (author)

  4. Convection-diffusion lattice Boltzmann scheme for irregular lattices

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Ernst, M.H.

    2000-01-01

    In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the

  5. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  6. Interaction of crystalline beams with a storage ring lattice

    International Nuclear Information System (INIS)

    Hofmann, I.; Struckmeier, J.

    1989-01-01

    We present the results of numerical calculations for beams in realistic storage ring lattices under conditions, where crystalline order could be expected, at least in principle. In particular we discuss the effect of space charge, envelope instabilities, bending magnets and of cooling strength. Our conclusions on the lattice design require high symmetry and a small betatron tune. For three-dimensional ordering we find in addition that typically an e-folding of cooling is necessary after each bending section. The formation of order in a one- dimensional chain puts no restriction on the lattice, and a fraction of an e-folding of cooling once per revolution has been found sufficient. (orig.)

  7. Neutron thermalization in reactor lattice cells: An NPY-project report

    International Nuclear Information System (INIS)

    Stamm'ler, R.J.J.; Takac, S.M.; Weiss, Z.J.

    1966-01-01

    The NPY-Project is a joint research programme in reactor physics between Norway, Poland, Yugoslavia and the International Atomic Energy Agency. One of the tasks of the project was to make a theoretical and experimental investigation of the phenomena of neutron thermalization in lattice cells, and this work is covered by the present monograph. The different lattices of the zero-power assemblies in the NPY countries offered ample opportunity for the theoreticians and experimentalists to test and compare their methods, and the exchange of experiences was stimulating and valuable. 85 refs, 26 figs, 19 tabs

  8. Nucleon Structure Functions from Operator Product Expansion on the Lattice.

    Science.gov (United States)

    Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M

    2017-06-16

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  9. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  10. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially

    OpenAIRE

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2016-01-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end,...

  11. Priming analogical reasoning with false memories.

    Science.gov (United States)

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems.

  12. Priming intelligent behavior: an elusive phenomenon.

    Directory of Open Access Journals (Sweden)

    David R Shanks

    Full Text Available Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained.

  13. Priming Intelligent Behavior: An Elusive Phenomenon

    Science.gov (United States)

    Shanks, David R.; Newell, Ben R.; Lee, Eun Hee; Balakrishnan, Divya; Ekelund, Lisa; Cenac, Zarus; Kavvadia, Fragkiski; Moore, Christopher

    2013-01-01

    Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal) influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained. PMID:23637732

  14. Project designing of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Krychtalek, Z.; Linek, V.

    1989-01-01

    The geological and seismic parameters are listed of the Temelin nuclear power plant. The division of the site in building zones is described. The main zones consist of the power generation unit zone with the related auxiliary buildings of hot plants and of the auxiliary buildings of the nonactive part with industrial buildings. The important buildings are interconnected with communication and technology bridges. Cooling towers and spray pools and the entrance area are part of the urbanistic design. The architectonic design of the buildings uses standard building elements and materials. The design of the buildings is based on the requirements on their function and on structural load and on the demands of maximal utilization of the type of the reinforced concrete prefab structure system. The structure is made of concrete or steel cells. The project design is based on Soviet projects. The layout is shown of the main power generation units and a section is presented of a 1,000 MW unit. (J.B.). 2 figs

  15. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  16. Conceptual Design of Fertilizer Applicator for Oil Palm on Terrace Cultivation

    Science.gov (United States)

    Hermawan, W.

    2018-05-01

    The mechanical application of fertilizer for oil palm planted on terraces is still constrained by the narrow path which is difficult to pass by a power spreader. The objective of this research was to develop a conceptual design of fertilizer applicator for oil palm planted on terraces. The design requirements were developed based on a) terrace and track conditions, b) fertilizers and fertilization conditions, c) available prime movers, and d) user needs. Five design concepts were obtained: 1) an applicator with left and right arms to distribute the fertilizer, 2) an all-terrain vehicle equipped with a manually operated fertilizer injector, 3) an applicator equipped with a hole digger, 4) an applicator equipped with a shovel, and 5) an applicator equipped with a rotary tiller. The concepts were evaluated and compared with the current power spreader. The evaluation results showed that the applicator equipped with a rotary tiller had the most advantages on the expected criteria. The final design concept uses a 110 cm wide mini crawler tractor as the prime mover and is equipped with a hopper and a spinner disk for metering and conveying the fertilizer, and a 20 cm wide rotary tiller in the front of the machine.

