WorldWideScience

Sample records for primary propulsion sepp

  1. Primary electric propulsion thrust subsystem definition

    Science.gov (United States)

    Masek, T. D.; Ward, J. W.; Kami, S.

    1975-01-01

    A review is presented of the current status of primary propulsion thrust subsystem (TSS) performance, packaging considerations, and certain operational characteristics. Thrust subsystem related work from recent studies by Jet Propulsion Laboratories (JPL), Rockwell and Boeing is discussed. Existing performance for 30-cm thrusters, power processors and TSS is present along with projections for future improvements. Results of analyses to determine (1) magnetic field distributions resulting from an array of thrusters, (2) thruster emitted particle flux distributions from an array of thrusters, and (3) TSS element failure rates are described to indicate the availability of analytical tools for evaluation of TSS designs.

  2. Lossi tn 16, Kuressaare / Tõnu Sepp

    Index Scriptorium Estoniae

    Sepp, Tõnu

    2006-01-01

    1893. a. valminud kahe torniga puithoone ajaloost ja restaureerimisest (juuni 2004 - märts 2005) eravillaks. Projekteerija: Kuressaare Kommunaalprojekt OÜ. Ehituse peatöövõtja: Deena Ehitus OÜ, tööde tegelik tegija: Primus PR OÜ. Muinsuskaitseline järelevalve: Tõnu Sepp. 3 värv. välis- ja 2 sisevaadet

  3. Ene Sepp esitles esikteost "Medaljon" / Heli Talinurm

    Index Scriptorium Estoniae

    Talinurm, Heli

    2009-01-01

    Ene Sepp esitles 19. veebruaril Rapla Keskraamatukogus oma raamatut, mis pälvis kolmanda koha Eesti Lastekirjanduse Teabekeskuse ja kirjastuse Tänapäev 2008. aasta noorsooromaani võistlusel. Ly Ehini mõtteid, mida Ene Sepa raamat temas tekitas

  4. Büroo Ignite = Ignite office / Priit Põldme, Reet Sepp

    Index Scriptorium Estoniae

    Põldme, Priit, 1971-

    2013-01-01

    Büroo Ignite (Tatari 25, Tallinn) sisekujundusest. Sisearhitektid Priit Põldme ja Reet Sepp (SAB Joonprojekt). Arhitektid Heiki Taras ja Ahti Luhaäär (Arhitektibüroo Pilter ja Taras). Sisearhitekti ja ESLi aastapreemiate žürii esimehe Kaido Kivi arvamus

  5. Ott Sepp ohverdab rolli nimel juuksed? / Liina Metsküla

    Index Scriptorium Estoniae

    Metsküla, Liina

    2007-01-01

    Madis Kõivu näidend "Catrozza ehk Illusionist" Võru Teatriateljee suvelavastusena. Lavastaja Taago Tubin. Külalisnäitlejad on Ott Sepp ja Leino Rei. Lisaks tutvustus "Müstiline mees ja illusionist ehk Castozza lugu"

  6. Tuotteiden ohjeistaminen osana hankintatoimintaa ja tuotetiedonhallintaa : case: Seppälä Oy

    OpenAIRE

    Heikkonen, Veera

    2010-01-01

    Tuoteohjeistusten tekeminen on arkipäivää suomalaisissa vaatetusalan yrityksissä. Tuotteiden hankinta ulkomailta on yleistynyt huomattavasti, joka taas on tehnyt tuoteohjeistuksista tärkeitä työkaluja yrityksen toiminnassa. Tuoteohjeistusten avulla suunnittelijan ideat ja ajatukset toteutetaan oikeaksi tuotteeksi. Tämän opinnäytetyön tarkoitus oli kehittää Seppälä Oy:lle yhtenäinen tuoteohjeis-tuspohja, joka on selkeä ja toimiva. Projektin lähtökohtainen tarkoitus on, että Seppälä voi hy...

  7. Aasta Põllumees 2007 on Ermo Sepp / Silja Lättemäe

    Index Scriptorium Estoniae

    Lättemäe, Silja, 1952-

    2007-01-01

    Tallinnas Olümpia konverentsikeskuses toimunud Aasta Põllumehe konverentsil õnnitles konkursi võitjat ja nominente president Toomas Hendrik Ilves. Aasta Põllumees 2007 on seakasvataja Ermo Sepp Lääne-Virumaalt Tapa vallast Patika külast; Vt. samas lk. 11 lühiintervjuud Lauri Vaiksaarega, kes esindab konkursi Aasta Põllumees 2007 toetajat Hansa Liisingut

  8. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  9. Rain Sepp - kontorita juht ülemaailmses äris / Riina Kallas

    Index Scriptorium Estoniae

    Kallas, Riina

    2005-01-01

    Mobiiltelefonilogosid ning -helinaid müüva Jipii! portaali rahvusvahelise võrgu juht Rain Sepp ettevõtte arengust ja teenustest, tööst rahvusvahelise võrgu juhina, töö spetsiifilisusest, Eesti meeskonnast ning Läti, Leedu, Soome ja Londoni tiimis valitseva tööõhkkonna erinevustest. Vt. samas: 10% muusikarahast tuleb helinast; iTouch plc; www.jippii.ee

  10. Subjective perception of cocaine reward in mice assessed by a single exposure place preference (sePP) paradigm

    DEFF Research Database (Denmark)

    Runegaard, Annika H.; Jensen, Kathrine Louise; Dencker, Ditte

    2017-01-01

    -related behavior. Comparison with existing methods In rodents, the rewarding effects of drugs have often been assessed in self-administration or place preference paradigms; both involving repeated drug exposure and weeks of training and testing. New method Our investigation describes a valid approach to assess....... The sePP protocol allows further dissection of the mechanism and influence of initial cocaine exposure on subsequent drug-related behaviors by including extinction and reinstatement. The lack of sePP in female mice may reflect a biologically relevant sex difference in the initial subjective perception...

  11. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  12. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  13. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  14. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  15. Uhked naised / Kozik, Eerika; Tomingas, Triin; Sepp, Karin; Liik, Kadi; Kliimask, Katrin; Saunpere, Anne ; tekst Kärt Kross

    Index Scriptorium Estoniae

    2007-01-01

    Mille üle oled enda juures tõeliselt uhke, mida võid enda kiituseks öelda? Küsimusele vastavad Starland Salongi omanik ja Loyd Tootmine OÜ osanik Eerika Kozik, psühholoog Triin Tomingas, Kontuur Leo Burnett projektidirektor Karin Sepp, Tallinna Ülikooli õppejõud Kadi Liik, AS Koolibri turundusjuht Katrin Kliimask ja eraettevõtja Anne Saunpere

  16. [Production effect comparison of SEPP and GPx between HepG2 and Hela cells with different selenocompounds].

    Science.gov (United States)

    Wang, Qin; Gao, Lina; Han, Feng; Lu, Jiaxi; Liu, Yiqun; Sun, Licui; Huang, Zhenwu

    2016-03-01

    To compare the effect of several selenocompounds on the productions of SEPP and GPx in HepG2 and Hela cells. The cultured HepG2 and Hela cells were divided into the control, Na2SeO3, SeMet and MeSeCys groups. After adding the selected selenocompounds (with the respective concentration 0.01 and 0.1 μmol/L), the experimental groups were then incubated for 48 h and 72 h. Finally, the cell culture supernatants and homogenates were collected for the SEPP and GPx concentrations detection by a double-antibody sandwich enyme-linked immuno-sorbent-assay (ELISA). The SEPP and GPx concentrations in Hela cells treated with 0.1 μmol/L SeMet and MeSeCys were significantly higher than that in the control group (P cell treated with 0.1 μmol/L selenocompounds were significantly higher than that in Hela cells (P cells are more beneficial to the production of selenoproteins than Hela cells.

  17. Distributed propulsion.

    OpenAIRE

    Lindström, Robin; Rosvall, Tobias

    2013-01-01

    En prestandaanalys utfördes på en SAAB 2000 som referensobjekt. Olika metoder för att driva flygplan på ett miljövänligare sätt utvärderades tillsammans med distributed propulsion. Efter undersökningar valdes elmotorer tillsammans med Zink-luft batterier för att driva SAAB 2000 med distributed propulsion. En prestandaanalys utfördes på detta plan på samma sätt som för den ursprungliga SAAB 2000. Resultaten jämfördes och slutsatsen blev att räckvidden var för kort för att konfigurationen skull...

  18. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  19. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  20. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  1. Rasked vestlused. Kuidas ma talle seda ütlen / Irene Metsis, Sami Seppänen, Peep Sooman ; intervjueerinud Heli Lehtsaar

    Index Scriptorium Estoniae

    Metsis, Irene

    2009-01-01

    Skanska EMV administratsioonijuhi Irene Metsise, AS-i Elisa Eesti tegevdirektori Sami Seppäneni ja Pindi Kinnisvara juhatuse liikme Peep Soomani soovitused negatiivse sõnumi edastamiseks töötajale. Vt. samas: 4 nõuannet juhile, kuidas end keeruliseks vestluseks ette valmistada

  2. Pävi Naskali, Marjaana Seppänen & Shahnaj Begum (eds., Ageing, Wellbeing and Climate Change in the Arctic. An interdisciplinary analysis (London: Routledge, 2015

    Directory of Open Access Journals (Sweden)

    Hermann Óskarsson

    2016-03-01

    Full Text Available Book review of: Pävi Naskali, Marjaana Seppänen and Shahnaj Begum (eds., Ageing, Wellbeing and Climate Change in the Arctic. An interdisciplinary analysis (London: Routledge’s series on advances in climate change research, 2015

  3. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  4. Propulsion of magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S L

    1976-05-01

    A propulsion system for magnetically levitated trains is proposed. A method of periodically energizing magnetic loops on a train moving over a periodically undulating track allows the net repulsive magnetic force to tilt forward or backward for either propulsion or braking. The principle is explained and a specific example discussed. Approximate calculations show feasibility. Problems requiring technical solutions which cannot be considered present state-of-the-art are AC losses at frequencies up to 20 Hz and mechanical fatigue properties at low temperatures. Suitable primary power could be derived from hydrogen-fueled turbines yet to be developed.

