WorldWideScience

Sample records for primary wood-using plants

  1. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  2. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  3. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  4. Contrasting seasonal overlaps between primary and secondary growth are linked to wood anatomy in Mediterranean sub-shrubs.

    Science.gov (United States)

    Camarero, J J; Palacio, S; Montserrat-Martí, G

    2013-09-01

    Whole-plant approaches allow quantification of the temporal overlap between primary and secondary growth. If the amount of time available to grow is short, there may be a high temporal overlap between shoot growth and wood formation. We hypothesise that such overlap depends on the duration of the growing season and relates to wood anatomy. We evaluated wood anatomy, shoot longitudinal and radial growth rates, fine root production and the concentrations of non-structural carbohydrates (NSC) in the wood of six sub-shrub species growing in sites with contrasting climatic conditions (Lepidium subulatum, Linum suffruticosum, Salvia lavandulifolia, Satureja montana, Ononis fruticosa, Echinospartum horridum). Sub-shrub species living in sites with a short growing season displayed a high overlap between aboveground primary and secondary growth and formed wide vessels, whereas species from the warmest and driest sites presented the reverse characteristics. The highest overlap was linked to a rapid shoot extension and thickening through the enhanced hydraulic conductivity provided by wide vessels. The reductions in NSC concentrations when growth peaked were low or moderate, indicating that sub-shrubs accumulate NSC in excess, as do trees. The temporal overlap among primary and secondary growth in woody plants may be connected to the duration and rates of shoot and wood growth, which in turn depend on the vessel lumen area. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Wood pellet heating plants. Market survey. 4. upd. ed.; Hackschnitzel-Heizung. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Wood pellets from the agriculture and forestry offer an enormous potential for the development of the use of bio energy in the private area as well as in industry and commerce. Within the market survey 'Wood pellet heating systems', the Fachagentur Nachwachsende Rohstoffe e.V. (Guelzow-Pruezen, Federal Republic of Germany) reported on the targets and measures of the Federal Government with respect to the heating with biomass, wood pellets as solid biofuels (standardization of solid biofuels, supply, features, evaluation), wood pellet heating plants, economic considerations, market survey on wood pellet heating plants as well as list of addresses for producers of wood pellet heating plants and suppliers of wood pellets.

  6. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  7. Use of wood as an alternative fuel to coal and natural gas at the Holnam Cement Plant, north of LaPorte, Colorado

    Science.gov (United States)

    Kurt H. Mackes

    2001-01-01

    The Holnam Company currently operates a cement plant north of Laporte, CO. The plant is attempting to use wood as an alternate fuel to coal and natural gas. The principal objective of this project is to investigate the extended use of wood as an alternate fuel at the plant. Tests conducted at Holnam indicate that wood is suitable for use at the plant and Holnam could...

  8. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  9. Wood wastes: Uses

    International Nuclear Information System (INIS)

    Cipro, A.

    1993-01-01

    The 1,500 industrial firms manufacturing furniture in the Italian Province of Treviso can generate up to 190,000 tonnes of wood wastes annually. In line with the energy conservation-environmental protection measures contained in Italian Law No. 475/88, this paper indicates convenient uses for these wood wastes - as a raw material for fibreboards or as a fuel to be used in the furniture manufacturing plants themselves and in kilns producing lime. Reference is made to the wood wastes gasification/power generation system being developed by ENEA (the Italian Agency for New Technology, Energy and the Environment)

  10. Advantages of the use of energy wood

    International Nuclear Information System (INIS)

    Kaerhae, K.; Aarnio, J.; Maekinen, P.

    2000-01-01

    According to the Regional Forestry Associations it would be possible to develop the harvesting of energy wood by increasing the use of it. The study was made at the areas of 34 regional forestry associations as an inquiry to the executive managers, as well as the persons responsible for timber trade, harvesting or regional affairs. The inquiries studied the use of energy wood and the user of them at the areas of the associations, as well as the amounts of harvesting and the realization of it. Only a third of the associations have large energy wood consuming plants (using more than 500 m 3 energy wood per year). The closest large energy wood consuming plant was in the average 31 km from the office of the association. The average energy wood use of the plant was 20 000 m 3 /a, the variation being 700 - 200 000 m 3 /a. The energy wood purchase range of the plants varied from few kilometers to hundred kilometers, the average being 47 km. Most of the energy wood was harvested from forest regeneration areas. Some of the energy wood is also harvested from young forest maintenance and thinning areas. The estimated harvesting of energy wood in 1999 was 6300 m 3 . A part of the energy wood is used for heating the farms and other small real estates, and a part is used for heating larger buildings like schools, hospitals, factories. The fees to the associations for purchase of energy wood varied significantly. The range was 2.00 - 11.00 FIM/m 3 . One association charged 300 FIM/parcel, and in one association the price depend on the amount of wood acquired from the lot, the unit price being 0.5 FIM/m 3 . It appeared that the associations estimated the use of energy wood to increase. The level in 1999 was 6300 m 3 and it is estimated to increase to 14 300 m 3 in 2005. The associations estimated that the levels can only be achieved if the stumpage price of energy wood may not be 0.0 FIM. Even a marginal price would lead to an increased harvesting of energy wood. The associations

  11. A system for classifying wood-using industries and recording statistics for automatic data processing.

    Science.gov (United States)

    E.W. Fobes; R.W. Rowe

    1968-01-01

    A system for classifying wood-using industries and recording pertinent statistics for automatic data processing is described. Forms and coding instructions for recording data of primary processing plants are included.

  12. Wood versus plant fibers: Similarities and differences in composite applications

    DEFF Research Database (Denmark)

    Madsen, Bo; Gamstedt, E. Kristofer

    2013-01-01

    -negligible porosity content, and finally, the moisture sensitivity of the composites. The performance of wood and plant fiber composites is compared to the synthetic glass and carbon fibers conventionally used for composites, and advantages and disadvantages of the different fibers are discussed. © 2013 Bo Madsen......The work on cellulose fiber composites is typically strictly divided into two separated research fields depending on the fiber origin, that is, from wood and from annual plants, representing the two different industries of forest and agriculture, respectively. The present paper evaluates...... in parallel wood fibers and plant fibers to highlight their similarities and differences regarding their use as reinforcement in composites and to enable mutual transfer of knowledge and technology between the two research fields. The paper gives an introduction to the morphology, chemistry...

  13. Exposure assessment of residents living near a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Horsak, Randy D.; Parker, Frank M. III; Takhar, Harpreet

    2003-01-01

    We report the results of environmental sampling and modeling in a neighborhood adjacent to a wood processing plant. This plant used creosote and pentachlorophenol (PCP) to treat wood for over 70 years. Between 1999 and 2001, environmental samples were obtained to quantify the level of environmental contamination from the wood processing plant. Blood from 10 residents was measured for chlorinated dioxins and dibenzofurans. Soil sediment samples from drainage ditches and attic/dust samples from nearby residents' homes were tested for polychlorinated dioxins, furans, and polycyclic aromatic hydrocarbons (PAH). The dioxin congeners analysis of the 10 residents revealed elevated valued for octachlorodibenzo-p-dioxin and heptachlorodibenzo-p-dioxin compatible with PCP as the source. The levels of carcinogenic PAHs were higher than background levels and were similar to soil contamination on wood preserving sites. Wipe sampling in the kitchens of 11 homes revealed that 20 of the 33 samples were positive for octachlorinated dioxins with a mean value of 10.27 ng/m 2 . The soil, ditch samples, and positive wipe samples from the homes indicate a possible ongoing route of exposure to the contaminants in the homes of these residents. Modeled air exposure estimated for the wood processing waste chemicals indicate some air exposure to combustion products. The estimated air levels for benzo(a)pyrene and tetrachlorodibenzodiozin in this neighborhood exceeded the recommended levels for these compounds in some states. The quantitative data presented suggest a significant contamination of a neighborhood by wood processing waste chemicals. These findings suggest the need for more stringent regulations on waste discharges from wood treatment plants

  14. Production of dry wood chips in connection with a district heating plant

    Directory of Open Access Journals (Sweden)

    Yrjölä Jukka

    2004-01-01

    Full Text Available Moisture and its variation in wood chips make the control of burning in small scale heating appliances difficult resulting in emissions and loss of efficiency. If the quality of wood chips would be better, i. e. dried and sieved fuel with more uniform size distribution would be avail able, the burning could be much cleaner and efficiency higher. In addition higher power out put could be obtained and the investment costs of the burning appliances would be lower. The production of sieved and dried wood chip with good quality could be accomplished in connection with a district heating plant. Then the plant would make profit, in addition to the district heat, from the dried wood chips sold to the neighboring buildings and enterprises sep a rated from the district heating net using wood chips in energy production. The peak power of a district heating plant is required only a short time during the coldest days of the winter. Then the excess capacity during the milder days can be used as heat source for drying of wood chips to be marketed. Then wood chips are sieved and the fuel with best quality is sold and the reject is used as fuel in the plant it self. In a larger district heating plant, quality of the fuel does not need to be so high In this paper the effect of moisture on the fuel chain and on the boiler is discussed. Energy and mass balance calculations as a tool of system design is described and the characteristics of proposed dry chips production method is discussed.

  15. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F.W.M. [EPON, Zwolle (Netherlands)

    1997-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  16. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F W.M. [EPON, Zwolle (Netherlands)

    1998-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  17. Wood power in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, J.G.; Guessous, L. [Research Triangle Institute, Research Triangle Park, NC (United States)

    1993-12-31

    North Carolina (NC) is one of the most forested states, and supports a major wood products industry. The NC Department of Natural Resources sponsored a study by Research Triangle Institute to examine new, productive uses of the State`s wood resources, especially electric power generation by co-firing with coal. This paper summarizes our research of the main factors influencing wood power generation opportunities, i.e., (1) electricity demand; (2) initiative and experience of developers; (3) available fuel resources; (4) incentives for alternate fuels; and (5) power plant technology and economics. The results cover NC forests, short rotation woody crops, existing wood energy facilities, electrical power requirements, and environmental regulations/incentives. Quantitative assessments are based on the interests of government agencies, utilities, electric cooperatives, developers and independent power producers, forest products industries, and the general public. Several specific, new opportunities for wood-to-electricity in the State are identified and described. Comparisons are made with nationwide resources and wood energy operations. Preferred approaches in NC are co-generation in existing or modified boilers and in dedicated wood power plants in forest industry regions. Co-firing is mainly an option for supplementing unreliable primary fuel supplies to existing boilers.

  18. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  19. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Directory of Open Access Journals (Sweden)

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  20. Health effects on nearby residents of a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Thornton, John; Anderson-Mahoney, P.M.; Takhar, Harpreet

    2003-01-01

    Objectives: The aim of the study was to evaluate the health status of nearby residents of a wood treatment plant who had sustained prolonged low-level environmental exposure to wood processing waste chemicals. Methods: A population of 1269 exposed residents who were plaintiffs or potential plaintiffs in a lawsuit against the wood treatment plant were evaluated by questionnaire for a health history and symptoms. A representative sample of 214 exposed subjects was included in the analysis. One hundred thirty-nine controls were selected from 479 unexposed volunteers and matched to the exposed subjects as closely as possible by gender and age. Subjects and controls completed additional questionnaires and were evaluated by a physician for medical history and physical examination, blood and urine testing, neurophysiological and neuropsychological studies, and respiratory testing. Environmental sampling for wood processing waste chemicals was carried out on soil and drainage ditch sediment in the exposed neighborhood. Results: The exposed subjects had significantly more cancer, respiratory, skin, and neurological health problems than the controls. The subjective responses on questionnaires and by physician histories revealed that the residents had a significantly greater prevalence of mucous membrane irritation, and skin and neurological symptoms, as well as cancer. (Exposed versus unexposed, cancer 10.0% versus 2.08%, bronchitis 17.8% versus 5.8%, and asthma by history 40.5% versus 11.0%) There were significantly more neurophysiologic abnormalities in adults of reaction time, trails A and B, and visual field defects. Conclusions: Adverse health effects were significantly more prevalent in long-term residents near a wood treatment plant than in controls. The results of this study suggest that plant emissions from wood treatment facilities should be reduced

  1. Analysis of existing structure and emissions of wood combustion plants for the production of heat and electricity in Bavaria

    International Nuclear Information System (INIS)

    Joa, Bettina

    2014-01-01

    This work deals with the detailed analysis of the existing structure of all Bavarian wood burning plants for the generation of heat and electricity as well as the determination of the resulting emission emissions in 2013. The number of wood burning plants in the single-chamber fireplaces, wood central heating and wood-fired heating plants which are in operation in the year 2013 were determined, and how many plants are existing in the various areas like pellet stoves, traditional ovens, wood-burning fireplace, pellet central heating systems, wood chips central heating systems, fire-wood central heating systems, wood combined heat and power plant (electricity and heat) and wood power plants (heat). In addition, the regional distribution of the wood burning plants in the Bavarian governmental districts is investigated as well as the type and amount of energy produced by them (heat, electricity). [de

  2. Importance of wood from planted forests for manufacturing industry

    Directory of Open Access Journals (Sweden)

    Victor Almeida De Araujo

    2017-06-01

    Full Text Available The manufactured wood products are essential to modern society, since they are made from renewable and recyclable raw material, characterizing a sustainable input. The objective of this study was to elucidate the importance of wood from planted forests in forest products manufacture of higher added value, addressing forest and wood contexts of topics related to education, resources, products, industry, government incentives, public policies and markets. Different from Europe, it was verified that Brazil does not support positively this important industrial sector, nevertheless it still presents growth potential due to range of wooden-based products. Thus, wood could reach a prominent position in Brazilian economy, if strategies and incentives were defined by rules and public policies..

  3. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  4. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  5. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  6. Ashes from straw and wood-chip fired plants for agricultural usage. Pilot project

    International Nuclear Information System (INIS)

    Morsing, M.; Westborg, S.

    1994-08-01

    The content of nutrients and heavy metals in ashes from the combustion of straw and wood chips at district heating plants is studied, on the basis of results of analyses from Danish municipalities, to determine whether such ashes are suitable for use as fertilizers. Results of the analysis of ashes from 9 wood-chip fired and 26 straw-fired plants are presented. They show significant variations in nutrient and heavy metal content which could be caused by combustion and operational conditions and/or testing methods. On condition that the phosphorous content of straw and wood-chip ashes amount to 1% of the dry matter, 50%-75% of the straw ashes and under 50% of wood chip ashes analyses are within the limit for cadmium stipulated in the Danish Ministry of the Environment's Executive Order no. 736 on the use of wastes for agricultural purposes. This is found to be unsatisfactory. It is suggested that a closer investigation should be undertaken in order to determine which amount of straw and wood-chip ashes can be accepted for use as fertilizers in consideration of the stipulated limits for cadmium content of wastes to be used for agricultural purposes. In addition the technological and economic potentials of dosing of these ashes for this use should be investigated. Fly ash and slag were also included in the analysis results studied and it was found that the cadmium content of slag did not prevent its use as fertilizer, but that the distribution of cadmium in slag, in fly ash and in slam from flue gas cleaning systems related to the combustion of wood chips should be further investigated. (AB)

  7. Effect of wood fuels on power plant operability

    International Nuclear Information System (INIS)

    Orjala, M.; Ingalsuo, R.

    2001-01-01

    The objective of the research is to determine the critical properties of wood fuels on the basis of power plant operability, to determine the optimal conditions for reduction of harmful detriments, and to study how the storage and processing of wood fuels effect on the operability. Both the CFB and BFB technologies are studied. The project started in December 2000 and it will be ended by the end of 2002. Experts of the Fuels and Combustion research field of VTT Energy carry out the main parts of the research. Experts of the research field of Mineral Processing of VTT Chemical Technology, located in Outokumpu, and Kemian tutkimuspalvelut Oy/Oulu University, located in Outokumpu, participate in the analytics, and the research field of Materials and Manufacturing Technology of VTT Manufacturing Technology in Otaniemi participates in the research on material effects. System Technology Laboratory of Oulu University carries out the power plant automation and boiler control technology research under supervision of Professor Urpo Kortela. Co-operation with the materials research unit of EU's JRC, located in Petten, which started in the research 'Combustion of Forest Chips', will be continues in this research. Co-operation will be made with Swedish Vaermeforsk in the field of information exchange on experiences in utilisation of wood fuels in Swedish power plants and possibilities to join in the projects of Vaermeforsk in this research field. Following companies participate in the project: Etelae-Savon Energia Oy, Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpele pasteboard factory of M-Real Oyj and Vaermeforsk AB (Sweden). (orig.)

  8. Wood, the indigenous energy source. 1100 plants built in 20 years, all of them 'Swiss made'

    International Nuclear Information System (INIS)

    Wahlen, B.

    1999-01-01

    The company HOBAG Brienz, Ltd., specialised in the field of automatic wood-burning plants, continuously developed its unique system over the past 20 years and has more than 1100 satisfied clients in Switzerland as well as in foreign countries. It is equally dealing with log boilers, wood chip boilers, or pellet boilers. Nowadays, the company is seen as the market leader for modern, full automatic log-burning plants and wood conditioning equipment including containers for logs or wood chips

  9. Synthetic Natural Gas/ Biogas (Bio-SNG) from Wood as Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Biollaz, S.; Stucki, S.

    2004-03-01

    Biofuel production from wood is an interesting option for the energetic use of wood. Various bio fuels could be produced from woody biomass, such as methanol, Fischer-Tropsch (FT) fuels, methane or hydrogen. FT liquids and bio-SNG can be distributed and used via existing infrastructures and therefore fit best today's fossil infrastructure. On an assessment basis from primary to mechanical energy both fuels have pros and cons. For the consolidation of crucial information, i.e. production cost, demonstration plants of transportation fuels are needed. Based on such plants, a detailed evaluation of both fuel chains will be possible. (author)

  10. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    Science.gov (United States)

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska

    Science.gov (United States)

    V. Yadama; Eini Lowell; N. Petersen; D. Nicholls

    2009-01-01

    The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...

  12. Biomonitoring for creosote and pentachlorophenol in nearby residents of a wood treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, J. [UCLA School of Medicine, CA (United States); Schecter, A. [Univ. of Texas School of Public Health, Dallas, TX (United States); Phillips, D.H.; Hewer, A. [Inst. of Cancer Research, Sutton, Surrey (United Kingdom); Takhar, H. [Comprehensive Health Screening Services, Santa Monica, CA (United States); Paepke, O. [ERGO Lab., Hamburg (Germany); Warshaw, R. [Workers' Disease Detection Services, Inc. (United States)

    2004-09-15

    Contaminated wood treatment sites can result in adverse health effects to nearby residents. Environmental exposure can be estimated by measuring concentrations of pollutants in air, water, food, or wipe tests. This environmental exposure value can be used as a surrogate to estimate individual exposure. The objective of this study was to determine whether or not pentachlorophenol (PCP) could be found in potentially exposed residents and if the dioxin levels are consistent with PCP exposure. A further objective of the study was to determine whether or not PAH-DNA adducts could be found in the potentially exposed residents. We present results of biomonitoring studies in residents living near a wood treatment plant that used coal-derived creosote and PCP to process and treat wood for over 100 years. The plant was built in 1904 and used creosote and PCP. Creosote is a complex mixture that contains numerous polycyclic aromatic hydrocarbons (PAHs). PCP is contaminated with polychlorinated dioxin and furans. The residents' exposure pathways include air, soil and surface water.

  13. Significance of wood extractives for wood bonding.

    Science.gov (United States)

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  14. Finishing of wood

    Science.gov (United States)

    R. Sam Williams

    1999-01-01

    The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...

  15. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  16. Time-resolved characterization of primary emissions from residential wood combustion appliances.

    Science.gov (United States)

    Heringa, M F; DeCarlo, P F; Chirico, R; Lauber, A; Doberer, A; Good, J; Nussbaumer, T; Keller, A; Burtscher, H; Richard, A; Miljevic, B; Prevot, A S H; Baltensperger, U

    2012-10-16

    Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.

  17. A geographical analysis of the Swedish wood fuel market

    International Nuclear Information System (INIS)

    Roos, Anders; Bohlin, Folke; Hektor, Bo; Hillring, Bengt; Parikka, Matti

    2000-01-01

    The geographical variation in Swedish wood fuel market characteristics for the district heating sector has been studied using Geographical Information Systems (GIS) and cross-sectional Tobit analysis. The results indicate that local availability and competition for wood fuels influence the wood fuel consumption at inland heating plants. The factors affecting the decision to use wood fuel at heating plants close to seaports, however, were not captured by the model, suggesting that coastal location reduces dependency on the local wood fuel market. The effects of changes in local wood fuel availability on wood fuel use by an inland heating plant are presented and discussed

  18. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  19. Technologies for the commercial energetic utilisation of waste wood and used wood; Technologien zur energetischen Nutzung von Holzabfaellen und Gebrauchsholz im gewerblichen Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, R.

    1998-12-31

    Due to the frequent contamination of wood with wood preservatives, coatings, adhesives, paints and other non-wood materials the conversion of production residues and various types of used wood to energy appears to be fraught with problems. However, extensive studies conducted during the past years have shown that most problems regarding combustion residues and emissions have been overestimated. Thanks to new technologies it is now possible to avoid or at least reduce the formation of pollutants during combustion of even complexly contaminated waste wood. Environmentally acceptable combustion of wood presupposes complete combustion, effective dedusting, and primary measures for nitrogen oxide control. Depending on the type of feedstock and the relevant emission limit values one may optionally include secondary nitric oxides removal measures and control techniques for partially volatile heavy metals and halocarbons. Moreover, firing plants must be so conditioned as to keep the new synthesis of dioxins at a low level. [Deutsch] Die energetische Verwertung von Produktionsabfaellen und Gebrauchtholzsortimenten scheint wegen der haeufig vorhandenen Belastung der Hoelzer mit Holzschutzmitteln, Oberflaechenbeschichtungen, Klebstoffen, Farbanstrichen und andere holzfremden Bestandteilen schwierig zu sein. Tatsaechlich sind - wie umfangreiche Untersuchungen der letzten Jahre gezeigt haben - die meisten Probleme in Hinblick auf Ausbrand und Emissionen ueberschaetzt worden. Durch Weiterentwicklung von Anlagen- und Regelungstechnik ist es heute moeglich, die Schadstoffbildung bei der Verbrennung auch komplex belasteter Holzabfaelle zu vermeiden oder zu vermindern. Voraussetzungen einer umweltvertraeglichen Verbrennung von Holz sind - ein guter Ausbrand, - eine effektive Entstaubung, - und primaere Massnahmen der Stickstoffoxidminderung. Optional kommen je nach Brennstoff und Emissionsgrenzwert noch sekundaere Entstickungsmassnahmen und Minderungstechniken fuer partiell

  20. Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-14

    The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

  1. Chapter 6: Wood energy and competing wood product markers

    Science.gov (United States)

    Kenneth E. Skog; Robert C. Abt; Karen Abt

    2014-01-01

    Understanding the effect of expanding wood energy markets is important to all wood-dependent industries and to policymakers debating the implementation of public programs to support the expansion of wood energy generation. A key factor in determining the feasibility of wood energy projects (e.g. wood boiler or pellet plant) is the long-term (i.e. 20-30year) supply...

  2. Consideration of the energetic use of waste wood versus re-use of materials

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Sas, H.

    1997-01-01

    Recycling of wood wastes to chipboard is compared with the combustion of waste wood in combination with high-efficient energy recovery. Both options show much better environmental effects than the disposal of wood wastes. The differences between the environmental effects of the first two options can be neglected. The reprocessing of wood wastes to chipboard results in a decrease of the production of gypsum board. That benefit is equal to the benefit of cocombustion of wood wastes in a coal-fired power plant, i.e. saving coal. 18 refs

  3. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  4. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  5. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    Science.gov (United States)

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  6. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  7. Potential wood protection strategies using physiological requirements of wood degrading fungi

    NARCIS (Netherlands)

    Sailer, M.F.; Etten, B.D. van

    2004-01-01

    Due to the increasing restrictions in the use of wood preserving biocides a number of potential biocide free wood preserving alternatives are currently assessed. Wood degrading fungi require certain conditions in the wood in order to be able to use wood as a food source. This paper discusses the

  8. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    It has been estimated that in the 20th century it is possible to recycle about 70 000 m{sup 3} of impregnated wood, corresponding to about 48 % of the total amount of annually demolished impregnated wood. The amount is estimated to grow up to 130 000 m{sup 3} in 2015 (about 65% of demolished impregnated wood). In the beginning half of the recyclable impregnated wood is poles, but the share of sawn timber will increase as the time goes by. The poles and pieces of them are demolished and transported to an intermediate storage e.g. on the yard of an electricity supply company, from which they can be fetched in larger quantities. Even wood impregnation plant can act as intermediate storage sites. Collection points for impregnated construction timber can be established on timer sales companies, but most of it will be collected at waste processing sites. The economy of impregnated wood recycling chain depends on the sales income of generated energy. Calculations show that collection, transportation and processing costs can be covered with the sales of impregnated wood for energy generation and with recycling fees. The recycling fee for sawn timber would be 20 FIM/m{sup 3} and that for poles 64 FIM/m{sup 3}. In 2001 recycling fees were set for impregnated wood, the fees being 11 FIM/m{sup 3} for sawn timber and 42 FIM/m{sup 3} for poles. Collected impregnated wood can be crushed with either fixed or movable crushers used for crushing of waste wood. The impurities of wood (bolts, nails, stones, etc.), large dimensions of wood, in- homogenous material and dust require special features for the crushing equipment. Crushing device can be equipped with feeding crane and saw for processing of large-dimension wood, and metal detectors and magnetic separators if needed, but the large metal scrap has to be removed before crushing. At present in Finland there is not a combustion plant capable for combustion of impregnated wood without any modification. Improvements of flue gas

  9. Reactivity and burnout of wood fuels

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo

    This thesis deals with the combustion of wood in pulverised fuel power plants. In this type of boiler, the slowest step in the wood conversion process is char combustion, which is one of the factors that not only determine the degree of fuel burnout, but also affect the heat release profile...... of different aspects relevant to wood combustion, including wood structure and composition, wood pyrolysis, wood char properties and wood char oxidation. The full scale campaign, which is the subject of Chapter 3, included sampling of wood fuel before and after milling and sampling of gas and particles...... at the top of the combustion chamber. The collected samples and data are used to obtain an evaluation of the mills in operation at the power plant, the particle size distribution of the wood fuel, as well as the char conversion attained in the furnace. In Chapter 4 an experimental investigation...

  10. Sustainable wood use, decarbonisation of energetic metabolism and forest development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2009-01-01

    Air pollution from wood stoves with PAH, primary particles and chlorinated dioxins (reported according to national estimates of  Danish NERI) is presented as an insoluble problem because of dioxin de-novo-synthesis in chimneys, as it is known from municipal waste incinerators. A trade-off of this......Air pollution from wood stoves with PAH, primary particles and chlorinated dioxins (reported according to national estimates of  Danish NERI) is presented as an insoluble problem because of dioxin de-novo-synthesis in chimneys, as it is known from municipal waste incinerators. A trade......-off of this local pollution against alleged positive impacts of wood (as all biomass) combustion on global climate change because of 'zero carbon dioxide emissions' is rejected, although this resetting to zero is part of the Danish Law on CO2-quota of 2004. These emissions are, on the contrary, aggravated pr. unit...... of energy, when substituting for fossil fuels, whereas compensatory binding of carbon dioxide by tree growth over many decades is referred to an insecure future under global warming. Harvested wood products should rather not be used in atmospheric burners, but in product form. Otherwise an accelerated...

  11. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  12. Structure and function of wood

    Science.gov (United States)

    Alex Wiedenhoeft

    2010-01-01

    Wood is a complex biological structure, a composite of many chemistries and cell types acting together to serve the needs of a living plant. Attempting to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood evolved over the course of millions of years to serve three main functions in plants― conduction of water...

  13. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  14. Migration of vascular plant species to a recent wood adjoining ancient woodland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2014-01-01

    Full Text Available Woodland communities can be restored by natural succession in sites adjoining ancient woodlands which can act as seed sources for trees, shrubs and woodland herbs. The influence of dominant tree species and the distance from an adjacent ancient oak-hornbeam woodland upon the floristic composition of species in a recent pine wood planted on dry rendzina soil were studied. It was found that, in spite of a 52-year long succession, the border between woods was sharp and the composition of species in the recent wood were significantly different than in the adjacent ancient woodland. Canonical correspondence analysis (CCA showed that the distance to the ancient woodland had a significant influence on species distributions in the recent wood. The numbers of species from the Querco-Fagetea class, vegetatively reproducing species and myrmecochores decreased with this distance, whereas the numbers of anemochores increased. The migration rate of many woodland species, calculated on occurrence of the farthest individuals was very slow, varying from 0.0 m year-1 to 0.38 m year-1. The restoration of the field layer vegetation in the studied pine wood was much slower than in recent deciduous woods on rich and moist soils where the migration rate of some species exceeded 1.50 m year-1. Recent woods adjacent to ancient woodlands can be more effectively colonised by woodland species only when they are dominated by broad-leaved trees with quickly decomposing litter, and the spatial continuity of these woods persists for a long period.

  15. Wood as a home heating fuel

    International Nuclear Information System (INIS)

    Wood, K.

    1991-01-01

    This article describes the development of clean-burning technology in three types of wood-burning appliances: catalytic, non-catalytic, and pellet stoves. A recent study by the Washington State Energy Extension Office concluded that in homes that use both electricity and wood, 73 megawatts of electricity/yr were saved by using wood. Since wood-burning stoves can now meet air quality standards, wood could be considered to be a greenhouse-neutral fuel if more trees are planted as they are consumed

  16. Wood-fired electricity generation in Eastern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    The feasibility of using large areas of currently unproductive rural land in Ontario for poplar plantations which would supply fuel for wood-fired power plants was examined. Information is included on the productive potential of such poplar plantations, the technology of wood-fired steam-electric plants, costs of wood and water supplies, location of plants, cost of power generation, and socio-economic effects. It was concluded that approximately 1.7 million acres of unused land are available which could produce 7 to 10 million tons of wood fuel per year which in turn could be converted to 1600 MW/yr over the next 10 yr. No adverse environmental effects are expected. The project would economically benefit an area of high unemployment. It is recommended that a more detailed feasibility study be undertaken to establish land availability and acquisition, cost of power generation in wood-fired plants, and the economic impact of such a project. (LCL)

  17. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    Science.gov (United States)

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is

  18. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  19. From Nehemiah Grew to Genomics: the emerging field of evo-devo research for woody plants

    Science.gov (United States)

    Andrew Groover; Quentin Cronk

    2013-01-01

    Wood has played a primary role in the evolution of land plants (Spicer and Groover 2010), but our understanding of the genes and mechanisms underlying wood evolution and development has been limited until recently. Importantly, many of the fundamental questions of woody plant evolution and development are now tractable using genomics and high-capacity sequencing...

  20. Hogged wood fuel price analysis in the U.S. Pacific Northwest

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.; Fox, P.J.

    1991-01-01

    The purpose of this paper is to discuss the results of a comprehensive analysis of wood residues used for meeting energy requirements in the Pacific Northwest region of the United States. These wood residues are generated primarily from cutting, sawing, planning, sanding, and debarking activities in the lumber and plywood industries. While high-quality wood residues are commonly used as raw material in the manufacture of pulp and board commodities, a very large amount of wood residues are ultimately used for plant fuel purposes. The characteristics of this market for hogged wood fuel are examined in depth, with particular emphasis given to the factors which affect the supply, demand and price of hogged wood. Hogged wood has played an enormous role in the Pacific Northwest for over sixty years, a result of the massive regional timber harvest. Utilization of this renewable energy resource continues to be a large component in regional energy supply. Despite having a large number of highly integrated mills that both use and produce wood residues, the Pacific Northwest region experiences a lively trade in hogged wood. The IGT study discussed herein examines the determinants of the regional market price for hogged wood. A number of useful leading indicators are identified, and a statistical forecasting model is prepared to help predict future hogged wood prices. This model provides insight into the factors that are, and are not, important determinants of hogged wood price. The issue of fuel substitution is addressed in relation to the potential of hogged wood to displace some amount of primary energy sources such as natural gas and electricity. Also examined in the study are techniques to estimate the actual quantity of hogged wood available, and the quantity demanded by the marketplace. Conclusions presented in the study have important ramifications for understanding the price behavior and utilization of hogged wood fuel. 4 refs., 12 figs

  1. Combined heat and power unit using renewable raw materials. A cogeneration power plant with wood chips and pellets; BHKW auf Basis nachwachsender Rohstoffe. KWK mit Holzhackschnitzeln und Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-07-15

    The combined heat and power units of the next generation operate with renewable resources. The plants working with wood chips or pellets now are ready for mass production. So, farmers and foresters, trade and municipalities may pile in the decentralized, energetic self-sufficiency. Two companies have developed procedures with which combined heat and power plants based can be operated on wood chips or pellets.

  2. Evaluation of challenges of wood imports to Iran using Fuzzy Delphi Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    amin arian

    2017-08-01

    Full Text Available Abstract:Considering the increasing consumption of wood and wood products in Iran and limited domestic sources of wood and shortage of wood raw material in Iran, wood raw material imports is a solution for Iranian developing wood industries' wood procurement.But, wood imports to Iran, always faced with a lot of challenges. The aim of this research is to determine and evaluate the challenges in the way of wood imports to Iran. The research method used in this study is a descriptive-analytic method. The analytic method used in the study to evaluate the challenges is the Fuzzy Delphi Analytical Hierarchy Process (FDAHP. First the findings of previous researches in the field and the literature were studied and doing interviews with industry experts, the challenges in the way of wood imports to Iran were extracted and classified in 5 groups and 35 factors and were evaluated.The results shows that in the first level (groups the regulation, economic, politic, infrastructure and management groups have the most importance respectively. In second level (challenges, plant protection regulations have the most importance. After that, exchange rate tolerance, oil income, banking support and GDP have most importance respectively.

  3. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  4. The Conservation Efforts of Wood Apple, An Identity Plant of Rembang Regency, Based on Ethnobotany Study

    Directory of Open Access Journals (Sweden)

    Enni Suwarsi Rahayu

    2017-12-01

    Full Text Available Feronia limonia (L. Swingle better known as wood apple is an identity plant of Rembang Regency, Central Java Province, Indonesia. However, the population is very limited. In order to identify the conservation efforts, this ethnobotany study was aimed to determine traditional knowledge on the existence, economic value, utility, breeding technique and conservation of wood apple. The survey was conducted on a total of 102 local people from 10 sub-districts which were determined by proportionally stratified random sampling. Data were collected by questionnaires and individual interviews and then were analyzed descriptively. The results showed that all of respondents knew the figure of wood apple, but only 79.50% understood its status as an identity plant. Most of respondents (96% stated that the fruits have low economic value, 80.39% respondents have utilized ripe fruit as ingredients of beverages and stems as firewood. This utilization was only equal to 29.72% compared to the potential usability based on research results. It was concluded that the traditional knowledge about the existence, economic value, and breeding technique were good and on the contrary, the knowledge about the plant’s usability was bad. The results will form a basic knowledge for in-depth studies to provide a government policy of Rembang Regency in order to develop an efficient strategy of management and conservation of wood apple as plant identity.

  5. A local heating system using wood fuel from farms

    International Nuclear Information System (INIS)

    Kiukaanniemi, E.; Kurvinen, T.

    1998-01-01

    This report is a part of the a project on sustainable biomass utilization chains. The project belongs to a larger group of studies on northern biomass utilization by the Thule Institute and the University of Oulu. A cooperative energy society working in the municipality of Perho (3400 inhabitants) in Finland has been studied in this report. The cooperative energy society delivers energy which is generated from wood chips to the Perho municipality. Generated energy has a competitive price compared with fuel oils. In addition, harvesting, chipping and transporting give the members of the society an extra income. Members need not to make any investments in new equipment in order to work in the co-operative society because the machinery needed is the same as the one they use for other forestry activities. The price of the energy generated by wood chips is bound to the price of alternative fuels. There is a 5 MW district heating plant in Perho municipality containing a 1.4 MW solid fuel fired boiler with grate and 1.6 MW and 2.0 MW oil fired boilers. An investment in a heating plant containing a solid fuel fired boiler is often many times greater than that of one containing an oil fired boiler. There are many advantages which are hard to evaluate in generating energy from wood fuel. E.g. employment, increased income from taxes, an increase in the cash flow in the municipality and the advantages for forest growth. When undersized trees are removed from a forest stand, the remaining trees will grow better. The advantage of forestry is, however, hard to evaluate in cash terms. There has been an estimate that the advantage is 50-100 FIM/ha/a when compared to the yield of unthinned pine forest. Studies have shown that the money paid for energy in the area may be recycled several times in purchasing products and services in the area. In Perho municipality, it has been estimated that over half million FIM of extra cash has been generated and invested in the area by the

  6. Wood chip drying in connection with combined heat and power or solar energy in Finland

    Directory of Open Access Journals (Sweden)

    Rinne Samuli

    2014-01-01

    Full Text Available 20% of the Finnish district heating (DH power plant fuels are wood-based and the share is increasing. The wood fuel demand probably exceeds the potential supply in the future. The wood fuel drying with waste heat is one profitable opportunity to gain more wood fuel. If the drying energy can be produced with lower primary energy use than combusting the fuel directly, the drying potentially improves the system efficiency. In this study, the drying feasibility in the connection of a combined heat and power (CHP system, possibly with solar collectors, is calculated. The wood fuel heating can be increased profitably by 6%, using the heat from CHP for drying only when the marginal cost of the heat is low enough, i.e. the electricity price is high enough and there is free capacity after the DH demand. Although the drying is profitable, a larger heat storage can also increase the annual result similarly. The best investment choice depends on the plant properties. Here the optimal system enables 20% DH production cost savings. Solar heat may be profitable, when the solar heat has a 2–3% share of the annual heat demand. However, the dryer or larger storage tank are more profitable investments.

  7. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production

    Directory of Open Access Journals (Sweden)

    RUDIANTO AMIRTA

    2016-05-01

    Full Text Available Abstract. Amirta R, Yuliansyah, Angi EM, Ananto BR, Setiyono B, Haqiqi MT, Septiana HA, Lodong M, Oktavianto RN. 2016. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusantara Bioscience 8: 22-30. Nowadays, there is an increasing interest in intensifying the production and use of biomass to replace fossil fuels for the production of heat and electricity, especially for a remote area that generally abundance with the wood biomass resources including in East Kalimantan, Indonesia. In this work, diversity of plant species that commonly growth in community forest area of East Kutai District, East Kalimantan, Indonesia had been studied to point out their energy potency to be used as biomass feedstock for the electricity generated. Diversity of plant species in the community forest was evaluated by making 13 sampling plots with 20mx20m size approximately. Concurently, the energy properties of plant biomass such as proximate and ultimate compositions were also analyzed using ASTM methods. Results showed that more than 30 species of tropical trees and wood shrubs were grown in the community forest. The presence of them was classified into two different growth of origins: natural and artificial plantation, and also three different categories of plant resources: tree species from logged over forest, commercial fast growing plant tree species for the fiber production and woody shrubs. The highest dominancy and productivity was found in Paraserianthes falcataria (L. Nielsen since the wood biomass was artificially planted for the commercial purposes. Among the 31 plant species analyzed we found the highest energy potency was obtained from Cratoxylum cochinchinense (Lour. Blume that produced 3.17 MWh/ton, and the lowest was from Trema orientalis (L. Blume 0.97 MWh/ton. The woody shrubs species such as Vernonia amigdalina Delile., Piper aduncum L., Gliricidia

  8. Wood energy barometer. 43 million toe produced in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The use of wood in the form of energy contributes in fighting global warming since, unlike fossil energies, the carbon dioxide emitted by its combustion is reabsorbed by the forests. These environmental and energetic advantages explain why the European Union large wood countries are preparing programmes to develop both wood energy technologies and wood energy consumption; This document takes stock or gives information on the breakdown of valorization of wood energy origin primary energy, the gross electricity generation from wood energy in the 15 european union countries and Poland, the primary energy from wood energy, the comparative between different wood energy fuel prices in Europe, the number of direct and indirect job created in different sectors, the wood energy sector industrialists and a comparison between current trend and white paper objectives. (A.L.B.)