  17. Design of neutral beam injection power supplies for ITER

    International Nuclear Information System (INIS)

    Watanabe, Kazuhiro; Okumura, Yoshikazu; Ono, Youichi; Tanaka, Masanobu

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  18. Lattices with unique complements

    CERN Document Server

    Saliĭ, V N

    1988-01-01

    The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.

  19. Power supply design for Hadron Facility

    International Nuclear Information System (INIS)

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  20. Neutral Beam Power System for TPX

    International Nuclear Information System (INIS)

    Ramakrishnan, S.; Bowen, O.N.; O'Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-01-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements

  1. Active power line conditioners design, simulation and implementation for improving power quality

    CERN Document Server

    Revuelta, Patricio Salmeron; Litrán, Salvador Pérez

    2015-01-01

    Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids

  2. MPQS with three large primes

    NARCIS (Netherlands)

    Leyland, P.; Lenstra, A.K.; Dodson, B.; Muffett, A.; Wagstaff, S.; Fieker, C.; Kohel, D.R.

    2002-01-01

    We report the factorization of a 135-digit integer by the triple-large-prime variation of the multiple polynomial quadratic sieve. Previous workers [6][10] had suggested that using more than two large primes would be counterproductive, because of the greatly increased number of false reports from

  3. Shifting evaluation windows : predictable forward primes with long SOAs eliminate the impact of backward primes.

    NARCIS (Netherlands)

    Fockenberg, D. A. F.; Koole, S.L.; Lakens, D.; Semin, G.R.

    2013-01-01

    Recent work suggests that people evaluate target stimuli within short and flexible time periods called evaluation windows. Stimuli that briefly precede a target (forward primes) or briefly succeed a target (backward primes) are often included in the target's evaluation. In this article, the authors

  4. Attractiveness of the underling: an automatic power --> sex association and its consequences for sexual harassment and aggression.

    Science.gov (United States)

    Bargh, J A; Raymond, P; Pryor, J B; Strack, F

    1995-05-01

    One characteristic of men who sexually harass is that they are not aware that their actions are inappropriate or a misuse of their power (L. F. Fitzgerald, 1993a). We investigated the existence and automaticity of a mental association between the concepts of power and sex, and its consequences for sexual harassment tendencies. Using a subliminal priming paradigm, Experiment 1 demonstrated an automatic link between power and sex, and only for men high in the likelihood to sexually harass or aggress. In Experiment 2, male participants were unobtrusively primed with either power-related or neutral stimuli. For men likely to sexually aggress, but not other participants, attraction ratings of a female confederate were significantly higher in the power priming than the neutral priming condition.

  5. Practical design considerations for photovoltaic power station

    Science.gov (United States)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  6. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  7. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  8. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  9. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  10. Additive lattice kirigami.

    Science.gov (United States)

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  11. Wheat seed enhancement by vitamin and hormonal priming

    International Nuclear Information System (INIS)

    Khan, M.B.; Gurchani, M.A.; Hussain, M.

    2011-01-01

    Seed priming has proven beneficial in many important agricultural crops. The present study was conducted to explore the role (if any) of hormonal and vitamin seed priming to improve the germination, seedling emergence, early seedling establishment, electrolyte leakage and nutrients uptake in wheat seedlings. The wheat seeds were soaked for 48 hours in aerated solution of salicylic acid, ascorbic acid, kinetin and GA3 with 20 ppm concentration of each solution, whereas untreated seeds were taken as control. Seed priming with ascorbic acid resulted in maximum final germination and emergence percentage (FGP and FEP), radical and plumule length, root and shoot length, number of secondary roots, root shoot ratio, root dry weight, shoot dry weight and seedling dry weight compared to control (untreated seeds). Minimum mean germination and emergence time (MGT and MET) was recorded in seeds primed with kinetin and GA3. While in case of biochemical attributes, seedling potassium contents were decreased by hormonal seed priming while total soluble sugars were increased by salicylic acid and ascorbic acid seed priming. Hormonal seed priming had non-significant effect on phosphorus seedling contents. Untreated (Control) seeds showed maximum electrical conductivity at 0.5, 1, 2, 6, 12 and 24 h after inbibition than primed seeds against the minimum electrical conductivity that was recorded in seeds primed with salicylic acid and ascorbic acid. In conclusion, the wheat seeds primed with 20 ppm solution of ascorbic acid may be used for wheat seed invigoration. (author)

  12. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    Science.gov (United States)

    Semeriyanov, F.; Saphiannikova, M.; Heinrich, G.