  5. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  6. The USAF Electric Propulsion Program

    National Research Council Canada - National Science Library

    Spores, Ronald

    1999-01-01

    ...: Propulsion Directorate and Air Force Office of Scientific Research (AFOSR). The Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space experiments...

  7. Advanced Propulsion Study

    National Research Council Canada - National Science Library

    Davis, Eric

    2004-01-01

    ... that show promise of leading to a major advance in Earth-to-orbit (ETO) propulsion. The study also reviewed and evaluated a select number of credible far-term breakthrough propulsion physics concepts pertaining...

  8. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  9. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  10. Nuclear propulsion for orbital transfer

    International Nuclear Information System (INIS)

    Beale, G.A.; Lawrence, T.J.

    1989-01-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine

  11. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  12. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  13. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  14. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  15. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  16. Pilot simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    1995-12-01

    Partial failures of aircraft primary flight-control systems and structural : damages to aircraft during flight have led to catastrophic accidents with : subsequent loss of life. These accidents can be prevented if sufficient : alternate control autho...

  17. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  18. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  19. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  20. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  1. Distributed propulsion for ships

    OpenAIRE

    Nylund, Vilde

    2017-01-01

    It is anticipated that using distributed electric propulsion (DEP) on conventional ships will increase the total propulsive efficiency. This is mainly due to two reasons; firstly, because the total propeller disk area can be increased. Secondly, because each propeller can be optimised for the local wake where it is operating. In this work, the benefits of using DEP has been investigated for a 14 000 TEU container ship. Based on a literary study of the present state of propeller modelling ...

  2. CubeSat High Impulse Propulsion System (CHIPS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes to perform design, fabrication, and ground test validation of a nanosat primary propulsion subsystem using non-toxic R134a propellant. Our...

  3. CubeSat High Impulse Propulsion System (CHIPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the ground test validation of a nanosat primary propulsion subsystem using non-toxic propellant with 3-axis ACS for orbit change and/or...

  4. Wheelchairs propulsion analysis: review

    Directory of Open Access Journals (Sweden)

    Yoshimasa Sagawa Júnior

    Full Text Available OBJECTIVES: To analyze aspects related with wheelchair propulsion. MATERIALS AND METHODS: In order to delineate this review the search for information was carried out within electronics databases, using the following descriptors: "wheelchair propulsion", "wheelchair biomechanics" e "wheelchair users". Full papers published in English and French were included in the study. RESULTS: The wheelchair propulsion is a complex movement that requires the execution of repeated bi manual forces applications during a short time period. In this movement high levels of force must be produced due to the bad mechanical performance of the wheelchair. Could be characterized that wheelchair users are not satisfied with their wheelchair, the places are not adapted to their presence and lack of specific criteria for the adjustment of this equipment. The main points to look at are the seat height in relation to elbow flexion (100-120 degrees with his hand in the propulsion rim and tire pressure. The semicircular mode of technique propulsion seems to be more appropriate; in this pattern the wheelchair user returns his hand under the rim after propulsion. Efforts in wheelchairs are high and the incidence of injuries in wheelchair users is high. CONCLUSION: One can conclude that in spite of researchers’ efforts there are still many divergences between topics and methods of evaluation, what makes difficult to apply the experimental results to the wheelchairs users’ daily life.

  5. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  6. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  7. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  8. Thermo-hydraulic free piston engine as a primary propulsion unit in mobile hydraulic drives; Die thermohydraulische Freikolbenmaschine - ein neues Antriebskonzept fuer hydraulische angetriebene Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, H. [Technische Univ. Dresden (Germany)

    2004-07-01

    The principle function of a free piston engine was tested on a test stand. The engine can drive hydraulic loads as a primary aggregate in a storage-based constant pressure network. Its power is independent of the loads. The engine is operated in intermittent operation and at the optimal operating point. There are no idle or part-load fractions. Measurements so far have shown that the performance of the new system equals that of a current combination of internal combustion engine and axial piston pump in their optimal operating point. In cyclic operation, the performance is even better. (orig.)

  9. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  10. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  11. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  12. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  13. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  14. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  15. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  16. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  18. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  19. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy...

  20. Turboprop Propulsion Mechanic.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  1. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  2. Nuclear merchant ship propulsion

    International Nuclear Information System (INIS)

    Schroeder, E.; Jager, W.; Schafstall, H.G.

    1977-01-01

    The operation of about 300 nuclear naval vessels has proven the feasibility of nuclear ship propulsion. Until now six non military ships have been built or are under construction. In the Soviet Union two nuclear icebreakers are in operation, and a third one is under construction. In the western world three prototype merchant ships have been built. Of these ships only the NS OTTO HAHN is in operation and provides valuable experience for future large scale use of nuclear merchant ship propulsion. In many countries studies and plans are made for future nuclear merchant ships. Types of vessels investigated are large containerships, tankers and specialized ships like icebreakers or ice-breaking ships. The future of nuclear merchant ship propulsion depends on three interrelated items: (1) nuclear ship technology; (2) economy of nuclear ship propulsion; (3) legal questions. Nuclear merchant ship technology is based until now on standard ship technology and light water reactor technology. Except for special questions due to the non-stationary type of the plant entirely new problems do not arise. This has been proven by the recent conceptual licensing procedure for a large nuclear containership in Germany. The economics of nuclear propulsion will be under discussion until they are proven by the operation of privately owned lead ships. Unsolved legal questions e.g. in connection with port entry permissions are at present another problem for nuclear shipping. Efforts are made to solve these questions on an international basis. The future development of nuclear energy electricity production in large land based plants will stimulate the employment of smaller units. Any future development of long distance sea transport will have to take this opportunity of a reliable and economic energy supply into account

  3. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  4. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  5. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  6. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  7. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  8. Tõuloom 2012 / Krista Sepp

    Index Scriptorium Estoniae

    Sepp, Krista

    2012-01-01

    Eesti Tõuloomakasvatuse Liidu poolt Ülenurme Põllumajandusmuuseumis 1. septembril korraldatud tõuloomade konkursil Tartu sügisnäitus. Tõuloom 2012 tunnustatud Eesti Hobusekasvatajate Seltsi liikmetest ning trakeeni, araabia tori, eesti ja eesti raskeveo tõugu hobustest

  9. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  10. Recent Advances in Airframe-Propulsion Concepts with Distributed Propulsion

    OpenAIRE

    Isikveren , A.T.; Seitz , A.; Bijewitz , J.; Hornung , M.; Mirzoyan , A.; Isyanov , A.; Godard , J.L.; Stückl , S.; Van Toor , J.

    2014-01-01

    International audience; This paper discusses design and integration associated with distributed propulsion as a means of providing motive power for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes one unique solution that integrates the fuselage wi...

  11. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  12. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  13. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  14. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  15. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  16. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  17. Exotic power and propulsion concepts

    International Nuclear Information System (INIS)

    Forward, R.L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion

  18. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  19. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  20. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  1. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  2. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  3. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang, E-mail: PanGuang_010@163.com [School of Marine Science and Technology, Northwestern Polytechnical University, Xian 710072 (China)

    2017-08-15

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion. (review)

  4. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Science.gov (United States)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  5. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  6. Real-time feedback enhances forward propulsion during walking in old adults.

    Science.gov (United States)

    Franz, Jason R; Maletis, Michela; Kram, Rodger

    2014-01-01

    Reduced propulsive function during the push-off phase of walking plays a central role in the deterioration of walking ability with age. We used real-time propulsive feedback to test the hypothesis that old adults have an underutilized propulsive reserve available during walking. 8 old adults (mean [SD], age: 72.1 [3.9] years) and 11 young adults (age: 21.0 [1.5] years) participated. For our primary aim, old subjects walked: 1) normally, 2) with visual feedback of their peak propulsive ground reaction forces, and 3) with visual feedback of their medial gastrocnemius electromyographic activity during push-off. We asked those subjects to match a target set to 20% and 40% greater propulsive force or push-off muscle activity than normal walking. We tested young subjects walking normally only to provide reference ground reaction force values. Walking normally, old adults exerted 12.5% smaller peak propulsive forces than young adults (Ppush-off muscle activities when we provided propulsive feedback. Most notably, force feedback elicited propulsive forces that were equal to or 10.5% greater than those of young adults (+20% target, P=0.87; +40% target, P=0.02). With electromyographic feedback, old adults significantly increased their push-off muscle activities but without increasing their propulsive forces. Old adults with propulsive deficits have a considerable and underutilized propulsive reserve available during level walking. Further, real-time propulsive feedback represents a promising therapeutic strategy to improve the forward propulsion of old adults and thus maintain their walking ability and independence. © 2013.

  7. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  8. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  9. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.