  9. Manufacture, delivery and marketing of wood pellets

    International Nuclear Information System (INIS)

    Huhtanen, T.

    2001-01-01

    Wood pellet is a cheap fuel, the use of which can easily bee automated. Pellet heating can be carried out with a stoker or a pellet burner, which can be mounted to oil and solid fuels boiler or to solid fuel boilers. Vapo Oy delivers wood pellet to farms and detached houses via Agrimarket stores. Vapo Oy delivers pellets to large real estates, municipalities, industry, greenhouses and power plants directly as bulk. The pellets are delivered either by trailers or lorries equipped with fan-operated unloaders. The use of wood pellets is a suitable fuel especially for real estates, the boiler output of which is 20 - 1000 kW. Vapo Oy manufactures wood pellets of cutter chips, grinding dust and sawdust. The raw material for Ilomantsi pellet plant is purchased from the province of North Karelia. The capacity of pelletizing plant is 45 000 t of pellets per year, half of which is exported mainly to Sweden and Denmark

  10. Availability and use of wood-based fuels in Finland in 2020

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K.; Raesaenen, T.; Pajuoja, H. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi, Email: tapio.rasanen@metsateho.fi, Email: heikki.pajuoja@metsateho.fi; Elo, J.; Lahtinen, P. (Poeyry Energy Oy, Espoo (Finland)), Email: juha.elo@poyry.com, Email: perttu.lahtinen@poyry.com

    2009-07-01

    In Finland the overall usage target set for forest chips is 12 million m3, i.e. around 24 TWh by the year 2020. The objective of the research carried out by Metsaeteho Oy and Poeyry Energy Oy was to produce a total analysis as realistic as possible of the possibilities of increasing the use of wood-based fuels in Finland by 2020. The research shows that the growth objective set in the long-term Climate and Energy Strategy can be attained through the supply and demand for wood-based fuels. However, realizing this potential would require major investments in the entire forest chip production system, because the competitiveness of wood-based fuels in energy generation is currently not at a sufficient level. The emission trading has a strong influence on the competitiveness of wood-based fuels and the use of such fuels in energy plants. Increasing the proportion of wood-based fuels is very difficult at the current price level of the EU emission allowances (10 euro/t CO{sub 2}). A strong increase in the use of wood-based fuels would require a price level of over 25 euro/t CO{sub 2} of emission allowances. Considering the huge resources required by the forest chip production system and the current low competitiveness of forest chips, it is estimated that the use of forest chips in Finland will reach the level of 20 TWh at the earliest by the year 2020. (orig.)

  11. Wood pellet use in Sweden. A systems approach to the residential sector

    International Nuclear Information System (INIS)

    Vinterbaeck, Johan

    2000-01-01

    This empirically based thesis deals with a biofuel market in a systems context with focus on Sweden. Fuel pellets is a new consumer market for wood products. Initially used mainly by large-scale heating plants, wood pellets expanded into the Swedish residential heating market in the mid 1990s. The overall aim of this work is to provide a deeper understanding of the system for small-scale use of densified wood fuels. The objective was to provide a mapping and logistic analysis of fuel and delivery chains primarily for wood pellets. The description includes both technical as well as economic and organisational aspects. The thesis in particular investigates (i) experience from practical densification operations in the past, (ii) wood pellet retailers in Sweden, (iii) wood pellet consumers in Austria, Sweden and the United States, (iv) imports of wood pellets, and (v) forecasting of pellet consumption and inventory management for wood pellet distributors. Previous international studies revealed that the availability of cheap raw materials for fuel production and the price and availability of the most important competing fuels: coal, oil and natural gas were important factors that have guided production and use of densified wood and bark fuels. A major network of wood pellet distributors was mapped. It was concluded from a survey to these retailers that the Swedish residential market was now firmly in place and that the price of wood pellets was competitive with prices of traditional national fuels. A majority of pellet users in Austria, Sweden and the United States were pleased with pellet heating. One way to improve pellet distribution systems would be to optimise inventory management. An internal model for optimising inventory management, Pell-Sim, was constructed. For Sweden, wood pellets in 1997 represented the second most traded biofuel assortment, with 4.35 PJ or 18% of the total biofuel imports. Contrary to trade with other biofuel assortments, wood pellet trade

  12. Energy balance of a wood biomass combustion process

    International Nuclear Information System (INIS)

    Baggio, P.; Cemin, A.; Grigiante, M.; Ragazzi, M.

    2001-01-01

    This article reports the results of a project developed at the University of Trent dealing with some wood biomass combustion processes. The project has been particularly dedicated to the study of the energetic analysis of the combustion processes that occur on a gasified wood stove of advanced combustion technologies. A considerable number of experimental tests has been carried out making use of different type of wood widely in use in Trentino region. The wood stove is a part of a pilot plant providing an hydraulic circuit equipped with a specific apparatus to measure all the necessary data to determine the energy balance required and specifically the thermal efficiency of the plant [it

  13. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... be waste product from saw mills, wood working plants or produced from selected dry wood by .... Stop watch-used to indicate the exact time the mould has remained in the press before wood .... There is abundance of saw dust the source of which is the ... Madison, Wisconsin: Wiley Interscience. Usoro, H. S. ...

  14. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  15. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  16. Use of nanofillers in wood coatings

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Lawther, John Mark; Sanadi, Anand Ramesh

    2015-01-01

    Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection...... with nanometal oxides that allow wood texture to remain seen and higher resilience to scratch and abrasion with use of different nanoparticle shapes are some of the applications that are reviewed here. A variety of possible applications together with a high level of improvements, alongside commercial factors...... like a low level of loading, have already established nanoparticles in some areas of wood coatings. This article is a comprehensive scientific review of the published work in the use of nanofillers in wood coatings....

  17. The effect of planting density on the wood quality of South African ...

    African Journals Online (AJOL)

    This paper presents the results of a wood property and sawn board quality study performed on disc samples and sawlogs taken from a 23-year-old Eucalyptus grandis Nelder 1a spacing trial at J.D.M. Keet plantation near Tzaneen. Ten trees from each of four markedly different planting densities were chosen to provide ...

  18. Improving wood hydrolyzate fermentation by using schizosaccharomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnyi, M Ya; Ustinova, V I; Petrushko, G I

    1967-01-01

    The development of Schizosaccharomycetes (I) in wood hydrolyzates is not observed when fermentation is carried out by the convetional batch process, evidently because of the highly inhibitory action of the medium. More recently, with the introduction of continuous fermentation of wood and other hydrolyzates, the occurrence of I has been frequently reported, and in some hydrolysis plants, I became predominant, eliminating the budding yeast strains. The phenomenon can be attributed to higher temperatures employed in continuous fermentation, and to a more favorable medium, as the hydrolyzate is diluted with spent fermentation liquor (the flow of fresh medium constitutes about 20% of the fermentation-vat volume). The I cells, when grown under favorable conditions, have a high fermenting power, adapt easily to the fermentation of galactose, and give higher yields of ethanol than the budding yeast. As observed at plants using I, however, the cells are sensitive to variations in the fermentation process, and are inactivated upon storage. This is usually attributed to their inability to store polysaccharides, and especially glycogen. An experimental study undertaken to determine conditions under which reserve polysaccharides accumulate in I cells showed that the important factor is the quality of the medium in which the cells are grown and the conditions of storage. In media enriched with spent fermentaion liquor or with cell autolyzate and purified from toxic components, considerable amounts of glycogen accumulate in the cells.

  19. Medicinal plants for primary dysmenorrhoea: A systematic review.

    Science.gov (United States)

    Pellow, Janice; Nienhuis, Chantelle

    2018-04-01

    Primary dysmenorrhoea is a common complaint experienced by many females in their reproductive years. The use of medicinal plants in the treatment of various gynaecological conditions is on the increase, despite the limited evidence available regarding efficacy and safety of their use. The aim of this systematic review was to synthesise the most recent evidence relating to the treatment of primary dysmenorrhoea with medicinal plants. A thorough database search was conducted using defined search terms, and randomised controlled trials (RCTs) published in English between 2008 and 2016, pertaining to the use of medicinal plants (single use) for the treatment of primary dysmenorrhoea, were assessed. Studies evaluating dysmenorrhoeal pain and associated symptoms as a primary or secondary outcome were considered and assessed by two reviewers independently of each other, using the JADAD scale and the Cochrane risk of bias tool,. 22 RCTs were included in the review; 9 were placebo-controlled trials and 13 were comparative studies to pharmacological treatment or nutritional supplements. Most of the evaluated medicinal plants showed evidence of efficacy in relieving menstrual pain in at least one RCT. The low or unclear quality of the majority of these studies however warrants caution in interpreting these results. This review adds to the knowledge-base on the use of these medicinal plants in the treatment of primary dysmenorrhoea. Further research is needed before definitive conclusions can be made regarding the efficacy and safety of the use of these medicinal plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P [Finnish Forest Research Institute, Vantaa (Finland)

    1998-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  1. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  2. Life-cycle assessment for power generation from wood fuels and wood wastes; Oekobilanz fuer die Stromerzeugung aus Holzbrennstoffen und Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Frischknecht, R.; Faist, M.

    2002-07-01

    This reworked final report for the Swiss Federal Office of Energy (SFOE) presents the results of life-cycle assessments made of four wood-fired systems with the goal of analysing the possibilities of labelling such plants with the Swiss eco-label 'Naturemade Star'. In addition to these case studies, three standard technologies were modelled, whereby in two of the models different waste gas filtering methods were considered. In the third model, electricity is produced from waste wood and features an advanced waste gas treatment system. The report describes the various plants and draws up eco-balances for them. Pollution emissions, such as dust, oxides of nitrogen and sulphur dioxide, are discussed and plant operation and assessment are looked at. Certification to 'Naturemade Star' standards is checked out for the case-study plant examples and for the standard plant proposed. A further eco-balance is drawn up for wood-fired power generation with impact allocated to heat and power generation based on exergy content. An appendix provides details on the physical parameters of wood and on the methods used for impact assessment.

  3. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    Science.gov (United States)

    Rafael Arévalo; Benjamin W. van Ee; Ricarda Riina; Paul E. Berry; Alex C. Wiedenhoeft

    2017-01-01

    Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context...

  4. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition in a pulverized wood-fired power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was investigated by using an advanced deposit probe system at two different boiler locations with flue gas...... at the low-temperature location showed a slow initial build-up and a stable mass of deposits after approximately 1-5 h. The deposits collected during pulverized wood combustion contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of coal fly ash (~4 times of the mass flow of wood...... ash) to the boiler, these alkali species were effectively removed both in the fly ash and in the deposits, and a more frequent shedding of the deposits was observed. The results imply that coal fly ash can be an effective additive to reduce ash deposition and corrosion problems in a pulverized wood...

  5. Wood pellets. The cost-effective fuel

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The article is based on an interview with Juhani Hakkarainen of Vapo Oy. Wood pellets are used in Finland primarily to heat buildings such as schools and offices and in the home. They are equally suitable for use in larger installations such as district heating plants and power stations. According to him wood pellets are suitable for use in coal-fired units generating heat, power, and steam. Price-wise, wood pellets are a particularly competitive alternative for small coal-fired plants away from the coast. Price is not the only factor on their side, however. Wood pellets also offer a good environmental profile, as they burn cleanly and generate virtually no dust, an important plus in urban locations. The fact that pellets are a domestically produced fuel is an added benefit, as their price does not fluctuate in the same way that the prices of electricity, oil, coal, and natural gas do. The price of pellets is largely based on direct raw material and labour costs, which are much less subject to ups and downs

  6. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    The intent of this article is to demonstrate how wood waste called sawdust or wood flour can be transformed by plastic moulding machine into items of economic value. Wood flour is wood reduced to very fine particle form. It can be waste product from saw mills, wood working plants or produced from selected dry wood by ...

  7. A national optimisation model for energy wood streams; Energiapuuvirtojen valtakunnallinen optimointimalli

    Energy Technology Data Exchange (ETDEWEB)

    Iikkanen, P.; Keskinen, S.; Korpilahti, A.; Raesaenen, T.; Sirkiae, A.

    2011-07-01

    In 2010 a total of 12,5 terawatt hours of forest energy was used in Finland's heat and power plants. According to studies by Metsaeteho and Poeyry, use of energy wood will nearly double to 21.6 terawatt hours by 2020. There are also plans to use energy wood as a raw material for biofuel plants. The techno-ecological supply potential of energy wood in 2020 is estimated at 42.9 terawatt hours. Energy wood has been transported almost entirely by road. The situation is changing, however, because growing demand for energy wood will expand raw wood procurement areas and lengthen transport distances. A cost-effective transport system therefore also requires the use of rail and waterway transports. In Finland, however, there is almost a complete absence of the terminals required for the use of rail and waterway transports; where energy wood is chipped, temporarily stored and loaded onto railway wagons and vessels for further transport. A national optimisation model for energy wood has been developed to serve transport system planning in particular. The linear optimisation model optimises, on a national level, goods streams between supply points and usage points based on forest energy procurement costs. The model simultaneously covers deliveries of forest chips, stumps and small-sized thinning wood. The procurement costs used in the optimisation include the costs of the energy wood's roadside price, chipping, transport and terminal handling. The transport system described in the optimisation model consists of wood supply points (2007 municipality precision), wood usage points, railway terminals and the connections between them along the main road and rail network. Elements required for the examination of waterway transports can also be easily added to the model. The optimisation model can be used to examine, for example, the effects of changes of energy wood demand and supply as well as transport costs on energy wood goods streams, the relative use of different

  8. Postfire Burnt-Wood Management Affects Plant Damage by Ungulate Herbivores

    Directory of Open Access Journals (Sweden)

    Jorge Castro

    2013-01-01

    Full Text Available I analyze the effect of post-fire burnt wood management on herbivore attack on a woody plant species (Ulex parviflorus. Two experimental plots of ca. 20 hectares were established at two elevations in a burnt area in a Mediterranean mountain (Sierra Nevada, Spain. Three replicates of three treatments differing in post-fire burnt wood management were established per plot: “no intervention” (NI, all trees remained standing, “partial cut plus lopping” (PCL, felling the trees, cutting the main branches, and leaving all the biomass in situ, and “salvage logging” (SL; removal of logs and elimination of woody debris. Risk of herbivory and damage intensity were monitored for two years. The pattern of attack by ungulate herbivores varied among treatments and years. In any case, there was an overall reduction in the risk of herbivory in the PCL treatment, presumably because the highest habitat complexity in this treatment hampered ungulate movement and foraging. As a result, the burnt logs and branches spread over the ground acted as a physical barrier that protected seedlings from herbivores. This protection may be used for the regeneration of shrubs and trees, and it is of interest for the regeneration of burnt sites either naturally or by reforestation.

  9. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2011-06-01

    Full Text Available A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and black carbon (BC instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA production. After correcting for wall losses, the average increase in organic matter (OM concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60 for the starting and flaming

  10. Transfer soil-wood of radionuclides of uranium decay series

    International Nuclear Information System (INIS)

    Deus, P.; Petschat, U.; Schmidt, P.

    1998-01-01

    The radionuclide transfer soil-plant is an essential feature for radioecological characterisation of the biosphere. Beside of plants used only for nutrition purposes also plants have to be investigated which are used otherwise intensively or over long periods by humans. This e.g. comes true in the case of wood which as timber or furniture in buildings could be the reason of radiation expositions of inhabitants. In this work by means of experimental investigations for 226 Ra, 210 Pb, 210 Po, 238 U and 227 Ac transfer factors of wood grown on areas used formerly by uranium mining are estimated. The dependence of transfer factors on specific activity in soil is determined. It is shown that in the case of higher soil activities transfer factors of wood are comparable with factors published for other vegetation. As a rule no linear dependence of plant activity on soil activity has been found. As known from other radionuclides saturations take place which result in an upper level of activity in the plants. An effective dose estimation in the case of typical applications shows as a rule no remarkable radioecological risk due to wood grown on mining areas with the exception of processes including radionuclide enrichment. In latter cases and for wood grown on areas with soil activities >1 000 Bq/kg with respect to a general radiation protection precaution duty and aspects of licence problems, however, a case-to-case decision is recommended. (orig.) [de

  11. Wood pellets, what else? : Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    NARCIS (Netherlands)

    Hanssen, Steef V.; Duden, Anna S.; Junginger, Martin; Dale, Virginia H.; van der Hilst, Floortje

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are

  12. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land-uses

  13. Wood-related occupations, wood dust exposure, and sinonasal cancer.

    Science.gov (United States)

    Hayes, R B; Gerin, M; Raatgever, J W; de Bruyn, A

    1986-10-01

    A case-control study was conducted to examine the relations between type of woodworking and the extent of wood dust exposure to the risks for specific histologic types of sinonasal cancer. In cooperation with the major treatment centers in the Netherlands, 116 male patients newly diagnosed between 1978 and 1981 with primary malignancies of epithelial origin of this site were identified for study. Living controls were selected from the municipal registries, and deceased controls were selected from the national death registry. Interviews were completed for 91 (78%) cases and 195 (75%) controls. Job histories were coded by industry and occupation. An index of exposure was developed to classify the extent of occupational exposure to wood dust. When necessary, adjustment was made for age and usual cigarette use. The risk for nasal adenocarcinoma was elevated by industry for the wood and paper industry (odds ratio (OR) = 11.9) and by occupation for those employed in furniture and cabinet making (OR = 139.8), in factory joinery and carpentry work (OR = 16.3), and in association with high-level wood dust exposure (OR = 26.3). Other types of nasal cancer were not found to be associated with wood-related industries or occupations. A moderate excess in risk for squamous cell cancer (OR = 2.5) was associated with low-level wood dust exposure; however, no dose-response relation was evident. The association between wood dust and adenocarcinoma was strongest for those employed in wood dust-related occupations between 1930 and 1941. The risk of adenocarcinoma did not appear to decrease for at least 15 years after termination of exposure to wood dust. No cases of nasal adenocarcinoma were observed in men whose first exposure to wood dust occurred after 1941.

  14. MECHANICAL CHARACTERIZATION AND SHRINKAGE OF Sclerolobium paniculatum Vogel WOOD IN A HOMOGENEOUS PLANTING UNDER DIFFERENT LEVELS OF FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Joselito Bonifácio Oliveira

    2010-08-01

    Full Text Available The purposa of this work was to study the influence of fertilization on wood quality of Sclerolobium paniculatum Vogel. A homogeneous planting trial, under different levels of liming and phosphorus, was established by Embrapa-Cerrados 18 years ago in Planaltina, Distrito Federal, Brazil, tropical wood savanna region. Mechanical tests conducted were static bending, parallel compression to grain, shear strength and shrinkage. No significant differences were observed for mechanical properties or for shrinkage, which presented: ¦b = 650kg/cm2, E = 59.877kg/cm2, ¦c = 296kg/cm2 e ¦n = 131kg/cm2. Control treatment showed highest values for shear strength and compression parallel to grain. Too many branches in all trees and also too many knots in lumber were observed. Pruning is recommended for homogeneous planting of Sclerolobium paniculatum to avoid knots in order to be produced wood of superior quality.

  15. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  16. Modelling piloted ignition of wood and plastics

    International Nuclear Information System (INIS)

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-01-01

    Highlights: ► We model piloted ignition times of wood and plastics. ► The model is applied on a packed bed. ► When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  17. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites.

    Science.gov (United States)

    Renzi, Marsilio; Copini, Paul; Taddei, Anna R; Rossetti, Antonio; Gallipoli, Lorenzo; Mazzaglia, Angelo; Balestra, Giorgio M

    2012-09-01

    The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae is a severe threat to kiwifruit production worldwide. Many aspects of P. syringae pv. actinidiae biology and epidemiology still require in-depth investigation. The infection by and spread of P. syringae pv. actinidiae in xylem and phloem was investigated by carrying out artificial inoculation experiments with histological and dendrochronological analyses of naturally diseased plants in Italy. We found that the bacterium can infect host plants by entering natural openings and lesions. In naturally infected kiwifruit plants, P. syringae pv. actinidiae is present in the lenticels as well as in the dead phloem tissue beneath the lenticels, surrounded by a lesion in the periderm which appears to indicate the importance of lenticels to kiwifruit infection. Biofilm formation was observed outside and inside plants. In cases of advanced stages of P. syringae pv. actinidiae infection, neuroses of the phloem occur, which are followed by cambial dieback and most likely by infection of the xylem. Anatomical changes in wood such as reduced ring width, a drastic reduction in vessel size, and the presence of tyloses were observed within several infected sites. In the field, these changes occur only a year after the first leaf symptoms are observed suggesting a significant time lapse between primary and secondary symptoms. It was possible to study the temporal development of P. syringae pv. actinidiae-induced cambial dieback by applying dendrochronology methods which revealed that cambial dieback occurs only during the growing season.

  18. PRODUCTION OF MANGIUM (Acacia mangium WOOD VINEGAR AND ITS UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tjutju Nurhayati

    2005-03-01

    Full Text Available Production  of  wood vinegar from mangium (Acacia  mangium wood bolts/pieces  with their diameter of 3  17 cm, length of 30  67 cm, moisture content of 84.4%, and specific gravity of 0.52 conducted in a dome-shaped kiln with 1.2 m'-capacity afforded a yield of 40.3%.   The mangium wood vinegar was produced  through condensation  (cooling of  smoke/gas fractions released during the charcoaling (carbonization process  of  mangium wood.    The  process  could be regarded  as an integrated production of wood vinegar and charcoal.  The yield of wood vinegar combined with the resulting charcoal was 73.9%  based on  the dry weight of  inputed  mangium wood.    Results of chromatography analysis on mangium wood vinegar as conducted in Japan revealed its organic acid content at 73.9 ppm, phenol content 8.09 ppm, methanol 3.34 ppm, acidity degree 4.91  ppm, and pH 3.89.   Similar analysis on the mangium wood vinegar was conducted in Indonesia's laboratories, and the results were comparable with  those  of  Japan.     Results of  inhibition  testings  on  particular microorganisms   (i.e.  Pseudomonas  aerogjnosa,  Stafi/ococms   attreus,  and  Candidi   albicans  fimgz indicated that the mangium wood vinegar could inflict antirnicrobe action on those microorganism with its effectiveness somewhat below that of  liquid betel soap which could be purchased  from drugstores.  The experimental use of mangium wood vinegar at 3-5% concentration on ginger (Zingiber officinale var. white ginger plants revealed significantly positive growth responses/  characteristics with respect to their height, leaf length, and sprout/ shoot development, in comparison with the untreated ginger plants (control.   Such responses/characteristics were not significantly different from those using atonik's growth hormone.  Likewise, the preliminary use of mangium wood vinegar at 2-percent concentration on teak

  19. Determination of Plant-Available Nutrients in Two Wood Ashes: the Influence of Combustion Conditions

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Ochecová, P.; Száková, J.; Hanzlíček, Tomáš; Tlustoš, P.

    2016-01-01

    Roč. 47, 13/14 (2016), 1664-1674 ISSN 0010-3624 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : combustion condition * crystal phases * fertilizer * plant-available nutrients * wood ash Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.589, year: 2016

  20. Minnesota wood energy scale-up project 1994 establishment cost data

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M. [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  1. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  2. Preparation and applications of wood-polyester composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1982-01-01

    Optimum processing parameters were searched for the pilot-scale production of wood-polyester composites by irradiation of resin-impregnated wood material. The radiation initiation of the following systems were examined in wood and without wood matrix: methyl methacrylate, mixture of styrene and acrylonitryle, and their combination with unsaturated polyester. In the most cases the over-all rate of the complete polymerization process in wood matrix is proportional to the square root of the initiation rate. The parameters of the radiation technology of wood-polyester composites have been determined, using 260 TBq (7 kCi) 60 Co radiation source. A pilot plant has been constructed using an underwater irradiation system of 1.85 PBq (50 kCi) 60 Co. The successful production rate of 200 kg wood-polyester composite per day, as well as the application tests have demonstrated the technical feasibility of this new structural material. (author)

  3. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILERPLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; Thomas Stickle; Jun Wang; Hongming Li; William P. Barry

    2002-06-13

    During the third quarter, the experimental portion of the project was carried out. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NIOSH Boiler Plant (NBP). Blends using hammer-milled wood were operationally successful and can form the basis of Phase II. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and the mathematical modeling of mercury speciation reactions continued, yielding many interesting results. Material and energy balances for the test periods at the NBP, as well as at the Bellefield Boiler Plant, were prepared. Steps were taken to remove severe constraints from the Pennsylvania Switchgrass Energy and Conservation Project and to organize the supplying of landfill gas to the Bruceton federal complex. Two presentations were made to meetings of the Electric Power Research Institute and the National Energy Technology Laboratory.

  4. USE OF CANDEIA’S (Eremanthus erythropappus WASTE WOOD

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2008-09-01

    Full Text Available The candeia (Eremanthus erythropappus is a native forest species with multiple uses and specially utilized as essential oils source. The use of the candeia´s waste wood after oil extraction for particle panels production becomes a viable alternative, avoiding environmental problems and increasing the availability of these products in the consuming market. This work verified the viability of producing wood-cement panels using waste wood generated after the extraction of candeia’s oil, in association with pinus and eucalipto woods. The experiment was installed according to a completely randomized design with three repetitions. The treatments were arranged according to a factorial 2 x 3 scheme (two wooden species and three replacement percentages of the woods by candeia’s waste. The results of the physical and mechanical property tests showed high potentiality of candeia waste wood, after oil extraction, in association with pinus and eucalipto wood for manufacturing wood-cement panels.

  5. AFBnet - Wood and field energy information from Europe

    International Nuclear Information System (INIS)

    Alakangas, E.

    2001-01-01

    The objective of EU's ALTENER program is to promote the use of renewable energy sources. The European bioenergy network AFBnet produces and delivers information on bioenergy research and utilization of them in different countries. Import and export of biofuels, as well as the prices of biofuels in twenty European countries have been studied during past two years. The potential of combined heat and power generation with biofuels has also been estimated. The network has evaluated these projects and the factors, which have affected the successfulness and unsuccessfulness of the projects in different countries. In Finland the promotion of the utilization of wood fuels in municipal projects was evaluated in a 'Heat Entrepreneur competition' carried out first time in 2000. AFBnet analyzed the operation of 21 plants using mixed fuels as energy sources. One of the objectives was to collect information on experiences of production and processing phase of fuels at district heating and power plants in Finland, Italy, Austria, Portugal, Sweden, Germany and Denmark. The plants consumed different kinds of biofuels (industrial wood residues, straw and other agricultural wastes) and the mixture of them. Plants using different combustion technologies (grate, fluidized bed and pulverized fuel combustion, and biomass gasifiers). The consumption rate of wood and agricultural biofuels in plants was about 30% of the total fuel consumption. The main mixed fuel was coal, the share of which was 28% of the total. A detailed report has been published on all the plants. The reports analyze the fuel production and processing chains of the plants up to the boiler. Data was gathered also from the investments and maintenance costs of the plants. In EU countries there is no comprehensive survey on the prices of biofuels. Only Sweden publishes the prices of biofuels regularly. AFBnet collected in 1999 data on fuel prices, import and export of the fuels, and present utilization and potential of

  6. Potential greenhouse gas benefits of transatlantic wood pellet trade

    International Nuclear Information System (INIS)

    Dwivedi, Puneet; Khanna, Madhu; Bailis, Robert; Ghilardi, Adrian

    2014-01-01

    Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation’s total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom’s GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade. (paper)

  7. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  8. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  9. EVALUATION OF WOOD PERFORMANCE IN BUILDING CONSTRUCTION THROUGH SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Ricardo Pedreschi

    2005-09-01

    Full Text Available Building construction is considered to be the leading market for the wood industry, in developed and developingcountries. The greatest amount of wood produced in Brazil is consumed as firewood and energy, followed by production of celluloseand third as machined wood. The use of wood from planted forests can be increased. This would lead to a better use of naturalresources, and consequently to an increased sustainability of forest activity in many regions of the country. The performance of woodcan be observed from many different insights: symbolic performance, technical performance and economical performance, conductedby the method of systems approach to architecture. Usages of wood related to the performances of the material, with the redefinitionof parameters of use, elaborating a new culture linked to new technologies were outlined. This work diagnosed the usage of wood inbuilding construction based in system analysis. Through an opinion research related to the acceptation of the use of wood we observethe possibilities of utilization according to physical and mechanical proprieties, aesthetics and appearance performance and postoccupation.According to the results obtained related to the culture and knowledge about the use of wood from planted forest, it canconclude that there is not enough knowledge in this area, and it is, therefore, necessary to create an information system forprofessionals and for people in general.

  10. Wood pellets offer a competitive energy option in Sweden

    International Nuclear Information System (INIS)

    2001-01-01

    The market for wood pellets in Sweden grew rapidly during the 1990s and production now stands at around 550,000 tonnes/year. More efficient combustion technology, pellet transportation, pellet storage and pellet delivery have also been developed. The pellets, which are produced by some 25 plants, are used in family houses, large-scale district heating plants, and combined heat and power (CHP) plants. Most of the pellets are made from biomass resources such as forest residues and sawdust and shavings from wood mills. Pellet production, the energy content of saw mill by-products, the current market and its potential for future expansion, the way in which the pellets are used in different combustion systems, the theoretical market potential for wood pellet heating installations in small houses and the Swedish P-certificate system for the certification of pellet stoves and burners are described

  11. Co-combustion of wood biomass in coal power plants, a contribution to energy turnaround and climate protection?; Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und zum Klimaschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Claudia; Herr, Michael; Edel, Matthias; Seidl, Hannes

    2011-08-15

    Co-combustion of wood biomass in coal power plants is feasible at short notice and can is a low-cost option for climate protection. While other EU states have already provided funding mechanism, Germany has not followed this lead so far. Domestic wood resources are limited and unevenly distributed among the German regions, so that wood materials will have to be imported. During the past few years, the basic requirements for imports of wood were provided with the initiation of a global pellets market. Sustainability criteria for wood consumption were defined, and international certification systems were developed. The sustainability criteria should be extended to cover also wood-like materials and other biomass for power generation. The German EEG (Renewables Act) is a first step in this direction. Further, investments must be made in logistics capacities. The available logistics of coal power plants can be used with some minor modifications. In all, successful and sustainable international biomass markets may soon be available.

  12. Determination of the elemental composition of some lesser-used Ghanaian wood species by neutron activation analysis

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Serfor-Armah, Y.; Adomako, D.; Andam, A.A.B.; Addison, E.C.K.; Ofori, J.; Cobbinah, J.R.

    2003-01-01

    Wood plays an undisputed socio-economic role in human endeavour. The elemental composition of wood can give an indication of the environmental pollution of the locality from which the wood sample was extracted as timber, and can influence the machining characteristics of timber. Additionally, the elemental composition can be used as an index of the nutrient uptake of plants from the soil. With the over-exploitation of timber species in Ghana, it is now imperative that lesser-used species are studied to know their characteristics for utilization. We report preliminary results of a study on the elemental composition of some lesser-used Ghanaian wood species. Ten Ghana wood species had been studied, namely: Strombosia glauscens, Lophira alata, Cynometra anata, Combretodendron macrocarpum, Sterculia rhinopetala, Celtis milbraedii, Celtis zenteri, Nesogoadonia papaverifa, Nauclea diderrichii, and Piptadeniastrum afrieana. Neutron activation analysis was carried out for this work, using the Ghana Research Reactor, (GHARRI) facility, operating between 3-15kw and at a thermal neutron flux of 1-5 x 10 15 ns -1 cm 2 . A total of twenty-five elements were identified, some at high level, others at trace levels. We discuss the implications of these results for the efficient utilization of lesser-used Ghana wood species (author)

  13. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  14. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    Wood growth and natural decay both take time, and this is an important aspect of sustainability assessments of wood used for energy. Wood taken from forests is a carbon-neutral energy source in the long term, but there are many examples of potential sources of wood used for bioenergy for which net emission reductions are not achieved in 10 to 40 years - the time frame for most climate policy mitigation targets. This is caused by two factors. The first factor relates to the fact that the carbon cycles of wood have a long time span. After final felling, CO2 fixation rates are initially relatively low, but increase again as forests regrow. This regrowth takes many years, sometimes more than a century. Wood residues can either be used or left in the forest. By using them, the emissions from the otherwise decaying residues (taking 2 to 30 years) would be avoided. The second factor concerns the fact that, if the wood is used for bioenergy, then fossil energy emissions are being avoided. However, the direct emission levels from bioenergy are higher than those related to the fossil energy it replaces. These additional emissions also have to be compensated. The carbon debt caused by both factors has to be paid back first, before actual emission reductions can be realised. For wood residues (from harvesting or thinning) that are used to replace coal or oil products, these payback times are relatively short, of the order of 5 to 25 years, mainly depending on location and type of residue (longer if they replace gas). This is also the case when using wood from salvage logging. In most cases, when using wood from final felling directly for energy production, payback times could be many decades to more than a century, with substantial increases in net CO2 emissions, in the meantime. This is especially the case for many forests in Europe, because they are currently an effective carbon sink. Additional felling reduces average growth rates in these forests and thus the sequestration

  15. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  16. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  17. The value chain of small-sized energy wood

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, K.; Foehr, J.; Ranta, T. (Lappeenranta Univ. of Technology, Mikkeli (Finland), LUT Energy), Email: kalle.karttunen@lut.fi, Email: jarno.fohr@lut.fi, Email: tapio.ranta@lut.fi; Ahtikoski, A. (The Finnish Forest Research Institute, Rovaniemi (Finland)), Email: anssi.ahtikoski@metla.fi; Valsta, L. (Helsinki Univ. (Finland), Dept. of Forest Economics), Email: lauri.valsta@helsinki.fi

    2009-07-01

    Finland has agreed to increase the share of renewable energy to the level of 38% by the end of 2020. Most of the increase is to be based on bioenergy. According to the National Climate and Energy Strategy, the need for forest biomass will come to more than 20 TWh, or some 10 million cubic meters per year. Energy wood from young stand thinnings are the biomass resource with the most potential at the moment. The purpose of this study was to compare cost differences between forest management incorporating energy wood thinning and forest management based on traditional roundwood thinning. In addition, alternative supply chain costs for small-sized wood were studied. The results of the study show that it is worth considering the following points if the demand and average price for forest chips remain high. 1. Forest-owners: Forest management including energy wood thinning is financially feasible. 2. Supply chain: A terminal chipping chain enables large-scale procurement of small-sized energy wood. 3. Power plants: Currently, subsidies, emission trading, and decreasing pulpwood prices together enable large-scale use of small-sized wood for energy purposes. The value chain of small-sized energy wood in large-scale power plants could be mobilised. (orig.)

  18. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  19. Supply and demand of timber for wood turning in Maine

    Science.gov (United States)

    Eric H. Wharton; Robert L., Jr. Nevel; Douglas S. Powell; Douglas S. Powell

    1987-01-01

    An analytical report on the volume of wood used by the wood-turning industry in Maine, and the volume of timber from the state's timberlands that may be suitable for turnstock. Findings are based on the third forest resource survey of Maine timberlands, and an industry canvass of primary manufacturing mills using wood from Maine timberlands, both conducted in 1982...

  20. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  1. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  2. Source apportionment of PM2.5 at multiple Northwest U.S. sites: Assessing regional winter wood smoke impacts from residential wood combustion

    Science.gov (United States)

    Kotchenruther, Robert A.

    2016-10-01

    Wood smoke from residential wood combustion is a significant source of elevated PM2.5 in many communities across the Northwest U.S. Accurate representation of residential wood combustion in source-oriented regional scale air quality models is challenging because of multiple uncertainties. As an alternative to source-oriented source apportionment, this work provides, through receptor-oriented source apportionment, an assessment of winter residential wood combustion impacts at multiple Northwest U.S. locations. Source apportionment was performed on chemically speciated PM2.5 from 19 monitoring sites using the Positive Matrix Factorization (PMF) receptor model. Each site was modeled independently, but a common data preparation and modeling protocol was used so that results were as comparable as possible across sites. Model solutions had from 4 to 8 PMF factors, depending on the site. PMF factors at each site were associated with a source classification (e.g., primary wood smoke), a dominant chemical composition (e.g., ammonium nitrate), or were some mixture. 15 different sources or chemical compositions were identified as contributing to PM2.5 across the 19 sites. The 6 most common were; aged wood smoke and secondary organic carbon, motor vehicles, primary wood smoke, ammonium nitrate, ammonium sulfate, and fugitive dust. Wood smoke was identified at every site, with both aged and primary wood smoke identified at most sites. Wood smoke contributions to PM2.5 were averaged for the two winter months of December and January, the months when wood smoke in the Northwest U.S. is mainly from residential wood combustion. The total contribution of residential wood combustion, that from primary plus aged smoke, ranged from 11.4% to 92.7% of average December and January PM2.5 depending on the site, with the highest percent contributions occurring in smaller towns that have fewer expected sources of winter PM2.5. Receptor modeling at multiple sites, such as that conducted in this

  3. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  4. Comparison of neighborhood-scale residential wood smoke emissions inventories using limited and intensive survey data

    International Nuclear Information System (INIS)

    Baxter, T.E.

    1998-01-01

    Emission inventory based estimations of pollutants resulting from residential combustion of wood are typically determined by collecting survey data that represent a single but relatively large area. While the pollutants in wood smoke emissions may represent a relatively low fraction (<10%) of an area's total annual emissions mass inventory, they can concentrate within the specific neighborhood areas where emitted. Thus, while the representativeness of a large-area survey approach is valid and useful, its application for estimating wood smoke pollutant levels within any particular neighborhood may be limited. The ability to obtain a better estimation of pollutant levels for evaluating potential health-related impacts within neighborhoods where wood smoke pollutants can concentrate requires survey data more representative of the particular area. This study compares residential wood combustion survey data collected from six residential neighborhoods in the metropolitan area of Flagstaff, Arizona. The primary purpose of this study is to determine the ability of data collected from a limited neighborhood-scale survey effort to represent that neighborhood's wood fuel consumption characteristics and wood smoke emissions. In addition, the variation that occurs between different neighborhoods regarding residential consumption of wood is also evaluated. Residential wood combustion survey data were collected compare wood burning device distribution, wood types and quantities burned, and emission rates. One neighborhood was surveyed once at approximately a 10% distribution rate and again at a 100% distribution rate providing data for evaluating the ability of a limited-effort survey to represent a more intensive survey. Survey methodology, results and recommendations are presented

  5. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  6. Potential of Reinforced Indonesian Glulam Beams Using Grade I (Bengkirai, Grade II (Kamper, Grade III (Nyatoh Woods for Use in Structural Wood Design

    Directory of Open Access Journals (Sweden)

    Saptahari Sugiri

    2016-05-01

    Full Text Available Wood is a natural resource that is renewable and available in various species in tropical countries. Its abundancy in nature makes it easy to obtain, thus making it a nature friendly material for use in construction. Indonesia is the most important source of tropical wood in the world after Brazil, making the use of wood for structural elements very desirable. It is estimated that 4000 different varieties of wood exist in Indonesia. This estimate is based on the herbarium species collected by the Forestry Research Institute, currently counting nearly 4000 types of trees with a diameter of more than 40 cm. In the Indonesian wood structure code, the strength of woods is divided into 3 grades (grade I, II and III. This paper presents an evaluation of the mechanical properties of glulam wood sourced from native Indonesian timber: Bengkirai wood (grade I, Kamper wood (grade II, and Nyatoh wood (grade III, thus proving the potential for Indonesian wood as industrial structural elements in wooden constructions.