    2009-11-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  13. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    International Nuclear Information System (INIS)

    Semeriyanov, F; Saphiannikova, M; Heinrich, G

    2009-01-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  14. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  15. Renormalons on the lattice

    CERN Document Server

    Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T

    1994-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.

  16. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    Science.gov (United States)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  17. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    International Nuclear Information System (INIS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells

  18. Analytical models for low-power rectenna design

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Beurden, van M.C.; Doodeman, G.J.N.; Visser, H.J.

    2005-01-01

    The design of a low-cost rectenna for low-power applications is presented. The rectenna is designed with the use of analytical models and closed-form analytical expressions. This allows for a fast design of the rectenna system. To acquire a small-area rectenna, a layered design is proposed.

  19. Comparison of Preamplifiers for Low-power Consumption Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun; Kim, Han Soo; Lee, Kyu Hong; Choi, Hyo Jeong; Na, Teresa W.; Ha, Jang Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chai, Jong Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-10-15

    The commonly used electronic devices in radiation detector system are the preamplifier, the amplifier, ADC, and etc. to extract the signal from the detector and to process the signal. These components are composed of semiconductor devices like BJT, MOSFET, OPAMP, and etc. Performance and power consumption of these components are various according to the composition of semiconductor devices. In this study, preamplifiers, which are composed of high efficiency semiconductor devices, are compared to design low-power consumption and high performance preamplifier. To confirm the purpose, preamplifiers are designed for low-power consumption and high gain by some OPAMP (Operational Amplifier). The comparison was performed by experimental result and design simulation

  20. Manpower simulation for the power plant design engineering

    International Nuclear Information System (INIS)

    Moon, B.S.; Juhn, P.E.

    1982-01-01

    Some observation from the examination of actual manhour curves for the power design engineering obtained from Sargent and Lundy Engineers and of a few of the model curves proposed by Bechtel, are analyzed in this paper. A model curve representing typical design engineering manhour has been determined as probability density function for the Gamma Distribution. By means of this model curve, we strategically forecast the future engineering manpower requirements to meet the Covernment's long range nuclear power plan. As a sensitivity analysis, the directions for the localization of nuclear power plant design engineering, are studied in terms of the performance factor for the experienced versus inexperienced engineers. (Author)

  1. Influence of Priming Duration on the Performance of Amaranths (Amaranthus cruentus L. in Sokoto Semiarid Zone of Nigeria

    Directory of Open Access Journals (Sweden)

    Mukhtar Musa

    2014-01-01

    Full Text Available Two field trials were conducted during the 2012 cropping season at the Fruits and Vegetable Teaching and Research Farm of the Department of Crop Science, Usman Danfodiyo University, Sokoto (located on latitude 14∘N-15∘N and longitude 4∘-5∘, to evaluate the effect of priming duration on the growth and yield of amaranth. Treatments consisted of four priming durations (2, 4, 6, and 8 hours and control (where no priming was applied. The treatments were laid out in a completely randomized design (CRD replicated three times for the germination test and randomized complete block design (RCBD for the field trial. Data were collected on days to 50% germination, percentage germination, days to 50% emergence, and percentage emergence. Results revealed significant effect of priming duration on days to 50% germination, percentage germination, and days to 50% emergence. Soaking seeds for 2 hours reduced the number of days to 50% germination and emergence and also recorded higher germination. Thus, from the findings of this study, it could be concluded that priming amaranth seeds for 2 hours could be applied to enhance amaranth production.

  2. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  3. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  4. Surface solitons of four-wave mixing in an electromagnetically induced lattice

    International Nuclear Information System (INIS)

    Zhang, Yanpeng; Yuan, Chenzhi; Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Xiao, Min

    2013-01-01

    By creating lattice states with two-dimensional spatial periodic atomic coherence, we report an experimental demonstration of generating two-dimensional surface solitons of a four-wave mixing signal in an electromagnetically induced lattice composed of two electromagnetically induced gratings with different orientations in an atomic medium, each of which can support a one-dimensional surface soliton. The surface solitons can be well controlled by different experimental parameters, such as probe frequency, pump power, and beam incident angles, and can be affected by coherent induced defect states. (letter)

  5. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  6. Lexical priming in Alzheimer's disease and aphasia.