    Science.gov (United States)

    Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R

    2011-04-29

    Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  11. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  12. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  13. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  14. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  15. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  16. A Dual Mode Propulsion System for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Kevin R. Gagne

    2018-05-01

    Full Text Available This study focused on the development of a chemical micropropulsion system suitable for primary propulsion and/or attitude control for a nanosatellite. Due to the limitations and expense of current micropropulsion technologies, few nanosatellites with propulsion have been launched to date; however, the availability of such a propulsion system would allow for new nanosatellite mission concepts, such as deep space exploration, maneuvering in low gravity environments and formation flying. This work describes the design of “dual mode” monopropellant/bipropellant microthruster prototype that employs a novel homogeneous catalysis scheme. Results from prototype testing are reported that validate the concept. The micropropulsion system is designed to be fabricated using a combination of additively-manufactured and commercial off the shelf (COTS parts along with non-toxic fuels, thus making it a low-cost and environmentally-friendly option for future nanosatellite missions.

  17. Intelligent Propulsion System Foundation Technology: Summary of Research

    Science.gov (United States)

    2008-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.

  18. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  19. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  20. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  1. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  2. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  3. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  4. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Science.gov (United States)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  5. Recent Electric Propulsion Development Activities for NASA Science Missions

    Science.gov (United States)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  6. Aeronautic propulsion systems; Propulseurs aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Lepourry, P; Ciryci, R

    1992-12-31

    This book is devoted to airplane pilots having a private licence and who would like to take up a professional rank. It comprises 8 chapters dealing with: the different type of propulsion systems, turbojet, turbofan and piston engines; the propeller (characteristics, different types, functioning, protection systems..); the piston engines (4-stroke cycle, power and efficiency, description, characteristics); the gas generator and its limitations (air intake, combustion chamber, turbines, nozzles, fuel systems..); the performances of propulsion systems; the drive, control and instruments; and the use of engines. The last chapter is a self-evaluation questionnaire about the notions developed in the book. (J.S.)

  7. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  8. An Exploration Perspective of Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Cole, John

    2008-01-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed

  9. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  10. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  11. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  12. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  13. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  14. Distributed propulsion and future aerospace technologies

    OpenAIRE

    Ameyugo, Gregorio

    2007-01-01

    This thesis describes an Engineering Doctorate project in Distributed Propulsion carried out from 2004 to 2007 at Cranfield University. Distributed propulsion is a propulsion system arrangement that consists in spreading the engine thrust along the aircraft span. This can be accomplished by distributing a series of driven fans or the engines themselves. The aim of this project is to determine the feasibility of ...

  15. Controle de Cerconota anonella (Sepp. (Lep.: Oecophoridae e de Bephratelloides pomorum (Fab. (Hym.: Eurytomidae em frutos de pinha (Annona squamosa L.

    Directory of Open Access Journals (Sweden)

    Letice Souza da Silva

    2014-01-01

    Full Text Available A pinha, Annona squamosa L., é uma frutífera tropical da família anonácea, cujo mercado tem-se ampliado a cada ano, sendo cultivada expressivamente na região Nordeste, onde pequenos produtores a têm como principal fonte de renda. Entretanto, problemas causados pelas duas pragas-chave, Cerconota anonella (Sepp.,1830 (Lepidoptera: Oecophoridae e Bephratelloides pomorum (Fab.,1808 (Hymenoptera: Eurytomidae, têm limitado a produção e, consequentemente, a comercialização dos frutos. No intuito de minimizar essas perdas, um experimento de campo foi realizado em Maceió, Estado de Alagoas, Brasil, para avaliar diferentes formas de controle para estas pragas. O experimento foi conduzido no delineamento em blocos casualizados, com oito tratamentos e quatro repetições. Cada repetição correspondeu a quatro frutos, totalizando dezesseis frutos por tratamento. Os tratamentos foram: frutos sem proteção (testemunha; saco de papel branco impermeável aberto; saco plástico microperfurado; saco de TNT (tecido não tecido branco aberto; saco de TNT vermelho aberto; gaiola de arame revestida com tecido voile; inseticida Profenofós (12g/L-1 + Cipermetrina (1,2 g/L-1 e caulim (10 g/ 100 mL-1. Foram avaliadas as seguintes variáveis nos frutos: números de orifícios causados pelas pragas, peso, comprimento, diâmetro, percentagem de frutos colhidos e o custo do tratamento por unidade. Os melhores resultados foram obtidos com o saco de TNT vermelho aberto, obtendo-se 87,50% de frutos comercializáveis. O saco plástico microperfurado teve o menor custo, porém sua fragilidade impede a reutilização nas safras seguintes. Assim, indica-se o saco de TNT vermelho aberto como o mais econômico e eficiente.

  16. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  17. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available and those of others to reach the primary objective: low Earth orbit (LEO). The potential to de-orbit the most dangerous space debris by LP as well as the new micro-thrusters for spacecraft attitude control are also covered here. In the final section we... The cost in joules of laser light for launching a kilogram of material into low Earth orbit, is derived from the well-known ‘Rocket Equation’ for payload ratio: where M is the initial mass (launch pad mass) and m is that which reaches LEO, υE and υ...

  18. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  19. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  20. Optimization of extended propulsion time nuclear-electric propulsion trajectories

    Science.gov (United States)

    Sauer, C. G., Jr.

    1981-01-01

    This paper presents the methodology used in optimizing extended propulsion time NEP missions considering realistic thruster lifetime constraints. These missions consist of a powered spiral escape from a 700-km circular orbit at the earth, followed by a powered heliocentric transfer with an optimized coast phase, and terminating in a spiral capture phase at the target planet. This analysis is most applicable to those missions with very high energy requirements such as outer planet orbiter missions or sample return missions where the total propulsion time could greatly exceed the expected lifetime of an individual thruster. This methodology has been applied to the investigation of NEP missions to the outer planets where examples are presented of both constrained and optimized trajectories.

  1. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  2. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  3. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  4. Assessing Hypothetical Gravity Control Propulsion

    OpenAIRE

    Millis, Marc G.

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an ide...

  5. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  6. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  7. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  8. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  9. Antimatter propulsion, status and prospects

    Science.gov (United States)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  10. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  11. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  12. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  13. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  14. Solar Electric Propulsion Technology Development for Electric Propulsion

    Science.gov (United States)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  15. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  16. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  17. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  18. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  19. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  20. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  1. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  2. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  3. Catalyzed Combustion In Micro-Propulsion Devices: Project Status

    Science.gov (United States)

    Sung, C. J.; Schneider, S. J.

    2003-01-01

    In recent years, there has been a tendency toward shrinking the size of spacecraft. New classes of spacecraft called micro-spacecraft have been defined by their mass, power, and size ranges. Spacecraft in the range of 20 to 100 kg represent the class most likely to be utilized by most small sat users in the near future. There are also efforts to develop 10 to 20 kg class spacecraft for use in satellite constellations. More ambitious efforts will be to develop spacecraft less than 10 kg, in which MEMS fabrication technology is required. These new micro-spacecraft will require new micro-propulsion technology. Although micro-propulsion includes electric propulsion approaches, the focus of this proposed program is micro-chemical propulsion which requires the development of microcombustors. As combustors are scaled down, the surface to volume ratio increases. The heat release rate in the combustor scales with volume, while heat loss rate scales with surface area. Consequently, heat loss eventually dominates over heat release when the combustor size becomes smaller, thereby leading to flame quenching. The limitations imposed on chamber length and diameter has an immediate impact on the degree of miniaturization of a micro-combustor. Before micro-combustors can be realized, such a difficulty must be overcome. One viable combustion alternative is to take advantage of surface catalysis. Micro-chemical propulsion for small spacecraft can be used for primary thrust, orbit insertion, trajectory-control, and attitude control. Grouping micro-propulsion devices in arrays will allow their use for larger thrust applications. By using an array composed of hundreds or thousands of micro-thruster units, a particular configuration can be arranged to be best suited for a specific application. Moreover, different thruster sizes would provide for a range of thrust levels (from N s to mN s) within the same array. Several thrusters could be fired simultaneously for thrust levels higher than

  4. Saaremaa politseijuht pensionile / Andres Sepp

    Index Scriptorium Estoniae

    Sepp, Andres, 1976-

    2005-01-01

    Kuressaare politseijaoskonna ülemkomissar Ants Ley esitas politseiametile lahkumisavalduse. Väidetavalt on nimetatud ühe võimaliku politseijuhikandidaadina Lääne prefektuuri teenistusosakonna komissari Aare Alliku nime. Lisa: Ants Ley

  5. Sisearhitektuuri uudised / Aino Ingrid Sepp

    Index Scriptorium Estoniae

    Sepp, Aino Ingrid

    2006-01-01

    Keraamiliste plaatide müügisalongi "Interno" uue sisekujunduse autorid Eerik Olle ja Ahti Petersoo. Viking Windowsi peakontori (Jüri Okas) uue sisekujunduse ja "Sämmi grilli" (Toomas Rein) uue sisekujunduse autor Taevo Gans

  6. Tummfilmiklassika kohtub maailmamuusikaga / Andreas Sepp

    Index Scriptorium Estoniae

    Sepp, Andreas

    2011-01-01

    Festivalist "Tummfilmid tõstavad häält", mis kestab 19.02.-5.03.2011. Filmi "Inimene filmikaameraga" (Venemaa, 1929) uushelindab Dead Combo, "Noored Kotkad" (Eesti, 1927/2008) Meelis Vind (Eesti) ja Napoleon Maddox (USA), "Berliin, suurlinna sümfoonia" (Saksamaa, 1927) ÖÄK, "Antenn" (Argentina, 2007) Argento Tango Fusion

  7. Advanced Chemical Propulsion System Study

    Science.gov (United States)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  8. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez-Pagan, Carmen P.; Rahman, Shamim A.