  7. Raman imaging to investigate ultrastructure and composition of plant cell walls : distribution of lignin and cellulose in black spruce wood (Picea mariana)

    Science.gov (United States)

    Umesh P. Agarwal

    2006-01-01

    A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ...

  8. Analysis of existing structure and emissions of wood combustion plants for the production of heat and electricity in Bavaria; Analyse der Bestandesstruktur und der Emissionen von Holzfeuerungsanlagen zur Erzeugung von Waerme und Strom in Bayern.

    Energy Technology Data Exchange (ETDEWEB)

    Joa, Bettina

    2014-07-01

    This work deals with the detailed analysis of the existing structure of all Bavarian wood burning plants for the generation of heat and electricity as well as the determination of the resulting emission emissions in 2013. The number of wood burning plants in the single-chamber fireplaces, wood central heating and wood-fired heating plants which are in operation in the year 2013 were determined, and how many plants are existing in the various areas like pellet stoves, traditional ovens, wood-burning fireplace, pellet central heating systems, wood chips central heating systems, fire-wood central heating systems, wood combined heat and power plant (electricity and heat) and wood power plants (heat). In addition, the regional distribution of the wood burning plants in the Bavarian governmental districts is investigated as well as the type and amount of energy produced by them (heat, electricity). [German] Diese Arbeit behandelt die detaillierte Analyse der Bestandesstruktur saemtlicher bayerischer Holzfeuerungsanlagen zur Erzeugung von Waerme und Strom sowie die Ermittlung des dabei entstehenden Emissionsausstosses im Jahr 2013. Dabei wurde ermittelt wie viele Holzfeuerungsanlagen in den Segmenten Einzelraumfeuerstaetten, Holz-Zentralheizungen und Holzheiz(kraft)werke im Jahr 2013 in Bayern in Betrieb sind und wie viele Anlagen es in den einzelnen Bereichen Pelletoefen, traditionelle Oefen, Kaminoefen, Heizkamine, offene Kamine, Kacheloefen, Pellet-Zentralheizungen, Hackschnitzel-Zentralheizungen, Scheitholz-Zentralheizungen, Holzheizkraftwerke (Waerme und Strom), Holzheizwerke (Waerme) sowie Holzkraftwerke (Strom) gibt. Des Weiteren wird die regionale Verteilung der Holzfeuerungsanlagen in den bayerischen Regierungsbezirken erforscht sowie die durch sie produzierte Art und Menge an Energie (Waerme, Strom).

  9. Wood quality changes caused by mineral fertilization

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Sette Jr

    2014-06-01

    Full Text Available The diverse and important use of wood from fast growth eucalyptus plantations requires the analysis of the effect of mineral fertilizers on wood quality. The objective of this study was to evaluate the anatomical characteristics and wood density from Eucalyptus grandis trees (3 m x 2 m spacing fertilized with potassium and sodium (at planting, 6 th and 12th month. Fifteen (15 6 years old eucalyptus trees were selected (5 trees/treatment, cut and wood samples at DBH (1,3 m were taken for anatomical characteristics (fiber and vessels and wood density analysis. Results showed that eucalyptus trees treated with mineral fertilizers did not show significant alteration in average wood density, with radial profile model common to all three treatments, characterized by a values increase in the region next to the pith, toward to bark. Mineral fertilization influenced wood anatomical characteristics: treatment with sodium was characterized by thinner walls and lumen larger diameter; in treatment with potassium, larger vessels were detected.

  10. Overall ecologic evaluation of cascading use of wood. Environmental impacts of substantial and energetic systems for utilization of wood in comparison; Gesamtoekologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Sven; Hienz, Gunnar; Keller, Heiko; Mueller-Lindenlauf, Maria

    2013-01-15

    Wood demand is rising and its production can only be extended to a certain degree. This requires a prioritisation of wood use options. Therefore, the environmental aspects of using wood for energy production or as a material with and without cascading recycling steps of stepwise lower value are studied in a comprehensive life cycle assessment (LCA). In addition, the environmental impacts of tapping new wood resources are assessed qualitatively. The results show that under most conditions the environmental impacts are the lower the more steps of a high-value material use are performed before the wood is used for energy production. One has to consider, though, that extended material use cascades can cause decades of delays of the energy recovery step, which may lead to the replacement of cleaner energy sources in the future and thus impair the results for the long-lived wood products. At the same time, wood products can represent a temporary or even - if material wood use generally increases - a long-term carbon stock. This leads to a delay of the greenhouse effect. Depending on the assessment method, these opposing effects result in unchanged to diminished impacts of long-lived wood products on the climate. Nevertheless, from an environmental point of view, high-value material use is advantageous compared to a direct use of wood for energy production independent of the assessment method. When comparing material use options of wood, especially the high-quality use of high-value wood assortments (e.g. solid wood as construction wood) is associated with positive results from an environmental perspective. In this context, the main effects on the LCA results come from the choice of the non-wood reference product and its associated environmental impacts. Regarding the direct use of wood for energy production, the most advantageous option from an environmental point of view is a combined heat and power plant (CHP) with a high overall efficiency.

  11. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  12. Wood energy x 2 - Scenario for the development of wood energy use in Switzerland

    International Nuclear Information System (INIS)

    2004-01-01

    This study for the Swiss Agency for the Environment, Forests and Landscapes (SAEFL) and the Swiss wood-energy association (Holzenergie Schweiz) presents the results of a scenario-study that examined if, and under what conditions, doubling the use of wood energy in Switzerland could help reach carbon dioxide reduction targets. Two scenarios are presented that are based on high and low rates of growth for the number of automatic wood-chipping or pellets-fired installations. For both scenarios, figures are presented on the amount of wood used and the heating energy generated. The political and financial prerequisites for the scenarios are discussed and other boundary conditions are defined. The report draws conclusions from the study of the two scenarios and summarises the political action deemed necessary

  13. Comparative ecobalancing accounting of semi-central house heat supply from wood residues

    International Nuclear Information System (INIS)

    Biemann, Kirsten

    2015-01-01

    In 2008 almost 40 percent of the German final energy demand was used for room heating and hot water supply. To decrease environmental burdens and to save fossil resources a restructuring of the heating sector is needed. Therefore legislation enforces higher insulation standards of buildings and a more frequent use of renewable energies as well as heating networks. Wood as a renewable and storable energy source is an attractive fuel. However, it must be used as efficiently as possible because of limited wood supplies. Connecting buildings via a heating network is a good option since bigger heating plants can operate at higher efficiencies than small heaters. However, the higher insulation standards of the buildings often oppose the construction of a heating network, because heating networks work best with high energy demands and low network lengths. Therefore the environmental and economic feasibility of new heating networks needs to be checked beforehand. This thesis explores the environmental burdens of different semi- centralized heating networks using wood residues as fuel. A semi- centralized heating network is a network with no more than 500 customers and a heating plant with less than 5 MWth. While wood residues are used in the base load plant, peak load is covered by a gas heating plant. As a method to analyze the potential environmental burdens of the heat supply a life cycle assessment according to ISO 14040/44 is used. Opposed to former life cycle assessment studies, construction and operation of the network is included in the assessment. Even though the environmental impacts of the semi- centralized heating from wood residues are dominated by the heat supply, an observation of the impacts solely at the heating plant is not sufficient. By varying the boundary conditions of the heating network two main contributors to the environmental impacts are found. In addition to the heat production at the plant the type of the buildings in the settlement has a huge

  14. Possibilities for the Use of Wood Ashes in Agriculture

    Directory of Open Access Journals (Sweden)

    Barbara Symanowicz

    2018-05-01

    The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes obtained from the combustion of wood in a fireplace furnace, the following parameters were determined: pH H2O, pHKCl (1 mole dm-3 KCl, pHCaCl2 (0.01 mole dm-3 CaCl2 and total alkalinity in terms of the suitability of ashes as a liming agent. The contents of Ctot. and Ntot. were determined with a CHNS/O elemental analyser by Perkin-Elmer and the contents of other elements (macronutrients and heavy metals were specified using the method of atomic emission spectrometry with inductively coupled plasma ICP-AES. Wood ashes are a source of macronutrients for plants. Their contents can be presented in the following series of decreasing values: Ca > C > K > Mg > P > S > N. Out of 1 t of wood ash, approx. 160 kg C, 6 kg N, 20 kg P, 98 kg K, 302 kg Ca, 39 kg Mg and 18 kg S can be introduced into the soil. The content of heavy metals in the analysed ashes was low, and exceeded the acceptable standards for their content in waste materials intended for liming soils. The analysed ashes exhibit good physical and chemical properties. They can be suitable for use in agriculture as a liming agent to be applied on medium and heavy soils.

  15. Turning wood residues into wood revenues

    International Nuclear Information System (INIS)

    Graham, R.G.; Kravetz, Don

    1996-01-01

    Ensyn is a profitable commercial company which derives its revenues from the conversion of wood residues into liquid biofuel and chemicals. The technology, Rapid Thermal Processing (RTP (TM) )is based on extremely fast ''cracking'' of biomass which results in light liquid yields exceeding 70% by weight, from wood. Whether producing chemicals or liquid biofuel, the RTP plant is configured identically and operated essentially in the same mode. Chemicals production simply allows economical production to occur at a lower plant capacity, as low as 2 tonnes/day, than is feasible for a dedicated fuel plant (typically greater than 100 tonnes/day). Ensyn has developed the commercialisation of RTP TM from bench to industrial scale in 10 years. A variety of crative funding initiatives in the early years allowed for capital to be raised for R and D without the loss of intellectual property (IP). The transition years of technology demonstration, prior to full commercialisation, were funded by a blend of revenues from venture capital and public sources, and by quickly tapping into a niche market for RTP TM . The utilisation of the technology at the niche market scale opened the doors to the larger fuel and commodity markets. Once, again, both IP and control of the company were maintained during these years. Flexibility, creativity and expertise are necessary to understand the significance of various financing options (private investments, commercial banking and bond issues) and to integrate these options with various renewable energy, recycling and tax incentives. Understanding these options with various renewable energy, recycling and tax incentives is necessary. Understanding both the core and peripheral needs of the customer are essential in successfully advancing a commercial wood energy venture. Ensyn's experience in these areas is the focus of the paper. (Author)

  16. Wood chip production technology and costs for fuel in Namibia

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.

    2007-12-15

    This work has been done in the project where the main target is to evaluate the technology and economy to use bush biomass for power production in Namibia. The project has been financed by the Ministry for Foreign Affairs of Finland and the Ministry of Agriculture, Water and Forestry of the Republic of Namibia. The target of this study is to calculate the production costs of bush chips at the power plant using the current production technology and to look possibilities to develop production technology in order to mechanize production technology and to decrease the production costs. The wood production costs are used in feasibility studies, in which the technology and economy of utilization of wood chips for power generation in 5, 10 and 20 MW electric power plants and for power generation in Van Eck coal fired power plant in Windhoek are evaluated. Field tests were made at Cheetah Conservation Farm (CCF) in Otjiwarongo region. CCF is producing wood chips for briquette factory in Otjiwarongo. In the field tests it has been gathered information about this CCF semi-mechanized wood chip production technology. Also new machines for bush biomass chip production have been tested. A new mechanized production chain has been designed on the basis of this information. The production costs for the CCF semi-mechanized and the new production chain have been calculated. The target in the moisture content to produce wood chips for energy is 20 w-%. In the semi-mechanized wood chip production chain the work is done partly manually, and the supply chain is organized into crews of 4.8 men. The production chain consists of manual felling and compiling, drying, chipping with mobile chipper and manual feeding and road transport by a tractor with two trailers. The CCF production chain works well. The chipping and road transport productivity in the semimechanized production chain is low. New production machines, such as chainsaw, brush cutter, lawn mover type cutter, rotator saw in skid

  17. Testing a Novel Method to Approximate Wood Specific Gravity of Trees

    Science.gov (United States)

    Michael C. Wiemann; G. Bruce. Williamson

    2012-01-01

    Wood specific gravity (SG) has long been used by foresters as an index for wood properties. More recently, SG has been widely used by ecologists as a plant functional trait and as a key variable in estimates of biomass. However, sampling wood to determine SG can be problematic; at present, the most common method is sampling with an increment borer to extract a bark-to-...

  18. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  19. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  20. Wood gasification demonstration plant in the Schwaebische Alb mountains; Demonstrationsprojekt zur Holzvergasung auf der Schwaebischen Alb

    Energy Technology Data Exchange (ETDEWEB)

    Naab, Peter; Bernhart, Martin [Energieversorgung Filstal GmbH und Co. KG, Goeppingen (Germany)

    2009-12-15

    From 2011, the demonstration plant ''Technologieplattform Bioenergie und Methan (TBM) will produce a hydrogen-rich fuel gas from wood, biomass residues and steam in the intercommunal industrial area ''Gewerbepark Schwaebische Alb'' near Geislingen-Tuerkheim in the German state of Baden-Wuerttemberg. (orig.)

  1. Wood-energy - The sector get worried

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane; Bohlinger, Philippe; Guilhem, Jean; De Santis, Audrey; Sredojevic, Alexandre; Defaye, Serge; Maindrault, Marc

    2017-01-01

    Wood energy is, today and certainly also tomorrow, one of the most important renewable energies in France. However, the wood-energy sector seems to slow down as hydrocarbon prices stay extremely low. This document presents 8 articles, describing the context and the characteristics of this evolution, plus some examples of developments in France. The themes of the articles are: the activity of the wood-energy sector should be reinforced to meet the objectives of the French energy multi-year plan; The 2035 prospective of the wood yield in the French forest will meet the future demand, however this evaluation does not take into consideration the effects of the climatic change; the conversion to biomass of the 'Fort de l'Est' (near Paris) heating system (equipped with a boiling fluidized bed boiler) has enabled the heat network to beat the 50 pc share of renewable energy; wood-energy professionals use the 'quality' lever to challenge their fossil fuel competitors; the city of Orleans is now equipped with an innovative biomass cogeneration plant; the example of wood waste valorization in a French sawmill; the French ONF (Forest Administration) Wood-Energy actor has just inaugurated its largest biomass dryer, in order to develop the domestic market for wood as a fuel; analysis of the technical and economical feasibility of using wood to generate electric power or replacing electric space heating by heat network

  2. Radioactivity of Wood and Environment

    International Nuclear Information System (INIS)

    Hus, M.; Kosutic, K.; Lulic, S.

    2003-01-01

    Nuclear experiments in the atmosphere and nuclear accidents caused global deposition of artificial radionuclides in the soil of Earth's northern hemisphere, the territory of the Republic of Croatia included. Soil contamination by radionuclides resulted in their deposition in plants growing on the contaminated soil as well as in the trees. Large area of the Republic of Croatia is covered with wood, which is exploited in manufacture of industrial wood and for firewood. From approximately 3 million cubic metres of wood exploited annually, nearly one third serves for firewood. In the process of burning a smaller portion of radionuclides deposited in the wood evaporates and goes to atmosphere while a larger portion is retained in the ash. In this paper are presented the results of natural radionuclides 4 0K , 2 32T h and 2 38U as well as of artificial radionuclide 1 37C s content determination in the wood, wood briquette, charcoal and in ash remained after burning the wood, wood briquette and charcoal. The obtained results are discussed from wood radiocontamination aspect and from the aspect of potential environmental radiocontamination by the products from wood burning process. (author)

  3. Preliminary studies of Brazilian wood using different radioisotopic sources

    International Nuclear Information System (INIS)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e

    2013-01-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  4. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    Oregon and Washington, approximately 150 species of wildlife are reported to use dead wood in forests (O’Neil et al., 2001). Forty-seven sensitive and special-status species are associated with dead wood (Appendix A). These are key species for management consideration because concern over small or declining populations is often related to loss of suitable dead-wood habitat (Marshall et al., 1996). Primary excavators (woodpeckers) also are often the focus of dead-wood management, because they perform keystone functions in forest ecosystems by creating cavities for secondary cavity-nesters (Martin and Eadie, 1999; Aubry and Raley, 2002). A diverse guild of secondary cavity-users (including swallows, bluebirds, several species of ducks and owls, ash-throated flycatcher, flying squirrel, bats, and many other species) is unable to excavate dead wood, and therefore relies on cavities created by woodpeckers for nesting sites. Suitable nest cavities are essential for reproduction, and their availability limits population size (Newton, 1994). Thus, populations of secondary cavity-nesters are tightly linked to the habitat requirements of primary excavators. Although managers often focus on decaying wood as habitat for wildlife, the integral role dead wood plays in ecological processes is an equally important consideration for management. Rose et al. (2001) provide a thorough review of the ecological functions of dead wood in Pacific Northwest forests, briefly summarized here. Decaying wood functions in: soil development and productivity, nutrient cycling, nitrogen fixation, and carbon storage. From ridge tops, to headwater streams, to estuaries and coastal marine ecosystems, decaying wood is fundamental to diverse terrestrial and aquatic food webs. Wildlife species that use dead wood for cover or feeding are linked to these ecosystem processes through a broad array of functional roles, including facilitation of decay and trophic interactions with other organisms (Marcot, 2002

  5. Recycling of wood- and peat-ash. A successful way to establish full plant cover and dense birch stand on a cut-away peatland

    Energy Technology Data Exchange (ETDEWEB)

    Huotari, N.

    2012-07-01

    Mechanical harvesting of peat changes the original mire ecosystem completely, and without active measures these areas may remain non-vegetated even for decades. Afforestation is one of the most popular after-use options for cut-away peatlands in Finland since it has both economic and aesthetic values. Recycling of wood-ash as a fertilizer has been studied extensively in peatlands drained for forestry. Wood-ash is reported to promote tree growth in these areas without any significant negative impact to the environment and could, therefore, be a suitable option also on cut-away peatlands. However, the environmental effects of ash-fertilization on cut-away areas and on ground vegetation are not fully understood. The impact of wood- and peat-ash application on the early establishment of ground vegetation and downy birch (Betula pubescens) seedlings and on post-fertilization element concentrations in plants and peat substrate were studied in a cut-away peatland. Six treatments of wood-ash, peat-ash, biotite or Forest PK-fertilizer were replicated in three blocks in different mixtures and quantities corresponding to 50 kg ha-1 of phosphorus. All the fertilizers accelerated the revegetation of the bare peat surface significantly, whereas the establishment of plants in the unfertilized area was non-existent even several years after the peat harvesting had ceased. The most striking difference between the wood- and peat-ash-fertilizers and the commercial Forest PK-fertilizer was the extensive coverage of fire-loving moss species in all the areas where ash was spread. Wood- and peat-ash application also accelerated the germination and early establishment of downy birch seedlings more efficiently than the PK-fertilizer. Ground vegetation proved to be highly important in increasing the early biomass production and carbon sequestration on ash-fertilized cut-away peatland. In addition, the below-ground biomass was equal to the above-ground biomass, or even greater. Both wood- and

  6. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  7. Wood fuelled boiler operating costs

    International Nuclear Information System (INIS)

    Sandars, D.L.

    1995-01-01

    This report is a management study into the operating costs of wood-fired boilers. Data obtained from existing wood-fired plant has been analysed and interpreted using the principles of machinery management and the science that underlies the key differences between this fuel and any other. A set of budgeting principles has been developed for the key areas of labour requirement, insurance, maintenance and repair and electricity consumption. Other lesser cost centres such as the provision of shelter and the effects of neglect and accidents have also been considered, and a model constructed. (author)

  8. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  9. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  10. Preliminary studies of Brazilian wood using different radioisotopic sources

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e, E-mail: gcarval@ipen.br, E-mail: ftgasilva@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  11. Use of wood anatomy to identify poisonous plants: Charcoal of Spirostachys africana

    Directory of Open Access Journals (Sweden)

    Sandra J. Lennox

    2015-03-01

    Full Text Available Spirostachys africana Sond. (tamboti/tambotie is a woodland tree that is often found near water. It has a poisonous and purgative latex. The archaeological site of Sibudu, a rock shelter in KwaZulu-Natal, has evidence, from well-preserved charcoal and seeds, of past environments and wood use from approximately 77–38 thousand years ago (ka. As their uses and environmental indicators are different, it is critical to confidently distinguish among the three anatomically similar woods of the Euphorbiaceae: Spirostachys africana, Sclerocroton integerrimus and Shirakiopsis elliptica. A detailed anatomical study of reference and archaeological charcoal shows that xylem vessel width increases proportionally as vessel frequency decreases, from Spirostachys africana, Sclerocroton integerrimus to Shirakiopsis elliptica. Crystals of calcium oxalate are present in ray cells of Spirostachys africana, whereas silica bodies are present in ray cells of Sclerocroton integerrimus and Shirakiopsis elliptica. Using these features, the presence of Spirostachys africana was confirmed amongst hearth charcoal of the Spotty Camel layer, with an age of approximately 58 ka and of the Mottled Deposit occupational layer, with an age of approximately 49 ka. The presence of this charcoal, collected from ancient fireplaces or sieved from surrounding sediments, implies that people at Sibudu understood and used this poisonous tree to their advantage. We are encouraged in this view by the presence of many Cryptocarya woodii leaves found on the surface of 77-ka sedge bedding at Sibudu (Wadley L et al., Science. 2011;334:1388–1391. Cryptocarya woodii has insecticidal and larvacidal properties and members of the Laurel family are well known for their medicinal properties.

  12. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  13. Unpalatable plants facilitate tree sapling survival in wooded pastures

    NARCIS (Netherlands)

    Smit, C.; Ouden, den J.; Müller-Schärer, H.

    2006-01-01

    Summary 1. In endangered wooded pasture ecosystems established tree saplings are frequently found in spatial association with protective structures, suggesting nurse effects. This associational resistance is thought to be a driving force behind tree regeneration in wooded pastures. Experimental

  14. Wood Export and Deposition Dynamics in Mountain Watersheds

    Science.gov (United States)

    Senter, Anne Elizabeth

    Wood dynamics that store, transport, break down, and ultimately export wood pieces through watershed networks are key elements of stream complexity and ecosystem health. Efforts to quantify wood processes are advancing rapidly as technological innovations in field data collection, remotely sensed data acquisition, and data analyses become increasingly sophisticated. The ability to extend the temporal and spatial scales of wood data acquisition has been particularly useful to the investigations presented herein. The primary contributions of this dissertation are focused on two aspects of wood dynamics: watershed-scale wood export processes as identified using the depositional environment of a mountain reservoir, and wood deposition mechanisms in a bedrock-dominated mountain river. Three chapters present this work: In Chapter 1, continuous video monitoring of wood in transport revealed seasonal and diurnal hydrologic cycle influences on the variable rates at which wood transports. This effort supports the efficacy of utilizing continuous data collection methods for wood transport studies. Annual wood export data were collected via field efforts and aerial image analyses from New Bullards Bar Reservoir on the North Yuba River, Sierra Nevada, California. Examination of data revealed linkages between decadal-scale climatic patterns, large flood events, and episodic wood export quantities. A watershed-specific relation between wood export quantities and annual peak discharge contributes to the notion that peak discharge is a primary control on wood export, and yielded prediction of annual wood export quantities where no data were available. Linkages between seasonality, climatic components, and hydrologic events that exert variable control on watershed scale wood responses are presented as a functional framework. An accompanying conceptual model supports the framework presumption that wood responses are influenced by seasonal variations in Mediterranean-montane climate

  15. Wood burning pollution in southern Chile: PM2.5 source apportionment using CMB and molecular markers.

    Science.gov (United States)

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2017-06-01

    Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; i.e., ambient 24-h PM 2.5 concentrations have exceeded 150 μg/m 3 in the winter season and the top concentration reached 372 μg/m 3 in 2010. Annual mean concentrations have decreased but are still above 30 μg/m 3 . For the very first time, a molecular marker source apportionment of ambient organic carbon (OC) and PM 2.5 was conducted in Temuco. Primary resolved sources for PM 2.5 were wood smoke (37.5%), coal combustion (4.4%), diesel vehicles (3.3%), dust (2.2%) and vegetative detritus (0.7%). Secondary inorganic PM 2.5 (sulfates, nitrates and ammonium) contributed 4.8% and unresolved organic aerosols (generated from volatile emissions from incomplete wood combustion), including secondary organic aerosols, contributed 47.1%. Adding the contributions of unresolved organic aerosols to those from primary wood smoke implies that wood burning is responsible for 84.6% of the ambient PM 2.5 in Temuco. This predominance of wood smoke is ultimately due to widespread poverty and a lack of efficient household heating methods. The government has been implementing emission abatement policies but achieving compliance with ambient air quality standards for PM 2.5 in southern Chile remains a challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The use of wood for wind turbine blade construction

    Science.gov (United States)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  17. Guide for construction of wood power systems. Construction - economic efficiency - technology; Leitfaden fuer die Errichtung von Holzenergie-Anlagen. Umsetzung - Wirtschaftlichkeit - Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Ruchser, M. [Forum fuer Zukunftsenergien e.V., Bonn (Germany)

    2001-07-01

    The Guidebook serves as a handbook for the entire operational sequence, which is necessary for the establishment of a wood combustion plant in Germany with an installed capacity larger than 100 kW{sub th}, for the use of fuel woods such as forest chips, wood and forest residues, pellets, wood waste, etc. within the limits of the laws and regulations prescribed for the respective performance classes. The Guidebook's purpose is to give potential investors and operators of wood combustion plants as well as the appropriate authorities a quick and global overview of the energetic use of wood in order to contribute to an increased application of this technology. The Guidebook introduces a Quality Model in Chapters 2 and 3, which describes the establishment of a wood combustion system in six phases. Eleven Management Aspects are differentiated, which can be helpful during the conversion of a project. Thus, potential investors and operators of wood combustion plants become acquainted with the most important aspects of this kind of project conversion. In addition, Chapter 4 provides an overview of the operating costs of wood combustion plants. The relevant licensing and planning procedures depending on the installed capacity and fuelwood use are comprehensively described in Chapter 5. Chapter 6 supplies a concrete overview of the environmental aspects and emissions of wood combustion. Since wood combustion plants must be - as all other investments - financially secured Chapter 7 provides a description of the relevant information on public means and subsidies. Besides all important promotion programmes, the new German Renewable Energy Law (Erneuerbare-Energien-Gesetz - EEG) of April 2000 is described in detail. Many examples of already realised wood combustion plant projects are described in Chapter 8. As an additional service, all significant addresses from ministries to energy agencies and associations are listed in Chapter 9. (orig.)

  18. Energy use of decayed wood; Lahopuun maeaerae, sisaeltoe ja hankintakustannukset

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, M; Lipponen, K [Metsaeteho Oy, Helsinki (Finland)

    1997-12-01

    A study of the quality, amounts and delivery costs of decayed wood available for possible energy use will be carried out in co-operation by Metsaeteho and Forest Research Institute. The work will consist of the following sub-studies: Quality of decayed wood available for possible energy use, quantities of decayed wood available for possible energy use by municipalities in Western and Southern Finland, harvesting, transport and chipping costs of decayed wood in different delivery alternatives and as a practical example, quantities of decayed wood available for possible energy use in two potential consumption municipalities. (orig.)

  19. NorWood: a gene expression resource for evo-devo studies of conifer wood development.

    Science.gov (United States)

    Jokipii-Lukkari, Soile; Sundell, David; Nilsson, Ove; Hvidsten, Torgeir R; Street, Nathaniel R; Tuominen, Hannele

    2017-10-01

    The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Environmental issues: New techniques for managing and using wood fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Fehrs, J.E.; Donovan, C.T. [C.T. Donovan Associates, Inc., Burlington, VT (United States)

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  1. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  2. Urban wood: Fuel from landscapers and land fills

    International Nuclear Information System (INIS)

    Miles, T.R.; Miles, T.R. Jr.

    1991-01-01

    Wood recovered from urban landscaping, construction and building demolition has become an important fuel for several new power plants. Sources, composition, and requirements for fuel preparation, handling, firing and emissions control are described from experience at several plants. Urban wood waste fuels are suitable for steam and power generation if precautions are taken to process the fuel and provide uniform flow to the boiler

  3. Effect of adding wood vinegar on cucumber (Cucumis sativus L) seed germination

    Science.gov (United States)

    Lei, Ming; Liu, Bingjie; Wang, Xiao

    2018-03-01

    Wood vinegar, a liquid by-product that was obtained from the condensed vapor generated during the biomass pyrolysis, had been reported as plant growth promotor, but the impact on the plant seeds was still not clear. Thus, we investigated the effects of wood vinegar on the germination and seedling growth of cucumber seeds through the germination experiments. The results showed that the different diluted wood vinegar addition showed no significant difference in the germination rates of cucumber seeds compared to those of the CK treatment (P > 0.05). However, the added wood vinegar at the 10000-time dilution significantly increased the root length and dry biomass of cucumber by 20.9 % and 5.92 %, respectively (P < 0.05). Therefore, the wood vinegar at an optimal time of dilution could be used a promising soaking agent for the seeds germination, and further enhance crop yields.

  4. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  5. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  6. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  7. The use of urban wood waste as an energy resource

    Science.gov (United States)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  8. Differentiating Agar wood Oil Quality Using Artificial Neural Network

    International Nuclear Information System (INIS)

    Nurlaila Ismail; Nor Azah Mohd Ali; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib

    2013-01-01

    Agar wood oil is well known as expensive oil extracted from the resinous of fragrant heartwood. The oil is getting high demand in the market especially from the Middle East countries, China and Japan because of its unique odor. As part of an on-going research in grading the agar wood oil quality, the application of Artificial Neural Network (ANN) is proposed in this study to analyze agar wood oil quality using its chemical profiles. The work involves of selected agar wood oil from low and high quality, the extraction of chemical compounds using GC-MS and Z-score to identify of the significant compounds as input to the network. The ANN programming algorithm was developed and computed automatically via Matlab software version R2010a. Back-propagation training algorithm and sigmoid transfer function were used to optimize the parameters in the training network. The result obtained showed the capability of ANN in analyzing the agar wood oil quality hence beneficial for the further application such as grading and classification for agar wood oil. (author)

  9. Wood fuel price survey for 2008 and 2009. Synthesis

    International Nuclear Information System (INIS)

    2010-01-01

    Based on interviews on telephone with wood fuel vendors and wholesalers, pellet producers, local community boiler managers, and individuals, this study, while giving several data figures and tables, proposes a price analysis for the housing sector (price evolution for individuals for different kinds and sizes of fuel woods), a comparison with other fuels and energies (electricity, gas) whether wood is used as the primary or secondary heating mean. It also comments the price scattering. It proposes the same kind of analysis for local communities

  10. Spatial and temporal habitat-use patterns of wood turtles at the western edge of their distribution

    Science.gov (United States)

    Donald J. Brown; Mark D. Nelson; David J. Rugg; Richard R. Buech; Deahn M. Donner

    2016-01-01

    Wood Turtles (Glyptemys insculpta) are a state threatened species at the western edge of their geographic distribution in Minnesota, United States. There is currently little published information regarding habitat use of western populations to assist with conservation initiatives. The primary purpose of this study was to investigate habitat use of...

  11. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach.

    Science.gov (United States)

    Zoia, Luca; Tamburini, Diego; Orlandi, Marco; Łucejko, Jeannette Jacqueline; Salanti, Anika; Tolppa, Eeva-Liisa; Modugno, Francesca; Colombini, Maria Perla

    2017-07-01

    Wood artefacts undergo complex alteration and degradation during ageing, and gaining information on the chemical composition of wood in archaeological artefacts is fundamental to plan conservation strategies. In this work, an integrated analytical approach based on innovative NMR spectroscopy procedures, gel permeation chromatography and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC-MS) was applied for the first time on archaeological wood from the Oseberg collection (Norway), in order to evaluate the chemical state of preservation of the wood components, without separating them. We adopted ionic liquids (ILs) as non-derivatising solvents, thus obtaining an efficient dissolution of the wood, allowing us to overcome the difficulty of dissolving wood in its native form in conventional molecular solvents. Highly substituted lignocellulosic esters were therefore obtained under mild conditions by reacting the solubilised wood with either acetyl chloride or benzoyl chloride. A phosphytilation reaction was also performed using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan. As a result, the functionalised wood developed an enhanced solubility in molecular solvents, thus enabling information about modifications of lignin, depolymerisation of cellulose and structure of lignin-carbohydrate complexes to be obtained by means of spectroscopic (2D-HSQC-NMR and 31 P-NMR) and chromatographic (gel permeation chromatography) techniques. Py-GC-MS was used to investigate the degradation undergone by the lignocellulosic components on the basis of their pyrolysis products, without any pre-treatment of the samples. The application of all these combined techniques enabled a comprehensive characterisation of the whole cell wall of archaeological wood and the evaluation of its state of preservation. High depletion of carbohydrates and high extent of lignin oxidation were highlighted in the alum-treated objects, whereas a good preservation state was found

  12. Image analysis of multiple moving wood pieces in real time

    Science.gov (United States)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  13. Woods and Camping Safety for the Whole Family

    Science.gov (United States)

    ... for Educators Search English Español Woods and Camping Safety for the Whole Family KidsHealth / For Parents / Woods ... products before hiking that will act as a barrier against the oils of the plants. Any area ...

  14. Science supporting the economic and environmental benefits of using wood and wood products in green building construction

    Science.gov (United States)

    Michael A. Ritter; Kenneth Skog; Richard Bergman

    2011-01-01

    The objective of this report is to summarize the scientific findings that support the environmental and economic benefits of using wood and wood products in green building construction. Despite documented advantages in many peer-reviewed scientific articles, most building professionals and members of the public do not recognize wood as a renewable resource or the role...

  15. Wood pellet milling tests in a suspension-fired power plant

    DEFF Research Database (Denmark)

    Masche, Marvin; Puig-Arnavat, Maria; Wadenbäck, Johan

    2018-01-01

    classification (i.e., the classifier cut size) are affected by the internal pellet particle size distribution obtained after pellet disintegration in hot water. Furthermore, optimal conditions for comminuting pellets were identified. The milling behavior was assessed by determining the specific grinding energy...... consumption and the differential mill pressure. The size and shape of comminuted pellets sampled from burner pipes were analyzed by dynamic image analysis and sieve analysis, respectively. The results showed that the internal pellet particle size distribution affected both the milling behavior...... similar. Mill operating changes had a negligible effect on the original elongated wood particle shape. To achieve the desired comminuted product fineness (i.e., the classifier cut size) with lower specific grinding energy consumption, power plant operators need to choose pellets with a finer internal...

  16. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  17. Market opportunities for the utilization of wood waste generated by small sawmills

    International Nuclear Information System (INIS)

    1992-01-01

    Analysis of the amounts and types of wood residue from the British Columbia sawmill and logging industry shows that only ca 50% of the residue is being utilized. On a large scale, increased utilization will mainly be achieved through use for the generation of energy. For small sawmills, a more innovative approach to the problem is needed. To assist in developing the innovative markets and uses for wood residues from the small mills, a series of in-depth interviews was conducted with sawmill operators, resource agencies, and users of wood residue throughout British Columbia. The user markets include other sawmills; pulp, paper, and particleboard plants; energy applications; and agriculture. The results of the interviews are tabulated and analyzed to demonstrate the broad spectrum of wood residue uses currently available as well as those that are emerging. For many small sawmill operations in remote areas, utilization of residues is not economical. As environmental regulations become more stringent, the cost and difficulty of handling or disposing residue will increase, and utilization (even if not economical) will become a valid option compared to disposal. A number of emerging markets for wood residue are noted, many of which are in the agricultural field. Other products which can be made out of wood residues are hog fuel and fuel pellets or briquettes. Small sawmills will not have the residue volumes or funds to establish a briquette plant, but they have expressed interest in supplying residue to any such plant that can be established in their area. 16 refs., 5 figs., 3 tabs

  18. Magnetic mapping of distribution of wood ash used for fertilization of forest soil

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Remeš, J.; Kapička, Aleš; Podrázský, V.; Grison, Hana; Borůvka, L.

    2018-01-01

    Roč. 626, June (2018), s. 228-234 ISSN 0048-9697 Institutional support: RVO:67985530 Keywords : forest soil * wood ash * fertilizing * tree plants * iron oxides * rock magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.900, year: 2016

  19. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  20. Reactivity and burnout of wood fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.

    2011-07-01

    This thesis deals with the combustion of wood in pulverised fuel power plants. In this type of boiler, the slowest step in the wood conversion process is char combustion, which is one of the factors that not only determine the degree of fuel burnout, but also affect the heat release profile in the boiler and thereby the overall operation and efficiency of the plant. Chapter 1 consists of an introduction to thermal conversion of biomass fuels as well as a description of a Danish power plant where a measuring campaign was carried out as part of this project. Chapter 2 is a brief literature review of different aspects relevant to wood combustion, including wood structure and composition, wood pyrolysis, wood char properties and wood char oxidation. The full scale campaign, which is the subject of Chapter 3, included sampling of wood fuel before and after milling and sampling of gas and particles at the top of the combustion chamber. The collected samples and data are used to obtain an evaluation of the mills in operation at the power plant, the particle size distribution of the wood fuel, as well as the char conversion attained in the furnace. In Chapter 4 an experimental investigation on the relation between pyrolysis of wood in boiler-like conditions and wood char properties is presented. Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyser. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperature varied in the range 673-1673 K for slow pyrolysis and 1073-1573 K for fast pyrolysis. The chars were oxidised in a thermogravimetric analyser and the mass loss data were used to determine char oxidation reactivity. Char yield from fast pyrolysis (104-105 K/s) was as low as 1-6% on a dry ash free basis, whereas it was about 15-17% for slow pyrolysis (10-20 K/min); char yield decreased as

  1. Impacts of adding different components of wood vinegar on rape (Brassica napus L.) seed germiantion

    Science.gov (United States)

    Shan, Xue; Liu, Xia; Zhang, Qian

    2018-03-01

    In recent years, wood vinegar has been widely used in the agricultural production. It can be used as the soil amendment, antibacterial agent and organic fertilizer. This study investigated the effect of wood vinegar on rape (Brassica napus L.) seed germination. The results in this study showed that 1% (v/v) wood vinegar had the greatest inhibition effect on the seed germination of rape (Brassica napus L.). The wood vinegar (WV) and the distilled wood vinegar at 98 - 130 °C (D2) significantly inhibited seed germination by 100%, compared to the control treatment. However, the distilled wood vinegar (D1) had significantly increased the shoot length and root length by 58.4% and 31.7%, respectively. These positive effects could be attributed to the improved soil fertility, increased nutrient supply, and further stimulated plant growth. Overall, the D1 could be a promising soil amendment to promote plants growth and enhance crop yields. Effect of adding different components of distilled wood vinegar on the seed germination of rape

  2. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  3. Polyphenolic profile as a useful tool to identify the wood used in wine aging.