    Science.gov (United States)

    Arroyo-Anlló, Eva Maria; Beauchamps, Mireille; Ingrand, Pierre; Neau, Jean Philippe; Gil, Roger

    2013-01-01

    Lexical priming was examined in patients with Alzheimer's disease and in aphasic patients. Control participants were divided into young and elderly [cf. Arroyo-Anlló et al.: Eur J Cogn Psychol 2004;16:535-553]. For lexical priming, a word-stem completion task was used. Normal elderly participants had lexical priming scores that were significantly lower than those of young individuals. Analysis of covariance with age and educational level as covariates showed that the control participants, aphasic and Alzheimer patients did not differ significantly on the lexical priming task. Our results suggest that performance in the lexical priming task diminishes with physiological aging, but is not significantly affected by mild or moderate Alzheimer's disease or by fluent or non-fluent aphasia. Copyright © 2013 S. Karger AG, Basel.

  7. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  8. Photonic surfaces for designable nonlinear power shaping

    International Nuclear Information System (INIS)

    Biswas, Roshni; Povinelli, Michelle L.

    2015-01-01

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest

  9. An Efficient Homomorphic Aggregate Signature Scheme Based on Lattice

    Directory of Open Access Journals (Sweden)

    Zhengjun Jing

    2014-01-01

    Full Text Available Homomorphic aggregate signature (HAS is a linearly homomorphic signature (LHS for multiple users, which can be applied for a variety of purposes, such as multi-source network coding and sensor data aggregation. In order to design an efficient postquantum secure HAS scheme, we borrow the idea of the lattice-based LHS scheme over binary field in the single-user case, and develop it into a new lattice-based HAS scheme in this paper. The security of the proposed scheme is proved by showing a reduction to the single-user case and the signature length remains invariant. Compared with the existing lattice-based homomorphic aggregate signature scheme, our new scheme enjoys shorter signature length and high efficiency.

  10. Finite-lattice-spacing corrections to masses and g factors on a lattice

    International Nuclear Information System (INIS)

    Roskies, R.; Wu, J.C.

    1986-01-01

    We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice

  11. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  12. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  13. Study of double triple bend achromat (DTBA) lattice for a 3GeV light source

    CERN Document Server

    Alekou, Androula; Carmignani, Nicola; Liuzzo, Simone Maria; Raimondi, Pantaleo; Pulampong, Thapakron; Walker, Richard

    2017-01-01

    Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat(DDBA) lattice developed at Diamond, we present a new cell tha tincludes all the advantages of the two designs. The resulting Double Triple Bend Achromat(DTBA) cel lallows for a natural horizontal emittance of less than 100pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process.

  14. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Luciano Lamberti

    2013-08-01

    Full Text Available The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

  15. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  16. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    International Nuclear Information System (INIS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-01-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background

  17. Design management of general contractor under nuclear power project EPC mode

    International Nuclear Information System (INIS)

    Su Shaojian

    2013-01-01

    Design management has not yet formed a theoretical system recognized, general contractor design managers under nuclear power project EPC Mode lack the clear theory basis. This paper aims to discuss Design management from the angle of general contractor under nuclear power project EPC mode, Gives the concept of design management Clearly, by Combining the characteristics of nuclear power project, Gives the specific content and meaning of the design management of nuclear power project. (authors)

  18. Lattices for laymen: a non-specialist's introduction to lattice gauge theory

    International Nuclear Information System (INIS)

    Callaway, D.J.E.

    1985-01-01

    The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)

  19. Design of a power-asymmetric actuator for a transtibial prosthesis.

    Science.gov (United States)

    Bartlett, Harrison L; Lawson, Brian E; Goldfarb, Michael

    2017-07-01

    This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components. The design of the actuator is described herein, and results of an experimental characterization are provided that indicate that the actuator is capable of providing the functional capabilities required of an ankle prosthesis in a compact and lightweight package.

  20. Systems approach to design of power supply to mines

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, Yu I; Voloshko, A V

    1986-09-01

    Optimization of power supplies to underground coal mines in the USSR is evaluated. Systems analysis of power systems is discussed. Power system of a coal mine is treated as an element of the branch power system which forms a subsystem of the local and national power system. Design of a system for computerized control of power supplies to underground coal mines is evaluated. Elements of the system, control equipment, types of information stored and processed by the system as well as economic efficiency of using computerized control for power supply in underground mining are discussed. Recommendations for computer-aided design of power systems and use of computerized control systems for power supply in underground coal mining in the USSR are made.