    2009-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to

  9. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  10. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  11. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  12. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 3 Motivation • Many satellite propulsion technologies were developed in the...distribution unlimited.  AFTC/PA Clearance No.  XXXX Propellant Catalyst Bed Decomposition Chamber Thrust Chamber 5 Diode Laser Absorption Spectroscopy Beer...Hydrazine Thruster NH3 Iν(L)Iν0 Ramp t I L DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 6 Wavelength

  13. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Ballard, Richard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  14. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    Science.gov (United States)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  15. Power processing for electric propulsion

    Science.gov (United States)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  16. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  17. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  18. Integrated Propulsion Data System Public Web Site

    Science.gov (United States)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  19. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  20. Research Activities on Special Propulsion in BUAA

    International Nuclear Information System (INIS)

    Tang Haibin; Wang Haixing; Liu Chang; Xiang Min; Yao Jie; Liu Yu

    2007-01-01

    An overview is presented of special propulsion research carried out in Beijing University of Aeronautics and Astronautics of China. The research activities are supported by NSFC (National Natural Science Foundation of China), other governmental agencies and industrial partners, which include experimental, analytical and numerical work related to arcjet thrusters, ion thrusters, plasma sail and other new concept propulsions

  1. Propulsive efficiency and non- expert swimmers performance

    Directory of Open Access Journals (Sweden)

    Tiago Barbosa

    2009-12-01

    Full Text Available Propulsive efficiency is one of the most interesting issues for competitive swimming researchers, has it presents significant relationships with the swimmer’s biophysical behavior and his/her performance. Although propulsive efficiency is a variable that has been quite studied in elite swimmers, there is no research on this issue in young and non-expert swimmers. Thus, the aim of this study was to: (i estimate the propulsive efficiency on non-expert swimmers; (ii identify biomechanical and anthropometrical parameters that are associated with propulsive efficiency; (iii identify the association between the propulsive efficiency and swim performance. Twenty-eight non-expert swimmers participated on this study. It was assessed the propulsive efficiency, biomechanical and anthropometrical parameters, as well as, the swim performance. The propulsive efficiency of non-expert swimmers is lower than data reported in the literature to higher competitive levels swimmers and there are no significant differences between boys and girls. It was also noted that several biomechanical and anthropometrical parameters, as well as, the swim performance are associated with the propulsive efficiency.

  2. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1...

  3. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  4. Influence of Handrim Wheelchair Propulsion Training in Adolescent Wheelchair Users

    Directory of Open Access Journals (Sweden)

    Jennifer L Dysterheft

    2015-05-01

    Full Text Available Ten full time adolescent wheelchair users (ages 13-18 completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak Resultant Force, Contact Angle, Stroke Frequency, and Velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in Contact Angle and Peak Total Force with decreased Stroke Frequency after training. During the velocity controlled trials on concrete, significant increases in Contact Angle occurred, as well as decreases in Stroke Frequency after training. Overall, the use of a training video and verbal feedback may help to improve short term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  5. A novel propulsion method for high- Tc superconducting maglev vehicle

    Science.gov (United States)

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  6. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  7. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  8. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    Science.gov (United States)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  9. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  10. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  11. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  12. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  13. Is effective force application in handrim wheelchair propulsion also efficient?

    NARCIS (Netherlands)

    Bregman, D.J.J.; van Drongelen, S.V.; Veeger, H.E.J.

    2009-01-01

    Background: Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost,

  14. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  15. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  16. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  17. Magnetic propulsion for magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Melville, P H

    1973-12-01

    One of the main problems associated with magnetically levitated trains is the means of propulsion. A system is described whereby the repulsion from the superconducting magnets, in addition to levitating the train, can also be used to propel it.

  18. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  19. Cycloidal Propulsion for UAV VTOL Applications

    National Research Council Canada - National Science Library

    Boschma, James

    1998-01-01

    .... This propulsion concept holds significant promise for adaptation to UAV VTOL operations. Thrust levels demonstrated were substantially higher than achievable by the best screw type propellers, and approximately equal to those of high end helicopters...

  20. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  1. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  2. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  3. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  4. Institute for Computational Mechanics in Propulsion (ICOMP)

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    2001-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.

  5. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  6. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  7. Passive propulsion in vortex wakes

    Science.gov (United States)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  8. In-Space Demonstration of High Performance Green Propulsion and its Impact on Small Satellites

    OpenAIRE

    Anflo, Kjell; Crowe, Ben

    2011-01-01

    This paper summarizes the pre-launch activities and the results from the in-space demonstration of a novel propulsion system on the PRISMA main satellite, using a “Green” monopropellant. This propellant is a storable ADN-based monopropellant blend (i.e. LMP-103S). The basic mission for the High Performance Green Propulsion System (HPGP) has been successfully completed and all primary objectives of TRL 7 have been met. The HPGP technology is now flight proven and ready for implementation on fu...

  9. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Science.gov (United States)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  10. A Model for Prediction of Propulsion Power and Emissions – Tankers and Bulk Carriers

    DEFF Research Database (Denmark)

    Lützen, Marie; Kristensen, Hans Otto Holmegaard

    To get an idea of the reduction in propulsion power and associated emissions by varying the speed and other ship design main parameters, a generic model for parameter studies of tankers and bulk carriers has been developed. With only a few input parameters of which the maximum deadweight capacity...... is the primary input a proposal for the main dimensions is made. Based on these dimensions and other ship particulars which are determined by the program the necessary installed propulsion power can be calculated. By adjusting the vessel design, i.e. the suggested main dimensions, and varying the speed...

  11. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  12. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  13. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  14. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  15. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  16. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  17. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    Science.gov (United States)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and

  18. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.

  19. Modifications in Wheelchair Propulsion Technique with Speed.

    Science.gov (United States)

    Russell, Ian M; Raina, Shashank; Requejo, Philip S; Wilcox, Rand R; Mulroy, Sara; McNitt-Gray, Jill L

    2015-01-01

    Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed. Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within subject between propulsion speeds. Between group and within-subject differences were determined (α = 0.05). Increased propulsion speed was accompanied by increases in RF magnitude (22 of 40, >10 N) and shoulder net joint moment (NJM, 15 of 40, >10 Nm) and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments. Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM) imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step toward preserving musculoskeletal health of the shoulder and improving health-related quality of life.

  20. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    International Nuclear Information System (INIS)

    Stone, J.R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP

  1. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.

    Science.gov (United States)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2013-03-01

    To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. 28th Joint Propulsion Conference and Exhibit

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities

  3. NASA's nuclear electric propulsion technology project

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs

  4. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  5. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  6. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  7. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.

    Science.gov (United States)

    Koontz, Alicia M; Roche, Bailey M; Collinger, Jennifer L; Cooper, Rory A; Boninger, Michael L

    2009-11-01

    To classify propulsion patterns over surfaces encountered in the natural environment during start-up and compare selected biomechanical variables between pattern types. Case series. National Veterans Wheelchair Games, Minneapolis, MN, 2005. Manual wheelchair users (N=29). Subjects pushed their wheelchairs from a resting position over high-pile carpet, over linoleum, and up a ramp with a 5 degrees incline while propulsion kinematics and kinetics were recorded with a motion capture system and an instrumented wheel. Three raters classified the first 3 strokes as 1 of 4 types on each surface: arc, semicircular (SC), single looping over propulsion (SL), and double looping over propulsion (DL). The Fisher exact test was used to assess pattern changes between strokes and surface type. A multiple analysis of variance test was used to compare peak and average resultant force and moment about the hub, average wheel velocity, stroke frequency, contact angle, and distance traveled between stroke patterns. SL was the most common pattern used during start-up propulsion (44.9%), followed by arc (35.9%), DL (14.1%), and SC (5.1%). Subjects who dropped their hands below the rim during recovery achieved faster velocities and covered greater distances (.016propulsion patterns is a difficult task that should use multiple raters. In addition, propulsion patterns change during start-up, with an arc pattern most prevalent initially. The biomechanical findings in this study agree with current clinical guidelines that recommend training users to drop the hand below the pushrim during recovery.

  8. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  9. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  10. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  11. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  12. Distributed Multi-propulsion Units System

    OpenAIRE

    原田, 正志; HARADA, Masashi

    2002-01-01

    Reduction of the weight of the propulsion system is important in the design of a stratospheric airship. However, it also important to increaseefficiency of the system because available energy generated by solar cells on the hull is quite limited. One solution to increase efficiency of the propulsion system is to use a stern propeller, the propeller mounted on the stern of the hull as shown in Figure 1. Mounted on the stern of the hull, the stern propeller is merged with the boundary layer of ...

  13. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  14. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  15. Laser propulsion activity in South Africa

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available hemisphere are becoming excited at the prospect of a considerable reduction in the cost of launch to low Earth orbit (LEO) by means of laser propulsion (LP) (see ref. 1). We argue here that developing nations also should assess the potential of a cheaper... of the grandiose scheme of ‘Space Port Kilimanjaro’ (Fig. 5), envis- aged by various authors becoming a reality, South African scien- tists, engineers and financiers would benefit. Kilimanjaro is regarded by some13 as the prime location for laser propulsion...

  16. A development approach for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ''acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering

  17. Artist's concept of Antimatter propulsion system

    Science.gov (United States)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  18. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  19. Overview and future prospects of laser plasma propulsion technology

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Lu Xin; Zhang Jie

    2003-01-01

    Due to its high cost, low efficiency, complex operation and unsatisfactory recycling, traditional rocket propulsion by chemical fuels has hindered the exploration of outer space to further limits. With the rapid development of laser and space technology, the new technology of laser propulsion exhibits unique advantages and prospects. The mechanism and current development of laser plasma propulsion are reviewed, with mention of the technical problems and focus issues of laser plasma in micro-flight propulsion

  20. Laser Propulsion - Is it another myth or a real potential?

    International Nuclear Information System (INIS)

    Cook, Joung R.