    Science.gov (United States)

    Sanz, Miriam; Fernández de Simón, Brígida; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Hernández, Ma Teresa; Estrella, Isabel

    2012-06-30

    Although oak wood is the main material used in cooperage, other species are being considered as possible sources of wood for the production of wines and their derived products. In this work we have compared the phenolic composition of acacia (Robinia pseudoacacia), chestnut (Castanea sativa), cherry (Prunus avium) and ash (Fraxinus excelsior and F. americana) heartwoods, by using HPLC-DAD/ESI-MS/MS (some of these data have been showed in previous paper), as well as the changes that toasting intensity at cooperage produce in each polyphenolic profile. Before toasting, each wood shows a different and specific polyphenolic profile, with both qualitative and quantitative differences among them. Toasting notably changed these profiles, in general, proportionally to toasting intensity and led to a minor differentiation among species in toasted woods, although we also found phenolic markers in toasted woods. Thus, methyl syringate, benzoic acid, methyl vanillate, p-hydroxybenzoic acid, 3,4,5-trimethylphenol and p-coumaric acid, condensed tannins of the procyanidin type, and the flavonoids naringenin, aromadendrin, isosakuranetin and taxifolin will be a good tool to identify cherry wood. In acacia wood the chemical markers will be the aldehydes gallic and β-resorcylic and two not fully identified hydroxycinnamic compounds, condensed tannins of the prorobinetin type, and when using untoasted wood, dihydrorobinetin, and in toasted acacia wood, robinetin. In untoasted ash wood, the presence of secoiridoids, phenylethanoid glycosides, or di and oligolignols will be a good tool, especially oleuropein, ligstroside and olivil, together verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. In toasted ash wood, tyrosol, syringaresinol, cyclolovil, verbascoside and olivil, could be used to identify the botanical origin. In addition, in ash wood, seasoned and toasted, neither hydrolysable nor condensed tannins were detected. Lastly, in chestnut wood, gallic

  4. Assessing the Availability of Wood Residues and Residue Markets in Virginia

    OpenAIRE

    Alderman, Delton R. Jr.

    1998-01-01

    A statewide mail survey of primary and secondary wood product manufacturers was undertaken to quantify the production and consumption of wood residues in Virginia. Two hundred and sixty-six wood product manufacturers responded to the study and they provided information on the production, consumption, markets, income or disposal costs, and disposal methods of wood residues. Hardwood and pine sawmills produce approximately 66 percent of Virginia's wood residues. Virginia's wood product man...

  5. Gluebond strength of laser cut wood

    Science.gov (United States)

    Charles W. McMillin; Henry A. Huber

    1985-01-01

    The degree of strength loss when gluing laser cut wood as compared to conventionally sawn wood and the amount of additional surface treatment needed to improve bond quality were assessed under normal furniture plant operating conditions. The strength of laser cut oak glued with polyvinyl acetate adhesive was reduced to 75 percent of sawn joints and gum was reduced 43...

  6. Eucalyptus grandis AND Eucalyptus dunnii USE FOR WOOD-CEMENT PANELS MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2008-03-01

    Full Text Available This research evaluated the potential use of Eucalyptus grandis and Eucalyptus dunnii wood for wood-cement panelsmanufacturing. The boards were manufactured at the density of 1,20 g/cm³, using portland cement as mineral bonding and woodfurnish without treatment, treated in cold water and hot water. The wood furnish of Pinus taeda was used as control. The resultsindicated that it is not necessary to treat E. grandis and E. dunni wood for wood-cement board manufacturing. In relation to woodspecies, the board manufactured with E. dunnii showed lower values of mechanical properties. However, boards manufactured of E.grandis wood showed satisfactory results in comparison to boards of P. taeda and the referenced values of BISON process and otherproducts cited in the pertnent literature, indicating the high potential for wood-cement board manufacture of this tree species.

  7. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants

    International Nuclear Information System (INIS)

    Sohn, Wook; Chi, Jun Hwa; Kang, Duck Won; Tae, Jeong Woo

    2006-01-01

    Historically, corrosion and mechanical damage have made steam generator tubes in PWR plants see various types of degradation from both the primary and secondary sides of the tubes. Since the tube degradation can lead to through-wall failure, the plant personnel should make efforts to prevent the failure. One of such preventive efforts is to monitor primary-to-secondary leakage (PSL) that usually precedes the tube rupture. Thus the objective of PSL monitoring is to make operators to determine when to shutdown the plant in order to minimize the likelihood of propagation of leaks to tube rupture under normal and faulted conditions This paper addresses briefly the status of techniques for PSL monitoring used in PWR plants

  8. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  9. Fuel Wood: A Conventional Source Of Energy In Mountains Of The ...

    African Journals Online (AJOL)

    The use of fuel wood in the Garhwal Himalaya as a primary source of energy for domestic purposes is causing severe deforestation in the Garhwal Himalaya. The fuel wood consumption patterns have been studied in six villages selected two each in tropical (Ganga Bhogpur and Kunow), sub-tropical (Bhainswara and ...

  10. Atmospheric dispersion modeling of primary pollutants from electric power plants: Application to a coal-fired power plant

    International Nuclear Information System (INIS)

    McIlvaine, C.M.

    1994-01-01

    The normal operation of a power plant generally releases pollutants to the atmosphere. The objective of this paper is to describe a modeling method to estimate the changes in air pollutant concentrations that result from these emissions. This modeling approach is applicable to coal, biomass, oil, and natural gas technologies. As an example, this paper uses a hypothetical 500 megawatt (MW) coal-fired power plant, located at a Southeast Reference site in the U.S. and at a Southwest Reference Site. The pollutants resulting from the operation of the power plant may be classified as primary (emitted directly from the plant) or secondary (formed in the atmosphere from primary pollutants). The primary pollutants of interest in this paper are nitrogen oxides (NO x , sulfur dioxide SO 2 , particulate matter and metals

  11. Use of gamma radiation to eliminate fungi from wood

    International Nuclear Information System (INIS)

    Freitag, C.M.; Morrell, J.J.

    1998-01-01

    The use of gamma irradiation for eliminating pests from imported wood products was investigated, using ponderosa pine blocks colonized by Aspergillus niger, Ophiostoma piceae, O. perfectum, Penicillium spp., Phlebia subserialis, or Postia placenta. While previous studies suggest that a dosage of 2.5 Mrads is required to eliminate fungi from wood, only one isolation was made from wafers exposed to 1.5 Mrad. This suggests that lower dosages may be adequate for mitigating pests in wood, although further studies using other fungi are recommended

  12. Growth and Wood/Bark Properties of Abies faxoniana Seedlings as Affected by Elevated CO2

    Institute of Scientific and Technical Information of China (English)

    Yun-Zhou Qiao; Yuan-Bin Zhang; Kai-Yun Wang; Qian Wang; Qi-Zhuo Tian

    2008-01-01

    Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (=1= 25) μmol/mol) under two planting densities (28 or 84 plants/mz) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.

  13. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  14. Wood particleboard and flakeboard : types, grades, and uses

    Science.gov (United States)

    C. G. Carll

    1986-01-01

    This report is for those who use or may want to use wood particleboard. The term bparticleboardc is used as defined in the American Society for Testing and Materials (ASTM) Standard D 1554, which includes flakeboards as a subclass of particleboards, and not as used in the lumber trade where the term is usually reserved for panels made of fine wood particles such as...

  15. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P.; Tullus, H.; Uri, V. [Estonian Agricultural University, Tartu (Estonia)

    1996-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  16. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P; Tullus, H; Uri, V [Estonian Agricultural University, Tartu (Estonia)

    1997-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  17. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  18. Wood frame systems for wood homes

    Directory of Open Access Journals (Sweden)

    Julio Cesar Molina

    2010-12-01

    Full Text Available The use of constructive systems that combine strength, speed, with competitive differential techniques and mainly, compromising with the environment, is becoming more popular in Brazil. The constructive system in wood frame for houses of up to five stories is very interesting, because it is a light system, structured in reforested treated wood which allows the combination of several materials, besides allowing speed in the construction and total control of the expenses already in the project phase for being industrialized. The structural behavior of the wood frame is superior to the structural masonry in strength, thermal and acoustic comfort. However, in Brazil, the wood frame is still little known and used, due to lack of technical knowledge about the system, prejudice associated the bad use of the wood as construction material, or still, in some cases, lack of normalization. The aim of this manuscript consists of presenting the main technical characteristics and advantages of the constructive system in wood frame homes, approaching the main stages of the constructive process through examples, showing the materials used in the construction, in addition the main international normative recommendations of the project. Thus, this manuscript also hopes to contribute to the popularization of the wood frame system in Brazil, since it is a competitive, fast and ecologically correct system. Moreover, nowadays, an enormous effort of the technical, commercial and industrial section has been accomplished for the development of this system in the country.

  19. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry.

    Science.gov (United States)

    Löfstedt, Håkan; Hagström, Katja; Bryngelsson, Ing-Liss; Holmström, Mats; Rask-Andersen, Anna

    2017-06-01

    Wood pellets are used as a source of renewable energy for heating purposes. Common exposures are wood dust and monoterpenes, which are known to be hazardous for the airways. The purpose of this study was to study the effect of occupational exposure on respiratory health in wood pellet workers. Thirty-nine men working with wood pellet production at six plants were investigated with a questionnaire, medical examination, allergy screening, spirometry, and nasal peak expiratory flow (nasal PEF). Exposure to wood dust and monoterpenes was measured. The wood pellet workers reported a higher frequency of nasal symptoms, dry cough, and asthma medication compared to controls from the general population. There were no differences in nasal PEF between work and leisure time. A lower lung function than expected (vital capacity [VC], 95%; forced vital capacity in 1 second [FEV 1 ], 96% of predicted) was noted, but no changes were noted during shifts. There was no correlation between lung function and years working in pellet production. Personal measurements of wood dust at work showed high concentrations (0.16-19 mg/m 3 ), and exposure peaks when performing certain work tasks. Levels of monoterpenes were low (0.64-28 mg/m 3 ). There was no association between exposure and acute lung function effects. In this study of wood pellet workers, high levels of wood dust were observed, and that may have influenced the airways negatively as the study group reported upper airway symptoms and dry cough more frequently than expected. The wood pellet workers had both a lower VC and FEV 1 than expected. No cross-shift changes were found.

  20. Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy

    Science.gov (United States)

    Kislukhina, Irina A.; Rybakova, Olga G.

    2018-03-01

    The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.

  1. Assessment of the wood waste resource and its position in the wood / wood-energy sector - Synthesis

    International Nuclear Information System (INIS)

    Guinard, Ludovic; Deroubaix, Gerard; Roux, Marie-Lise; Levet, Anne-Laure; Quint, Vincent

    2015-04-01

    The first objective of this study is to obtain a better knowledge of the 'wood wastes' issue, to propose a photography of the wood waste sector (productions, trades, consumptions), and then to elaborate different prospective scenarios on the use of wood waste volumes while taking into account possible evolutions on the medium or short term of the regulation and market of the wood/wood energy sector. The considered wastes come from industrial production, from the use of wood-based products, and from the end of life of products potentially containing wood. The authors present bibliographical sources and the adopted methodology, briefly describe the 'wood waste' system with its actors, and then report their assessment of wood wastes. They propose a global assessment as well as detailed assessments with respect to waste origins: wood trade and distribution, industries, craft, households and communities, building sector, public and private tertiary sector, packaging. They also address the collection and management of wood wastes by public services, and present the different types of valorisation (panel fabrication, energy, and others). They discuss exports, and then present different scenarios: a trend-based scenario, and two prospective scenarios with a priority to energetic valorisation or to material valorisation of wood wastes. These scenarios are compared

  2. Greenhouse impacts of the use of peat and wood for energy

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    Atmospheric concentrations of greenhouse gases may well double or increase even more during the next hundred years. The resultant disturbance in the global radiation energy balance (radiative forcing) may change almost as much. Stabilizing these concentrations at a level innocuous to the climate - the aim expressed in the Climate Convention - will take decades, perhaps more than a hundred years, to carry out. This study examines the greenhouse impacts of using peat and wood for energy and the time factors involved, taking the entire energy production chain and renewal of the energy source into account. The greenhouse effects of peat and wood use are compared with those of fossil fuels. The calculations apply to test cases. Financial considerations and other sources of energy are not dealt with. Greenhouse effects are measured in terms of radiative forcing caused by using an energy resource. The calculations are made per units of primary energy. The study further proposes ways to apply the results obtained to assessing the extent to which radiative forcing caused by Finland could be reduced by the use of peat or wood fuels. The calculations take into account emissions of CO 2 , CH 4 , N2 O and possible sinks of CO 2 arising from energy production. The emissions and sinks of each chain of energy production are calculated as a function of time, deducting emissions which would arise in the reference case, in which energy production is not begun. Real emissions due to production are obtained by deducting emissions in the reference case from emissions which arise during production. The difference is used as a basis for calculating radiative forcing per unit of energy produced

  3. Wood biomass use in Slovenia and new challenges for the future

    International Nuclear Information System (INIS)

    Krajnc, N.

    2005-01-01

    In the last decades, wood has been substituted by other materials in many fields of utilization (construction, furniture, energy production). In Slovenia, which is markedly wooded, the process of substituting wood as a raw material started later but has been rather intense in the last twenty years. Substitution of wood in industry and in energy production has several consequences. Among the most distinctive ones are pollution of environment because of increased utilization of fossil fuels, and low realization of cut in forests. In this article we would like to present wood biomass use in Slovenia and some actions which were taken on both micro and macro level in last few years to overcome social and economical barriers for enlarge use of wood biomass.(author)

  4. Preliminary study about refining wood fuel with torrefaction; Esiselvitys puupolttoaineen jalostamisesta torrefiointitekniikalla

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, E.; Heinimoe, J.

    2006-07-01

    The EU has started to reduce greenhouse gases which are the result of using fossil fuels. One way to do this is emission trade. There are plans to generate biofuels to replace non-renewable fuels. These biofuels can be processed with the old equipment in power plants. The advantage of biofuels is that their emission factor of carbon dioxide is agreed to be zero because wood consumes the same amount of carbon dioxide while it grows as it releases in combustion. One of these refined biofuels is torrefied wood. Its characteristics mostly correspond to coal, and it can be used in coal-fired power plants without changing equipment. Torrefaction means, in a manner of speaking, roasting wood in 250-270 deg C in oxygen-free conditions. In this process all the water is removed, as well as some of the volatile gases. The colour of the wood changes to chocolate brown, it gets lighter, does not smoke in combustion, repels water, is pulverized easily and releases only small amounts of particulate emissions. The durability and operating properties of torrefied wood are significantly different compared to the raw material. Torrefied wood also has better properties than e.g. wood coal. Torrefaction has been studied a little, and its combustion on the power plant scale has been tested on a small scale. Torrefied material is difficult and expensive to transport because of its proper-ties, so its density must be raised for transporting, e.g. by pelleting. Torrefaction combined with pelleting is, at its best, would be a competitive alternative when biomass, substituting coal, is processed off-site and transported in bulk by sea. Based on the data collected in this preliminary study it can be estimated that producing torrefied wood fuel in Finland has technical-economical possibilities. However, the application of the torrefaction process to Finnish conditions and domestic raw material demands investment in further studies before moving on to the actual implementation phase. (orig.)

  5. Pollution-free combustion of waste wood in Swiss joineries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The exploitation of scrap wood for heat generation in the wood processing industry makes sense not only in the context of energy conservation but also on environmental grounds. Existing energy requirements can be provided by renewable energy sources, relieving the burden on the public waste disposal facility. The wood-fired heating plant for a joinery in Pratteln, Switzerland consumes 150 to 180 tonnes of waste wood per year, enabling approximately 80 tonnes of heating oil to be saved. The heat produced is used in a local scheme to heat the joinery and adjacent housing. A new fibrous filter system for the retention of fine particles was installed, enabling the particle concentration in the exhaust to be reduced from 292 mg/m{sup 3} to 24 mg/m{sup 3}. (UK)

  6. Plants as highly diverse sources of construction wood, handicrafts and fibre in the Heihe valley (Qinling Mountains, Shaanxi, China): the importance of minor forest products.

    Science.gov (United States)

    Kang, Jin; Kang, Yongxiang; Feng, Jing; Liu, Mengying; Ji, Xiaolian; Li, Dengwu; Stawarczyk, Kinga; Łuczaj, Łukasz

    2017-06-30

    Chinese rural communities living among species-rich forests have little documentation on species used to make handicrafts and construction materials originating from the surrounding vegetation. Our research aimed at recording minor wood uses in the Heihe valley in the Qinling mountains. We carried out 37 semi-structured interviews in seven villages. We documented the use of 84 species of plants. All local large canopy trees are used for some purpose. Smaller trees and shrubs which are particularly hard are selectively cut. The bark of a few species was used to make shoes, hats, steamers and ropes, but this tradition is nearly gone. A few species, mainly bamboo, are used for basket making, and year-old willow branches are used for brushing off the chaff during wheat winnowing. The traditional use of wood materials documented suggests that some rare and endangered tree species may have been selectively cut due to their valuable wood, e.g. Fraxinus mandshurica and Taxus wallichiana var. chinensis. Some other rare species, e.g. Dipteronia sinensis, are little used and little valued.

  7. Status and prospects for renewable energy using wood pellets from the southeastern United States

    DEFF Research Database (Denmark)

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.

    2017-01-01

    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention...... as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem...... services they provide?' To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide...

  8. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  9. Identification and primary characterization of a plant antimicrobial ...

    African Journals Online (AJOL)

    Then an agar-overlay method using fully separated proteins on sodium dodecyl sulphate-polyacryliamide gel electrophoresis (SDS-PAGE) gels was used for initial determination and primary characterization of active putative defensins in the plant seeds. Clear and remarkable zones of inhibition in a region corresponding to ...

  10. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  11. Determination of Effective Criteria for Location Selection of Kiln Wood Drying Plants by AHP Technique

    Directory of Open Access Journals (Sweden)

    Rahim Mohebbi

    2011-12-01

    Full Text Available This study was aimed at determining the effective criteria for location selection of wood drying plants in Iran. For this purpose, after review and field visit of the industries, 35 key indicators were identified. These criteria were divided into five major groups as: materials, infrastructure, technical, economical and instructional indices. The priority rates of these criteria and sub-criteria were evaluated by AHP technique. The results indicated that among 35 effective sub-criteria in location selection of the plants, the sub-criteria of quality of raw materials(0.152, purchasing raw materials, land cost, profitability, reliability of supply, and sales had the highest priorities, which were rated as 0.118, 0.105, 0.067, 0.061 and 0.057, respectively

  12. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.

    Science.gov (United States)

    Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D

    2012-12-01

    The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require knowledge of probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential for obtaining reliable and accurate solutions. When applied to field conditions, these tests can be obtained in different seasons and can be automated using the existing data logging system. Empirical factors are introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and are estimated in this study as well. The proposed methodology may be tested for its applicability to realistic field conditions, with an ultimate goal of calibrating heat ratio sap flow systems in practical applications.

  13. Using wood products to mitigate climate change: External costs and structural change

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2009-02-15

    In this study we examine the use of wood products as a means to mitigate climate change. We describe the life cycle of wood products including forest growth, wood harvest and processing, and product use and disposal, focusing on the multiple roles of wood as both material and fuel. We present a comparative case study of a building constructed with either a wood or a reinforced concrete frame. We find that the production of wood building material uses less energy and emits less carbon than the production of reinforced concrete material. We compare the relative cost of the two building methods without environmental taxation, under the current Swedish industrial energy taxation regime, and in scenarios that incorporate estimates of the full social cost of carbon emission. We find that the inclusion of climate-related external costs improves the economic standing of wood construction vis-a-vis concrete construction. We conclude that policy instruments that internalise the external costs of carbon emission should encourage a structural change toward the increased use of sustainably produced wood products. (author)

  14. Symposium on extending the use of wood residue

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A symposium on extending the use of wood residues was held in Geneva, Switzerland in June, 1977. These meetings were sponsored by the UN Economic Commission for Europe, Timber Committee for the purpose of sharing information and ideas on recycling wood wastes. Eight separate papers were abstracted for inclusion in the Energy Data Base.

  15. Wood-burning appliances and indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Benoit; Allaire, Sylvain; Gauvin, Denis; Gingras, Suzanne; Rhainds, Marc; Prud' Homme, Henri; Duchesne, Jean-Francois [CHUQ-Centre de Recherche du CHUL, Unite de Recherche en Sante Publique, 2400, d' Estimauville, Beauport, G1E 7G9 Quebec (Canada); Koutrakis, Petros [Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115 (United States)

    2001-12-17

    Wood heating represents an interesting economic alternative to electrical or heating oil and gas systems. However, many people are concerned about poor indoor air quality in homes equipped with wood-burning appliances. We conducted a study in the Quebec City region (Canada) to verify the extent of indoor air contamination, and to examine the frequency of respiratory symptoms and illnesses among occupants of wood-heated homes. One child attending primary school (median=8 years old; range=5-14 years old) and an adult (median=37 years old; range=23-52 years old) were recruited in each eligible house. Eligible houses were without known sources of combustion products (smokers, attached garage, oil or gas furnace, gas stove, etc.) except for wood-burning appliance. Out of the 89 houses included in the study, 59 had wood-burning appliances. Formaldehyde, nitrogen dioxide, respirable particles (PM10) and carbon monoxide were measured in a sub-set of 49 houses (41 with a wood-burning appliance and 8 without). The frequency of respiratory symptoms and diseases among participants were documented using a daily symptom diary. Concentrations of contaminants were low in most houses, both with or without a wood-burning appliance. Globally, there was no consistent relationship between the presence of a wood-burning appliance and respiratory morbidity in residents. Nevertheless, residents who mentioned being exposed to fumes emitted by such an appliance reported more respiratory illnesses and symptoms. The presence of animals or molds, and keeping windows closed most of the time in winter were other factors associated with respiratory problems. We conclude that wood burning appears to be a respiratory health risk for occupants if the appliance is not maintained and used properly.

  16. Integrated production method for wood fuel and pulp wood in Northern Finland; Polttojakeen hankinta puun yhdistelmaekorjuussa ja integroitu energiapuun tuotantomenetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A [Hooli Oy, Kemi (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland); Ranta, T [Finntech Ltd. Oy, Jyvaeskylae (Finland)

    1997-12-31

    Chip production company Hooli Ltd. has built an innovative mobile chain-flail delimbing-debarking-unit which includes also a hammer crusher for wood fuel. This integrated production method for wood fuel and pulp wood based on that unit has been planned especially for the circumstances where the power or heating plants are near and the pulp mills more remote from the wood processing sites. The trees are felt into bunches and transported as whole trees or tree-sections to the roadside. The Hooli-unit delimbs and debarks the trees using multi-tree processing. The optimal bark content of Scot pine bolts after processing is under 1 %. All green branches, stops and bark are directly crushed into wood fuel in the same unit. Fuel chips are carried to the nearest power plant. The debarked bolts are transported to the pulpmills in the form of roundwood or pulpchips, thus giving better economy for the whole method. Based on first field experiments in 1995 this method has operated well. However, there are still development work ahead: e.g. good debarking quality of birch and spruce in the winter conditions. To attain the targets of the project looks promising. The project is carried out as joint project between Hooli Ltd, Finntech Ltd. Oy, the Finnish Forest Research Institute, Veitsiluoto Ltd and VTT Energy. The chain-flail delimbing-debarking-crushing unit was built at Tervolan Konepaja Ky

  17. Integrated production method for wood fuel and pulp wood in Northern Finland; Polttojakeen hankinta puun yhdistelmaekorjuussa ja integroitu energiapuun tuotantomenetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A. [Hooli Oy, Kemi (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland); Ranta, T. [Finntech Ltd. Oy, Jyvaeskylae (Finland)

    1996-12-31

    Chip production company Hooli Ltd. has built an innovative mobile chain-flail delimbing-debarking-unit which includes also a hammer crusher for wood fuel. This integrated production method for wood fuel and pulp wood based on that unit has been planned especially for the circumstances where the power or heating plants are near and the pulp mills more remote from the wood processing sites. The trees are felt into bunches and transported as whole trees or tree-sections to the roadside. The Hooli-unit delimbs and debarks the trees using multi-tree processing. The optimal bark content of Scot pine bolts after processing is under 1 %. All green branches, stops and bark are directly crushed into wood fuel in the same unit. Fuel chips are carried to the nearest power plant. The debarked bolts are transported to the pulpmills in the form of roundwood or pulpchips, thus giving better economy for the whole method. Based on first field experiments in 1995 this method has operated well. However, there are still development work ahead: e.g. good debarking quality of birch and spruce in the winter conditions. To attain the targets of the project looks promising. The project is carried out as joint project between Hooli Ltd, Finntech Ltd. Oy, the Finnish Forest Research Institute, Veitsiluoto Ltd and VTT Energy. The chain-flail delimbing-debarking-crushing unit was built at Tervolan Konepaja Ky

  18. [Diagnosing Low Health and Wood Borer Attacked Trees of Chinese Arborvitae by Using Thermography].

    Science.gov (United States)

    Wang, Fei; Wu, De-jun; Zhai, Guo-feng; Zang, Li-peng

    2015-12-01

    Water and energy metabolism of plants is very important actions in their lives. Although the studies about these actions by using thermography were often reported, seldom were found in detecting the health status of forest trees. In this study, we increase the measurement accuracy and comparability of thermo-images by creating the difference indices. Based on it, we exam the water and energy status in stem of Chinese arborvitae (Platycladus orientalis (L.) Franco) by detecting the variance of far infrared spectrum between sap-wood and heart-wood of the cross-section of felling trees and the cores from an increment borer using thermography. The results indicate that the sap rate between sapwood and heartwood is different as the variance of the vigor of forest trees. Meanwhile, the image temperature of scale leaves from Chinese arborvitae trees with different vigor is also dissimilar. The far infrared spectrum more responds the sap status not the wood percentage in comparing to the area rate between sapwood and heartwood. The image temperature rate can be used in early determining the health status of Chinese arborvitae trees. The wood borers such as Phloeosinus aubei Perris and Semanotus bifasciatus Motschulsky are the pests which usually attack the low health trees, dying trees, wilted trees, felled trees and new cultivated trees. This measuring technique may be an important index to diagnose the health and vigor status after a large number of measurements for Chinese arborvitae trees. Therefore, there is potential to be an important index to check the tree vigor and pest damage status by using this technique. It will be a key in the tending and management of ecological and public Chinese arborvitae forest.

  19. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    Science.gov (United States)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  20. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  1. Low-NO{sub x}, wood chip combustion

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Oravainen, H.; Haemaelaeinen, J.; Paakkinen, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    The regulations for nitrogen oxide emissions vary in different countries, but the general trend in the future will probably be that the emissions limits will be lowered also for wood combustion plants, which are small or medium size units. Thus, the development of wood chip burning furnaces (grate furnaces, fluidized bed combustors, stoker furnaces) with lower nitrogen oxide emissions, is important. The wood used in the combustor, its particle size, moisture and fuel properties (nitrogen content) affect the nitrogen emissions. The nitrogen oxide release is also much affected by the design and operation of the combustor (air staging, fuel air preheat, flue gas circulation, air to fuel mass ratio). The fate of nitrogen compounds originally in the virgin wood depends much on the design of the combustor system and by proper planning it is possible to reduce the emission of nitrogen oxides. Basic knowledge of the release of nitrogen compounds from single wood particles is attained. The release of gaseous nitrogen compounds from wood particles during pyrolysis and combustion is studied experimentally and by modelling. Nitrogen release is studied experimentally by two ways, by analysing the gas and by quenching the particle and analysing the char residue. Formation of nitrogen oxide emissions in a fuel bed is studied by modelling and by combustion experiments with a pot furnace. This research gives general information of nitrogen oxide formation in wood bunting especially in fixed beds. The development of a horizontal stoker burner for wood chips with low emissions is the practical aim of the research. (orig.)

  2. The use of wood waste for energy production

    International Nuclear Information System (INIS)

    Karlopoulos, E.; Pavloudakis, F.

    1999-01-01

    The paper presents some technical aspects and management issues of wood waste reuse end disposal. It refers to the Greek and European legislation which determines the framework for rational and environmental friendly practices for woos waste management. It refers also to the wood waste classification systems and the currently applied methods of wood waste disposal and reuse. Emphasis is given to the wood waste-to-energy conversion system, particularly to the pretreatment requirements, the combustion techniques, and the environmental constrains. Finally, the decision making process for the investments in the wood waste firing thermal units is discussed

  3. THERMAL DEGRADATION AND MORPHOLOGICAL ASPECTS OF FOUR WOOD SPECIES USED IN LUMBER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Matheus Poletto

    Full Text Available ABSTRACT The aim of this work was characterize four wood waste samples from lumber industry in order to obtain previous information about structure and properties of wood before use it as a biofuel or as reinforcement in composite formulations. The influence of wood components on the thermal degradation stability of different wood species has been investigated using thermogravimetry, differential scanning calorimetry and scanning electron microscopy. Four wood species, Eucalyptus grandis (EUG, Pinus elliottii (PIE, Dipteryx odorata (DIP and Mezilaurus itauba (ITA, were used in this study. The results showed that higher extractives contents may form a thin film on the wood fiber surface which can accelerate the degradation process and reduce the wood thermal stability

  4. Physiognomic and chemical characters in wood as palaeoclimate proxies

    NARCIS (Netherlands)

    Poole, I.J.; Bergen, P.F. van

    2006-01-01

    Fossil wood is both abundant and ubiquitous through geological time and space. During growth the parent plant was directly influenced by the biotic and abiotic (including climatic-) factors in the surrounding environment. The climate affects wood production in a number of ways and it is the

  5. Evaluation of energy efficient techniques in the wood working and wood processing industry. Final report THERMIE - Action no. DIS-0059-95-DE

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Digutsch, O.; Frey, G. v. [and others

    1997-05-01

    With the entrance of Austria, Finland and Sweden in the European Union beginning of 1995 the pattern of industrial energy consumption has changed considerably in some branches which are large energy consumers in the Northern countries. The wood working and wood processing industry is one of those branches. It comprises the preparation of wood from primary processing in sawmills up to the production of finished products, and is highly energy-intensive although to a somewhat smaller extent than the large energy consumers such as the iron and steel production or glass manufacturing. It can further be assumed that official statistics underestimate the real importance of the energy consumption in the wood sector because most official statistics do not indicate waste wood as a fuel. Waste wood is a renewable fuel and has as such not the same impact in terms of CO{sub 2}-emissions as fossil fuels. Nevertheless, renewable energy sources should be also used efficiently because they can replace fossil fuels for other purposes. The objective of this study on the wood sector were to analyse and summarise the present status of energy consumption in the fifteen countries of the EU and the two EFTA countries Norway and Switzerland, to evaluate present day energy technology in the wood industry, and to investigate existing application barriers to these techniques in order to inform, support and to motivate small and medium-sized companies in particular, thus simulating the wide spread use of such techniques. (orig./SR)

  6. Results of the production of wood derived fuels; Puupolttoaineiden tuotantotekniikka - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A [Metsaeteho, Helsinki (Finland)

    1997-12-31

    During the year 1995 there were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About in ten projects work was carried out to promote wood fuel production from logging residues. Other topics were fire wood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. Having ability to move on terrain, and equipped with drum chipper, hook technic for interchangeable containers and a trailer, the whole production chain can be carried out by the same machine. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 cubic metres of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved. In the field of integrated production a great stride was taken when the first pilot plant using the MASSAHAKE-method started up. Components of the production line and knowledge to operate the process have increased resulting in good performance of the plant. And even another concept for integrated production was introduced. In order to fully control the debarking of small sized trees, a production line of chain flail equipment and debarking drum followed by a chipper and screening facilities was built up. Equipment and machines for harvesting young stands in a way that increases substantially the yield of energy component are still mostly first prototypes. The development of them into well functioning, efficient tools is the most important task in integrated production

  7. Results of the production of wood derived fuels; Puupolttoaineiden tuotantotekniikka - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A. [Metsaeteho, Helsinki (Finland)

    1996-12-31

    During the year 1995 there were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About in ten projects work was carried out to promote wood fuel production from logging residues. Other topics were fire wood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. Having ability to move on terrain, and equipped with drum chipper, hook technic for interchangeable containers and a trailer, the whole production chain can be carried out by the same machine. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 cubic metres of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved. In the field of integrated production a great stride was taken when the first pilot plant using the MASSAHAKE-method started up. Components of the production line and knowledge to operate the process have increased resulting in good performance of the plant. And even another concept for integrated production was introduced. In order to fully control the debarking of small sized trees, a production line of chain flail equipment and debarking drum followed by a chipper and screening facilities was built up. Equipment and machines for harvesting young stands in a way that increases substantially the yield of energy component are still mostly first prototypes. The development of them into well functioning, efficient tools is the most important task in integrated production

  8. Availability and conversion to energy potentials of wood-based industry residues in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Siyam Siew, S.

    2000-01-01

    The importance of biomass as the most accessible primary energy source in Cameroon is presented. The valorization of wood wastes and residues is seen as a way of implementing the sustainable use of biomass resources. A recent survey of wood-based industries in Cameroon reveals that large volumes of industrial wood residues are generated in the rain forest areas and are inefficiently used. Important quantities are lost in the form of burning in the four main forestry provinces, while other parts of the country suffer from fuelwood shortage. With the exception of the plywood factories, the wood industry is essentially dependent on commercial energy. An analysis made to show the economic and environmental benefits of converting wood residues to energy for industrial and domestic use is presented. (author)

  9. A profile of wood use in nonresidential building construction

    Science.gov (United States)

    H. N. Spelter; R. G. Anderson

    This report presents estimates of the amounts of lumber, glued-laminated lumber, trusses, plywood, particleboard, hardboard, and wood shingles used in new nonresidential building construction in the United States. Use of wood products is shown for several building types, project sizes, and building components. The estimates are based on a survey of 489 projects under...

  10. Fuzzy Rule Suram for Wood Drying

    Science.gov (United States)

    Situmorang, Zakarias

    2017-12-01

    Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.

  11. The use of vascular plants as traditional boat raw material by Yachai tribe in Mappi Regency

    Directory of Open Access Journals (Sweden)

    YOHANES YOSEPH RAHAWARIN

    2005-07-01

    Full Text Available This research is executed aim to know the plant species and the way of exploiting permanent wood upon which traditional boat making by Yachai tribe in Mappi regency. The Method that used in this research is descriptive method with the structural semi interview technique and direct perception in field. Result of research indicate that the tribe Yachai exploit the plant species have permanent wood upon which traditional boat as much 26 species from 14 family. There are 8 wood species which is often used for the body of boat and also own the good quality according to Yachai tribe, that is Atam (Scihizomeria serrata Hochr, Batki (Adinandra forbesii Baker. F, Chomach (Gordonia papuana Kobuski, Rupke (Tristania sp., Bao (Dillenia papuana artelli, Top (Buchanania macrocarpa Laut, Mitbo (Cordia Dichtoma Forst., and Yunun (Camnosperma brevipetiolata Volkens. While to part of oar exploit 2 wood species that is Bach (Buchanania Arborescens.Bi and Tup (Litsea ampala Merr. Yachai Tribe recognized 3 boat model owning different size measure and function, that is Junun Ramchai, Junun Pochoi and Junun Toch.

  12. Wood

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    come from? How is it harvested? How is it manufactured and treated ? How are the buildings detailed and protected against weather during construction to keep them dry and make them long-life ? In a period of climate change, forests are the last lungs of the planet to sequestrate CO2. Their global size......Wood – a sustainable building material ? For thousands of years and all over the planet, wood has been used as a building material and exciting architecture has been created in wood. The fantastic structural, physical and aesthetic properties of the material as well as the fact that wood...

  13. Economical aspects of the use of wood as fuel

    International Nuclear Information System (INIS)

    Bordebeure, S.

    2009-01-01

    Outside the discussions relative to the advantages presented by the use of wood-energy from the point of view of the atmospheric pollution and global warming, another important aspect is the one of the economic interest presented by this wood. The agency for the environmental protection and the control of energy presents numerous useful elements to enlighten this question. The 'Bioresco' code is a tool that allows to evaluate the costs of investment and exploitation relative to a wood-energy installation. it can help at two levels: estimation of the costs of a project at the pre study level; checking of the costs of a project in the frame of a feasibility study realised by a thermal studies office, the software can alert on abnormally high costs. The 'Ecoprojet' code is a tool of economic analysis evaluating the profitability of the wood-energy solution face to a reference solution. It allows to calculate the economical analysis criteria from investment and exploitation costs of the biomass solution and of reference solution. The agency (A.D.E.M.E.) is bringing to a successful conclusion the following works: a study on the evolution of the investments costs relative to the collective wood-energy installations, works on economical analysis of typical cases studies. As illustration, a document of the A.D.E.M.E. is presented on the economic analysis of a wood-energy project. (N.C.)

  14. Environmental assessment of domestic wood heating

    International Nuclear Information System (INIS)

    Labouze, E.; Le Guerin, Y.

    2009-01-01

    In France, more than 6 million families are concerned with the domestic use of wood energy. The wood energy plan of ADEME aims at encouraging the development of wood energy in three sectors: domestic, collective/tertiary, industrial. In that context, ADEME commissioned BIO Intelligence Service a life cycle assessment of collective and industrial heating in order to give objective environmental information and to analyse the strength and weakness of wood heating. Three scenarios were defined according to the origin of wood: firewood, granules and sawmill chips. The study also proposes a comparison to other heating systems: gas, fuel oil and electricity. The life cycle analysis applied to domestic heating consists in quantifying the environmental impacts of the whole linked steps: extraction of fuel, distribution, final use... Every system under study has been divided according to three main stages: - Extraction of raw materials; - Transport of fuels until the place of storage or distribution; - Use (combustion or upstream production of energy in the case of electricity). The environmental impacts are estimated with the following indicators: - Non renewable primary energy balance sheet; - Global warming potential; - Air acidification potential; - Eutrophication potential; - Emissions of toxic metals in air and in soils. The results show that wood heating have the best energy and global warming balance sheets. For air acidification, the combustion stage is pre-dominant regardless of the energy resource. This is mainly due to nitrogen and sulphur oxides airborne emissions. For wood heating, preparation requires fuel consumption which also contributes significantly to nitrogen oxides emissions. The comparison with conventional energy shows that the wood scenarios are well positioned in relation to fuel and electricity for this indicator. Gas appears to be the best heating option for this indicator. The contribution eutrophication is also due to nitrogen oxides airborne

  15. Wood density variation in Gmelina arborea trees using X-ray densitometry

    International Nuclear Information System (INIS)

    Roque, Roger Moya; Tomazello, Mario

    2005-01-01

    The wood density constitutes the main wood quality parameter by its relationship with anatomical, physical and chemical properties and wood utilization. The modern and accurate methods - like X-ray densitometry - are applied to determine the density spatial distribution in wood sections and pith-bark direction. On the other hand, emphasis to wood utilization from fast growing plantations, like Gmelina arborea in Costa Rica, has been done. The objectives of this study were to determinate the influence of 2 climatic conditions of Costa Rica on radial wood density variation of gmelina trees form fast growing plantations using the X-ray densitometry method. Wood samples were cut at DBH of gmelina trees and transversal thin laths were selected at north-south direction and conditioned at 12% moisture content equilibrium and X-rayed. The radiographic films were revealed and scanned a 256 gray scale with 1000 dpi resolution and the intra tree-ring density were determined by CRAD and CERD software. The results demonstrated that the climatic and forest management affects the wood density variability and the distinctness of tree-ring boundaries of gmelina trees, as well as, the applicability of X-ray densitometry in wood quality analysis. (author)

  16. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  17. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  18. THE OPTIMIZATION OF WOOD TRUSSES CONNECTED WITH METAL PLATES USING ANSYS

    Directory of Open Access Journals (Sweden)

    İbrahim Halil BAŞBOĞA

    2016-12-01

    Full Text Available The rapid growth of the world population causes an increasing demand for wood materials. As one of the most common problems seen in today's forest destructions may be able to avoided by means of the rational use of forests and processing of trees cut with optimal level and also it helps to fulfill demand of wood materials. In this study, ANSYS software has been used in order to optimize wood usage in metal plate connected wood trusses which save 25% or higher rates of wood raw material comparing to massive beams. Three different types of flat- wood truss systems have been considered in the study. The first cross sectional dimension of the truss elements was accepted as 5 x 10 nominal dimensions as can be found in the market. The elements of the truss systems have been modeled using Link1 ANSYS element. The parameters used in modeling of the link1 element were; modulus elasticity and Poisson’s ratio. First order optimization method was chosen for the optimization process. The constraints of the truss systems in optimization process were deformation and stress. The optimized trusses were manufactured in laboratory in order to check the methods appropriateness. Turkish red pine (Pinus brutia Ten. lumber and metal plate connectors were used in the construction of the optimized truss systems. The obtained values of deformation in the laboratory were similar to the calculated values of deformation in the ANSYS software. Results show that metal plate connected wood truss systems optimization can be achieved by the ANSYS software. Optimization process proves that more than 25% or higher in wood usage can be gained.