    2008-01-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades

  1. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.

    Science.gov (United States)

    Peng, Jifeng; Alben, Silas

    2012-03-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.

  2. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer

    International Nuclear Information System (INIS)

    Peng Jifeng; Alben, Silas

    2012-01-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)

  3. An integrated PWR for marine propulsion

    International Nuclear Information System (INIS)

    Letouze, A.; Marecaux, A.; Rollason, J.; Heap, S.; Foster, A.; Jewer, S.; Thompson, A. C.; Williams, A. M.; Beeley, P. A.

    2008-01-01

    Results from a design study for a nuclear propulsion plant utilising a small integrated PWR using many of the inherent safety features of the IRIS design. The design consists of a single pass, low enrichment core housed, together with all associated primary circuit components, within a reactor pressure vessel 10.3 m high and 4.1 m in diameter. Reactor physics calculations were conducted with the codes WIMS9a and MONK8b. The core design contains 21 fuel assemblies each containing 264 UO 2 fuel pins. Each fuel module has a cluster of 24 boron carbide control rods and a central instrumentation channel. The fuel enrichment was 9% in order to achieve the core lifetime requirement of 3000 EFPD at a reactor power of 120 MWth. This gives a discharge burnup of 51,000 MWd/t. To control excess reactivity, two forms of burnable poison are employed: a zirconium dibromide (ZrB 2 ) coating on the fuel compacts, and gadolinium oxide homogeneously mixed in the fuel. Thermal hydraulic calculations were performed using TRAC-P(ND) for steady-state operation and for a number of fault transients. The helical once through steam generators were modelled using heat structure and pipe components and their performance compared to independent calculations including heat transfer correlations for the helical coiled geometry. Intact circuit calculations for steady state were followed by a small break LOCA calculation including the effect of a containment volume which reproduced the gain of coolant effect reported for IRIS. It was demonstrated that the thermal limits were not exceeded for the identified key transients. The dynamic response of the reactor plant to typical power demands was modelled using AcslXtreme software. Several schemes for limiting the power overshoot that was found on rapid increase to full power were examined. It was concluded that the SG must be operated with variable secondary pressure and the best means of reducing power overshoot is to step back the throttle opening

  4. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  5. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  6. Prospective application of laser plasma propulsion in rocket technology

    International Nuclear Information System (INIS)

    Lu Xin; Zhang Jie; Li Yingjun

    2002-01-01

    Interest in laser plasma propulsion is growing intensively. The interaction of high intensity short laser pulses with materials can produce plasma expansion with a velocity of hundreds of km/s. The specific impulse of ablative laser propulsion can be many tens of times greater than that of chemical rockets. The development and potential application of laser plasma propulsion are discussed

  7. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  8. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    Science.gov (United States)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  9. New propulsion components for electric vehicles

    Science.gov (United States)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  10. Heavy Ion Propulsion in the Megadalton Range

    Science.gov (United States)

    2006-11-01

    atomizacidn electrostdtica, Universidad Carlos III, Madrid, Spain (2006) 15. D. Garoz, "Sintesis, estudio y mezclas de nuevos combustibles basados en...propellants for electrical propulsion from Taylor cones in vacuo), Proyecto fin de carrera (Senior Thesis), Universidad Politecnica de Madrid, Marzo 2004

  11. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  12. Statistical modelling for ship propulsion efficiency

    DEFF Research Database (Denmark)

    Petersen, Jóan Petur; Jacobsen, Daniel J.; Winther, Ole

    2012-01-01

    This paper presents a state-of-the-art systems approach to statistical modelling of fuel efficiency in ship propulsion, and also a novel and publicly available data set of high quality sensory data. Two statistical model approaches are investigated and compared: artificial neural networks...

  13. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    -tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...

  14. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  15. Magnetic artificial cilia for microfluidic propulsion

    NARCIS (Netherlands)

    Khaderi, S.N.; den Toonder, J.M.J.; Onck, P.R.

    2015-01-01

    Cilia are tiny hair-like structures that cover the surfaces of biological cells. One of their functions is to generate flow. Artificial cilia are mechanical actuators that are designed to mimic the motion of natural cilia in order to create fluid transport in microchannels. These fluid propulsion

  16. Magnetic Artificial Cilia for Microfluidic Propulsion

    NARCIS (Netherlands)

    Khaderi, Syed N.; den Toonder, Jaap M. J.; Onck, Patrick R.; Bordas, Stéphane P.A.; Balint, Daniel S.

    2015-01-01

    Cilia are tiny hair-like structures that cover the surfaces of biological cells. One of their functions is to generate flow. Artificial cilia are mechanical actuators that are designed to mimic the motion of natural cilia in order to create fluid transport in microchannels. These fluid propulsion

  17. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  18. MSFC Propulsion Systems Department Knowledge Management Project

    Science.gov (United States)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  19. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  20. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  1. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  2. Numerical analysis of a waterjet propulsion system

    NARCIS (Netherlands)

    Bulten, N.W.H.

    2006-01-01

    A waterjet propulsion system is used to propel ships, using a pump which produces a high speed jet. A standard waterjet installation can be divided into an inlet, a pump and a nozzle. For manoeuvring and reversing purposes an additional steering device can be integrated into the installation. The

  3. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  4. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  5. Measurement Issues In Pulsed Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-01-01

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  6. Wheelchair propulsion technique at different speeds

    NARCIS (Netherlands)

    Veeger, DirkJan (H. E. J.); van der Woude, L H; Rozendal, R H

    1989-01-01

    To study wheelchair propulsion technique at different speeds, five well-trained subjects propelled a wheelchair on a treadmill. Measurements were made at four belt speeds of 0.56-1.39 m/s and against slopes of 2 and 3 degrees. Cardiorespiratory data were collected. Three consecutive strokes were

  7. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  8. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.

    Science.gov (United States)

    Morgan, Kerri A; Tucker, Susan M; Klaesner, Joseph W; Engsberg, Jack R

    2017-05-01

    Developing an evidence-based approach to teaching wheelchair skills and proper propulsion for everyday wheelchair users with a spinal cord injury (SCI) is important to their rehabilitation. The purpose of this project was to pilot test manual wheelchair training based on motor learning and repetition-based approaches for new manual wheelchair users with an SCI. A repeated measures within-subject design was used with participants acting as their own controls. Six persons with an SCI requiring the use of a manual wheelchair participated in wheelchair training. The training included nine 90-minute sessions. The primary focus was on wheelchair propulsion biomechanics with a secondary focus on wheelchair skills. During Pretest 1, Pretest 2, and Posttest, wheelchair propulsion biomechanics were measured using the Wheelchair Propulsion Test and a Video Motion Capture system. During Pretest 2 and Posttest, propulsion forces using the WheelMill System and wheelchair skills using the Wheelchair Skills Test were measured. Significant changes in area of the push loop, hand-to-axle relationship, and slope of push forces were found. Changes in propulsion patterns were identified post-training. No significant differences were found in peak and average push forces and wheelchair skills pre- and post-training. This project identified trends in change related to a repetition-based motor learning approach for propelling a manual wheelchair. The changes found were related to the propulsion patterns used by participants. Despite some challenges associated with implementing interventions for new manual wheelchair users, such as recruitment, the results of this study show that repetition-based training can improve biomechanics and propulsion patterns for new manual wheelchair users.

  9. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  10. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  11. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  12. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  13. Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo.

    Science.gov (United States)

    Janssen, Karmon M; Brand, Timothy C; Bailey, Michael R; Cunitz, Bryan W; Harper, Jonathan D; Sorensen, Mathew D; Dunmire, Barbrina

    2018-01-01

    To evaluate in more detail the effectiveness of a new designed more efficient ultrasonic propulsion for large stones and specific stone compositions in a tissue phantom model. In the first clinical trial of noninvasive ultrasonic propulsion, urinary stones of unknown compositions and sizes up to 10 mm were successfully repositioned. The study included 8- to 12-mm stones of 4 different primary compositions (calcium oxalate monohydrate, ammonium acid urate, calcium phosphate, and struvite) and a renal calyx phantom consisting of a 12 mm × 30 mm well in a 10-cm block of tissue-mimicking material. Primary outcome was the number of times a stone was expelled over 10 attempts, with ultrasonic propulsion burst duration varying from 0.5 seconds to 5 seconds. Overall success rate at expelling stones was 95%. All calcium oxalate monohydrate and ammonium acid urate stones were expelled 100% of the time. The largest stone (12 mm) became lodged within the 12-mm phantom calyx 25% of the time regardless of the burst duration. With the 0.5-second burst, there was insufficient energy to expel the heaviest stone (0.88 g), but there was sufficient energy at the longer burst durations. With a single burst, ultrasonic propulsion successfully moved most stones at least 3 cm and, regardless of size or composition, expelled them from the calyx. Ultrasonic propulsion is limited to the stones smaller than the calyceal space, and for each burst duration, related to maximum stone mass. Published by Elsevier Inc.

  14. An overview of the NASA Advanced Propulsion Concepts program

    International Nuclear Information System (INIS)

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R.

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs

  15. Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Science.gov (United States)

    Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.