  19. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  20. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  1. Monitoring wood heating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The overall aim of the project is to support the increased use of biomass heating plant in the UK by improving the quality and quantity of information available to suppliers and users. This aim will be achieved by: providing a qualitative assessment of the operational performance of a representative range of biomass heating installations including summaries of technical information; providing good case studies for a range of installations addressing the varied market demands; collating performance data of existing installations so as to improve the performance and/or reduce capital and operating costs of existing and future installations; and providing basic operator training and recommending methods optimising/improving plant performance. (author)

  2. Harvesting and consumption of fuel and timber wood in rural area of district tank, pakistan

    International Nuclear Information System (INIS)

    Badshah, L.; Hussain, F.; Burni, T.

    2014-01-01

    The study revealed that 90% of the rural people with different age group of District Tank, Pakistan depended upon firewood for catering. The total annual wood consumption for fueling by brick brewers, food sellers and domestic utilization was 18371 metric tons in this remote region. The saw machines also convert 13650 metric tons of timber wood yearly into logs and boards of various grades. The total wood consumption exceeds the quantity of wood harvested by tree fellers, farmers and wood sellers. Therefore the balance of over 13000 metric tons is sourced from neighboring forest of Tehsil Kulachi and Dera Ismail Khan. The quantity of wood removed and consumed for various purposes did not show a significant difference at (0.05) among the six locations. However student t-test showed significant difference existed in the mean annual removal and consumption of wood in the area. The study also enumerated Acacia nilotica, Tamarix aphylla, and Sueda fruticosa as the best and preferred fuel species. While Acacia nilotica, Prosopis farcta and Dalbergia sisso as the frequently used timber species in the region. The criterion of firewood and lumber consumption was very conventional like durability in blaze and opposed to termite. Consequently, it is recommended scientific vegetation conservation strategies meant at improved burning of fuel wood and maximized used of timber products as a complimentary efforts to enforced tree planting for conservation of plant resources. (author)

  3. Peter Koch: wizard of wood use

    Science.gov (United States)

    M.E. Lora

    1978-01-01

    Like his pioneer forefathers, Peter Koch sees opportunity where others see obstacles. And his vision is helping to reshape the wood industry. Since 1963 Koch has directed research on processing southern woods for the U.S. Forest Service's Southern Forest Experiment Station in Pineville, Louisiana. In that time, he has invented six revolutionary machines, developed...

  4. Mapping wood density globally using remote sensing and climatological data

    Science.gov (United States)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  5. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  6. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Science.gov (United States)

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross

    2005-01-01

    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  7. Energy from wood biomass: The experience of the Brazilian forest sector

    Energy Technology Data Exchange (ETDEWEB)

    Couto, L. [Universidade Federal de Vicosa (Brazil); Graca, L.R. [Centro Nacional de Pesquisa de Floresta, Colombo (Brazil); Betters, D.R. [Colorado State Univ., Fort Collins, CO (United States)

    1993-12-31

    Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being built in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.

  8. A new genomic resource dedicated to wood formation in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Couloux Arnaud

    2009-03-01

    Full Text Available Abstract Background Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs from genes involved in wood formation in Eucalyptus would provide a valuable resource. Results We report here the normalization and sequencing of a cDNA library from developing Eucalyptus secondary xylem, as well as the construction and sequencing of two subtractive libraries (juvenile versus mature wood and vice versa. A total of 9,222 high quality sequences were collected from about 10,000 cDNA clones. The EST assembly generated a set of 3,857 wood-related unigenes including 2,461 contigs (Cg and 1,396 singletons (Sg that we named 'EUCAWOOD'. About 65% of the EUCAWOOD sequences produced matches with poplar, grapevine, Arabidopsis and rice protein sequence databases. BlastX searches of the Uniref100 protein database allowed us to allocate gene ontology (GO and protein family terms to the EUCAWOOD unigenes. This annotation of the EUCAWOOD set revealed key functional categories involved in xylogenesis. For instance, 422 sequences matched various gene families involved in biosynthesis and assembly of primary and secondary cell walls. Interestingly, 141 sequences were annotated as transcription factors, some of them being orthologs of regulators known to be involved in xylogenesis. The EUCAWOOD dataset was also mined for genomic simple sequence repeat markers, yielding a total of 639 putative microsatellites. Finally, a publicly accessible database was created, supporting multiple queries on the EUCAWOOD dataset. Conclusion In this work, we have identified a

  9. National Wood-fuel Programme 2000-2006. Activity Report 2000-2006

    International Nuclear Information System (INIS)

    2008-01-01

    When ADEME launched its Wood-fuel programme throughout all of France in late 1999, its aim was to guide this resource supply chain to maturity and stable development in all user sectors: domestic, multi-family housing, commercial/institutional and industrial applications. To this end the Wood-fuel Programme 2000-2006 was assigned objectives and endowed with significant financial means for studies and coordination in order to support and carry out general-interest projects, piloted by ADEME. The stated goal was to replace fossil fuels, avoid carbon emissions and establish quality assurance standards for household firewood and wood-fired devices. This report presents: 1 - the Wood Energy stakes for the environment, for employment, and for the economy, the biomass energy net benefits; 2 - the Wood Energy key figures: Production and consumption, Single-family homes and wood heating, Breakdown of types of devices used, Sales of wood-fired devices, Number of housing/institutional boilers in use, Number of industrial boilers in use; 3 - the Wood Energy objectives: Domestic heating, Industrial boiler plants, District heating for housing/institutional/commercial uses; 4 - the Wood Energy program operation: Program coordination by ADEME, Partnerships and State-Region planning agreements, 2000-2006 funding system (modified in 2004) and Other financial instruments; 5 - the 2000-2006 assessment: Main results, Conclusions and recommendations, Evaluation contributions: five key points, Evaluation of employment in the solid biofuels supply chain, Supply for community, institutional and commercial boilers; 6 - Information and communication: Initiatives supported or accompanied by ADEME between 2000 and 2004, Publications supported by ADEME. In appendix: fuels and energy content, regional assessments, national research program on bio-energies - PNRB 2006 (Review and stakes, PNRB results in 2006), wood heating R and D, studies funded by ADEME, 2006 ADEME's correspondents, glossary

  10. Wood dust exposure and lung cancer risk: a meta-analysis.

    Science.gov (United States)

    Hancock, David G; Langley, Mary E; Chia, Kwan Leung; Woodman, Richard J; Shanahan, E Michael

    2015-12-01

    Occupational lung cancers represent a major health burden due to their increasing prevalence and poor long-term outcomes. While wood dust is a confirmed human carcinogen, its association with lung cancer remains unclear due to inconsistent findings in the literature. We aimed to clarify this association using meta-analysis. We performed a search of 10 databases to identify studies published until June 2014. We assessed the lung cancer risk associated with wood dust exposure as the primary outcome and with wood dust-related occupations as a secondary outcome. Random-effects models were used to pool summary risk estimates. 85 publications were included in the meta-analysis. A significantly increased risk for developing lung cancer was observed among studies that directly assessed wood dust exposure (RR 1.21, 95% CI 1.05 to 1.39, n=33) and that assessed wood dust-related occupations (RR 1.15, 95% CI 1.07 to 1.23, n=59). In contrast, a reduced risk for lung cancer was observed among wood dust (RR 0.63, 95% CI 0.39 to 0.99, n=5) and occupation (RR 0.96, 95% CI 0.95 to 0.98, n=1) studies originating in Nordic countries, where softwood dust is the primary exposure. These results were independent of the presence of adjustment for smoking and exposure classification methods. Only minor differences in risk between the histological subtypes were identified. This meta-analysis provides strong evidence for an association between wood dust and lung cancer, which is critically influenced by the geographic region of the study. The reasons for this region-specific effect estimates remain to be clarified, but may suggest a differential effect for hardwood and softwood dusts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. A Meta-Heuristic Applying for the Transportation of Wood Raw Material

    Directory of Open Access Journals (Sweden)

    Erhan Çalışkan

    2009-04-01

    Full Text Available Primary products in Turkish forestry are wood material. Thus, an operational organization is necessary to transport these main products to depots and then to the consumers without quality and volume loss. This organization starts from harvesting area in the stand and continues to roadside depots or ramps and to main depots and even to manufactures from there. The computer-assisted models, which aim to examine the optimum path in transportation, can be utilized in solving this quite complex problem. In this study, an evaluation has been performed in importance and current status of transporting wood material, classification of wood transportation, computer-assisted heuristic and meta-heuristic methods, and possibilities of using these methods in transportation of wood materials.

  12. Climatic impact of increased use of wood; Klimamessige virkninger av oekt bruk av trevirke

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-22

    This report evaluates the climatic impact of increased absorption/storage of carbon and use of wood. This includes the impact on carbon storage through forest growth, increased use of wood products with long life, and the effect on CO{sub 2} emission of the increasing replacement of fossil fuel with wood. It also includes the effects of depositing or burning wood wastes or wood products. The main emphasis is placed on the climatic impact of the use of wood, especially for power generation, recirculation or burning of paper and the use of wood for buildings. The report also discusses briefly the carbon cycle and the principal aspects of absorption and storage of carbon as means compared to other climatic means. The possible long-term effects which efforts to increase the absorption and prolong the fixation of CO{sub 2} might have on the market prices of timber and wood products, etc., are discussed. Costs or potential for increased use of wood are not stated. 21 refs., 2 figs., 13 tabs.

  13. Comparative ecobalancing accounting of semi-central house heat supply from wood residues; Vergleichende Oekobilanzierung der semi-zentralen Hauswaermebereitstellung aus Holzreststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Kirsten

    2015-07-01

    In 2008 almost 40 percent of the German final energy demand was used for room heating and hot water supply. To decrease environmental burdens and to save fossil resources a restructuring of the heating sector is needed. Therefore legislation enforces higher insulation standards of buildings and a more frequent use of renewable energies as well as heating networks. Wood as a renewable and storable energy source is an attractive fuel. However, it must be used as efficiently as possible because of limited wood supplies. Connecting buildings via a heating network is a good option since bigger heating plants can operate at higher efficiencies than small heaters. However, the higher insulation standards of the buildings often oppose the construction of a heating network, because heating networks work best with high energy demands and low network lengths. Therefore the environmental and economic feasibility of new heating networks needs to be checked beforehand. This thesis explores the environmental burdens of different semi- centralized heating networks using wood residues as fuel. A semi- centralized heating network is a network with no more than 500 customers and a heating plant with less than 5 MWth. While wood residues are used in the base load plant, peak load is covered by a gas heating plant. As a method to analyze the potential environmental burdens of the heat supply a life cycle assessment according to ISO 14040/44 is used. Opposed to former life cycle assessment studies, construction and operation of the network is included in the assessment. Even though the environmental impacts of the semi- centralized heating from wood residues are dominated by the heat supply, an observation of the impacts solely at the heating plant is not sufficient. By varying the boundary conditions of the heating network two main contributors to the environmental impacts are found. In addition to the heat production at the plant the type of the buildings in the settlement has a huge

  14. 75 FR 75157 - Importation of Wood Packaging Material From Canada

    Science.gov (United States)

    2010-12-02

    ... Material From Canada AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Proposed rule... remove the exemption that allows wood packaging material from Canada to enter the United States without... spread of pests via wood packaging material from Canada. DATES: We will consider all comments that we...

  15. Wettability and Impact Performance of Wood Veneer/Polyester Composites

    Directory of Open Access Journals (Sweden)

    Shayesteh Haghdan

    2015-07-01

    Full Text Available Fiber-reinforced thermosetting composites have been of interest since the 1940s due to their ease of use in processing, fast curing times, and high specific stiffness and strength. While the use of plant fibers in a polyester matrix has been thoroughly studied, only limited information is available regarding using wood as reinforcement. In this study, composites of thin wood veneer and a polyester matrix were made and the difficulties in the lamination and curing processes were investigated. Sheets of Douglas fir, maple, and oak veneers using a catalyzed polyester resin were assembled as unidirectional, balanced, and unbalanced cross-ply laminates. These were compared to control specimens using glass fiber as reinforcement. The impact properties of the samples, with respect to the laminate thicknesses, were characterized using a drop-weight impact tester. The wettability and surface roughness of unsanded and sanded wood veneers were also investigated. Results showed that Douglas fir cross-ply laminates had an impact energy equivalent to glass fiber laminates, making them an interesting alternative to synthetic fiber composites. Wood/polyester laminates absorbed a considerable amount of energy through a higher number of fracture modes. The balanced lay-up limited twisting of the wood/polyester composites. The lowest contact angle and highest wettability were observed in unsanded Douglas fir veneers.

  16. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration. A questionnaire was used as a survey instrument to obtain desired data. For this study, 10 villages were randomly ...

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  18. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  19. WOOD PROPERTIES AND EFFECT OF WOOD PROPERTIES ON THE WOOD FINISHING

    Directory of Open Access Journals (Sweden)

    Abdulkadir Malkoçoğlu

    2006-04-01

    Full Text Available Wood is basic raw material for furniture and joinery industries with wood structures. Wood is a biological material that has widely different properties depending on species, geographic area where the tree grew, the growth condition, size of the tree at harvest, sawing, and other manufacturing processes. Wood properties have been characterized within two groups as natural and manufacturing factors that effects finishing performance. Grow rate, density, knots, moisture content, extractives and juvenile wood are natural characteristics. Grain orientation, texture, drying and performance expectations are manufacturing characteristics. In this review, the effects of natural and manufacturing characteristics are discussed on the surface finishing performance of wood.

  20. [Use of medicinal plants as home remedies in Primary Health Care in Blumenau - State of Santa Catarina, Brazil].

    Science.gov (United States)

    Zeni, Ana Lúcia Bertarello; Parisotto, Amanda Varnier; Mattos, Gerson; Helena, Ernani Tiaraju de Santa

    2017-08-01

    An increase in the use of alternative therapeutic practices has been observed in the past decade, especially in medicinal plants, herbal and home remedies, which has been supported by policies within the scope of the Unified Health System (SUS). This study investigated the use of home remedies by users of Primary Health Care in Blumenau, State of Santa Catarina. It is a cross-sectional, observational and epidemiological study, the data for which were obtained via a questionnaire applied to 701 individuals. An unconditional logistic regression model was used to estimate the association between the use of home remedies and socio-demographic and medical care variables. It was observed that 21.9% of the sample use home remedies and medicinal plants grown in the back yard are the remedies of choice. Lemon balm, chamomile, peppermint and lime were the remedies most frequently mentioned. The use of home remedies was associated with the female gender, older age and the Family Health Strategy care model. The results supported that medicinal plants are used by the population as a therapeutic alternative option. However, it is necessary that primary care services ensure both access to natural products and supply qualified professionals to give instructions regarding the correct usage of home remedies.

  1. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  2. Characteristics and utilization of non-wood pulp and paper; Himokuzai pulp / kami no tokucho to sono riyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mishima Paper Co. Ltd., Shizuoka (Japan)

    1998-09-01

    The reasons, difficulty in the usage, and the methods of use of non-wood papers are discussed. Non-wood papers sold in Japan are arranged basing on published data. The type of non-wood paper classified as special printing paper makes up the majority, and there are a variety of other products such as printing board, coated paper, thin paper, wrapping paper, functional paper, and watercolor paper. Kenaf and cotton are used in large quantities as non-wood plants for paper production, and use of bagasse and bamboo is increasing. Non-wood paper are used in consideration of environmental and resources problems and for utilizing the special features of non-wood fiber, and the characteristics of non-wood pulp and the effect of non-wood paper are discussed in this report. It is expected that papers utilizing the characteristics of non-wood paper will be developed. Non-wood papers are substitutions for various papers produced from wood pulp, and the fundamental point is the method of improving the original quality and paper quality by combining with non-wood pulp. 11 refs., 4 figs., 3 tabs.

  3. Model development for spatial variation of PM2.5 emissions from residential wood burning

    International Nuclear Information System (INIS)

    Yong Q, Tian; Peng Gong; Qian Yu; Radke, John D.

    2004-01-01

    This paper presents a preliminary research result of spatially quantifying and allocating the potential activity of residential wood burning (RWB) by using demographic, hypsographic, climatic and topographic information as independent variables. We also introduce the method for calculating PM 2.5 emission from residential wood combustion with the potential activity as primary variable. A linear regression model was generated to describe spatial and temporal distribution of the potential activity of wood burning as primary heating source. In order to improve the estimation, the classifications of urban, suburban and rural were redefined to meet the specifications of this application. Also, a unique way of defining forest accessibility is found useful in estimating the activity potential of RWB. The results suggest that the potential activity of wood burning is mostly determined by elevation of a location, forest accessibility, urban/non-urban position, climatic conditions and several demographic variables. The analysis results were validated using survey data collected through face-to-face and telephone interviews over the study area in central California. The linear regression model can explain approximately 86% of the variation of surveyed wood burning activity potential. The total PM 2.5 emitted from woodstoves and fireplaces is analyzed for the study region at county level. (Author)

  4. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  5. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    Science.gov (United States)

    Plaza Rodriguez, Nayomi Z.

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding on the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My PhD thesis focuses on the development and implementation of neutron scattering methods that can provide insight on both the structural and dynamical changes associated with these interactions so that products with improved moisture durability can be developed efficiently. Using small angle neutron scattering (SANS) and a custom-built in situ relative humidity chamber I studied the anisotropic moisture-induced swelling of wood nanostructure. First, I studied the effects of sample preparation by comparing SANS patterns of wiley milled wood and intact latewood cell walls, and found that scattering from intact wood provide more information about the spatial arrangement of the wood nanostructures inside the cell wall. Comparisons between SANS patterns from earlywood and latewood, also showed that the higher cell wall density of latewood cell walls results in patterns with more pronounced anisotropic features. Then, by measuring latewood loblolly pine sections obtained from the same growth ring and prepared in each of the primary wood planes, I tracked the cellulose elementary fibril spacing as a function of humidity in both intact and partially cut cell walls. These studies showed that even though swelling at the elementary fibril spacing is responsible for the majority of the transverse swelling observed at the S2 level, it is not primary plane dependent. Additionally, there were no differences in the elementary fibril spacing between partially-cut and intact cell walls, except at high humidity where the spacing in partially-cut cells was higher. SANS was also used to study the effects of two chemical

  6. Emissions from small scale combustion of pelletized wood fuels

    International Nuclear Information System (INIS)

    Bachs, A.

    1998-01-01

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NO x emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NO x 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  7. Application of photocuring technique on wood surface and its prospects in Bangladesh

    International Nuclear Information System (INIS)

    Bhattcacharia, S.K.; Khan, Mubarak A.

    2005-01-01

    Photocuring technique has unveiled a new horizon in polymer science. Application of photocuring technique on wood surface has enhanced the use of low grade wood. As Bangladesh is an overpopulated country, necessity of good quality wood is increasing day by day. So low grade wood, like Simul or Partex, locally produced particleboard, would come out with great use. As Partex board, produced from Jute sticks and various types of indigenous low grade wood and particle board are abundant in Bangladesh, so photocuring could play a major role to improve the quality of low grade wood and serve the nation. Already, a lot of research works were carried out by the local scientists to improve the wood surface using UV curing method. Different formulations were also developed by the local scientists using various oligomer, monomer and different types of additives. The used oligomers are epoxy, polyester, urethane, etc. and monomers of different functionalities and used additives are acrylic monomer, CaCO 3 , sand, MgSiO 3 , talc, etc. Thin films were prepared on glass plate with different formulations using UV radiation and different characteristics properties (pendulum hardness, abrasion, gloss (60 deg. and 20 deg.), microscratch hardness, weathering effect, adhesion strength, etc.) were studied. Now, a Pilot Plant has already been established with the financial assistance by the government of Bangladesh, worth US$ 3.5 million

  8. Biomass Determination Using Wood Specific Gravity from Increment Cores

    Science.gov (United States)

    Michael C. Wiemann; G. Bruce Williamson

    2013-01-01

    Wood specific gravity (SG) is one of the most important variables used to determine biomass. Measurement of SG is problematic because it requires tedious, and often difficult, sampling of wood from standing trees. Sampling is complicated because the SG usually varies nonrandomly within trees, resulting in systematic errors. Off-center pith and hollow or decayed stems...

  9. Programme wood/energy 2000-2006. Activity Report for 2000-2004

    International Nuclear Information System (INIS)

    2006-01-01

    When ADEME launched its Wood fuel programme throughout all of France in late 1999, its aim was to guide this resource supply chain to maturity and stable development in all user sectors: domestic, multi-family housing, commercial/institutional and industrial applications. To this end the Wood fuel Programme 2000-2006 was assigned objectives and endowed with significant financial means for studies and coordination in order to support and carry out general-interest projects, piloted by ADEME. The stated goal was to replace fossil fuels, avoid carbon emissions and establish quality assurance standards for household firewood and wood-fired devices. This report makes a status of ADEME's Wood fuel programme for the 2000-2004 era: - Domestic heating: After a drop during the 1990's, figures since 1999 of sales of wood-fuel domestic heating equipment (closed heaters, glass-door fires and stoves) have shown a significant rise. On average over 30 years, wood consumption has risen to 7.2 million TOE (40 million cubic metres) per year; - Industry: It is thought there are 1000 wood-fired heaters (above 1 megawatt) used in French industry. These are found mainly in timber-based industries and in timber crushing plants. This amounts to a total power output of 2.5 gigawatts. In the primary and secondary wood processing industries, the increase in the number of wood-fired boilers and energy produced has reached 5% per year Results of a call for carbon energy projects (APEC) was 61 submitted of which 52 were selected; 9 projects pending (166.5 K of aid from ADEME); and 35 projects begun (1,649 K of aid from ADEME). - Local authority and service sector wood-fired heating systems: At the end of 2004, the number of local authority active boilers was 641, producing 430 megawatts. This is an increase of an average of 13% year on year since 2000. By the end of 2004, the target had already been met for the number of boilers being financed (1,090). By 2006 however we still need to generate a

  10. Verification of a primary-to-secondary leaking safety procedure in a nuclear power plant using coloured Petri nets

    International Nuclear Information System (INIS)

    Nemeth, E.; Bartha, T.; Fazekas, Cs.; Hangos, K.M.

    2009-01-01

    This paper deals with formal and simulation-based verification methods of a PRImary-to-SEcondary leaking (abbreviated as PRISE) safety procedure. The PRISE safety procedure controls the draining of the contaminated water in a faulty steam generator when a non-compensable leaking from the primary to the secondary circuit occurs. Because of the discrete nature of the verification, a Coloured Petri Net (CPN) representation is proposed for both the procedure and the plant model. We have proved by using a non-model-based strategy that the PRISE safety procedure is safe, there are no dead markings in the state space, and all transitions are live; being either impartial or fair. Further analysis results have been obtained using a model-based verification approach. We created a simple, low dimensional, nonlinear dynamic model of the primary circuit in a VVER-type pressurized water nuclear power plant for the purpose of the model-based verification. This is in contrast to the widely used safety analysis that requires an accurate detailed model. Our model also describes the relevant safety procedures, as well as all of the major leaking-type faults. We propose a novel method to transform this model to a CPN form by discretization. The composed plant and PRISE safety procedure system has also been analysed by simulation using CPN analysis tools. We found by the model-based analysis-using both single and multiple faults-that the PRISE safety procedure initiates the draining when the PRISE event occurs, and no false alarm will be initiated

  11. CHARACTERIZATION OF WOOD DECAY BY ROT FUNGI USING COLORIMETRY AND INFRARED SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Mírian de Almeida Costa

    2011-09-01

    Full Text Available Wood samples of marupá (Simarouba amara and andiroba (Carapa guianenis were submitted to Trametes versicolor (white rot and Gloeophylum trabeum (brown rot fungi attack. Colorimetry was used to determine the color of the wood before and after wood decaying fungi. To evaluate the changes in chemical compounds levels in the wood samples, the diffuse reflectance medium infrared spectroscopy was used. Both wood were non resistant against white rot fungus, while with brown rot attack andiroba was resistant and marupá was not. After Gloeophyllum trabeum attack both woods changed to a darken color, and after Trametes versicolor attack andiroba changed to a lighter color and marupá darkened slightly, The analysis showed a reduction in the peak intensity of cellulose, hemicellulose and lignin, for both species, after Trametes versicolor attack and a reduction in the peak intensity of cellulose after Gloeophyllum trabeum attack.

  12. Environmentally adapted energy production and working environment. Manufacture of wood pellets; Miljoeanpassad energiproduktion och arbetsmiljoe. Tillverkning av traepellets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Davila, Eliana

    2002-04-01

    The working environment at three wood pellet production plants was studied. Measurements were made of dust, microorganisms (bacteria and molds) and terpenes. Both stationary and personal sampling equipment were used. Dust sources and dust diffusion were mapped. Work in the raw material storage rooms and at the semi-automatic sack-filling stations can give high exposure to wood dusts (max. 4.7 mg/m{sup 3}). These high levels might cause irritations in the respiratory tract. Relatively high levels of terpenes were detected in the plant that did not dry wood shavings or sawdust. Pressing of non-dried shavings probably leads to emission of terpenes and other gaseous substances in the plant. Recommendations for improvements of the working conditions are given in the report.

  13. Wood biomass: The potential of willow

    International Nuclear Information System (INIS)

    White, E.H.; Abrahamson, L.P.

    1991-10-01

    Experiments were established in central New York State in spring, 1987, to evaluate the potential of Salix for wood biomass production using ultrashort-rotation intensive-culture techniques. Five selected willow clones and one hybrid poplar clone planted at 1 x 1 foot spacing were tested for biomass production with annual coppicing. This report presents results of this research as of December 31, 1990. (VC)

  14. Social, environmental and resource impact of wood gasification on isolated communities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The adequacy of forest resources and the social and environmental consequences of wood gasification on 15 northern communities that are serviced by diesel electric generators was assessed. Projections are based on the operation of the B.C. Research wood gasifier, with a gasifier supporting a 250 KW generator expected to need 750,000 lb. dry wood/year at 20% average load. Assuming that forest resources are harvested on a sustained yield basis and that wastewood is used, forest resources appear adequate to supply a small wood gasification plant (4 million BTUs/hour) for at least 50 years in each community. The social consequences are expected to be largely positive and the potential environmental impact minimal. Each plant would require two full-time and two part-time employees. The listed recommendations include a careful choice of harvesting and gasifier sites and suggested further studies, particularly on the six communities north of latitude 57 degrees where forest volume information is inadequate. Guidelines are given for the protection of the environment.

  15. Interspecific interactions between wood-inhabiting basidiomycetes in boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Holmer, L.

    1996-05-01

    Studies of competition and succession in communities of wood-decomposing fungi were carried out using laboratory tests with different approaches. Based on results of these tests, an attempt to biologically control Heterobasidion annosum was made in field. Competitive interactions between six species of wood decay fungi were studied using a system of preinoculated wood blocks in unsterilized soil. Two of the species were root-rotting pathogens with a primary resource capture strategy, and four were primarily saprotrophic cord-forming species assumed to use secondary resource capture strategy. Of the species tested, Resinicium bicolor was the most successful in spreading through the soil, and it replaced other species, including the pathogens. When R. bicolor was absent other cord-forming species were able to expand their domain. A new system for measuring competitive success was developed. `Pie slices` were cut from round wood-discs, and after preinoculation, the pieces were paired in all possible combinations on water agar. In this way, inoculum size could be varied while the size of the contact area remained the same. Large mycelia had more competitive success than did smaller ones when paired with the same species. In a pilot study, R. bicolor was most successful in replacing the opposing species and H. annosum had the least success. In general, species found late in the succession were strong competitors, while earlier colonizers had less success. Species acting as selective replacers of primary decay species were found to be more competitive than the latter. 134 refs, 8 figs, 1 tab

  16. A look at worldwide usage of residual wood for energy

    International Nuclear Information System (INIS)

    Ekstrom, H.; Hall, M.M.

    2007-01-01

    Wood Resources International was established in 1987, offering on-site evaluation services of forest resources and forest industry developments in over 20 countries worldwide. This presentation reviewed residual wood markets in North America and Europe. Wood chip trade and wood pellet markets were also reviewed. It is estimated that more than 50 per cent of the wood harvested worldwide is used for heating and cooking. Although sawmill wood residue has been typically used for particle board manufacturing, the energy sector in North America and Europe is now competing for low cost residuals, including sawdust, shavings and wood chips. With demand for renewable resources increasing, district heating plants have revived an interest in collecting the nearly 35 per cent of biomass left behind after traditional clear cutting. This biomass represents branches, tops and stumps left behind after the roundwood has been removed. In Canada, demand for mill residuals has grown and wood pellet manufacturers have the opportunity to invest in capacity while continuing to produce competitively priced pellets for the European market. It is anticipated that in the next decade, large volumes of beetle-killed wood are going to be available in British Columbia for energy consumption, including wood pellet production. Prices for sawdust have doubled over the past 3 years as a result of increased competition. The biomass supply potential in the United States is 7 times the current consumption. There is an increased interest in bioenergy in California due to the declining lumber sector. As such, the use of forest and agricultural waste is on the rise, along with prices for wood residues. There has also been a large increase in demand for wood biomass in Europe over the past 5 years, resulting in higher costs of all wood fiber sources used for energy. By 2020, Europe has set a target that all energy should come from renewable energy sources, with a minimum of 10 per cent being biofuel for

  17. Wood preservative testing

    Science.gov (United States)

    Rebecca Ibach; Stan T. Lebow

    2012-01-01

    Most wood species used in commercial and residential construction have little natural biological durability and will suffer from biodeterioration when exposed to moisture. Historically, this problem has been overcome by treating wood for outdoor use with toxic wood preservatives. As societal acceptance of chemical use changes, there is continual pressure to develop and...

  18. Fire extinguishing strength of the combustion product of wood saw ...

    African Journals Online (AJOL)

    Forty saw dust samples from four mature hard wood plants grown in southwestern part of Nigeria were analyzed for their ash contents, moisture contents, metallic contents and hence the fire extinguishing strength of the saw dust ash by classical and instrumental methods of analyses. Mahogany (Khaya ivorensis) wood saw ...

  19. Wood Identification of 18th Century Furniture. Interpreting Wood Naming Inventoires

    Directory of Open Access Journals (Sweden)

    Rocio Astrid BERNAL

    2011-09-01

    Full Text Available The 18th century Portuguese church furniture represents an extraordinary richness recognised worldwide, which demands safeguarding and valorisation. The identification of the wood of furniture artworks is the most important component for its comprehension and preservation. In this work wood anatomical characters of an 18th century Portuguese decorative furniture set from the Colegiada de São Martinho de Cedofeita, in Porto, were analysed to identify the woods used for manufacturing and to clarify their common names. Furthermore, the objectives were to recognise some of the criteria for choice of wood as well as the source of each wood. The woods identified from 16 fragments belong to Apuleia sp., Acacia sp., Neolamarckia sp. and Castanea sativa. Apuleia sp. and Acacia sp. woods most likely arrived from Brazil, while the Neolamarckia sp. woods likely arrived from India and the C. sativa woods from Portugal. The results are in accordance with the known Portuguese colonial sea routes of the 15th -18th centuries. Interestingly the terms found in the inventories can refer to finishing methods instead to the name of the woods, as for instance “oil wood” can refer to “oiled wood” or “linseed oiled wood”. The species choice may be related to the mechanical properties of the wood as well as the original tree size. Two large planks of Acacia sp. were used for the top of the “Portuguese arcaz”, and Apuleia sp. was found on main structural elements of this set of furniture, suggesting that wood colour was also important. Woods from Neolamarckia sp. and C. sativa, were also identified, being Castanea wood present only in the most recent pieces of the furniture set.

  20. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  1. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    International Nuclear Information System (INIS)

    Dispenza, V.; Pasquale, C. de; Fascella, G.; Mammano, M.M.; Alonzo, G.

    2016-01-01

    Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v) of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  2. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    Directory of Open Access Journals (Sweden)

    Vincenzo Dispenza

    2016-12-01

    Full Text Available Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  3. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    Energy Technology Data Exchange (ETDEWEB)

    Dispenza, V.; Pasquale, C. de; Fascella, G.; Mammano, M.M.; Alonzo, G.

    2016-07-01

    Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v) of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  4. Use of hydrogels in the planting of industrial wood plantations ...

    African Journals Online (AJOL)

    This article provides an overview of the concepts of post-plant water stress, a review of trials that tested application of hydrogels to forest tree species, and discussion on probable reasons for failure or success in the use of hydrogels. Hydrogels applied in pot trials, under controlled conditions, tended to have a higher ...

  5. The Wood-Growth-and-Burial Process (WGBP) Permanent Wood Sequestration to Solve the Global Carbon Dioxide Problem

    Science.gov (United States)

    Scholz, F.; Hasse, U.

    2008-12-01

    Among all global environmental problems there is one which dominates over all others: this is the excessive release of carbon dioxide due to burning of fossil fuels like coal, oil, and gas. The only way to achieve a permanent removal of anthropogenic CO2 must make use of photosynthesis since, so-far, no other technology is able to bind the necessary huge amounts of carbon. Therefore, we propose to grow wood on any available areas, and to bury the wood under anaerobic conditions, e.g., in emptied open pits of coal mining, any other available pits, and possibly also in emptied underground mines. At these places the wood will keep for practically unlimited times, undergoing only very slow carbonization reactions. Simple calculations allow concluding that humans could already now scavenge even all the released CO2, but a more realistic goal may be to bind 20, 30, or 60 percent. This is more a political question than a scientific one. General features of the WGBP are: The growth of woods will transform deforested areas and fallow land to some kind of natural vegetation with the accompanying positive side effects of restoring biotopes, improving the water balance and thus also improving the climate. The growth of woods will produce enormous amounts of oxygen and thus it will add to a sound oxygen balance. It will improve the air quality because of the filtering effect of woods. The growth of woods will improve the soil quality because leaves and roots will stay on and in the ground when the wood is harvested. The WGBP will create jobs in areas where there is an urgent demand for these. The WGBP will offer the opportunity to re-cultivate open pit mining areas. The WGBP will offer the possibility to fill underground mines in a way to prevent earth quakes caused by collapsing mine shafts. The WGBP will enable mankind to survive the time span ahead of us in which mankind will still use fossil fuels. The WGBP can be easily financed by societies via very small additional taxes

  6. Wood preservatives and pressure-treated wood: considerations for historic-preservation projects

    Science.gov (United States)

    Ronald W. Anthony; Stan T. Lebow

    2015-01-01

    Wood, an abundant resource throughout most of the world, has been used as a building material for thousands of years. Many historic buildings have been built primarily of wood, and masonry and stone buildings generally have wood elements, both structural and architectural. As a biological material, wood is both remarkably complex and yet quite durable if well...

  7. The use of treated sewage from a wetland system for irrigation of plants for the productive sector that uses wood in the Northeast semiarid; O uso do esgoto tratado de um sistema Wetland para irrigacao de plantas destinadas ao setor produtivo que utiliza lenha no semiarido nordestino

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ednaldo de Paiva; Sena, Jose Antonio Nascimento; Freitas, Marcos Aurelio Vasconcelos de; Rosa, Luiz Pinguelli [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Eletrica], emails: ednaldopp@gmail.com, jsena@ivig.coppe.ufrj.br, mfreitas@ivig.coppe.ufrj.br, lpr@adc.coppe.ufrj.br; Silva, Neilton Fidelis da; Rola, Sylvia Meimaridou [Coordenacao dos Programas de Pos-Graduacao de Engenharia (IVIG/COPPE/UFRJ), RJ (Brazil). Inst. Virtual Internacional de Mudancas Globais], emails: neilton@ivig.coppe.ufrj.br, sylvia@ivig.coppe.ufrj.br

    2010-07-01

    The analysis of the production sector that uses wood for burning shows that for ovens in bakeries, potteries, and other activities in the Serido region of Rio Grande do Norte, even with the possibility of using gas in the energy matrix, the wood is highly used. This is mainly due to the cost of investments and purchase. Thus, as the use of firewood should be a practice maintained for a long period, and thus contribute to accelerated desertification process, the experimental work of sewage treatment developed in the city of Parelhas in Rio Grande do Norte can contribute to mitigating the negative impact, given the possibility of reuse of sewage water for growing plants that are suitable for burning in the economic activities of industries that use energy as input. (author)

  8. How the climate limits the wood density of angiosperms

    Science.gov (United States)

    Choi, Jin Woo; Kim, Ho-Young

    2017-11-01

    Flowering trees have various types of wood structure to perform multiple functions under their environmental conditions. In addition to transporting water from the roots to the canopy and providing mechanical support, the structure should provide resistance to embolism to maintain soil-plant-atmosphere continuum. By investigating existing data of the resistivity to embolism and wood density of 165 angiosperm species, here we show that the climate can limit the intrinsic properties of trees. Trees living in the dry environments require a high wood density to slow down the pressure decrease as it loses water relatively fast by evaporation. However, building too much tissues will result in the decrease of hydraulic conductivity and moisture concentration around mesophyll cells. To rationalize the biologically observed lower bound of the wood density, we construct a mechanical model to predict the wood density as a function of the vulnerability to embolism and the time for the recovery. Also, we build an artificial system using hydrogel microchannels that can test the probability of embolism as a function of conduit distributions. Our theoretical prediction is shown to be consistent with the results obtained from the artificial system and the biological data.

  9. Decay extent evaluation of wood degraded by a fungal community using NIRS: application for ecological engineering structures used for natural hazard mitigation

    Science.gov (United States)

    Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy

    2015-04-01

    Ecological engineering corresponds to the design of efficient solutions for protection against natural hazards such as shallow landslides and soil erosion. In particular, bioengineering structures can be composed of a living part, made of plants, cuttings or seeds, and an inert part, a timber logs structure. As wood is not treated by preservatives, fungal degradation can occur from the start of the construction. It results in wood strength loss, which practitioners try to evaluate with non-destructive tools (NDT). Classical NDT are mainly based on density measurements. However, the fungal activity reduces the mechanical properties (modulus of elasticity - MOE) well before well before a density change could be measured. In this context, it would be useful to provide a tool for assessing the residual mechanical strength at different decay stages due to a fungal community. Near-infrared spectroscopy (NIRS) can be used for that purpose, as it can allow evaluating wood mechanical properties as well as wood chemical changes due to brown and white rots. We monitored 160 silver fir samples (30x30x6000mm) from green state to different levels of decay. The degradation process took place in a greenhouse and samples were inoculated with silver fir decayed debris in order to accelerate the process. For each sample, we calculated the normalized bending modulus of elasticity loss (Dw moe) and defined it as decay extent. Near infrared spectra collected from both green and decayed ground samples were corrected by the subtraction of baseline offset. Spectra of green samples were averaged into one mean spectrum and decayed spectra were subtracted from the mean spectrum to calculate the absorption loss. Partial least square regression (PLSR) has been performed between the normalized MOE loss Dw moe (0 wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.

  10. Wood - a scarce material? Towards a hierarchy of uses

    International Nuclear Information System (INIS)

    Alexandre, Sylvie

    2014-01-01

    The ecological transition has begun. With the latest IPCC report, we can no longer ignore the need for an economy that preserves natural resources and relies less on energies and materials produced from fossil sources. Part I of the article analyses the implications for forests as a result of climate change and the dual need for adaptation and mitigation: the functions of forests in respect of atmospheric carbon are described as characterised by the '3Ss': storage, sequestration, substitution. The author briefly details the risks to which forests are exposed by climate change and calls for the development of adaptive forest management practises. A numerical analysis is given for the period 1980-2010 relating to the primary and secondary processing sector, showing that 'France is on the way to underdevelopment'. Part II describes government policies in recent years, underlining the imbalance between support provided for energy uses and support for uses as a material. Several energy or biomass product development scenarios in France and in Europe to 2030 and 2050 are considered, showing the that forest biomass will increasingly be called on to provide chemical and renewable energy uses. Part III explores the dynamics in place for better integrating policy action and inter-trade action, in particular the establishment of an industry strategy committee, an increasingly concerted approach between ministries towards policy actions, and the new Industrial France Plan for the construction of high-rise buildings made of wood. This Plan is seen as an instrument for restoring a suitable hierarchy of wood uses, under which construction timber is developed so that competitive processing sectors are relocated to France, generating byproducts that would reduce the current competition between uses. (authors)

  11. RNA extraction from decaying wood for (meta)transcriptomic analyses.

    Science.gov (United States)

    Adamo, Martino; Voyron, Samuele; Girlanda, Mariangela; Marmeisse, Roland

    2017-10-01

    Wood decomposition is a key step of the terrestrial carbon cycle and is of economic importance. It is essentially a microbiological process performed by fungi and to an unknown extent by bacteria. To gain access to the genes expressed by the diverse microbial communities participating in wood decay, we developed an RNA extraction protocol from this recalcitrant material rich in polysaccharides and phenolic compounds. This protocol was implemented on 22 wood samples representing as many tree species from 11 plant families in the Angiosperms and Gymnosperms. RNA was successfully extracted from all samples and converted into cDNAs from which were amplified both fungal and bacterial protein coding genes, including genes encoding hydrolytic enzymes participating in lignocellulose hydrolysis. This protocol applicable to a wide range of decomposing wood types represents a first step towards a metatranscriptomic analysis of wood degradation under natural conditions.

  12. Technology and distribution of pellets. Experience about the European network on wood pellets

    International Nuclear Information System (INIS)

    Rapp, S.W.

    1999-01-01

    Wood pellets might become the most important alternative to fossil fuels in the near future. As a bio-fuel it has the following characteristics: heat value, min 4.7 kWh/kg; ash fraction less than 1.0 vol. %; humidity less than 10 vol. %; diameter (rod shaped) min 6 mm and volumetric weight about 650 kg/m 3 . About 2.1 t pellets substitute 1000 l fuel oil. Sweden and Austria have more than 15 year experience in using wood pellets, followed by Germany. They are an environmentally friendly alternative for private houses, for district heating plants and especially suitable for densely built-up and inhabited areas. Having high energy density they can be transported to the areas with high energy requirements. Among their advantages are: low humidity, easy transport and storage, can be produced by renewable raw materials and provide new local jobs, fit for renewable energy systems with closed cycle. Disadvantages include: relatively more expensive for private houses compared to oil and gas and necessity of two times larger storage space than oil. Wood pellets are produced by all kind of paper waste and wood wastes from industry. They are especially suitable for small boiler plants and the oil burner can be replaced by a pellet burner in the same boiler. The leading producer of wood pellets is Sweden, of pellet stoves - USA. Pellet stoves, pellet burners and pellet boilers both for private houses and for heating plants are manufactured also in Sweden, Denmark,Finland, Germany, Austria and Ireland

  13. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  14. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  15. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Wallander, Håkan; Kjøller, Rasmus

    2017-01-01

    is the current land-use. In forestry, wood ash has been proposed as a liming agent and a fertilizer, but has been questioned due to the risk associated with its Cd content. The aim of this study was to determine the effects of wood ash on the structure and function of decomposer microbial communities in forest......The identification of causal links between microbial community structure and ecosystem functions are required for a mechanistic understanding of ecosystem responses to environmental change. One of the most influential factors affecting plants and microbial communities in soil in managed ecosystems...... soils and to assign them to causal mechanisms. To do this, we assessed the responses to wood ash application of (i) the microbial community size and structure, (ii) microbial community trait-distributions, including bacterial pH relationships and Cd-tolerance, to assign the microbial responses to p...

  16. Use of non wood forest products by local people bordering the "Parc National Kaboré Tambi", Burkina Faso

    DEFF Research Database (Denmark)

    Belem, Bassirou; Nacoulma, Blandine M I; Gbangou, Roland

    2007-01-01

    this issue in the case of the "Parc National Kaboré Tambi" in Burkina Faso, byproposing a combination of ethno-botanical surveys and botanical inventories. The article analyses the importance of the park plant species, identify the constraints faced by local people to harvest the park plant products, analyse...... people. As a consequence, approaches of participatory planning of forest management schemes have become necessary. A major challenge has been the issue of how to (use?) scientific knowledge and local knowledge in the most appropriate way. This article provides an account of a contribution to addressing...... in the park Non Wood Forest Products (NWFPs), although the Forest Code bans free access. About one hundred plants species are used, but the pattern of extraction of the productsor some plant parts could destroy the resource base. Technically, conservation by domestication of thesource species and improved...

  17. Control of grapevine wood fungi in commercial nurseries

    Directory of Open Access Journals (Sweden)

    C. Rego

    2009-05-01

    Full Text Available Previous surveys conducted in commercial nurseries found that different wood fungi, namely Cylindrocarpon spp., Botryosphaeriaceae, Phomopsis viticola and Phaeomoniella chlamydospora infect grapevine cuttings. Two field trials were carried out to evaluate the effectiveness of cyprodinil + fludioxonil, pyraclostrobin + metiram, fludioxonil and cyprodinil to prevent or reduce natural infections caused by such fungi. Rootstock and scion cuttings were soaked in fungicidal suspensions for 50 min prior to grafting. After callusing, the grafted cuttings were planted in two commercial field nurseries with and without a previous history of grapevine cultivation. After nine months in the nursery, the plants were uprooted and analysed for the incidence and severity of the wood fungi. Plants uprooted from the field without a previous history of grapevine cultivation were generally less strongly infected by wood fungi. Under this condition, only the mixture cyprodinil + fludioxonil simultaneously reduced the incidence of Cylindrocarpon and Botryosphaeriaceae fungi, as well as the severity of Cylindrocarpon infections. Treatments did not produce significant differences in the incidence and severity of P. viticola, and Pa. chlamydospora. For plants grown in the field with a grapevine history, all fungicides except cyprodinil significantly reduced the incidence and severity of Cylindrocarpon fungi. Also, the incidence and severity of Botryosphaeriaceae pathogens were significantly decreased both by cyprodinil + fludioxonil and by cyprodinil. No significant differences were noticed for P. viticola incidence and severity, and Pa. chlamydospora was not detected again. These results suggest that the practice of soaking grapevine cuttings in selected fungicides prior to grafting significantly reduces Cylindrocarpon spp. and Botryosphaeriaceae infections, thus improving the quality of planting material.

  18. Wood anatomy of Holmskioldia sanguinea Retz. and its adaptive and ecological significance

    Directory of Open Access Journals (Sweden)

    Manju Sahney

    2017-04-01

    Full Text Available Wood anatomy of Holmskioldia sanguinea Retz. has been done to study the structural variations in stem and root wood and to correlate them with growth habit and ecology of the plant. Vessels are wider and more abundant while rays (uni- to triserate are taller in stem wood than in root wood, which possesses broad multiseriate rays. Simple perforation plate, sparse vasicentric paratracheal parenchyma and perforated ray cells are the features common in both stem and root woods, while helical thickenings have been recorded only in the stem wood. Lower value of vulnerability, presence of wider vessels with simple perforation plate, and presence of helical thickening are indicators of wood xeromorphy in Holmskioldia sanguinea. Features like wider vessels and extensive height of rays in stem wood are in consonance with the climbing nature of the stem axis.

  19. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  20. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  1. How to use hand-held computers to evaluate wood drying.

    Science.gov (United States)

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  2. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Broad Anatomical Variation within a Narrow Wood Density Range—A Study of Twig Wood across 69 Australian Angiosperms

    Science.gov (United States)

    Ziemińska, Kasia; Westoby, Mark; Wright, Ian J.

    2015-01-01

    Objectives Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Methods Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38–0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Results Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation. PMID:25906320

  4. Broad Anatomical Variation within a Narrow Wood Density Range--A Study of Twig Wood across 69 Australian Angiosperms.

    Science.gov (United States)

    Ziemińska, Kasia; Westoby, Mark; Wright, Ian J

    2015-01-01

    Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38-0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation.

  5. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott A. [Univ. of Georgia, Athens, GA (United States); Tsai, Chung-Jui [Univ. of Georgia, Athens, GA (United States)

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  6. EVOLUTION OF LIGHTWEIGHT WOOD COMPOSITES

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2016-01-01

    Full Text Available Lightweight boards and beams in the wood-based construction and furniture industry are not a new topic. The density reduction of panels using sandwich structure with light cores was confirmed by users like doors or mobile homes more than three decades ago. Today many ways to attain a lighter wooden structure are on offer, partially in industrial application. The first one is the use of light-weight wood species like balsa, lime, pine from southern hemisphere plantations etc. limited by the availability, strength properties, gluability and so on. A second one is the sandwich structure made from hard faces like thick veneer, thin plywood, particleboard or high density thin fiberboard and cores made from honeycomb paper, very light wood species or foams like the polystyrene one. A third way to produce a light structure is to reduce the core drastically, using predesigned skeletons with special shapes and connections to the faces. The engines for these developments are on the one hand the fast growing market of knockdown furniture and on the other hand the increasing costs for energy and raw materials. Additional factors that make weight saving a primary economical objective for most producers are transportation costs, easier handling and higher acceptance among the end users. Moreover, customers demand more for ergonomical solutions regarding packaging. Many patents were generated by researchers and developers for new one-stage production processes for sandwich panels with wood- and impregnated paper-based facings made from veneers, particles or fibres and a core consisting of expandable foams, particles or embedded hard skeletons. These ideas or prototypes could be integrated in existing continuous pressing lines for wood based panels keeping some of the advantages of the continuous production technique in matters of efficiency. Some of the challenges of the light weight wooden structure are the connection in half or final parts, resistance to

  7. Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones.

    Science.gov (United States)

    Gavazov, Konstantin; Spiegelberger, Thomas; Buttler, Alexandre

    2014-04-01

    Climate change could impact strongly on cold-adapted mountain ecosystems, but little is known about its interaction with traditional land-use practices. We used an altitudinal gradient to simulate a year-round warmer and drier climate for semi-natural subalpine grasslands across a landscape of contrasting land-use management. Turf mesocosms from three pasture-woodland land-use types-unwooded pasture, sparsely wooded pasture, and densely wooded pasture-spanning a gradient from high to low management intensity were transplanted downslope to test their resistance to two intensities of climate change. We found strong overall effects of intensive (+4 K) experimental climate change (i.e., warming and reduced precipitation) on plant community structure and function, while moderate (+2 K) climate change did not substantially affect the studied land-use types, thus indicating an ecosystem response threshold to moderate climate perturbation. The individual land-use types were affected differently under the +4 K scenario, with a 60% decrease in aboveground biomass (AGB) in unwooded pasture turfs, a 40% decrease in sparsely wooded pasture turfs, and none in densely wooded ones. Similarly, unwooded pasture turfs experienced a 30% loss of species, advanced (by 30 days) phenological development, and a mid-season senescence due to drought stress, while no such effects were recorded for the other land-use types. The observed contrasting effects of climate change across the pasture-woodland landscape have important implications for future decades. The reduced impact of climate change on wooded pastures as compared to unwooded ones should promote the sustainable land use of wooded pastures by maintaining low management intensity and a sparse forest canopy, which buffer the immediate impacts of climate change on herbaceous vegetation.

  8. Full-scale Milling Tests of Wood Pellets for Combustion in a Suspension-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Masche, Marvin; Puig Arnavat, Maria; Wadenbäck, Johan

    The size reduction of pelletized wood is crucial in suspension-fired power plants, and hence its milling characteristics are of interest to optimize the milling and combustion process. The objective of the study was to compare the size and shape of pellets disintegrated in hot water with that from......), and analyzing the comminuted particle shape and particle size distribution (PSD). Large-scale pellet comminution produced finer and wider PSDs than pellet disintegration in hot water, but only slightly altered the particle shape. The mill pressure loss, absorbed mill power, and hence SGEC depended on the pellet...

  9. The Situation with Use of Wood Constructions in Contemporary Latvian Architecture

    Directory of Open Access Journals (Sweden)

    Antra Viluma

    2017-05-01

    Full Text Available Wood is a historic building material used throughout the Baltic States. Latvia’s forests cover 52% of the country and there are more than 30 producers of timber constructions materials, but during the last two decades the use wood in Latvian architecture has declined when compared to other countries in Europe. In particular – Latvian architects avoid the use of timber in public and multi-unit apartment buildings. Wood is a sustainable and technically appropriate building material for many types of buildings including complex construction, but in Latvian architecture it is used more in facades as a finishing material. This study analyses buildings built during the last few decades, conducted a number of interviews and found that the percentage of wooden buildings in the total building volume in Latvia is less than 5% in both apartment buildings and public sector buildings. Restrictive legislation and negative stereotypes were mentioned as reasons as to why architects avoid the use of wood. For the survey results seven Latvian Museum of Contemporary Art competition projects were analysed as well.

  10. Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology.

    Science.gov (United States)

    Mishra, Pawan Kumar; Giagli, Kyriaki; Tsalagkas, Dimitrios; Mishra, Harshita; Talegaonkar, Sushma; Gryc, Vladimír; Wimmer, Rupert

    2018-02-14

    Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. A primary estimation of PCDD/Fs release reduction from non-wood pulp and paper industry in China based on the investigation of pulp bleaching with chlorine converting to chlorine dioxide.

    Science.gov (United States)

    Xiao, Qingcong; Song, Xiaoqian; Li, Wenchao; Zhang, Yuanna; Wang, Hongchen

    2017-10-01

    Chlorine bleaching technology (C process, CEH process, H process and theirs combination), which was identified as a primary formation source of PCDD/Fs, is still widely used by the vast majority of Chinese non-wood pulp and paper mills (non-wood PMs). The purpose of this study was to provide information and data support for further eliminating dioxin for non-wood PMs in China, and especially to evaluate the PCDD/Fs release reduction for those mills converting their pulp bleaching processes from CEH to ECF. The PCDD/Fs concentrations of the bleached pulp and bleaching wastewater with ECF bleaching were in the ranges of 0.13-0.8 ng TEQ kg -1 , and 0.15-1.9 pg TEQ L -1 , respectively, which were far lower than those with CEH process, indicating that the ECF process is an effective alternative bleaching technology to replace CEH in Chinese non-wood PMs to reduce dioxin release. The release factor via flue gas of the alkali recovery boiler in Chinese non-wood PMs was first reported to be 0.092 μg TEQ Ad t -1 in this study. On the assumption that pulp bleaching processes of all Chinese non-wood PMs were converted from CEH to ECF, the annual release of PCDD/Fs via the bleaching wastewater and bleached pulp would be reduced by 79.1%, with a total of 1.60 g TEQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler

    International Nuclear Information System (INIS)

    Zhang, Xiaohui; Chen, Qun; Sharifi, Vida; Swithenbank, Jim; Bradford, Richard

    2010-01-01

    The use of biomass to generate energy offers significant environmental advantages for the reduction in emissions of greenhouse gases. The main objective of this study was to investigate the performance of a small scale biomass heating plant: i.e. combustion characteristics and emissions. An extensive series of experimental tests was carried out at a small scale residential biomass heating plant i.e. wood chip fired boiler. The concentrations of CO, NO x , particulate matter in the flue gas were measured. In addition, mathematical modelling work using FLIC and FLUENT codes was carried out in order to simulate the overall performance of the wood fired heating system. Results showed that pollutant emissions from the boiler were within the relative emission limits. Mass concentration of CO emission was 550-1600 mg/m 3 (10% O 2 ). NO x concentration in the flue gas from the wood chips combustion varied slightly between 28 and 60 ppmv. Mass concentration of PM 10 in the flue gas was 205 mg/m 3 (10% O 2 ) The modelling results showed that most of the fuel was burnt inside the furnace and little CO was released from the system due to the high flue gas temperature in the furnace. The injection of the secondary air provided adequate mixing and favourable combustion conditions in the over-bed chamber in the wood chips fired boiler. This study has shown that the use of wood heating system result in much lower CO 2 emissions than from a fossil fuel e.g. coal fired heating system. (author)

  13. Effect of raw wood supply system on the wood paying capability of a kraft pulp mill using Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, O. (Helsinki Univ. of Technology, Espoo (Finland), Dept. of Forest Products Technology), Email: olli.dahl@tkk.fi; Jylhae, P. (Finnish Forest Research Inst., Kannus (Finland)), Email: paula.jylha@metla.fi; Laitila, J. (Finnish Forest Research Inst., Joensuu (Finland)), Email: juha.laitila@metla.fi; Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi

    2009-07-01

    Integration of energy wood procurement into that of pulpwood is seen as a means for reducing the high procurement costs of small-diameter wood harvested from first thinnings. In the deepest mode of integration, pulp and energy fractions are separated from each other in the debarking drum of the pulp mill. In the present paper, the competitiveness of the conventional supply chain based on cut-to-length harvesting was compared to the supply systems based on the harvesting of loose whole trees and whole-tree bundling, in the cases of three Scots pine-dominated first-thinning stands using wood paying capability (WPC) of a kraft pulp mill as a decisive criterion. Furthermore, the competitiveness of first thinnings as raw material sources for a pulp mill was evaluated by using intermediate thinnings as s reference. (orig.)

  14. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  15. Study of UV curing in the wood industry

    International Nuclear Information System (INIS)

    Haider Osama Al-Mahdi

    1999-01-01

    Although mass production is the primary demand, the wood finishing must nevertheless conform to certain minimal standards. The surface should be protected and sealed against heat, dirt and abrasion, and insulated from the ingress and evaporation of moisture which would cause dimensional changes in the timber. The finish should be clear (unclouded) and smooth to enhance the natural beauty of the figure and the grain. The finish should also maintain its appearance, and adhesion, as well as protection given to the wood. The film should not seriously be degrading during the lifetime of the article. All the standards mentioned above are available in the 100% solid acrylic UV finishing system. A thorough study of the timber wood anatomy and of the physical and chemical properties of polymerized film is essential in order to match these properties with the wood substrate

  16. Greater utilization of wood residue fuels through improved financial planning

    International Nuclear Information System (INIS)

    Billings, C.D.; Ziemke, M.C.; Stanford, R.

    1991-01-01

    Recent events have focused attention on the promotion of greater utilization of biomass fuel. Considerations include the need to reduce increases in global warming and also to improve ground level air quality by limiting the use of fossil fuels. However, despite all these important environmentally related considerations, economics remains the most important factor in the decision process used to determine the feasibility of using available renewable fuels instead of more convenient fossil fuels. In many areas of the Southeast, this decision process involves choosing between wood residue fuels such as bark, sawdust and shavings and presently plentiful natural gas. The primary candidate users of wood residue fuels are industries that use large amounts of heat and electric power and are located near centers of activity in the forest products industry such as sawmills, veneer mills and furniture factories. Given that such facilities both produce wood residues and need large amounts of heat and electricity, it is understandable that these firms are often major users of wood-fired furnaces and boilers. The authors have observed that poor or incomplete financial planning by the subject firms is a major barrier to economic utilization of inexpensive and widely available renewable fuels. In this paper, the authors suggest that wider usage of improved financial planning could double the present modest annual incidence of new commercial wood-fueled installation

  17. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview.

    Science.gov (United States)

    Demeyer, A; Voundi Nkana, J C; Verloo, M G

    2001-05-01

    Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment.

  18. IMPACT OF ECONOMIC CRISIS ON WOOD MARKETS (CONSUMPTION, PRODUCTION AND TRADE

    Directory of Open Access Journals (Sweden)

    Maria‐Loredana POPESCU

    2013-12-01

    Full Text Available Global economic crisis represents one of the causes why wood consumption is increasing especially in countries less developed. In countries where governments couldn’t improve the quality of life and unemployment rate is higher, local communities devastate a lot of forestry. In last thirty years we saw a deforestation process at the global level related to land being converted to other uses: agriculture and urbanization, which represent a positive trend of a negative use. The statistics reveal, on one hand, an increasing demand for paper, paper products, wood products and wood energy. So this point is important to analyze: where wood came from and where it is going as either raw material or processed goods? For undeveloped countries, like Romania, it is easy to export primary wood product without evaluating the consequences. On the other hand, developed countries like Sweden export value added products which brig them higher value and profits and require greater manufacturing and marketing skills (case IKEA. For this, government policy could introduce trade barriers to decrease log consumption (like export taxes and simultaneously support furniture production and trade (e.g. export.

  19. A model for establishing a win-win relationship between a wood pellets manufacturer and its customers

    International Nuclear Information System (INIS)

    Uran, Vedran

    2010-01-01

    This paper investigates the possibility of establishing a win-win relationship between a wood pellets manufacturer and its customers when the manufacturer possesses a power plant fueled by biomass and buys wood material from forest companies. Two prerequisites must be fulfilled for this relationship. First, the price of wood pellets should be lower than the fuel currently used by potential wood pellets customers and, second, the price of wood material as a raw material for producing the wood pellets should not jeopardize the profitability of the operations of the wood pellets manufacturer, who also produces electricity from biomass and sells it to the state at the feed-in tariff price. A mathematical model has been developed for each prerequisite and applied to several examples. The results demonstrate that a win-win relation can be established in Croatia and most of the Member States of the EU. (author)

  20. Cord Wood Testing in a Non-Catalytic Wood Stove

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  1. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    Science.gov (United States)

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-06-01

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Preparation of wood for energy use

    Science.gov (United States)

    Donald L. Sirois; Bryce J. Stokes

    1985-01-01

    This paper presents an overview & current sources and forms of raw materials for wood energy use and the types of machines available to convert them to the desired form for boiler fuel. Both the fuel source or raw material, and the combustion furnace will dictate the requirements for the processing system. Because of the wide range of processing equipment...

  3. Use of wood as an energy source in the state of Maine

    Energy Technology Data Exchange (ETDEWEB)

    von Foerster, T.

    1978-09-01

    A detailed study is presented of the availability and use of wood as an energy resource for the State of Maine. Although there are no good data on the total resources of Maine's forests, the best estimates indicate that one could obtain about 1/2 quad (10/sup 15/ Btu) per year from thinning overstocked stands and harvesting dead trees; current logging operations could produce about the same amount of energy in the form of logging residues and thinnings, an amount that could be increased manyfold by intensive forest management. The costs of wood for fuel can be estimated on the basis of current logging and transportation costs. The corresponding energy prices, while high, are competitive with current fossil fuel prices. Using any energy source requires not only the fuel but also a furnace. The total energy costs are thus not only the cost of current fuel use but also those of the capital investment in the furnace. We have estimated these for systems of two sizes, one for a small house, the other for an apartment building or small commercial establishment. In both cases, our estimated indicate, that woodfueled systems can be economically competitive. Wood is currently used as a fuel on a large scale in the pulp and paper industry. With some increase in wood harvesting efforts and some alterations of furnaces that industry could achieve energy self sufficiency. Other large-scale uses are still speculative but deserve further investigation. A state-owned energy corporation could serve to provide a market for currently wasted wood and to investigate the conversion of wood to other forms of energy. The combustion of wood is not associated with environmental effects that are different kind in magnitude from those associated with the combustion of fossil fuel.

  4. Intraspecific variability of European larch for wood properties: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Paques, L.E.; Rozenberg, P. [Institut National de Recherches Agronomiques (INRA), 45 - Olivet (France). Station d`Amelioration des Arbres Forestiers

    1995-12-31

    Wood properties of several natural populations of European larch (Larix decidua Mill) were determined from samples collected in one replicate of the II. International IUFRO provenance experiment, planted in Brittany in 1959. According to provenances, proportion of heartwood ranges from 35 to 58% of basal area, basic density from 442 to 505 g/dm{sup 3} and Young modulus of elasticity from 8474 to 14522 MPa. Positive correlations between girth and heartwood proportion and between wood density and modulus of elasticity but negative correlations between ring width and both density and MOE have been found both at the individual and at the population levels. Variability between and within provenances is high for two major traits (proportion of heartwood and Young modulus of elasticity) for which a SW - NE gradient is shown. For wood density parameters including pilodyn, a greater homogeneity is observed. Besides a now largely recognized superiority for growth traits, Central European populations from the Sudetan Mountains and Central Poland would also produce wood with better properties. On the reverse, Alpine populations from the French Alps growing at low elevations have a slower growth, a denser wood with less heartwood and less strength. Used as a control, the hybrid larch origin (Larix x eurolepis) represents the best compromise for wood properties with the highest strength but an average wood density and one of the highest proportion of heartwood. These preliminary results must be confirmed from a larger set of provenances and completed with other major wood properties such as durability and shrinkage. 17 refs, 2 figs, 6 tabs

  5. Intraspecific variability of European larch for wood properties: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Paques, L E; Rozenberg, P [Institut National de Recherches Agronomiques (INRA), 45 - Olivet (France). Station d` Amelioration des Arbres Forestiers

    1996-12-31

    Wood properties of several natural populations of European larch (Larix decidua Mill) were determined from samples collected in one replicate of the II. International IUFRO provenance experiment, planted in Brittany in 1959. According to provenances, proportion of heartwood ranges from 35 to 58% of basal area, basic density from 442 to 505 g/dm{sup 3} and Young modulus of elasticity from 8474 to 14522 MPa. Positive correlations between girth and heartwood proportion and between wood density and modulus of elasticity but negative correlations between ring width and both density and MOE have been found both at the individual and at the population levels. Variability between and within provenances is high for two major traits (proportion of heartwood and Young modulus of elasticity) for which a SW - NE gradient is shown. For wood density parameters including pilodyn, a greater homogeneity is observed. Besides a now largely recognized superiority for growth traits, Central European populations from the Sudetan Mountains and Central Poland would also produce wood with better properties. On the reverse, Alpine populations from the French Alps growing at low elevations have a slower growth, a denser wood with less heartwood and less strength. Used as a control, the hybrid larch origin (Larix x eurolepis) represents the best compromise for wood properties with the highest strength but an average wood density and one of the highest proportion of heartwood. These preliminary results must be confirmed from a larger set of provenances and completed with other major wood properties such as durability and shrinkage. 17 refs, 2 figs, 6 tabs

  6. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus

    International Nuclear Information System (INIS)

    Zakaria, Zainul Akmar; Zakaria, Zainoha; Surif, Salmijah; Ahmad, Wan Azlina

    2007-01-01

    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L -1 of Cr(VI) was reduced at a flow rate of 8.0 mL min -1 . The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment

  7. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Zainul Akmar; Zakaria, Zainoha [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Surif, Salmijah [Department of Environmental Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Ahmad, Wan Azlina [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)], E-mail: azlina@kimia.fs.utm.my

    2007-09-05

    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L{sup -1} of Cr(VI) was reduced at a flow rate of 8.0 mL min{sup -1}. The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment.

  8. Wood ethanol: a BC value-added opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, B. W.; O' Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary.

  9. Wood ethanol: a BC value-added opportunity

    International Nuclear Information System (INIS)

    McCloy, B. W.; O'Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary

  10. Reliable and non-destructive positioning of larvae of wood-destroying beetles in wood

    International Nuclear Information System (INIS)

    Kerner, G.; Thiele, H.; Unger, W.

    1980-01-01

    Living larvae of wood-destroying insects (house longhorn beetle, deathwatch) can be determined in wood by both X-ray technique and vibration measurements. For such examinations convenient commercial devices were used and tested under laboratory conditions. The methods complement each other and lead to a rationalization of the tests of wood preservatives against wood-destroying insects. It seems to be promising to apply the test methods also to timber already used for building

  11. Investigation of the Acoustic Properties of Chemically Impregnated Kayu Malam Wood Used for Musical Instrument

    Directory of Open Access Journals (Sweden)

    Md. Faruk Hossen

    2018-01-01

    Full Text Available The chemical modification or impregnation through preparing the wood polymer composites (WPCs can effectively reduce the hygroscopicity as well as can improve the acoustic properties of wood. On the other hand, a small amount of nanoclay into the chemical mixture can further improve the different properties of the WPCs through the preparation of wood polymer nanocomposites (WPNCs. Kayu Malam wood species with styrene (St, vinyl acetate (VA, and montmorillonite (MMT nanoclay were used for the preparation of WPNCs. The acoustic properties such as specific dynamic Young’s modulus (Ed/γ, internal friction (Q−1, and acoustic conversion efficiency (ACE of wood were examined using free-free flexural vibration. It was observed that the chemically impregnated wood composite showed a higher value of Ed/γ than raw wood and the nanoclay-loaded wood nanocomposite showed the highest value. The reverse trend was observed in the case of Q−1. On the other hand, chemical impregnation has a minor effect on ACE of wood for musical instruments. The results suggested that the chemically impregnated Kayu Malam wood polymer nanocomposite (WPNC is suitable for making soundboards of violin and guitar instruments to be played longer without losing tone quality.

  12. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  13. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  14. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity

    International Nuclear Information System (INIS)

    Uprety, Bijaya K.; Chaiwong, Wittavat; Ewelike, Chinomnso; Rakshit, Sudip K.

    2016-01-01

    Highlights: • Comparison of biodiesel production using homogeneous and heterogeneous catalysts. • Comparative study of CaO and CaO supported on alumina for biodiesel production. • Tradeoff between biodiesel conversion rate and purity. • Ash from birch bark and wood pellet industry explored as a potential catalyst. - Abstract: Transesterification of vegetable oils or animal fats with methanol in the presence of catalysts produces fatty acid methyl esters (FAME) and glycerol as a co-product. This study was focused on a comparative study of the transesterification of refined, bleached and deodorized palm oil (RBD palm oil) using a heterogeneous catalysts CaO with and without γ-alumina (γ-Al_2O_3) as a support. The results were also compared to that using sodium hydroxide (NaOH), which is a homogenous catalyst. Parameters like the amount of catalyst, the molar ratio of methanol to oil, reaction time and reaction temperature that affect methyl ester and glycerol formation were analyzed and the optimum conditions were determined. The FAME and glycerol content (96.75% and 92.73% respectively) obtained using CaO were lower in purity compared to that using CaO/Al_2O_3 (97.66% and 96.36% respectively). In the second phase of our work, wood ash from two different sources (birch bark & flyash from a biomass based power plant), which were calcined at 800 °C were studied for their potential use as a cheap renewable alternative heterogeneous catalyst. Both the wood ash samples were found to have good potential for use in such production process, but needs to be optimized further to obtain biodiesel which meets fuel biodiesel specifications. Both CaO and CaO supported on alumina produces FAME to levels that meet the fuel specifications required for blending with diesel. However, the latter produces a purer form of byproduct glycerol that can be easily converted to value added products, without the need for purification. On this basis the supported catalyst is

  15. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  16. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  17. The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James L. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Horn, Scott [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Wade, Dale D. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station

    2006-08-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  18. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  19. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  20. Dead wood for biodiversity - foresters torn between mistrust and commitment

    International Nuclear Information System (INIS)

    Deuffic, Philippe

    2010-01-01

    Dead wood is a key element in forest biodiversity, which is used as one of the indicators for sustainable development of forests. A survey was conducted among foresters and users in the Landes de Gascogne and ile-de-France areas so as to assess practises and social representations associated with dead wood. From the results of the survey, it appears that there is a diversity of practices and divergences about the implications connected with dead wood. The 64 respondents can be divided into roughly six groups (G1: 'industrial foresters', G2: the 'silvicultural foresters', G3: the 'remote foresters', G4: the 'environmentalist foresters', G5: the 'naturalists' and G6: the 'users'). Among other things, they can be differentiated by their management practises, their degree of knowledge about and concern with ecology, their social networks, their aesthetic judgment, their perception of risks and their economic requirements. While underscoring the scarce popularity on average of the biodiversity-related issues, this sociological survey also highlights: the need for a minimal regulatory framework to achieve integrated retention of dead wood, the serious concern of forest managers in the Landes with plant health risks associated with dead wood, and the need for a functional justification for keeping dead wood in the ecosystem. (authors)

  1. [Environmental and health impacts of wood combustion to produce heat and power].

    Science.gov (United States)

    Valerio, Federico

    2012-01-01

    Toxic chemicals such as benzene, polycyclic aromatic hydrocarbons, dioxins, and ultra fine particles were found in the smoke produced by wood combustion. Emission factors confirm that, to produce the same energy amount, many more pollutants are emitted by wood than by natural gas. Biomass burning produces a relevant deterioration of air quality inside and outside houses, notably due to emissions of fine and ultra fine dust (PM10, PM2.5) according to reviewed studies. Important improvements in emission quality are obtained with the use of more efficient household heating systems, both in developed and in developing countries. Numerous studies have assessed the possible health effects produced by wood smoke, providing sufficient evidence that the indoor exposure to wood smoke, even in developed countries, can have adverse effects on human health. In 2010 IARC classified wood smoke as a possible human carcinogen. In Europe, electricity generation from biomass combustion is increasing (12% each year) thanks to incentives provided to reduce greenhouse gas emissions and use of fossil fuels.Today adequate studies to assess the environmental and health effects of emissions from power plants fuelled by solid biomasses are still needed.

  2. Influence of Water on Tribological Properties of Wood-Polymer Composites

    Science.gov (United States)

    Mysiukiewicz, Olga; Sterzyński, Tomasz

    2017-08-01

    Utilization of ecological materials for appliances and products is one of the ways to achieve the goal of sustainability.Wood-polymer composites as a cheap, lightweight, durable and esthetic material has gained attention of scientists, engineers and consumers alike. Different kinds of polymeric matrices, plants used as the fillers, chemical of physical modifiers and processing technologies have already been widely studied. Nonetheless, surprisingly few information on Wood-Polymer Composites' tribology can be found. This paper is an attempt to fill this gap. Polypropylene-and poly(lactic acid)-based composites with varying wood flour content have been analyzed. The Brinell's hardness and coefficient of friction of the samples have been determined. In order to evaluate the influence of the moisture content on the tribological and mechanical properties of the composites, the samples have also been aged in water. The investigation revealed that polymeric composites filled with wood flour can present favorable coefficient of friction, compared to the neat resins. The results of our study can establish a good starting point for further investigation.

  3. Start-up emissions from residential down-draught wood log boilers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, E. (Luleaa Univ. of Technology (Sweden). Energy Technology Centre in Piteaa), Email: esbjorn.pettersson@ltu.se

    2009-07-01

    Start-up emissions can be substantial and even dominating in real use. There are few published investigations regarding the relative importance of different parameters on the start-up emissions. It has though recently been stated that for down-draught boilers, best results are achieved if the wood charge is ignited fairly close to the secondary chamber. The objective of the experimental work was to evaluate the effect of different fuel and design parameters on the start-up emissions, using experimental design which enables a direct comparison between different parameters, using three levels of preheating of secondary air, electric preheating of primary air, different moisture and size of the start wood as well as different amounts of birch bark, which was used to spread the fire during the start. The boiler did not use a bypass damper and the full fuel charge was added before igniting the start wood through an ignition door situated slightly above the grate. The only significant results for the four parameters were that smaller and drier start wood gave lower start-up emissions. Extra amount of birch bark gave the same result. The most important parameters are the fuel parameters, which mean that the result is generally applicable. (orig.)

  4. Controlling moisture content of wood samples using a modified soil-pan decay method

    Science.gov (United States)

    Jerrold E. Winandy; Simon F. Curling; Patricia K. Lebow

    2005-01-01

    In wood, the threshold level below which decay cannot occur varies with species or type of wood product and other factors such as temperature, humidity, and propensity of exposure or service-use to allow rain-induced wetting and subsequent drying. The ability to control wood moisture content (MC) during laboratory decay testing could allow research on the moisture...

  5. Morphology, composition, and mixing state of primary particles from combustion sources ? crop residue, wood, and solid waste

    OpenAIRE

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A. P.; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye

    2017-01-01

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combusti...

  6. Toxicity of invert drilling muds composted with wood/bark chips

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2006-07-01

    Since the early to mid 1990s, many companies have composted invert (diesel) drilling muds with wood chips/bark chips in the green (forestry) zone as a method of drilling mud treatment. This presentation addressed the toxicity of invert drilling muds composted with wood/bark chips and provided some background on composted invert drilling mud (CIDM). EBA Engineering monitored 22 third-party sites in 2002, some of which were biopiles, and others land treatment areas (LTAs). Active treatment started between 1995 and 1999 and some LTAs were seeded with varying degrees of success. Composted materials had hydrocarbon odour and staining and were very moist. Materials exceeded Alberta Environment guidelines for petroleum hydrocarbons (PHCs) and sometimes barium. Most sites were within areas that had forestry production/wildlife as end land use. Receptors included plants, soil invertebrates by soil contact, and wildlife by ingestion. Stakeholder meetings were held for their input and an ecotoxicity study was developed. Material tested, tests and species used as well as results of the ecotoxicity study were presented. A comparison of results to other EBA composting studies was also given. It was concluded that CIDM affects the reproduction of earthworms and springtails, and plant growth; wood/barks chips themselves can be ecotoxic; and, other compost studies with finely ground sawdust and no bark chips had less ecotoxicity. tabs., figs.

  7. How to quantify conduits in wood?

    Science.gov (United States)

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.

  8. Use of Non Wood Forest Products by local people bordering the “Parc National Kaboré Tambi”, Burkina Faso

    DEFF Research Database (Denmark)

    Gausset, Quentin

    2008-01-01

    this issue in the case of the “Parc National Kaboré Tambi” in Burkina Faso, by proposing a combination of ethno-botanical surveys and botanical inventories. The article analyses the importance of the park plant species, identify the constraints faced by local people to harvest the park plant products...... people. As a consequence, approaches of participatory planning of forest management schemes have become necessary. A major challenge has been the issue of how to (use?) scientific knowledge and local knowledge in the most appropriate way. This article provides an account of a contribution to addressing....... They harvest in the park Non Wood Forest Products (NWFPs), although the Forest Code bans free access. About one hundred plants species are used, but the pattern of extraction of the products or some plant parts could destroy the resource base. Technically, conservation by domestication of the source species...

  9. Wood adhesives : vital for producing most wood products

    Science.gov (United States)

    Charles R. Frihart

    2011-01-01

    A main route for the efficient utilization of wood resources is to reduce wood to small pieces and then bond them together (Frihart and Hunt 2010). Although humankind has been bonding wood since early Egyptian civilizations, the quality and quantity of bonded wood products has increased dramatically over the past 100 years with the development of new adhesives and...

  10. Federal tax incentives and disincentives for the adoption of wood-fuel electric-generating technologies

    International Nuclear Information System (INIS)

    Hill, L.J.; Hadley, S.W.

    1995-01-01

    In this paper, we estimate the effects of current federal tax policy on the financial criteria that investor-owned electric utilities (IOUs) and non-utility electricity generators (NUGs) use to evaluate wood-fuel electric-generating technologies, distinguishing between dedicated-plantation and wood-waste fuels. Accelerated tax depreciation, the 1.5 cent/kWh production tax credit for the dedicated-plantation technology, and the alternative minimum tax are the most important tax provisions. The results indicate that federal tax laws have significantly different effects on the evaluation criteria, depending on the plant's ownership (IOU vs NUG) and type of fuel (dedicated-plantation vs wood-waste). (Author)

  11. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  12. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  13. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  14. Wood fuel and the environment

    International Nuclear Information System (INIS)

    Foster, C.A.