    2011-01-01

    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The

  16. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    International Nuclear Information System (INIS)

    Schnitzler, Bruce G.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse (∼900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as

  17. Limbless undulatory propulsion on land.

    Science.gov (United States)

    Guo, Z V; Mahadevan, L

    2008-03-04

    We analyze the lateral undulatory motion of a natural or artificial snake or other slender organism that "swims" on land by propagating retrograde flexural waves. The governing equations for the planar lateral undulation of a thin filament that interacts frictionally with its environment lead to an incomplete system. Closures accounting for the forces generated by the internal muscles and the interaction of the filament with its environment lead to a nonlinear boundary value problem, which we solve using a combination of analytical and numerical methods. We find that the primary determinant of the shape of the organism is its interaction with the external environment, whereas the speed of the organism is determined primarily by the internal muscular forces, consistent with prior qualitative observations. Our model also allows us to pose and solve a variety of optimization problems such as those associated with maximum speed and mechanical efficiency, thus defining the performance envelope of this mode of locomotion.

  18. Characteristics of propulsion system of the magnetic levitation vehicle named ML-100

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, S

    1975-07-01

    A running test of a vehicle suspended by a superconducting magnetic levitation system and driven by a fixed primary linear induction motor (LIM) system was carried out. The test results of the temperature rise of the reaction plate and apparent power of propulsion system are described. Experimental results agree fairly well with calculated values. The effect of appropriate location of several kinds of LIM stators corresponding to running speed pattern are presented.

  19. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; hide

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  20. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  1. Interplanetary space transport using inertial fusion propulsion

    International Nuclear Information System (INIS)

    Orth, C.D.

    1998-01-01

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts

  2. Evolutionary use of nuclear electric propulsion

    International Nuclear Information System (INIS)

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs

  3. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  4. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  5. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  6. Propulsion Mechanism of Catalytic Microjet Engines.

    Science.gov (United States)

    Fomin, Vladimir M; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G

    2014-02-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μ m/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets.

  7. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  8. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  9. NASA's progress in nuclear electric propulsion technology

    International Nuclear Information System (INIS)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs

  10. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  11. A new propulsion concept for interplanetary missions

    Science.gov (United States)

    Dujarric, C.

    2001-11-01

    When tons of payload must be brought back from the planets to Earth, the current launch-system technology hits size limitations. The huge Saturn-V launcher that enabled the Apollo missions to go to the Moon would be dwarfed by a single launcher capable of sending men to a destination like Mars and bringing them back. Keeping interplanetary missions within a reasonable size and cost therefore requires technological progress in terms of both vehicle weight reduction and propulsion efficiency.

  12. Application of SDI technology in space propulsion

    International Nuclear Information System (INIS)

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion

  13. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  14. Advanced supersonic propulsion study, phase 3

    Science.gov (United States)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  15. Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations

    Science.gov (United States)

    Borer, Nicholas K.; Derlaga, Joseph M.; Deere, Karen A.; Carter, Melissa B.; Viken, Sally A.; Patterson, Michael D.; Litherland, Brandon L.; Stoll, Alex M.

    2017-01-01

    NASA's X-57 "Maxwell" flight demonstrator incorporates distributed electric propulsion technologies in a design that will achieve a significant reduction in energy used in cruise flight. A substantial portion of these energy savings come from beneficial aerodynamic-propulsion interaction. Previous research has shown the benefits of particular instantiations of distributed propulsion, such as the use of wingtip-mounted cruise propellers and leading edge high-lift propellers. However, these benefits have not been reduced to a generalized design or analysis approach suitable for large-scale design exploration. This paper discusses the rapid, "design-order" toolchains developed to investigate the large, complex tradespace of candidate geometries for the X-57. Due to the lack of an appropriate, rigorous set of validation data, the results of these tools were compared to three different computational flow solvers for selected wing and propulsion geometries. The comparisons were conducted using a common input geometry, but otherwise different input grids and, when appropriate, different flow assumptions to bound the comparisons. The results of these studies showed that the X-57 distributed propulsion wing should be able to meet the as-designed performance in cruise flight, while also meeting or exceeding targets for high-lift generation in low-speed flight.

  16. Propulsion of space ships by nuclear explosion

    Science.gov (United States)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  17. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  18. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  19. Solar Sail Propulsion Technology at NASA

    Science.gov (United States)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  20. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  1. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.

    Science.gov (United States)

    Soltau, Shelby L; Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment.

  2. Louis Blajan, Dottore in Medicina Veterinaria: Il dinamico veterinario che seppe traghettare l’Organizzazione Mondiale per la Sanità Animale (Office International des Épizooties: OIE nel mondo moderno

    Directory of Open Access Journals (Sweden)

    Anon.

    2010-03-01

    Full Text Available Nato il 10 aprile 1924 a Lahage (nell’Alta Garonna, in Francia, Louis Blajan si è spento lo scorso 10 febbraio 2010 a Mont-de-Marsan.Dopo aver frequentato il Lycée Pierre de Fermat di Tolosa, nel 1948 Louis completa gli studi presso la Scuola di Veterinaria di Tolosa. Nel 1949, si diploma all’Institut d’élevage et de médecine vétérinaire des pays tropicaux (IEMVT e dal 1949 al 1952 è nel territorio d’oltremare francese del Mali. Tornato in Francia, dal 1953 al 1968 Louis esercita come veterinario di Stato presso il Ministero dell’Agricoltura, responsabile per l’afta epizootica, la peste suina e la malattia di Newcastle, nonché come Presidente del Comitato consultivo per le malattie infettive. In seguito, viene nominato Ispettore capo veterinario e Responsabile per la politica di controllo delle frontiere.Nel 1952, Louis sposa Janine, moglie affezionata che lo appoggia con ardore in ogni fase della sua carriera e perde la vita in un incidente un mese prima che il marito vada in pensione nel 1990.Dal 1968 al 1977, Louis è Direttore tecnico di Cofranimex (Compagnie Française pour l’importation et l’exportation des animaux reproducteurs et leur semence e dal 1977 al 1978 riveste il ruolo di Direttore dell’Association pour le développement des techniques de l’élevage français (ADETEF.Louis entra a lavorare nell’Office International des Épizooties (oggi noto come Organizzazione Mondiale per la Sanità Animale o ‘OIE’ dove, dal 1978 al 1980, occupa la posizione di Direttore del Dipartimento tecnico. Due anni più tardi, nel 1980, viene eletto Direttore Generale, coronando il sogno di ogni professionista della medicina veterinaria e raggiungendo l’apice della propria carriera. Rieletto nel 1985, si ritira dalla vita lavorativa nel 1990.Durante gli anni in cui fu a capo dell’OIE, Louis seppe trasformare quella che all’epoca era una struttura antiquata in un’organizzazione internazionale moderna ed

  3. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH 2 ) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH 2 ' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH 2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  4. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.

    Science.gov (United States)

    Bekker, Michel J; Vegter, Riemer J K; van der Scheer, Jan W; Hartog, Johanneke; de Groot, Sonja; de Vries, Wiebe; Arnet, Ursina; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    2018-05-01

    Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific task is a prerequisite for accurate interpretation. The primary aim of this study is to describe scapular kinematics in able-bodied persons during manual wheelchair propulsion. Sixteen able-bodied, novice wheelchair users without shoulder complaints participated in the study. Kinematic and kinetic data were collected during a standardized pose in the anatomic posture, frontal-plane arm elevation and low-intensity steady-state handrim wheelchair propulsion and upper-body Euler angles were calculated. Scapulothoracic joint orientations in a static position were 36.7° (SD 5.4°), 6.4° (SD 9.1°) and 9.1° (SD 5.7°) for respectively protraction, lateral rotation and anterior tilt. At 80° of arm elevation in the frontal plane, the respective values of 33.4° (SD 8.0°), 23.9° (SD 5.4°) and 4.1° (SD 11.3°) were found. During the push phase of manual wheelchair propulsion, the mean scapular rotations were respectively 32.7° (SD 7.1°), 7.1° (SD 9.2°) and 9.8° (SD 8.3°). The orientation of the scapula in a static pose, during arm elevation and in manual wheelchair propulsion in able-bodied participants showed similar patterns to a previous study in persons with para- and tetraplegia. These values provide a reference for the investigation of the scapular movement pattern in wheelchair-dependent persons and its relation to shoulder complex abnormalities. Copyright © 2018. Published by Elsevier Ltd.

  5. Critical Propulsion Components. Volume 1; Summary, Introduction, and Propulsion Systems Studies

    Science.gov (United States)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/ Inlet Acoustic Team.

  6. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  7. DISCRETION MAGNETIQUE DES MACHINES ELECTRIQUES DE PROPULSION NAVALE

    OpenAIRE

    Froidurot , Benoît

    2002-01-01

    For about ten years, electrical machines have been commonly used in naval propulsion systems for civilian applications. This is mainly due to new magnetic materials (magnets...) and power drive electronic, which increase the performances of the machines. This kind of propulsion is planed to be implemented on military ships. However, some constraints of discretion make this propulsion require specific systems for the ship security. This study is then dedicted to the magnetic discretion of nava...

  8. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  9. Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion

    Science.gov (United States)

    2005-07-13

    FUSION REACTIONS AND MATTER- ANTIMATTER ANNIHILATION FOR SPACE PROPULSION Claude DEUTSCH LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE šFusion Reactions And Matter- Antimatter Annihilation For Space Propulsion 5a...which is possible with successful MCF or ICF. Appropriate vessel designs will be presented for fusion as well as for antimatter propulsion. In

  10. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Distributed control is potentially an enabling technology for advanced intelligent propulsion system concepts and is one of the few control approaches that is able to provide improved component...

  11. STATIC TESTS OF UNCONVENTIONAL PROPULSION UNITS FOR ULTRALIGHT AIRPLANES

    Directory of Open Access Journals (Sweden)

    Martin Helmich

    2014-06-01

    Full Text Available This paper presents static tests of a new unconventional propulsion unit for small aviation airplanes. Our laboratory stand – a fan drive demonstrator – enables us to compare various design options. We performed experiments to verify the propulsion functionality and a measurement procedure to determine the available thrust of the propulsion unit and its dependence on engine speed. The results used for subsequent optimization include the operating parameters of the propulsion unit, and the temperature and velocity fields in parts of the air duct.