    1992-01-01

    The purpose of this paper is to try and demonstrate the role that the use of Wood as a Fuel can play in our environment. The term ''Wood Fuel'', for the purposes of these proceedings, refers to the use of wood obtained from the forest or the farm. It does not refer to waste wood from for example buildings. The role of wood fuel in the environment can be assessed at many different levels. In this paper three different scales of ''Environment'' and the role of wood fuel in each, will be considered. These three scales are namely the global environment, the local environment, and the National (community) environment. (Author)

  15. BASIC DENSITY AND RETRACTIBILITY OF WOOD CLONES OF THREE Eucalyptus SPECIES

    Directory of Open Access Journals (Sweden)

    Djeison Cesar Batista

    2010-12-01

    Full Text Available Among the planted forests that supply the national wood industry, the genus Eucalyptus has become the most important, due to its fast growth, ease of large scale planting and variability of wood use. The generation of new hybrids and clones is a reality in the national practice of silviculture, and there is great interest currently in finding genetic improvements, mainly for higher volumetric gains and resistance in rough conditions of planting, such as pest attacks, periods of drought, low soil fertility, etc. The basic density is one of the most important physical properties of wood because it relates directly to other properties, including the anisotropic shrinkage. Such properties indicate the rational use of a species in a certain wood product. The aim of this work was to determine the basic density and the anisotropic shrinkage of five wood clones for each one of the following species: Eucalyptus saligna, Eucalyptus grandis and Eucalyptus dunnii. Clone 5 of Eucalyptus saligna presented the highest basic density (0.56 g/cm³ and was the most dimensionally instable. Of all the species, there was only a direct relation among basic density, maximum volumetric shrinkage and maximum volumetric shrinkage coefficient in this clone. Considering maximum volumetric shrinkage as the criterion, clone 3 was the most dimensionally stable. Clones 2 and 3 of Eucalyptus grandis presented the least and the highest basic density, respectively, with 0.40 and 0.49 g/cm³. It was not possible to distinguish among clones 1, 3 and 4 in terms of dimensional stability, and considering maximum volumetric shrinkage coefficient as the criterion, clone 5 was the most dimensionally instable. For Eucalyptus saligna and Eucalyptus dunnii it was not possible to distinguish which clone presented the least basic density. Clone 3 of Eucalyptus dunnii presented the highest basic density (0.65 g/cm³ and considering maximum volumetric shrinkage coefficient as the criterion, it

  16. Role of supply chain management in the wise use of wood resources

    African Journals Online (AJOL)

    Role of supply chain management in the wise use of wood resources. ... of inputs, while ensuring the health of a company in tough international competition, ... show why SCM has emerged as an important field in wood procurement and finally ...

  17. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  18. Effects of wood dust:Inflammation, Genotoxicity and Cancer

    DEFF Research Database (Denmark)

    Lange, Jette Bornholdt

    cell line A549 measuring inflammatory and DNA damaging effects. The second part consists of a molecular analysis of the K-ras gene for mutations in the hotspots codons in human sinonasal cancers. Design, calibration and validation of the assays were performed. Cancer at the sinonasal cavities is rare...... with incidence rates between of 0.3 to 1.4 per 100,000 for men and 0.1 to 0.8 per 100,000 for women in Europe, depending on country. However, cancer at this site is associated with occupational exposures including wood dust. Especially the adenocarcinoma subtype is strongly associated with exposure to wood dust...... and their potential to cause DNA damage. Contrary to our hypothesis, we showed that pure wood dust is able to cause primary DNA damage, independent of inflammation as well as hardwoods had no higher inflammatory or genotoxic potential than softwoods. To investigate the molecular mechanisms behind the wood dust...

  19. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  20. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    . harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field.

  1. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field.

  2. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Science.gov (United States)

    David Nicholls; Zackery Wright; Daisy. Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  3. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  4. Economic analysis of a small-sized combined heat and power plant using forest biomass in the Republic of Korea

    Science.gov (United States)

    Yeongwan Seo; Han-Sup Han; Edward M. (Ted) Bilek; Jungkee Choi; Dusong Cha; Jungsoo Lee

    2017-01-01

    Economic analysis was conducted on the feasibility of operating a small-sized (500kW/hour) gasification power plant producing heat and electricity in a rural town surrounded by forests in the Republic of Korea. Cost factors that were considered over the plant’s 20-year life included wood procurement, a wood grab loader, a chipper, a chip dryer, a gasifier, a generator...

  5. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  6. Improvement of wood quality used in Syria by irradiation polymerization

    International Nuclear Information System (INIS)

    Bakarji, E. H.

    2002-06-01

    Wood plastic composites (WPC) have been prepared with five low-grade woods, native to Syria, and with Okoume (aucoumea klaineana pierre) imported to Syria in large quantities. Three monomer systems; acrylamide, butylmethacrylate, and styrene were used. polymerization was induced at various radiation doses (10, 20, and 30 kGy) to study the role of radiation doses using a 60 Co gamma radiation source. Some physical properties of WPC, namely polymer loading and compression strength or tensile strength of the obtained wood polymer composites (WPC) were studied. The effect of the additives, sulfuric acid (H + ), N-vinyl pyrrolidone (NVP), trimethyolpropane triacrylate (TMPTA), urea (U), lithium nitrate (LiNo 3 ), copper sulfate (CuSO 4 ) and co-additives on monomer system polymerization were also investigated. Methanol, water and water/methanol mixtures were used as the swelling agents. In general, the use of additives and co-additives brought about an enhancement of tensile strength or compression strength and polymer loading of the composites. In some cases, additives also lowered the monomer concentration and the gamma radiation dose required for polymerization (author)

  7. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks.

    Science.gov (United States)

    Ravindran, Prabu; Costa, Adriana; Soares, Richard; Wiedenhoeft, Alex C

    2018-01-01

    The current state-of-the-art for field wood identification to combat illegal logging relies on experienced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumulation of this expertise is time-consuming and access to training is relatively rare compared to the international demand for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. We present highly effective computer vision classification models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, including CITES-listed Swietenia macrophylla , Swietenia mahagoni , Cedrela fissilis , and Cedrela odorata . We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identification. The end-to-end trained image classifiers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and captured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for field screening timber and wood products to combat illegal logging.

  8. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union

    NARCIS (Netherlands)

    Bais-Moleman, A.L.; Sikkema, Richard; Vis, Martijn; Reumerman, Patrick; Theurl, Michaela; Erb, Karl Heinz

    2017-01-01

    Cascading use of biomass is a recognized strategy contributing to an efficient development of the bioeconomy and for mitigating climate change. This study aims at assessing the potential of cascading use of woody biomass for reducing GHG (greenhouse gas) emissions and increasing the overall wood

  9. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  10. USE OF AMAZONIAN SPECIES FOR AGING DISTILLED BEVERAGES: PHYSICAL AND CHEMICAL WOOD ANALYSIS

    Directory of Open Access Journals (Sweden)

    Jonnys Paz Castro

    2015-06-01

    Full Text Available The process of storing liquor in wooden barrels is a practice that aims to improve the sensory characteristics, such as color, aroma and flavor, of the beverage. The quality of the liquor stored in these barrels depends on wood characteristics such as density, permeability, chemical composition, anatomy, besides the wood heat treatment used to fabricate the barrels. Brazil has a great diversity of forests, mainly in the north, in the Amazon. This region is home to thousands of tree species, but is limited to the use of only a few native species to store liquors. The objective of this study was to determine some of the physical and chemical characteristics for four Amazon wood species. The results obtained in this study will be compared with others from woods that are traditionally used for liquor storage. The species studied were angelim-pedra (Hymenolobium petraeum Ducke cumarurana (Dipteryx polyphylla (Huber Ducke, jatobá (Hymenaea courbaril L. and louro-vermelho (Nectandra rubra (Mez CK Allen. The trees were collected from Precious Woods Amazon Company forest management area, in Silves, Amazonas. Analyzes such as: concentration of extractives, lignin amount, percentage of minerals (ash and tannin content, density, elemental analysis (CHNS-O and thermal analysis were done. It was observed that the chemical composition (lignin, holocellulose and elemental analysis (percentage of C, H, N and O of the woods have significant differences. The jatobá wood presented higher tannin content, and in the thermal analysis, was that which had the lowest mass loss.

  11. Plants diversity of farm forestry in Tanah Laut District, South Kalimantan

    Directory of Open Access Journals (Sweden)

    MOCHAMAD ARIEF SOENDJOTO

    2008-04-01

    Full Text Available Both monoculture and polyculture farm forestry were in Tanah Laut District. The plants forming the monoculture farm forestry were rubber, teak, coconut, and acacias. The areas of rubber farm forestry were scattered all over the district. Based on Surat Kepala Dinas Kehutanan Kabupaten Tanah Laut No. 522/202/PPHH/Dishut, there were 43 plant species in the polyculture one; 16 species were categorized as the farm wood and 27 as the other wood. Based on Surat Keputusan Menteri Kehutanan No. SK 272/Menhut-V/2004, there were 44 plant species and 16 of those were the multi purpose tree species. The density and the potential of plants indicated the preference of the community to plant the non-wood producing species of the farm-wood group as well as durian and rambutan of the other wood one.

  12. 77 FR 26191 - Endangered and Threatened Wildlife and Plants; Reclassifying the Wood Bison Under the Endangered...

    Science.gov (United States)

    2012-05-03

    ...; Reclassifying the Wood Bison Under the Endangered Species Act as Threatened Throughout Its Range AGENCY: Fish... that the wood bison no longer meets the definition of endangered under the Endangered Species Act. This... Endangered Species Act, some threats to wood bison remain. Habitat loss has occurred in Canada from...

  13. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  14. Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification.

    Science.gov (United States)

    Gasson, Peter; Miller, Regis; Stekel, Dov J; Whinder, Frances; Zieminska, Kasia

    2010-01-01

    Dalbergia nigra is one of the most valuable timber species of its genus, having been traded for over 300 years. Due to over-exploitation it is facing extinction and trade has been banned under CITES Appendix I since 1992. Current methods, primarily comparative wood anatomy, are inadequate for conclusive species identification. This study aims to find a set of anatomical characters that distinguish the wood of D. nigra from other commercially important species of Dalbergia from Latin America. Qualitative and quantitative wood anatomy, principal components analysis and naïve Bayes classification were conducted on 43 specimens of Dalbergia, eight D. nigra and 35 from six other Latin American species. Dalbergia cearensis and D. miscolobium can be distinguished from D. nigra on the basis of vessel frequency for the former, and ray frequency for the latter. Principal components analysis was unable to provide any further basis for separating the species. Naïve Bayes classification using the four characters: minimum vessel diameter; frequency of solitary vessels; mean ray width; and frequency of axially fused rays, classified all eight D. nigra correctly with no false negatives, but there was a false positive rate of 36.36 %. Wood anatomy alone cannot distinguish D. nigra from all other commercially important Dalbergia species likely to be encountered by customs officials, but can be used to reduce the number of specimens that would need further study.

  15. Forest production dynamics along a wood density spectrum in eastern US forests

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi

    2015-01-01

    Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.

  16. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  17. Evaluation of potentical use of the wood of Schizolobium amazonicum “Paricá” and Cecropia hololeuca “Embaúba” for wood cement board manufacture

    Directory of Open Access Journals (Sweden)

    Vinicius Yurk da Rocha

    2012-06-01

    Full Text Available This research was developed to evaluate the potential use of Schizolobium amazonicum “Paricá” and Cecropia hololeuca “Embaúba” wood for wood cement board manufacture. Panels with the density of 1.200 kg/m³ were made, using cement CP V ARI as mineral bonding and wood particles without treatment and treated with immersion in cold water, hot water and sodium hydroxide. The panels were pressed at the pressure of 40 kgf/cm², room temperature and press / clipping time of 24 hours and maturation time of 28 days. The evaluation of the properties of water absorption, thickness swelling, internal bond, modulus of elasticity and modulus of rupture, showed that Schizolobium amazonicum “Paricá” and Cecropia hololeuca “Embaúba” wood are technically feasible for wood-cement board manufacture. It was also found that the panels of embaúba exhibit some properties superior to those of the paricá, and the particles do not necessarily need treatment.

  18. Wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill applications. Phase 2. Site-specific preliminary engineering and financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The use of conventional steam/electricity cogeneration systems is not generally economical at the sawmill scale of operation. This paper describes an evaluation of a wood-waste fueled and, indirectly, gas fired turbine cogeneration plant aimed at developing a cost-effective wood-waste fired power generation and dry kiln heating system for sawmill applications. A preliminary engineering design and financial analysis of the system was prepared for a demonstration site in British Columbia. A number of alternative system configurations were identified and preliminary engineering designs prepared for each. In the first option , wood wastes combusted in a wet cell hot gas generator powered a 600 kW turbine, and produced 7,000 kW for the drying kilns. The second option provided the same electrical and heat output but used a down-fired suspension burner unit fuelled by clean, dried sawdust, together with an integral air heater heat exchanger. The third option represented a commercial-scale configuration with an electrical output of 1,800 kW, and sufficient heat output for the dry kilns. A financial analyis based on a computerized feasibility model was carried out on the last two options. Low electricity rates in British Columbia combined with the small scale of a demonstration project provide an inadequate rate of return at the site without substantial outside support. At a commercial scale of operation and with the higher electricity prices that exist outside of British Columbia the financial analysis indicates that the incremental investment in the electric generation portion of the system provides very attractive rates of return for the 3 options. 11 figs., 10 tabs.

  19. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  20. A Review of Polyphenolics in Oak Woods

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-03-01

    Full Text Available Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods.

  1. Whole-tree bark and wood properties of loblolly pine from intensively managed plantations

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Bruce E. Borders; Michael B. Kane; Harold E. Burkhart

    2015-01-01

    A study was conducted to identify geographical variation in loblolly pine bark and wood properties at the whole-tree level and to quantify the responses in whole-tree bark and wood properties following contrasting silvicultural practices that included planting density, weed control, and fertilization. Trees were destructively sampled from both conventionally managed...

  2. Wood construction under cold climate

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2014-01-01

    As wood constructions increasingly use engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives system. The glueline stability is a crucial issue for engineered wood application, especially under cold climate. In this study, Norway spruce (Picea abies...... affected shear strength of wood joints. As temperature decreased, the shear strength decreased. PUR resin resulted in the strongest shear strength at all temperatures tested. MF resin responded to temperature changes in a similar ways as the PUR resin. The shear strength of wood joints with EPI resins...... specimens need to be tested in further work to more completely present the issue. The EN 301 and EN 302 may need to be specified based on wood species....

  3. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  4. Wood as an energy source in the 1990s

    International Nuclear Information System (INIS)

    Pohjonen, V.

    1993-01-01

    Woodbased fuels cover 14 % of the Finnish energy demand in the beginning of 1990s. Over half (55 %) of the wood power is generated in the cellulose industries by burning the residual black and sulphite liquor. A quarter (23 %) of the woodpower comes from mechanical wood residues, whereas 22 % only comes from conventional firewood. Based on the efficiency of the wood-based energy economy the cellulose and saw milling industries managed in the 1980s to exceed self sufficiency in electricity and steam power production. Increasing use of wood-based fuels in the future in nationally significant scale is therefore tied with the future growth of the cellulose and sawmilling industries. The growth has been made possible by the growth in the Finnish forests since the 1970s. A new model of power generation has been created in the town of Kuhmo in the eastern Finland. It is based on a modem saw mill, combined with electricity (5 MW) and district heating power (13 MW) plant. The power technology is based on fluidized bed combustion which has also been designed for minimizing the nitrogen emissions. Because woodbased fuels are sulphur free, and their impact in carbon balance can be kept in zero, increasing use of woodpower in Finland in the 1990s suits well in the international trends of sustained development

  5. Acquisition of wood fuel at the Joseph C. McNeil Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Kropelin, W. [Burlington Electric Dept., VT (United States)

    1993-12-31

    The Joseph C. McNeil Generating Station is the world`s largest single boiler, municipally-owned, wood-fired electrical generating plant. The 50 megawatt McNeil Station is located in Burlington, Vermont and is owned by several Vermont public and private electric utilities. The operator and majority owner is the City of Burlington Electric Department (BED). Wood fuel procurement for the McNeil Station has been conducted in an environmentally sensitive way. Harvesting is carried out in conformance with a comprehensive wood chip harvesting policy and monitored by professional foresters. Unpredictable levels of Station operation require rigid adherence to a wood storage plan that minimizes the risk of over heating and spontaneous combustion of stockpiled fuel.

  6. Wood preservation

    Science.gov (United States)

    Rebecca E. Ibach

    1999-01-01

    When left untreated in many outdoor applications, wood becomes subject to degradation by a variety of natural causes. Although some trees possess naturally occurring resistance to decay (Ch. 3, Decay Resistance), many are in short supply or are not grown in ready proximity to markets. Because most commonly used wood species, such as Southern Pine, ponderosa pine, and...

  7. Surface coatings of unsaturated polyester resin Kamper wood (Dry obalan ops spp.) by using UV radiation

    International Nuclear Information System (INIS)

    Sugiarto Danu; Yusuf Sudo Hadi; Novi Eka Putri

    1999-01-01

    Kamper wood (Dryobalanops spp.) has high contribution in wood working industry and most of them need surface coating process. Radiation curing of surface coating, especially the use of ultra-violet (UV) light have potential to give contribution in the wood finishing. The experiment on surface coating of kamper wood has been conducted by using UV-radiation. Unsaturated polyester resin with the commercial name of Yucalac type 157 was used as coating materials after being added with styrene monomer, some fillers and radical photoinitiator of 2-hydroxy-2-2-methyl-l- phenyl propanone. Four photoinitiator concentration levels of 1.5 ; 2 ; 2.5 and 3 % by weight of resin were used. The coating materials were coated onto the wood panel samples by using high pressure sprayer. The wood samples were then exposed to irradiation by using 80 Watts/cm UV-source with variable conveyor speed of 3 ; 4 ; 5 and 5.8 m/min. Formulation of coating materials, pendulum hardness, adhesion, and gloss of cured films were evaluated

  8. Accumulation of metals in vegetation established in wood ash; Upptag av metaller i vegetation som etablerats i vedaska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Fransson, Sara; Wik, Ola

    2009-04-15

    From an environmental point of view, a considerable amount of natural resources can be preserved if ashes were used in geotechnical constructions, e.g. in embankments, roads, hard surfaces, landfill coverage, and in soil stabilizations. However, when using ashes in constructions an assessment of the risks the content of contaminants in the ash might pose, must be done. Today, there is a lack of basic data to make a full risk assessment of ash material in constructions. The risk may differ depending on whether the construction is in operation or in a post operational phase. In the post operational phase, the fate and exposure routs of the contaminants in the ash might change over time. For example, a forest road out of use can with time be overgrown and become a more or less integrated part of the surrounding environment. Contaminants from the ash material might then be assimilated in the established vegetation. As primary producers, plants constitute the basis of the terrestrial food chain, and metals accumulated in plants might be transported further to plant eating animals. The accumulation of metals in vegetation may pose a risk to these herbivores especially when the metals are translocated to grazable parts, e.g. leaves and shoots. In the present study metal concentrations in different parts of vegetation established in ash material was determined and compared to concentrations in vegetation grown in a reference material. Studied materials where i) a wood ash, a waste product possible to use in geotechnical constructions, and ii) crushed stone, a non-controversial geotechnical construction material. The ash material was taken from an older lysimeter that can be seen as a snapshot picture of a geotechnical construction that was built with ash and then taken out of use 15 years ago. The aim of the study was to document and compare the accumulation and distribution of metals in vegetation that had self established in the studied materials. The results obtained in

  9. Accumulation of metals in vegetation established in wood ash; Upptag av metaller i vegetation som etablerats i vedaska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Fransson, Sara; Wik, Ola

    2009-04-15

    From an environmental point of view, a considerable amount of natural resources can be preserved if ashes were used in geotechnical constructions, e.g. in embankments, roads, hard surfaces, landfill coverage, and in soil stabilizations. However, when using ashes in constructions an assessment of the risks the content of contaminants in the ash might pose, must be done. Today, there is a lack of basic data to make a full risk assessment of ash material in constructions. The risk may differ depending on whether the construction is in operation or in a post operational phase. In the post operational phase, the fate and exposure routs of the contaminants in the ash might change over time. For example, a forest road out of use can with time be overgrown and become a more or less integrated part of the surrounding environment. Contaminants from the ash material might then be assimilated in the established vegetation. As primary producers, plants constitute the basis of the terrestrial food chain, and metals accumulated in plants might be transported further to plant eating animals. The accumulation of metals in vegetation may pose a risk to these herbivores especially when the metals are translocated to grazable parts, e.g. leaves and shoots. In the present study metal concentrations in different parts of vegetation established in ash material was determined and compared to concentrations in vegetation grown in a reference material. Studied materials where i) a wood ash, a waste product possible to use in geotechnical constructions, and ii) crushed stone, a non-controversial geotechnical construction material. The ash material was taken from an older lysimeter that can be seen as a snapshot picture of a geotechnical construction that was built with ash and then taken out of use 15 years ago. The aim of the study was to document and compare the accumulation and distribution of metals in vegetation that had self established in the studied materials. The results obtained in

  10. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    Science.gov (United States)

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Science.gov (United States)

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  12. Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template

    Science.gov (United States)

    Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng

    2018-04-01

    The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.

  13. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.

    2004-01-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg -1 ) and in the fence soil (27 mg kg -1 ), resulting in enhanced As accumulation of 44 mg kg -1 in carrot and 32 mg kg -1 in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils

  14. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)]. E-mail: xcao@stevens.edu; Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)

    2004-12-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg{sup -1}) and in the fence soil (27 mg kg{sup -1}), resulting in enhanced As accumulation of 44 mg kg{sup -1} in carrot and 32 mg kg{sup -1} in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA

  15. Forests between global warming and local wood use

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2009-01-01

    The sustainability of extended energetic wood use in atmospheric burners is questioned because it accelerates global warming for decades and often intensifies local air pollution with serious health impacts. Forest developments in Denmark and Austria are compared, the latter including data...

  16. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  17. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    Science.gov (United States)

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  18. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  19. Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the United States

    Science.gov (United States)

    F. Antony; L. R. Schimleck; R. F. Daniels; Alexander Clark; D. B. Hall

    2010-01-01

    Loblolly pine (Pinus taeda L.) is a major plantation species grown in the southern United States, producing wood having a multitude of uses including pulp and lumber production. Specific gravity (SG) is an important property used to measure the quality of wood produced, and it varies regionally and within the tree with height and radius. SG at different height levels...

  20. Broad Anatomical Variation within a Narrow Wood Density Range--A Study of Twig Wood across 69 Australian Angiosperms.

    Directory of Open Access Journals (Sweden)

    Kasia Ziemińska

    Full Text Available Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications.Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38-0.62 g cm-3. Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm, vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity.Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001. Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05 or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05. However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001. Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component.Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation.

  1. European wood-fuel trade

    International Nuclear Information System (INIS)

    Hillring, B.; Vinterbaeck, J.

    2001-01-01

    This paper discusses research carried out during the l990s on European wood fuel trade at the Department of Forest Management and Products, SLU, in Sweden. Utilisation of wood-fuels and other biofuels increased very rapidly in some regions during that period. Biofuels are replacing fossil fuels which is an effective way to reduce the future influence of green house gases on the climate. The results indicate a rapid increase in wood-fuel trade in Europe from low levels and with a limited number of countries involved. The chief products traded are wood pellets, wood chips and recycled wood. The main trading countries are, for export, Germany and the Baltic states and, for import, Sweden, Denmark and to some extent the Netherlands. In the future, the increased use of biofuel in European countries is expected to intensify activity in this trade. (orig.)

  2. Controversy. The wood war

    International Nuclear Information System (INIS)

    James, O.

    2010-01-01

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  3. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Science.gov (United States)

    Ben Mbarek, T.; Robert, L.; Hugot, F.; Orteu, J. J.; Sammouda, H.; Graciaa, A.; Charrier, B.

    2010-06-01

    In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC) with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC). A non-linear behaviour is shown. The modulus of elasticity (MOE) is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM) is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE).

  4. Wood-Fired Boiler System Evaluation at Fort Stewart, GA

    National Research Council Canada - National Science Library

    Potts, Noel

    2002-01-01

    Part of the plan to modernize the central energy plant (CEP) at Fort Stewart, GA is focused on the installations wood-fired boiler, which provides steam for heating, cooling, and domestic hot water. The U.S...

  5. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  6. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  7. Inventory of contaminants in waste wood; Inventering av foeroreningar i returtrae

    Energy Technology Data Exchange (ETDEWEB)

    Jermer, Joeran; Ekvall, Annika; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-03-01

    Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, mainly from Germany and the Netherlands. The waste wood is contaminated by e.g. paint and wood preservatives and objects of metal, glass, plastics etc. The contaminants may cause technical problems such as deposits and corrosion as well as plugging of air openings. The present study has focussed on potential contaminants in waste wood that could cause problems of technical as well as environmental nature. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treatments also contribute to increased levels of sodium, chlorine, sulphur and nitrogen. Preservative-treated wood is the most important source of increased levels of copper, chromium and arsenic in the waste wood. Waste wood imported from Germany contains less arsenic but the same amount of copper and chromium as Swedish waste wood. The contents of mercury in German waste wood can be expected to be higher than in waste wood of Swedish origin. The fraction consisting of wood-based panels is comparably free from contaminants but as a result of the high contents of adhesives wood-based panels contribute to a higher proportion of nitrogen in waste wood than in forest residues. A great number of non-wood compounds (such as plastics and metals) do also contaminate waste wood. By careful and selective demolition and various sorting procedures most non-wood compounds will be separated from the waste wood. Waste sorting analyses carried out indicate that the waste wood contains approximately 1% non-wood compounds, mainly plastic and metal compounds, glass, dirt, concrete, bricks and gypsum. This may seem to be a small proportion, but if large amounts of waste wood are incinerated the non-wood compounds will inevitably cause

  8. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    Science.gov (United States)

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  9. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  10. Survival, growth, wood basic density and wood biomass of seven ...

    African Journals Online (AJOL)

    A performance comparison of seven-year-old individuals of 13 Casuarina species/provenances in terms of survival, growth (diameter, height and volume), wood basic density and wood biomass was undertaken at Kongowe, Kibaha, Tanzania. The trial was laid out using a randomised complete block design with four ...

  11. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  12. Atmospheric deposition of trace elements around point sources and human health risk assessment. II: Uptake of arsenic and chromium by vegetables grown near a wood preservation factory

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Moseholm, Lars; Nielsen, Margot M.

    1992-01-01

    Kale, lettuce, carrots and potatoes were grown in 20 experimental plots surrounding a wood preservation factory, to investigate the amount and pathways for plant uptake of arsenic and chromium. Arsenate used in the wood preservation process is converted to the more toxic arsenite by incineration...... of waste wood and is emitted into the atmosphere. Elevated concentrations of inorganic arsenic and chromium were found both in the test plants and in the soil around the factory. Multivariate statistical analysis of the results indicated that the dominating pathway of arsenic and chromium from the factory...

  13. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.

    Science.gov (United States)

    Obudulu, Ogonna; Bygdell, Joakim; Sundberg, Björn; Moritz, Thomas; Hvidsten, Torgeir R; Trygg, Johan; Wingsle, Gunnar

    2016-02-18

    Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 μm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease

  14. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  15. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    OpenAIRE

    Elena Bobeková; Michal Tomšovský; Petr Horáček

    2008-01-01

    The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit). The experiment based on dry rot fungus (Serpula lacrymans) detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was ide...

  16. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay.

    Science.gov (United States)

    Fackler, Karin; Schwanninger, Manfred

    2012-11-01

    Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.

  17. Alabama’s timber industry—timber product output and use, 2015

    Science.gov (United States)

    David J. Wall; James W. Bentley; Jason A. Cooper; James A. Gray

    2017-01-01

    This science update contains the findings of a 2015 canvass of all primary wood-using plants in Alabama, and presents changes in product output and residue use since 2013. It complements the Forest Inventory and Analysis (FIA) annual inventory of volume and removals from the State’s timberland. The canvass was con-ducted to determine the amount and source of...

  18. Composite structure of wood cells in petrified wood

    International Nuclear Information System (INIS)

    Nowak, Jakub; Florek, Marek; Kwiatek, Wojciech; Lekki, Janusz; Chevallier, Pierre; Zieba, Emil; Mestres, Narcis; Dutkiewicz, E.M.; Kuczumow, Andrzej

    2005-01-01

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, μ-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of μ-Raman and μ-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested

  19. Composite structure of wood cells in petrified wood

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jakub [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Florek, Marek [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, Wojciech [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Lekki, Janusz [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Chevallier, Pierre [LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Zieba, Emil [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona (ICMAB), Campus de la UAB, E-08193-Bellaterra (Spain); Dutkiewicz, E.M. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Kuczumow, Andrzej [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland)

    2005-04-28

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, {mu}-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of {mu}-Raman and {mu}-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested.

  20. Comparison of Different Wood Species as Raw Materials for Bioenergy

    Directory of Open Access Journals (Sweden)

    Bojana Klašnja

    2013-12-01

    Full Text Available Background and Purpose: Most projections of the global energy use predict that biomass will be an important component of primary energy sources in the coming decades. Short rotation plantations have the potential to become an important source of renewable energy in Europe because of the high biomass yields, a good combustion quality as solid fuel, ecological advantages and comparatively low biomass production costs. Materials and Methods: In this study, the wood of black locust Robinia pseudoacacia, white willow Salix alba L., poplars Populus deltoides and Populus x euramericana cl.I-214, aged eight years were examined. Immediately after the felling, sample discs were taken to assess moisture content, ash content, the width of growth rings, wood densities and calorific values, according to the standard methodology. Results:The mean values of willow, poplar and black locust wood density were 341 kg/m3, 336 kg/m3 and 602 kg/m3,respectively. The average heating values of willow poplar and black locust wood were 18.599 MJ/kg, 18.564 MJ/kg and 21.196 MJ/kg, respectively. The FVI index (average values was higher for black locust (17.186 than for poplar and willow clones, which were similar: 11.312 and 11.422 respectively. Conclusions: Black locust wood with a higher density, calorific value and ash content compared to poplar and willow wood proved to be a more suitable raw material as RES. However, it is very important, from the aspect of the application of wood of these tree species as RES, to also consider the influence of the biomass yield per unit area of the plantations established as “energy plantations”.

  1. Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment

    NARCIS (Netherlands)

    Zuo, Juan; Fonck, Myrthe; van Hal, Jurgen; Cornelissen, J. Hans C.; Berg, Matty P.

    Diplopoda (millipedes) and Isopoda (woodlice) are among the most abundant macro-detritivores in temperate forests. These key regulators of plant litter decomposition are influenced by habitat and substrate quality, including that of dead wood. Dead wood provides shelter and resources to

  2. Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment

    NARCIS (Netherlands)

    Zuo, J.; Fonck, M.; van Hal, J.R.; Cornelissen, J.H.C.; Berg, M.P.

    2014-01-01

    Diplopoda (millipedes) and Isopoda (woodlice) are among the most abundant macro-detritivores in temperate forests. These key regulators of plant litter decomposition are influenced by habitat and substrate quality, including that of dead wood. Dead wood provides shelter and resources to

  3. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  4. Evaluation of various fire retardants for use in wood flour--polyethylene composites

    Science.gov (United States)

    Nicole M. Stark; Robert H. White; Scott A. Mueller; Tim A. Osswald

    2010-01-01

    Wood-plastic composites represent a growing class of materials used by the residential construction industry and the furniture industry. For some applications in these industries, the fire performance of the material must be known, and in some cases improved. However, the fire performance of wood-plastic composites is not well understood, and there is little...

  5. Quantification of (1→4-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay

    Directory of Open Access Journals (Sweden)

    Ramesh R. Chavan

    2015-01-01

    Full Text Available Compression wood is a type of reaction wood formed on the underside of softwood stems when they are tilted from the vertical and on the underside of branches. Its quantification is still a matter of some scientific debate. We developed a new technique that has the potential to do this based on the higher proportions of (1→4-β-d-galactans that occur in tracheid cell walls of compression wood. Wood was milled, partially delignified, and the non-cellulosic polysaccharides, including the (1→4-β-d-galactans, extracted with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the (1→4-β-d-galactans determined by an immuno-dot assay using the monoclonal antibody LM5, which specifically recognizes this polysaccharide. Spots were quantified using a dilution series of a commercially available (1→4-β-d-galactan from lupin seeds. Using this method, compression and opposite woods from radiata pine (Pinus radiata were easily distinguished based on the amounts of (1→4-β-d-galactans extracted. The non-cellulosic polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic acid followed by the separation and quantification of the released neutral monosaccharides by high performance anion exchange chromatography. This confirmed that the compression woods contained higher proportions of galactose-containing polysaccharides than the opposite woods.

  6. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor.

    Science.gov (United States)

    Jagodzinski, Lucas S; O'Donoghue, Marian T; Heffernan, Liam B; van Pelt, Frank N A M; O'Halloran, John; Jansen, Marcel A K

    2018-06-01

    The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to concentrations of 2.5-5g/L. Leachates promoted growth up to 10g ash equivalents per litre, but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC 50 =14g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC 50 =21g/L), or neutralized fly ash (EC 50 =37g/L) were required to impede growth. Bottom ash, or neutralized bottom ash retarded growth at concentrations of 51g/L and 74g/L (EC 50 ), respectively, in eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, its alkaline character, and possible interactions between these two properties. Growth promotion was due to the substantial content of plant nutrients. This study underlines the importance of the receiving environment (nutrient status and pH) in determining the balance between toxicity and growth promotion, and shows that the margin between growth promoting and toxicity inducing concentrations can be enlarged through ash neutralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... 3Department of Botany, Post Graduate College Abbottabad, Pakistan. Accepted 17 March, 2011. A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration.

  8. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    Directory of Open Access Journals (Sweden)

    Elena Bobeková

    2008-01-01

    Full Text Available The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit. The experiment based on dry rot fungus (Serpula lacrymans detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was identified using the PCR–based methods including species-specific PCR and sequencing of amplified ITS region of ribosomal DNA.

  9. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Directory of Open Access Journals (Sweden)

    Graciaa A.

    2010-06-01

    Full Text Available In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC. A non-linear behaviour is shown. The modulus of elasticity (MOE is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE.

  10. Primary circuit contamination in nuclear power plants: contribution to occupational exposure

    International Nuclear Information System (INIS)

    Provens, H.

    2002-01-01

    In every country since the 80's, a clear downward trend is observed concerning the occupational doses at nuclear power plants, as shows the regularly decreasing annual collective dose per operating reactor. Even if technology and work management are improving, the reduction and the control of radiation sources remain one critical point. This paper summarizes the results of an extended study on the primary circuit contamination in nuclear power plants and its contribution to workers' exposure. The paper reviews the origin and mechanisms of radiation production and the different ways of radiation control or reduction based on physical and chemical parameters and not organisational or human factors. It underlines that chemistry control of the primary circuit is one essential component of radiation protection optimisation in nuclear power plants. Results reported come from scientific data in open literature and cannot be generalized to all the power plants

  11. DEVELOPMENT OF WOOD-BASED PRODUCTS WORLDWIDE

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2015-12-01

    Full Text Available The tendency in recent decades for manufacturing plants of semi-finished products such as composite panels, has been to invest in order to achieve high production capacities (>2,000 m³/day for panels and >3,000 t/day for paper with one line. The trend of concentrating the primary processing capacities and manufacturing wood-based panels will continue for the next few years not only in Europe but in North and South America as well. The ten largest panel manufacturers had a combined manufacturing capacity that exceeded a third of the worldwide production capacity. The financial crisis that started in 2008 has caused the closure of a large number of factories especially in North America and Central Europe. Small- and medium-sized producers will only survive if they will continue to specialize in the manufacture of panel types and sizes (niche products that are “unprofitable” for mega-groups. The installed production capacity worldwide of all wood-based composite panels combined (includes PY, PB, MDF, OSB rose by more than 2.5 times between 1980 and 2005 (225 mil.m³, and continues to increase despite the crises reaching approx. 300 mil.m³ in 2013. The forecast for the coming years varies greatly from continent to continent. In North America and Central Europe, both a consolidation of the available production capacities and the closure of less efficient older lines are expected. The lowest point of the effect of the financial crisis on the building industry seems to have been overcome. The furniture production companies will continue to move from one continent and region to another.

  12. Impacts of traditional architecture on the use of wood as an element of facade covering in Serbian contemporary architecture

    Directory of Open Access Journals (Sweden)

    Ivanović-Šekularac Jelena

    2011-01-01

    Full Text Available The world trend of re-use of wood and wood products as materials for construction and covering of architectural structures is present not only because of the need to meet the aesthetic, artistic and formal requirements or to seek inspiration in the return to the tradition and nature, but also because of its ecological, economic and energetic feasibility. Furthermore, the use of wood fits into contemporary trends of sustainable development and application of modern technical and technological solutions in the production of materials, in order to maintain a connection to nature, environment and tradition. In this study the author focuses on wood and wood products as an element of facade covering on buildings in our country, in order to extend knowledge about possibilities and limitations of their use and create a base for their greater and correct application. The subject of this research is to examine the application of wood and wood products as an element covering the exterior in combination with other materials applied in our traditional and contemporary homes with the emphasis on functional, representational art and the various possibilities of wood. In this study all the factors that affect the application of wood and wood products have been analyzed and the conclusions have been drawn about the manner of their implementation and the types of wood and wood products protection. The development of modern technological solutions in wood processing led to the production of composite materials based on wood that are highly resistant, stable and much longer lasting than wood. Those materials have maintained in an aesthetic sense all the characteristics of wood that make it unique and inimitable. This is why modern facade coating based on wood should be applied as a facade covering in the exterior of modern architectural buildings in Serbia, and the use wood reduced to a minimum.

  13. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    Science.gov (United States)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  14. An extension of the Plant Ontology project supporting wood anatomy and development research

    NARCIS (Netherlands)

    Lens, F.; Cooper, L.; Gandolfo, M.A.; Groover, A.; Jaiswal, P.; Lachenbruch, B.; Spicer, R.; Staton, M.E.; Stevenson, D.W.; Walls, R.L.; Wegrzyn, J.

    2012-01-01

    The Wood Ontology project will provide a structured vocabulary and database resource that will be valuable for all scientists, including the IAWA community. To maximizethe utility of the resource and analyses it empowers, it is important for researchers to adopt the use of the ontology terms in the

  15. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  16. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  17. Fuel Wood Consumption and Species Degradation in South-Western Nigeria: The Ecological Relevance

    Directory of Open Access Journals (Sweden)

    Orimoogunje Oluwagbenga O.I.

    2015-01-01

    Full Text Available The continuous dependence of man on fuel and service wood has resulted in serious degradation of the fragile forest ecosystem. Therefore, this study evaluated the sources and patterns of fuel wood and examined the rate of consumption in the study area. This was with the aim to assess the ecological implications of fuelwood consumption on species degradation. The study utilized both, primary and secondary data. Information was extracted from topographic map on the scale of 1: 50,000 and satellites imageries that cover the study area. Questionnaire administration, field observation and weight measurement of fuel wood were carried out. The results showed that the sources of fuel wood for domestic cooking were forest, nearby bush and abandoned farm while the sources of domestic energy were fuel wood (61.17%, charcoal (27%, kerosene (10%, electricity (1.33% and gas (0.5%. Fuel wood for small scale industries were: forest (49.23%, farmland (34.62 and fallow land (16.15%. The trend of fuel wood consumption was on the high side from 1995 to 2011, it was 58% in 1995, 70% in 2000, 82% in 2005 and 92% in 2010 and 2011 respectively. Many valuable economic tree species such as Triplochiton scleroxylon, Nesogordonia papaverifera, and Cordia spp. are near their extinction. Animals such as antelope, wolf and fox are going into extinction while monkey, grasscutter, hare, rabbit were endemic in the study area. The study concluded that the patterns of fuel wood use and fuel wood saturation presents a great danger for biodiversity products and services.

  18. Quality of the surface of Coffea arabica wood

    Directory of Open Access Journals (Sweden)

    Pedro Paulo de Carvalho Braga

    2014-03-01

    Full Text Available The wood of Coffea arabica L. is considered a a residue of the coffee industry and is widely used as a source of energy. Few studies have shown other destinations such as the manufacture of small objects and furniture with rustic design. The objective of this work was to find the best fit in cutting speed during machining planer trowel the wood of Coffea arabica, taking into consideration the quality of the machined surface. The wood from the Coffea arabica came from an 15 years planting, spacing 3 x 2 m, of the municipality of Machado / MG. The tree was pruned, unfolded and flattened, in order for getting cut-proof of 30 mm thick, with variables length and width. The machining tests were performed at the Laboratory of Wood Machining (DCF / UFLA, varying the cutting speed in plane trowel. The qualification of the machined surface was performed by the feed per tooth (fz, visual analysis (ASTM D 1666-87 and roughness Ra and Rz. It was used a completely randomized design with 30 repetitions. We conducted the analysis of variance test and the average of Scott-Knott, at 5% significance level. It was calculated the percentage of marks obtained for the feed per tooth. The results showed that the quality of machined surface with cutting speeds of 19 and 21 m∙s-1 and forward speed of 6 m∙min-1 were satisfactory with small surveys of fiber and low values of feed per tooth ( fz and roughness Ra and Rz.

  19. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood.

    Science.gov (United States)

    Douma, J C; van der Werf, W; Hemerik, L; Magnusson, C; Robinet, C

    2017-04-01

    Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the

  20. Status of wood energy applications

    International Nuclear Information System (INIS)

    Zerbe, J.I.

    1991-01-01

    In this address, the potential of wood and wood residues to supply future energy needs is examined. In addition, the possible environmental impact of the use of wood fuels on global climate change is discussed. Technologies for the development of new fuels are described

  1. Recovery of condensates from the thermal wood refinement extraction of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Roschitz, C.; Martini, S.; Kleinhappl, M. (Austrian Bioenergy Centre GmbH, Area Gasification, Graz (Austria)); Jenny, M.; Wrulicit, O.A.; Wondrak, A.; Ueberall, E. (Innsbruck University of Medicine, Biocenter, Division of Medical Biochemistry, Innsbruck (Austria)); Fillafer, F.; Steiner, F. (Mafi Holzverarbeitung GmbH, Schneegattern (Austria)); Draxler, J. (Leoben University of Mining and Materials, Institute for Process technology and Industrial Environment Protection, Leoben (Austria))

    2007-07-01

    Generally the utilisation of woody biomass is dominated by the pulp and paper industry, its use for energy production by combustion or gasification and as a construction material. A large potential of substances could be gained directly and indirectly from biomass. During industrial processes like the thermal wood refinement or the digestion from wood to pulp a large spectrum of substances could be recovered. This paper gives an idea of how to obtain and use those special substances contained in woody biomass. Therefore this project was launched to investigate exhaust vapours originating from industrial wood refining processes. The exhaust vapour of a thermal wood refinement chamber, which works at 150 - 220 deg C, was sampled and its constituents of low amount were investigated. Substance classes like organic acids, aldehydes, esters alcohols, lignin fractions and resin like compounds were identified. The bioactivity of the samples was investigated in biological test procedures, to identify the characteristic pattern of impression (toxicity, antioxidants, gene expression). The technological step of recovery in small ale during the refinery process is under construction and will perform the staged recovery of valuable fractions. The pilot scale plant will give the chance to gain test fractions in sufficient amount to generate materials for application as chemicals, additives for detergents and cleaning agents. (orig.)

  2. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  3. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Science.gov (United States)

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  4. Influence of primary prey on home-range size and habitat-use patterns of northern spotted owls (Strix occidentalis caurina)

    Science.gov (United States)

    Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward

    1995-01-01

    Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...

  5. Estimated Hardwood Volume Available for Wood Chipmills or Other Low Grade Uses

    Data.gov (United States)

    U.S. Environmental Protection Agency — The potential of wood chip mills to influence the distribution of harvests and the dynamics of wood fiber utilization has become an issue of concern. Where wood chip...

  6. Energy wood reserves and the utilisation conditions of them 1/1994 - 4/1997; Energiapuuvarat ja niiden hyoedyntaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Keskimoeloe, A [Metsaetalouden Kehittaemiskeskus Tapio, Helsinki (Finland)

    1997-12-01

    The objective of the D105 project was to reduce the harvesting and procurement costs of energy wood by developing a model for establishing the procurable volumes of energy wood. This will be done by using forestry planning data on private forests and numeric road data. Position data (GRASS) and database (Ms Access) programs are used in the model. The project was launched in the beginning of 1994 and will run until April 1997. Basic information needed was collected from pilot areas in co-operation with the PUUHA project launched in Mikkeli. Later the work continued with the Forest Energy Project of Central Finland. The position-data program is used to produce forest and road haulage distances for each forest figure. The distance data is then transferred to the database program. In the database program the procurement costs of energy wood are established by using cost models based on productivity curves. After that, it is possible to establish if the figure is economically worthwhile for energy wood harvesting purposes or not. By using this information, the model calculates first the amount of energy wood on the figure and secondly the procurable volumes of energy wood that can be delivered to the local heating plant. (orig.)

  7. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  8. National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment

    International Nuclear Information System (INIS)

    Werner, Frank; Taverna, Ruedi; Hofer, Peter; Thuerig, Esther; Kaufmann, Edgar

    2010-01-01

    An increased use of wood products and an adequate management of forests can help to mitigate climate change. However, planning horizons and response time to changes in forest management are usually long and the respective GHG effects related to the use of wood depend on the availability of harvested wood. Therefore, an integral long-term strategic approach is required to formulate the most effective forest and wood management strategies for mitigating climate change. The greenhouse gas (GHG) dynamics related to the production, use and disposal of wood products are manifold and show a complex time pattern. On the one hand, wood products can be considered as a carbon pool, as is the forest itself. On the other hand, an increased use of wood can lead to the substitution of usually more energy-intense materials and to the substitution of fossil fuels when the thermal energy of wood is recovered. Country-specific import/export flows of wood products and their alternative products as well as their processing stage have to be considered if substitution effects are assessed on a national basis. We present an integral model-based approach to evaluate the GHG impacts of various forest management and wood use scenarios. Our approach allows us to analyse the complex temporal and spatial patterns of GHG emissions and removals including trade-offs of different forest management and wood use strategies. This study shows that the contributions of the forestry and timber sector to mitigate climate change can be optimized with the following key recommendations: (1) the maximum possible, sustainable increment should be generated in the forest, taking into account biodiversity conservation as well as the long-term preservation of soil quality and growth performance; (2) this increment should be harvested continuously; (3) the harvested wood should be processed in accordance with the principle of cascade use, i.e. first be used as a material as long as possible, preferably in

  9. Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2012-10-01

    Full Text Available Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to build residential infill developments of 10 storeys or higher. Multi-apartment buildings of 4 to 10 storeys constructed entirely in timber, such as recently in Europe, are innovative, but their social and cultural acceptance in Australia and North America is at this stage still uncertain. Future commercial utilisation is only possible if there is a user acceptance. The author is part of a research team that aims to study two problems: first models of urban infill; then focus on how the use of the CLT systems can play an important role in facilitating a more livable city with better models of infill housing. Wood is an important contemporary building resource due to its low embodied energy and unique attributes. The potential of prefabricated engineered solid wood panel systems, such as CLT, as a sustainable building material and system is only just being realised around the globe. Since timber is one of the few materials that has the capacity to store carbon in large quantities over a long period of time, solid wood panel construction offers the opportunity of carbon engineering, to turn buildings into ‘carbon sinks’. Thus some of the historically negative environmental impact of urban development and construction can be turned around with CLT construction on brownfield sites.

  10. Carbon isotope variation in shrub willow (Salix spp.) ring-wood as an indicator of long-term water status, growth and survival

    International Nuclear Information System (INIS)

    Schifman, Laura A.; Stella, John C.; Volk, Timothy A.; Teece, Mark A.

    2012-01-01

    Quantifying interannual change in water status of woody plants using stable carbon isotopes provides insight on long-term plant ecophysiology and potential success in variable environments, including under-utilized agricultural land for biomass production and highly disturbed sites for phytoremediation applications. We analyzed δ 13 C values in annual ring-wood of four shrub willow varieties used for biomass production and phytoremediation at three sites in central New York State (U.S.A). We tested a cost-effective sampling method for estimating whole-shrub water status by comparing δ 13 C values of the plant’s largest stem against a composite sample of all stems. The largest stem showed 0.3‰ 13 C enrichment (range −0.7–1.1‰) compared to the whole-plant, making it a more sensitive indicator of water status than the composite sample. Growing season precipitation exerted a strong negative influence on wood tissue chemistry, with an average 0.26‰ 13 C depletion per 100 mm increase in precipitation. An average annual 0.28‰ 13 C enrichment was also observed with increased plant age; this pattern was consistent among all four willow varieties and across sites. Finally, increased 13 C enrichment in wood tissue was positively associated with plant size at the individual plant level, and associated negatively and more variably survival at the plot scale. These results have important implications for the design and management of biomass production and phytoremediation systems. Increased sensitivity of older plants suggests that longer rotations may experience growth limitations and/or lower survival in low-precipitation years, resulting in reduced yields of biomass crops and loss of effectiveness in phytoremediation applications. -- Highlights: ► A 0.26‰ 13 C depletion in wood tissue occurred per 100 mm increase in precipitation. ► There was an average 13 C enrichment with plant age and size for all varieties. ► Greater 13 C enrichment often lead to

  11. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  12. Fluoride removal from rural spring water using wood ash

    CSIR Research Space (South Africa)

    Makhado, R

    2006-05-01

    Full Text Available This paper presents an overview of a report on an investigation on the use of cheap wood ash as an effective means of removing excess fluoride from drinking water used by an impoverished rural community of the Didi village in Limpopo province....

  13. Effect of Alternative Wood Species and First Thinning Wood on Oriented Strand Board Performance

    Directory of Open Access Journals (Sweden)

    Fabiane Salles Ferro

    2018-01-01

    Full Text Available This study aimed to evaluate the feasibility of using and influence of alternative wood species such as Cambará, Paricá, Pinus, and wood from first thinning operations on oriented strand board (OSB physical and mechanical properties. Besides that, an alternative resin, castor oil-based polyurethane, was used to bond the particles, due to the better environmental performance when compared to other resins commonly used worldwide in OSB production. Physical properties such as the moisture content, thickness swelling, and water absorption, both after 2 and 24 hours of water immersion, and mechanical properties such as the modulus of elasticity and resistance in static bending, in major and minor axes, and internal bonding were investigated. All tests were performed according to European code EN 300:2006. Results showed the influence of wood species on physical and mechanical properties. Panels made with higher density woods such as Cambará presented better physical performance, while those made with lower density woods such as Pinus presented better mechanical properties. Besides that, strand particle geometry was also influenced on all physical and mechanical properties investigated. Therefore, the feasibility of using alternative species and wood from first thinning and with castor oil-based polyurethane resin in OSB production was verified.

  14. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  15. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  16. COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS

    OpenAIRE

    Djeison Cesar Batista; Márcio Pereira da Rocha; Ricardo Jorge Klitzke

    2015-01-01

    It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) ph...

  17. Effect of wood type and thickness on acetification kinetics in traditional vinegar production

    Directory of Open Access Journals (Sweden)

    Maria-Jesús Torija

    2009-04-01

    Full Text Available Maria-Jesús Torija1, Estibaliz Mateo1, Carlos-Alfredo Vegas1, Carla Jara1, Angel González1, Montse Poblet1, Cristina Reguant1, Jóse-Manuel Guillamon2, Albert Mas11Biotecnología enológica. Departament de Bioquímica i Biotecnologia, Facultat d’enologia, Universitat Rovira i Virgili, Tarragona, Spain; 2Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC, Burjassot, València, SpainAbstract: Traditional vinegar production is a lengthy process which implies high operational risks and jeopardizes the organoleptic characteristics of the final product. In an effort to solve these problems without changing the traditional model, we modified the wood type and thickness of vinegar barrels. We acetified in triplicate in barrels made of acacia, cherry, chestnut, and oak and in three wood thicknesses (15, 20, and 25 mm in two different vinegar plants. The operating volume was set at 60 L. Reducing wood thickness improved neither maximum acetification velocity or the total length of the process, and in some cases even worsened them. The process took longer in oak barrels than in other types of wood barrel in one of the vinegar plants. Therefore, the choice of wood is a parameter to be considered in the wine vinegar production. Keywords: acacia, cherry, chestnut, oak, acetic acid bacteria

  18. FLEXURAL TESTING OF WOOD-CONCRETE COMPOSITE BEAM MADE FROM KAMPER AND BANGKIRAI WOOD

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-07-01

    Full Text Available Certain wood has a tensile strength that almost equal with steel rebar in reinforced concrete beams. This research aims to understand the capacity and flexural behavior of concrete beams reinforced by wood (wood-concrete composite beam. Two different types of beams based on placement positions of wood layers are proposed in this study. Two kinds of wood used are consisted of Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, meanwhile the concrete mix ratio for all beams is 1 cement : 2 fine aggregates : 3 coarse aggregates. Bending test is conducted by using one-point loading method. The results show that composite beam using Bangkirai wood is stronger than beams using Kamper wood. More thicker wood layer in tensile area will increase the flexural strength of beams. Crack patterns identified could be classified into flexural cracks, shear cracks, and split on wood layer   Beberapa jenis kayu tertentu memiliki kekuatan tarik yang hampir sama dengan tulangan baja pada balok beton bertulang. Penelitian ini bertujuan memahami kapasitas dan perilaku lentur balok beton bertulang yang diperkuat menggunakan kayu (balok komposit beton-kayu. Dua tipe balok yang berbeda berdasarkan posisi penempatan kayu digunakan dalam penelitian ini. Dua jenis kayu yang digunakan adalah kayu Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, sementara itu rasio campuran beton untuk semua balok menggunakan perbandingan 1 semen : 2 agregat halus : 3 agregat kasar. Pengujian lentur dilakukan menggunakan metode one-point loading. Hasil penelitian menunjukkan bahwa balok komposit dengan kayu Bangkirai lebih kuat dibandingkan balok dengan kayu Kamper. Semakin tebal lapisan kayu yang berada di daerah tarik akan meningkatkan kekuatan lentur balok. Pola kerusakan yang teridentifikasi dapat diklasifikasikan menjadi retak lentur, retak geser, dan pecah pada kayu REFERENCES Boen T. (2010. Retrofitting Simple Buildings Damaged by Earthquakes. World Seismic

  19. Durable protection of the surface of wood used outdoors: material constraints, problems and approaches to solutions

    Directory of Open Access Journals (Sweden)

    Merlin A.

    2018-01-01

    Full Text Available The aesthetic durability of wooden structures is a major challenge for the use of this material in construction. Wood is used for its technical performances but also for its architectural qualities and its aesthetic perception. The premature aging of the wooden structures is detrimental because these disorders, even if they do not affect the strength of the structures, are mostly irremediable. The surface protection of wood is generally ensured by the use of a finish, whose essential role is to protect wood from climatic aggressions (water, solar radiation, oxygen, .... The secondary wood processing industry consists of a series of manufacturing and processing activities, each containing a portion of the added value of the product. The application of a finish on a wood-based work is usually the last and most visible step in this value chain.In outdoor use, the protection of the wood surface with transparent finishes is not yet sufficiently durable to be able to compete with materials used in industrial carpentry such as PVC or aluminum. Opaque finishes generally provide more durable protection but they mask the appearance of the wood sought by users.With the aim of positioning wood in this construction sector, research on transparent finishes has focused on the efficiency and improvement of the durability of the protection of the surface appearance of structures. Faced with climatic aggressions, the optimum conservation of a structure is not only linked to the performance of the finish but also to the characteristics of the wood material. In particular, in order to fulfill its protective function, the finish film must be able to follow the dimensional variations of the wood it covers without breaking and without detachment. In addition to the criteria for the effectiveness of finishes in the protection of structures, the environmental impact must be considered with increasing attention. Currently, more than 80% of composite or solid wood

  20. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations

    International Nuclear Information System (INIS)

    Roeser, Dominik; Mola-Yudego, Blas; Sikanen, Lauri; Prinz, Robert; Gritten, David; Emer, Beatrice; Vaeaetaeinen, Kari; Erkkilae, Ari

    2011-01-01

    Research into the methods of producing high quality wood chips for a rapidly growing energy sector is becoming increasingly important. For example, small wood chip heating plants require high quality wood chips to ensure efficient operation, thereby minimizing maintenance costs. Moisture content is considered to be an important quality parameter regarding wood based fuels. The objective of this study is to investigate methods to promote the natural drying of wood for bioenergy purposes. The effects on the drying process through covering the wood piles and partial debarking of stems were tested in order to identify methods to reduce the moisture content of the woody material in the storage. Drying trials were established in Finland, Italy and Scotland, utilizing tree species typically used for energy purposes in each area. The results show that natural drying is a viable and effective method to enhance the energy efficiency of wood based fuel products in all the regions studied. Furthermore, by adapting current harvesting methods and storage procedures even better results can be achieved. In addition, the results also indicate that broadleaved trees dry more effectively, if some partial debarking is carried out and that covering of piles is of utmost importance in Scotland and Finland. -- Highlights: → Natural drying is an effective method to enhance efficiency in the wood-fuel chains → Broadleaved trees dry more effectively when partial debarking is done → In Scotland and Finland a method for covering of piles is of utmost importance.

  1. Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island

    Science.gov (United States)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.

    2009-12-01

    Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.

  2. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  3. Simulated nitrogen deposition affects wood decomposition by cord-forming fungi.

    Science.gov (United States)

    Bebber, Daniel P; Watkinson, Sarah C; Boddy, Lynne; Darrah, Peter R

    2011-12-01

    Anthropogenic nitrogen (N) deposition affects many natural processes, including forest litter decomposition. Saprotrophic fungi are the only organisms capable of completely decomposing lignocellulosic (woody) litter in temperate ecosystems, and therefore the responses of fungi to N deposition are critical in understanding the effects of global change on the forest carbon cycle. Plant litter decomposition under elevated N has been intensively studied, with varying results. The complexity of forest floor biota and variability in litter quality have obscured N-elevation effects on decomposers. Field experiments often utilize standardized substrates and N-levels, but few studies have controlled the decay organisms. Decomposition of beech (Fagus sylvatica) blocks inoculated with two cord-forming basidiomycete fungi, Hypholoma fasciculare and Phanerochaete velutina, was compared experimentally under realistic levels of simulated N deposition at Wytham Wood, Oxfordshire, UK. Mass loss was greater with P. velutina than with H. fasciculare, and with N treatment than in the control. Decomposition was accompanied by growth of the fungal mycelium and increasing N concentration in the remaining wood. We attribute the N effect on wood decay to the response of cord-forming wood decay fungi to N availability. Previous studies demonstrated the capacity of these fungi to scavenge and import N to decaying wood via a translocating network of mycelium. This study shows that small increases in N availability can increase wood decomposition by these organisms. Dead wood is an important carbon store and habitat. The responses of wood decomposers to anthropogenic N deposition should be considered in models of forest carbon dynamics.

  4. ANATOMICAL CHARACTERISTICS AND CHEMICAL PROPERTIES OF THE BRANCH-WOOD OF Schizolobium amazonicum DUCKE SPECIES AND ITS POTENTIAL USES

    Directory of Open Access Journals (Sweden)

    Yusup Amin

    2013-10-01

    Full Text Available The scale of forest degradation and deforestation in Indonesia has inspired the use of lesser-known wood species, which are potentially abundant and so far has not much been utilized. Utilization of these woods should be imposed not only of the stem wood but also of the branch-wood portions. Schizolobiumamazonicum Ducke treeis one of those lesser-known species, and growing fast with an MAIof3.68 cm/year.In Indonesia this species is only found in the Purwodadi Botanical Garden. A research was conducted to study the basic characteristics (anatomical aspects and chemical properties of the branch-wood portion of this species. The branch-wood materials were obtained from the Purwodadi Botanical Garden situated in Pasuruan (East Java. The specimens used were the first branch of the trunk (stem of nine-year old S. amazonicum tree (= 29.46 cm. The branch-wood samples were then examined for the anatomical aspects (macroscopic and microscopic characteristics and chemical properties (chemical composition. Results revealed that the anatomical properties of S.amazonicum branch-wood exhibited close similarities to those of sengon wood; it was light in appearance and white in color. Its fiber averaged about 1500 μm, and based on the fiber dimension's derived values the branch- wood fiber of this species was categorized into first-class quality for pulp and paper manufacture. Further, the chemical composition of this branch-wood compared favorably with that of sengon and mangium wood. The composition of extractive content thatsoluble in alcohol-benzene; lignin; holocellulose; and α-cellulose of this branch-wood were 2.46; 28.71; 80.64; and 50.47%, respectively. The overall assessment implied that the branch-wood portion of S.amazonicum tree affords favorable potential to be developed as raw material for pulp and paper manufacture. Also, considering that both sengon and mangium woods were already used in the pulp and paper industries as well as the trees are

  5. Dimensional Stabilization of Wood In Use

    Science.gov (United States)

    R. M. Rowell; R. L. Youngs

    1981-01-01

    Many techniques have been devised to reduce the tendency of wood to change dimensions in contact with moisture. Treatments such as cross-lamination, water-resistant coatings, hygroscopicity reduction, crosslinking, and bulking are reviewed and recommendations for future research are given.

  6. Wood production potential in poplar plantations in Sweden

    International Nuclear Information System (INIS)

    Christersson, Lars

    2010-01-01

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m 3 or 3-10 ton DM per hectare with the highest annual woody production of 45 m 3 or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  7. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  8. Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Baimark, Yodthong; Niamsa, Noi [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150 (Thailand)

    2009-06-15

    Coagulating and antifungal properties of wood vinegars in the preparation process of Hevea brasiliensis natural rubber (NR) sheets were investigated and compared with those of formic and acetic acids. The wood vinegars produced from biomasses such as inner coconut shell, bamboo and Eucalyptus woods were evaluated. It was found that plasticity retention index, Mooney viscosity and mechanical properties of NR coagulated by wood vinegars were similar to those using acetic acid and better than using formic acid. The antifungal efficiency of coagulants determined from a fungi growth area on NR sheet surfaces was found in the following order: coconut shell wood vinegar > bamboo wood vinegar {approx} Eucalyptus wood vinegar > acetic acid {approx} formic acid. The antifungal efficiency of the wood vinegars was strongly depended upon their phenolic compound contents and confirmed through the inhibitory growth of the main fungi, Penicillium griseofulvum, on potato dextrose agar. (author)

  9. Comparison of anatomical properties of non-coppiced and coppiced wood in six Eucalyptus genotypes

    CSIR Research Space (South Africa)

    Zbonak, A

    2006-01-01

    Full Text Available beneath the bark are known as “coppice”. These grow using the same root system that had been developed for planted trees. Fibre and vessel characteristics in wood are important features since they strongly affect the quality and performance of the final...

  10. Use of olfactory cues by newly metamorphosed wood frogs (Lithobates sylvaticus) during emigration

    Science.gov (United States)

    Zydlewski, Joseph D.; Popescu, Viorel D.; Brodie, Bekka S.; Hunter, Malcom L.

    2012-01-01

    Juvenile amphibians are capable of long-distance upland movements, yet cues used for orientation during upland movements are poorly understood. We used newly metamorphosed Wood Frogs (Lithobates sylvaticus) to investigate: (1) the existence of innate (i.e., inherited) directionality, and (2) the use of olfactory cues, specifically forested wetland and natal pond cues during emigration. In a circular arena experiment, animals with assumed innate directionality did not orient in the expected direction (suggested by previous studies) when deprived of visual and olfactory cues. This suggests that juvenile Wood Frogs most likely rely on proximate cues for orientation. Animals reared in semi-natural conditions (1500 l cattle tanks) showed a strong avoidance of forested wetland cues in two different experimental settings, although they had not been previously exposed to such cues. This finding is contrary to known habitat use by adult Wood Frogs during summer. Juvenile Wood Frogs were indifferent to the chemical signature of natal pond (cattle tank) water. Our findings suggest that management strategies for forest amphibians should consider key habitat features that potentially influence the orientation of juveniles during emigration movements, as well as adult behavior.

  11. Energy capacity of black wattle wood and bark in different spacing plantations

    Directory of Open Access Journals (Sweden)

    Elder Eloy

    2015-06-01

    Full Text Available The study aimed at the energetic description of wood and bark biomass of Acacia mearnsii De Wild. in two spacing plantations: 2.0 m × 3.0 m × 1.0 m and 1.5 m, during 36 months after the planting. The experiment was conducted in the municipality of Frederico Westphalen, state of Rio Grande do Sul, Brazil. Biomass (BIO, calorific value, basic density, ash content, volatile matter and fixed carbon content and energy density (ED of wood and bark were determined. The smallest spacing plantation presented the highest production per unit area of BIO and ED of wood and bark.

  12. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture

    NARCIS (Netherlands)

    Scheper, Jeroen; Smit, Christian

    2011-01-01

    Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main

  14. Wood fuels utilization in Central Europe - the wood fuels consumption and the targets of utilization

    International Nuclear Information System (INIS)

    Alakangas, E.

    1999-01-01

    Following subjects are discussed in this presentation: The share of bioenergy of the total energy consumption in EU region; the wood fuels consumption in EU region in 1995; the division of bioenergy utilization (households, wood- based district heating, wood consumption in industry, power generation from wood and residues, biofuels, biogas and sludges); wood fuels consumption in households in EU countries in 1995; wood consumption in France; the additional wood fuel consumption potential in France; Blan bois - wood energy program; French wood energy markets; German wood energy markets; energy consumption in Germany; wood consumption in Bavaria; the wood fuels potential in Bavaria; wood fuels consumption in households in Bavaria; wood fuels consumption for district heating in Bavaria; fuel prices in Bavaria; Environmental regulations in Germany; small boiler markets in Germany; Energy consumption in Austria; small-scale utilization of wood fuels; utilization of wood energy. (Slides, additional information from the author)

  15. Economy of wood supply

    International Nuclear Information System (INIS)

    Imponen, V.

    1993-01-01

    Research and development of wood fuels production was vigorous in the beginning of the 1980's. Techniques and working methods used in combined harvesting and transportation of energy and merchantable wood were developed in addition to separate energy wood delivery. After a ten year silent period the research on this field was started again. At present the underutilization of forest supplies and the environmental effects of energy production based on fossil fuels caused the rebeginning of the research. One alternative for reduction of the price of wood fuels at the utilization site is the integration of energy and merchantable wood deliveries together. Hence the harvesting and transportation devices can be operated effectively, and the organizational costs are decreased as well. The wood delivery costs consist of the stumpage price, the harvesting and transportation costs, and of general expenses. The stumpage price form the largest cost category (over 50 %) of the industrial merchantable wood delivery, and the harvesting and transportation costs in the case of thinningwood delivery. Forest transportation is the largest part of the delivery costs of logging residues. The general expenses, consisting of the management costs and the interest costs of the capital bound to the storages, form a remarkable cost category in delivery of low-rank wood for energy or conversion purposes. The costs caused by the harvesting of thinningwood, the logging residues, chipping and crushing, the lorry transportation are reviewed in this presentation

  16. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E [ed.

    1997-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  17. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  18. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    Science.gov (United States)

    Fagan, William F; Bishop, John G

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.

  19. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  20. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  1. Scientific Opinion on a technical file submitted by the US Authorities to support a request to list a new option among the EU import requirements for wood of Agrilus planipennis host plants

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2011-01-01

    This document presents the scientific opinion of the Panel on Plant Health on the technical file submitted by the US Authorities to support a request to list a new option among the EU import requirements for wood of Agrilus planipennis host plants. The option under consideration is a heat treatme...

  2. Selected mechanical and physical properties of Chinese tallow tree juvenile wood

    Science.gov (United States)

    Todd F. Shupe; LEslie H. Groom; Thomas L. Eberhardt; Thomas C. Pesacreta; Timothy G. Rials

    2008-01-01

    Chinese tallow tree is a noxious, invasive plant in the Southeastern United States. It is generally considered a nuisance and has no current commercial use. The objective of this research was to determine the moduli of rupture (MOR) and elasticity (MOE) of the stem wood of this species at different vertical sampling locations. Three Chinese tallow trees were felled and...

  3. Levels of 137Cs and 40K in wood ash-amended soils

    International Nuclear Information System (INIS)

    Ohno, Tsutomu; Hess, C.T.

    1994-01-01

    Wood ash is a residual material produced at an annual rate of 1.5-3.0 million tons by wood burning power plants in the USA. Up to 80% of the wood ash generated in northeastern USA is landspread on agricultural soils. Recently, concern has arisen regarding the 137 Cs content of wood ash and levels of 137 Cs of wood ash-amended soils. The 137 Cs originated primarily from above ground nuclear weapons testing in the 1950s and 1960s. This study examined the total and pH 3, NH 4 OAc extractable levels of 137 Cs and 40 K in three soils incubated in the laboratory with 0, 3 and 9 g of wood ash on a calcium carbonate equivalence basis kg -1 soil. The wood ash contained 137 Cs and 40 K at 3920 and 21'700 pCi kg -1 , respectively. At the regulated wood ash application rate limit, 3 g wood ash (calcium carbonate equivalent basis) kg -1 of soil, there was no statistical difference from the control treatment in both total and soluble 137 Cs and 40 K levels. For one soil, there was an increase in the 137 Cs level when wood ash was amended at 9 g wood ash (calcium carbonate equivalent basis) kg -1 soil. The 137 Cs was strongly bound to the cation exchange sites of the soils with the average fraction soluble in pH 3, NH 4 OAc solution at 4.8% in the mineral soils and 0.9% in the organic soil. Considering the current limits on permitted wood ash application rates to soils, there was no statistically significant effect on the levels of 137 Cs or 40 K found in wood ash-amended soils

  4. An Analysis of the U.S. Wood Products Import Sector: Prospects for Tropical Wood Products Exporters

    Directory of Open Access Journals (Sweden)

    W.A.R.T.W. Bandara

    2012-10-01

    Full Text Available The U.S. has dramatically altered its wood product imports and exports during the past few years,and at present, it is the second largest wood product importer in the world. Hence, an understanding ofmarket structures, factors in selecting foreign suppliers, and the emphasis placed on environmentalissues/certification are critical to understand from the perspective of wood products importers in the U.S.This study provides an analysis of the U.S. wood products import sector with special emphasis on currentand future opportunities for tropical wood products exporters to the U.S. market.In this study, 158 wood products importers in the U.S. were surveyed using a mailingquestionnaire. The adjusted response rate was 40.6 percent. Results indicated that most of the respondentswere small to medium scale firms, but major importers of wood products. According to respondents,wood products to the U.S. mainly come from Brazil, Chile, and China. From the importers’ perspective,Brazilian wood products ranked first for its quality followed by wood products from Chile and Finland.Product quality, long term customer relationships, on-time delivery of orders, fair prices, and supplierreputation were the factors deemed important in selecting overseas suppliers. Majority of respondentswere importing certified wood products. FSC, SFI, and ISO 14000 were the mostly accepted certificationprograms. However, certification was not a major factor in foreign supplier selection criteria. Whenconsidered the U.S. wood products importers’ tendency to diversify their products and species imported,attractive opportunities exist for wood products suppliers from tropical countries.

  5. A calculation program for harvesting and transportation costs of energy and industrial wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, T [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    A computer based model has been developed for calculating the production costs of industrial wood and wood fuel. Several calculation situations, which might be useful for decision-making in energy wood supply, are included into this software. The model will be easy to use for practical purposes and flexible so that different new model and changes in the basis of calculations are easy to implement. Model will offer open interfaces for importing and exporting information. Model includes selected wood delivery chains and open interfaces for adding data from different procurement sources. The cost analysis model is built on Windows-based software, SQLWindows, using different sources of data (ODBC). With the model it is possible to manage these SQLBase databases with SQL-queries. The data included in the databases origins from various energy wood sources (local communities or part of them, forestry boards planning areas or even stands ready for cutting). By knowing the planned share of first thinnings, final cuttings and other harvesting operations it is possible to estimate the potential amount of wood fuel from each area. Also databases from energy wood users, forest and transportation machinery and distances are available in the system. Using the information it is possible to find out the fuel demand of power and heating plants in each moment (e.g., amount and quality), costs of various machines (harvesters, forwarders, trucks) as well as distances between energy wood sources and users. (orig.)

  6. Preliminary investigation on the natural durability of guayule (Parthenium argentatum) based wood products

    Science.gov (United States)

    Francis S. Nakayama; Poo. Chow; Dilpreet S. Bajwa; John A. Youngquist; James H. Muehl; Andrzej M. Krzysik

    2000-01-01

    Conventional preservatives used to protect wood from insect and microbial damages are presently of major concern to human health and the environment. Finding alternative and economical preservatives has not been successful. Previous studies have shown that the resinous material extracted from the guayule plant (Parthenium argentatum, Gray) has both insect- and...

  7. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States.

    Science.gov (United States)

    Haack, Robert A; Britton, Kerry O; Brockerhoff, Eckehard G; Cavey, Joseph F; Garrett, Lynn J; Kimberley, Mark; Lowenstein, Frank; Nuding, Amelia; Olson, Lars J; Turner, James; Vasilaky, Kathryn N

    2014-01-01

    Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards for Phytosanitary Measures No. 15 (ISPM15) in 2002, which provides treatment standards for WPM used in international trade. ISPM15 was originally developed by members of the International Plant Protection Convention to "practically eliminate" the risk of international transport of most bark and wood pests via WPM. The United States (US) implemented ISPM15 in three phases during 2005-2006. We compared pest interception rates of WPM inspected at US ports before and after US implementation of ISPM15 using the US Department of Agriculture AQIM (Agriculture Quarantine Inspection Monitoring) database. Analyses of records from 2003-2009 indicated that WPM infestation rates declined 36-52% following ISPM15 implementation, with results varying in statistical significance depending on the selected starting parameters. Power analyses of the AQIM data indicated there was at least a 95% chance of detecting a statistically significant reduction in infestation rates if they dropped by 90% post-ISPM15, but the probability fell as the impact of ISPM15 lessened. We discuss several factors that could have reduced the apparent impact of ISPM15 on lowering WPM infestation levels, and suggest ways that ISPM15 could be improved. The paucity of international interception data impeded our ability to conduct more thorough analyses of the impact of ISPM15, and demonstrates the need for well-planned sampling programs before and after implementation of major phytosanitary policies so that their effectiveness can be assessed. We also present summary data for bark- and wood-boring insects intercepted on WPM at US ports during 1984-2008.

  8. Chapter 02: Basic wood biology—Anatomy for identification

    Science.gov (United States)

    Alex Wiedenhoeft

    2011-01-01

    Before the topics of using a hand lens, preparing wood for observation, and understanding the characters used in wood identification can be tackled, a general introduction to the biology of wood must be undertaken. The woods in commercial trade in Central America come almost exclusively from trees, so the discussion of wood biology is restricted to trees here, though...

  9. EFFECTS OF BURN RATE, WOOD SPECIES, MOISTURE CONTENT AND WEIGHT OF WOOD LOADED ON WOODSTOVE EMISSIONS

    Science.gov (United States)

    The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...

  10. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  11. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  12. INVASIVE ALIEN PLANTS ON DECAYING WOOD AND ON TREE-FALL DISTURBANCES IN FORESTS IN THE KARKONOSZE MTS (SUDETEN, SW POLAND

    Directory of Open Access Journals (Sweden)

    Monika Staniaszek-Kik

    2014-10-01

    Full Text Available Three invasive anthropophytes, i.e. two vascular plants Digitalis purpurea L. and Impatiens parviflora DC. as well as one moss Orthodontium lineare Schwägr, were recorded on decaying wood and tree-fall disturbances (pit-mound-root plate complex. It contributes only 1.9% to the flora of analyzed habitats (1.1% of moss flora, 2.9% of vascular plant flora and 3.5% of neophytes known in Sudeten Mts. They grew, sporadically and with a low frequency, on 3.5% of studied objects (on 3.1% of decaying logs and stumps and 5.6% of tree-fall disturbances in all types of forest communities in the area of Karkonosze National Park and in the vicinity. Nowadays, invasive neophytes do not pose a threat to diversity of endangered epixylic flora. Described habitats seem to be resistant to penetration by anthropophytes.

  13. Weathering methods for preservative treated wood and their applicability for fire retarded wood

    NARCIS (Netherlands)

    Voss, A.

    1999-01-01

    preservative treated wood. The aim of the presentation is to inform you about current testing methods and to discuss their applicability to test fire retarded wood in outdoor use. Assuming that fire retardants will only be used in out of ground contact, only those methods are mentioned, which fit

  14. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    Shearon, M.D.

    1992-01-01

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  15. Economic impact of industrial wood energy use in the Southeast region of the United States

    International Nuclear Information System (INIS)

    Stephenson, C.D.

    1991-01-01

    More than 1,000 commercial and industrial installations in the Southeast burn wood fuels. Collectively, these facilities consume 44.3 million green tons of fuelwood and 41.7 million tons per year of 'black liquor' residues. Considering the entire direct and indirect impacts of industrial wood energy expenditures as they ripple through the economy, activities associated with the use of industrial wood energy resulted in the production of over 71,000 jobs and $1 billion in personal income for the Southeast region in 1987. In addition, a total of $237 million in State and Federal tax revenues were generated through wood energy related economic activities. Growth projections indicate that by the year 2000, industrial wood energy utilization will generate approximately 97,000 jobs and $1.4 billion in income in the Southeast region

  16. Finishes for Wood Bowls, Butcher Blocks, Other Items Used for Food, and Children's Toys

    Science.gov (United States)

    Mark T. Knaebe

    2013-01-01

    The durability and beauty of wood make it an attractive material for bowls, butcher blocks, and other items used to serve or prepare food. Wood also tends to be less prone to harbor bacteria than are some other materials such as plastic.

  17. Refraction and absorption of microwaves in wood

    International Nuclear Information System (INIS)

    Ziherl, Saša; Bajc, Jurij; Čepič, Mojca

    2013-01-01

    A demonstration experiment for physics students showing the dependence of the refractive index and absorption coefficient of wood on the direction of microwaves is presented. Wood and microwaves enable study of anisotropic properties, which are typically found in crystals. Wood is used as the persuasive representative of uniaxial anisotropic materials due to its visible structure and its consequent anisotropic properties. Wood can be cut in a general direction and wooden plates a few centimetres thick with well-defined fibre orientation are easily prepared. Microwaves are used because wood is transparent for microwaves and their centimetre-scale wavelength is comparable to the wood structure. (paper)

  18. Application of extracts from the poisonous plant, Nerium Oleander L ...

    African Journals Online (AJOL)

    The antifungal properties of poisonous plant extracts from oleanders (Nerium oleander L.) were determined when used as a wood preservative. The extract was prepared from oleanders leaves and flowers in 96% ethyl alcohol. The wood blocks of Turkish oriental beech (Fagus orientalis L.) and Scots pine (Pinus sylvestris ...

  19. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  20. Wood composites

    Science.gov (United States)

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...