  12. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  13. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  14. Nanostructured Tungsten Rhenium Components for Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionizing the space propulsion industry through innovative, relatively low-cost, manufacturing techniques is extremely needed. Specifically, advancements are...

  15. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    Science.gov (United States)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  16. Study of underwater laser propulsion using different target materials.

    Science.gov (United States)

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  17. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  18. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    International Nuclear Information System (INIS)

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  19. NASA Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  20. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    Science.gov (United States)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  1. The Space Nuclear Thermal Propulsion Program: Propulsion for the twenty first century

    International Nuclear Information System (INIS)

    Bleeker, G.; Moody, J.; Kesaree, M.

    1993-01-01

    As mission requirements approach the limits of the chemical propulsion systems, new engines must be investigated that can meet the advanced mission requirements of higher payload fractions, higher velocities, and consequently higher specific Impulses (Isp). The propulsion system that can meet these high demands is a nuclear thermal rocket engine. This engine generates the thrust by expanding/existing the hydrogen, heated from the energy derived from the fission process in a reactor, through a nozzle. The Department of Defense (DoD), however, initiated a new nuclear rocket development program in 1987 for ballistic missile defense application. The Space Nuclear Thermal Propulsion (SNTP) Program that seeks to improve on the technology of ROVER/NERVA grew out of this beginning and has been managed by the Air Force, with the involvement of DoE and NASA. The goal of the SNTP Program is to develop an engine to meet potential Air Force requirements for upper stage engine, bimodal propulsion/power applications, and orbital transfer vehicles, as well as the NASA requirements for possible missions to the Moon and Mars. During the entire life of the program, the DoD has considered safety to be of paramount importance, and is following all national environmental policies

  2. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  3. Nuclear propulsion tradeoffs for manned Mars missions

    International Nuclear Information System (INIS)

    Walton, L.A.; Malloy, J.D.

    1991-01-01

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion

  4. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  5. Propulsion Design With Freeform Fabrication (PDFF)

    Science.gov (United States)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in

  6. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  7. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  8. Advanced supersonic propulsion study, phase 4

    Science.gov (United States)

    Howlett, R. A.

    1977-01-01

    Installation characteristics for a Variable Stream Control Engine (VSCE) were studied for three advanced supersonic airplane designs. Sensitivity of the VSCE concept to change in technology projections was evaluated in terms of impact on overall installed performance. Based on these sensitivity results, critical technology requirements were reviewed, resulting in the reaffirmation of the following requirements: low-noise nozzle system; a high performance, low emissions duct burner and main burner; hot section technology; variable geometry components; and propulsion integration features, including an integrated electronic control system.

  9. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  10. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  11. Linearized propulsion theory of flapping airfoils revisited

    Science.gov (United States)

    Fernandez-Feria, Ramon

    2016-11-01

    A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  12. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  13. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  14. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  15. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  16. Gravity-assist engine for space propulsion

    Science.gov (United States)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  17. Inertial frames and breakthrough propulsion physics

    Science.gov (United States)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  18. Multiple NEO Rendezvous Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.

  19. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  20. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  1. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  2. Solar Sail Propulsion Technology Readiness Level Database

    Science.gov (United States)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  3. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  4. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  5. Non-conventional energy and propulsion methods

    International Nuclear Information System (INIS)

    Valone, T.

    1991-01-01

    From the disaster of the Space Shuttle, Challenger, to the Kuwaiti oil well fires, we are reminded constantly of our dependence on dangerous, combustible fuels for energy and propulsion. Over the past ten years, there has been a considerable production of new and exciting inventions which defy conventional analysis. The term non-conventional was coined in 1980 by a Canadian engineer to designate a separate technical discipline for this type of endeavor. Since then, several conferences have been devoted solely to these inventions. Integrity Research Corp., an affiliate of the Institute, has made an effort to investigate each viable product, develop business plans for several to facilitate development and marketing, and in some cases, assign an engineering student intern to building a working prototype. Each inventor discussed in this presentation has produced a unique device for free energy generation or highly efficient force production. Included in this paper is also a short summary for non-specialists explaining the physics of free energy generation along with a working definition. The main topics of discussion include: space power, inertial propulsion, kinetobaric force, magnetic motors, thermal fluctuations, over-unity hat pumps, ambient temperature superconductivity and nuclear battery

  6. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    Science.gov (United States)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  7. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  8. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  9. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  10. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  11. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  12. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  13. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  14. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  15. Institute for Computational Mechanics in Propulsion (ICOMP). 10

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    1996-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOUP during 1995.

  16. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload.

  17. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    Science.gov (United States)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  18. Research on applications of rectangular beam in micro laser propulsion

    International Nuclear Information System (INIS)

    Jiao, L.; Cai, J.; Ma, H.H.; Li, G.X.; Li, L.; Shen, Z.W.; Tang, Z.P.

    2014-01-01

    Highlights: • Diode laser bar of 808 nm is introduced into the micro laser propulsion field. • Double base propellant (DBP) coating with BOPP substrate was obtained. • The combination of laser power and energy decides the propulsion performance. • The new rectangular beam prefers to produce higher impulse. - Abstract: Micro laser propulsion is a new technology with brilliant future. In order to reduce the thruster mass and volume further, laser bar is introduced into the micro laser propulsion field. A new kind of 220 × 20 μm rectangular beam of 808 nm was obtained by oval lens compressing the light of diode at fast axes and slow axes. The effect of laser power, energy and coating thickness of double base propellant on propulsion performance was studied. Propulsion performance of double base propellant under static and dynamic mode shows some different characters. Compared to round beam, the new beam prefers to produce higher impulse. Ablation efficiency of DBP shows better performance in short laser duration. The combination of power density and energy density decides the laser propulsion performance. The new rectangular beam is appropriate for millisecond micro-laser propulsion

  19. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.

    Science.gov (United States)

    Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V

    2014-01-01

    To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.

  20. NASA Green Propulsion Technologies Pushing Aviation to New Heights

    Science.gov (United States)

    Free, James M.; Jennings, Francis T.; Adanich, Emery; Del Rosario, Ruben; Felder, James L.

    2014-01-01

    Center Director Free is providing the Keynote at the Disruptive Propulsion Conference, sponsored by Cranfield University, Cranfield, Bedfordshire, England in November. Director Free will be presenting a PowerPoint presentation titled, NASA Green Propulsion Technologies Pushing Aviation to New Heights at both the conference and a meeting at the Royal Aeronautical Society.

  1. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  2. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Kruger, G.

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  3. LO2/LH2 propulsion for outer planet orbiter spacecraft

    Science.gov (United States)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  4. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  5. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  6. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  7. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  8. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle

    International Nuclear Information System (INIS)

    Moslemi, Ali A; Krueger, Paul S

    2010-01-01

    The effect of the velocity program and duty cycle (St L ) on the propulsive efficiency of pulsed-jet propulsion was studied experimentally on a self-propelled, pulsed-jet underwater vehicle, dubbed Robosquid due to the similarity of essential elements of its propulsion system with squid jet propulsion. Robosquid was tested for jet slug length-to-diameter ratios (L/D) in the range 2-6 and St L in the range 0.2-0.6 with jet velocity programs commanded to be triangular or trapezoidal. Digital particle image velocimetry was used for measuring the impulse and energy of jet pulses to calculate the pulsed-jet propulsive efficiency and compare it with an equivalent steady jet system. Robosquid's Reynolds number (Re) based on average vehicle velocity and vehicle diameter ranged between 1300 and 2700 for the conditions tested. The results indicated better propulsive efficiency of the trapezoidal velocity program (up to 20% higher) compared to the triangular velocity program. Also, an increase in the ratio of the pulsed-jet propulsive efficiency to the equivalent steady jet propulsive efficiency (η P /η P,ss ) was observed as St L increased and L/D decreased. For cases of short L/D and high St L , η P /η P,ss was found to be as high as 1.2, indicating better performance of pulsed jets. This result demonstrates a case where propulsion using essential elements of a biological locomotion system can outperform the traditional mechanical system equivalent in terms of efficiency. It was also found that changes in St L had a proportionately larger effect on propulsive efficiency compared to changes in L/D. A simple model is presented to explain the results in terms of the contribution of over-pressure at the nozzle exit plane associated with the formation of vortex rings with each jet pulse.

  9. Sisearhitektuuri uudised / Aino Ingrid Sepp, Aale Kask

    Index Scriptorium Estoniae

    Sepp, Aino Ingrid

    2007-01-01

    Tallinnas lillesalongi Masha sisekujunduse autorid on Ahti Lyra ja Kristiine Lõuk. Pärnu ööklubi Str sisekujunduse autor on Hannes Praks. Tallinna Viru keskuse avatud baari sisekujunduse autorid on Kärt Villmann ja Andres Rohtla

  10. Sisearhitektuuri uudised / Aino Ingrid Sepp, Aale Kask

    Index Scriptorium Estoniae

    Sepp, Aino Ingrid

    2006-01-01

    Restoran Vertigo Tallinnas, sisekujundus Janno Roos ja Andres Labi; ööklubi Tartus Ülikooli tänava kaubanduskeskuse hoones, sisekujundus Riin Pettai ja Kerli Lepp; ilusalong Medemis Tallinnas, sisekujundus Maris Kerge; tantsustuudio Stiletto endises Marati tootmishoones Tallinnas, sisekujundus Anneli Ahi

  11. Ristipoja mälestusi / Reino Sepp

    Index Scriptorium Estoniae

    Sepp, Reino

    2005-01-01

    Reino Sepa mälestusi Johannes Aavikust. Katkendid on võetud tema varem ilmunud artiklist "Mälestusi ja mõteid Johannes Aavikust", mis ilmus 1991. aastal ajalehe Meie Maa väljaandes "Minu Saaremaa"

  12. Auhinnatud Hollandi saatkond Berliinis / Aino Sepp

    Index Scriptorium Estoniae

    Sepp, Aino

    2005-01-01

    Hollandi saatkonna hoonest - arhitektid Rem Koolhaas (sünd. 1944) ja Ellen van Loon arhitektuuribüroost OMA (Ofice for Metropolitan Architecture) - Berliinis. Väljaspoolt viiekordsena mõjuvas majas on kaheksa tasandit. Hoone võitis 2005. a. Mies van der Rohe nimelise arhitektuuripreemia. Rem Koolhaasist. 12 värv. ill

  13. Pokoja net kak net / Evelyn Sepp

    Index Scriptorium Estoniae

    Sepp, Evelyn, 1972-

    2007-01-01

    Riigikogu liige loodab, et peale valimisi kaitseminister Jürgen Ligi poolt kokku kutsutud sõjahaudade komisjon ei kiirusta enam oma otsuste tegemisega, millega võiks kaasneda pronkssõduri teisaldamine

  14. A novel propulsion method for high-Tc superconducting maglev vehicle

    International Nuclear Information System (INIS)

    Ma Guangtong; Wang Jiasu; Wang Suyu; Liu Minxian; Jing Hua; Lu Yiyun; Lin Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method

  15. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.

    Science.gov (United States)

    Dysterheft, Jennifer L; Rice, Ian M; Rice, Laura A

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13-18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  16. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  17. Stress Distribution, Friction and Listeria Propulsion

    Science.gov (United States)

    Prost, Jacques

    2003-03-01

    I will review our work on the physics of listeria propulsion based on an unavoidable elastic analysis of the stress distribution in the actin gel and dynamical boundary conditions (both normal and tangential). I will show in particular that it provides a natural explanation for the symmetry breaking transition occurring with beads (work with K. Sekimoto and F. Julicher), of the saltatory behavior of beads reported by A Bernheim et al (Nature 2002) and of the shape of soft beads (with O. Campas and J.F Joanny). This last analysis proves that, as announced in an earlier paper (F; Gerbal et al Biophys Journal 2000) the rear part of the gel contributes negatively to the motion.

  18. Nuclear propulsion apparatus with alternate reactor segments

    International Nuclear Information System (INIS)

    Szekely, T.

    1979-01-01

    Nuclear propulsion apparatus comprising: (a) means for compressing incoming air; (b) nuclear fission reactor means for heating said air; (c) means for expanding a portion of the heated air to drive said compressing means; (d) said nuclear fission reactor means being divided into a plurality of radially extending segments; (e) means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and (f) means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus. 12 claims

  19. Mini and Micro Propulsion for Medical Swimmers

    Directory of Open Access Journals (Sweden)

    JianFeng

    2014-02-01

    Full Text Available Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applicability to the medical or biological fields, including delivery and transportation of bio-materials and drugs, bio-sensing, and bio-surgery. This paper reviews the recent ideas and developments of these types of self-propelling devices, ranging from the millimeter scale down to the micro and even the nano scale. Specifically, this review article makes an emphasis on various propulsion principles, including methods of utilizing smart actuators, external magnetic/electric/acoustic fields, bacteria, chemical reactions, etc. In addition, we compare the propelling speed range, directional control schemes, and advantages of the above principles.

  20. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  1. Casimir Energy, Extra Dimensions and Exotic Propulsion

    Science.gov (United States)

    Obousy, R.; Saharian, A.

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.

  2. The Liquid Annular Reactor System (LARS) propulsion

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  3. Operational experience with propulsion nuclear plants

    International Nuclear Information System (INIS)

    Polunichev, V.

    2000-01-01

    Russia possesses a powerful icebreaker transport fleet which offers a solution for important socio-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic Sea route. The total operating record of the propulsion nuclear reactors till now exceeds 150 reactor-years, their main equipment items operating life amounted to 120,000 h. Progressive design-constructional solutions being perfected continuously during 40 years of nuclear-powered ships creation in Russia and well proven technology of all components used in the marine nuclear reactors give grounds to recommend marine Nuclear Steam Supply Systems (NSSSs) of KLT-40 type as energy sources for heat and power cogeneration plants and sea water desalination complexes, particularly as floating installations. Co-generation stations are considered for deployment in the extreme north of Russia. Nuclear floating desalination complexes can be used for drinkable water production in coastal regions of Northern Africa, the Near East, India etc. (author)

  4. NASA's nuclear thermal propulsion technology project

    International Nuclear Information System (INIS)

    Peecook, K.M.; Stone, J.R.

    1992-07-01

    The nonnuclear subsystem technologies required for incorporating nuclear thermal propulsion (NTP) into space-exploration missions are discussed. Of particular interest to planned missions are such technologies as materials, instrumentation and controls, turbomachinery, CFD modeling, nozzle extension designs and models, and analyses of exhaust plumes. NASA studies are described and/or proposed for refractory metals and alloys, robotic NTP controls, and turbopump materials candidates. Alternative nozzle concepts such as aerospikes and truncated plugs are proposed, and numerical simulations are set forth for studying heavy molecules and the backstreaming of highly reactive free-radical hydrogen in the exhaust plume. The critical technologies described in the paper are central to the development of NTP, and NTP has the potential to facilitate a range of space exploration activities. 3 refs

  5. Some examples of propulsion applications using antimatter

    International Nuclear Information System (INIS)

    Augenstein, B.W.

    1985-07-01

    Macroapplications of antimatter and annihilation energies to various uses beyond very high energy physics, which presupposes the solution of basic production and storage problems is discussed. Propulsion applications in identifiable missions which cannot be achieved conventionally are discussed. The use of annihilation energies provides ways to access effective exhaust velocities from 10 Km/sec to a major fraction of light velocity. The promise of antimatter is illustrated by considering a mix ratio r = amount of normal matter/amount of antimatter and calculating the effective attained temperature of the mixture as approx. 2 GeV/r. Ensuring that this mixing produces high temperatures and that the energy does not largely escape from the mix is the art of utilizing annihilation energies. The immediate product of nucleon-antinucleon annihilations is almost wholly pions. The subsequent reaction trains and the ultimate forms of the end products, their spectral attributes, the decay or capture mechanisms, are documented

  6. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  7. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    Science.gov (United States)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  8. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    Science.gov (United States)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  9. Nuclear propulsion in high yield vessels

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Current developments in advanced ship design brings high-speed maritime transportation closer to reality, aiming to create new markets and to recover a fraction of the high value goods now shipped only by air. High-speed transport is growing at a rate of 15% per year, higher than air transport and at a fraction of air tariffs. Although such growth rate is restricted to passengers and automobiles, there is a potential for high-speed cargo in some routes. A recent proposal is Fast Ship, a 260 m long, 40 m wide concept designed to cruise from Philadelphia to Cherbourg in less that 4 days, for a door-to-door timely cargo delivery of 7 days, thanks to an advanced hull design, and a high power propulsion plant to compensate for weather-related delays. However, almost 40% of the total operation cost would be fuel. This appears to be a natural application for nuclear power, in a similar way to the golden age of this technology. A nuclear Fast Ship would save almost 5000 tons of a fuel per trip, and about half of such spare might be available for additional cargo. Furthermore, operation costs would be smaller and very stable to resource price fluctuation, plus a few other advantages. For other ocean markets, such as the Asia-America route, nuclear power would become a much better choice. This paper discusses the reactor type and layout suitable for such application. The ship designer is aware of the current proposal, although the power pack is not readily available today and its political aspects have not been dealt with. The economy of our nation relies on exports and almost 90% of such flow goes by sea. It is also possible that in the future, Mercosur might have a dependency on such high-speed transport mode and propulsion system (au)

  10. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  11. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  12. The nature of operating flight loads and their effect on propulsion system structures

    Science.gov (United States)

    Dickenson, K. H.; Martin, R. L.

    1981-01-01

    Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.

  13. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  14. Is effective force application in handrim wheelchair propulsion also efficient?

    Science.gov (United States)

    Bregman, D J J; van Drongelen, S; Veeger, H E J

    2009-01-01

    Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost, due to (1) the sub-optimal use of elbow flexors and extensors, and/or (2) the necessity of preventing of glenohumeral subluxation. Five able-bodied and 11 individuals with a spinal cord injury propelled a wheelchair while kinematics and kinetics were collected. The results were used to perform inverse dynamical simulations with input of (1) the experimentally obtained propulsion force, and (2) only the tangential component of that force. In the tangential force condition the physiological cost was over 30% higher, while the tangential propulsion force was only 75% of the total experimental force. According to model estimations, the tangential force condition led to more co-contraction around the elbow, and a higher power production around the shoulder joint. The tangential propulsion force led to a significant, but small 4% increase in necessity for the model to compensate for glenohumeral subluxation, which indicates that this is not a likely cause of the decrease in efficiency. The present findings support the hypothesis that the observed force direction in wheelchair propulsion is a compromise between efficiency and the constraints imposed by the wheelchair-user system. This implies that training should not be aimed at optimization of the propulsion force, because this may be less efficient and more straining for the musculoskeletal system.

  15. An Overview of the CNES Propulsion Program for Spacecraft

    Science.gov (United States)

    Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.

    2004-10-01

    This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.

  16. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  17. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  18. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  19. State-of-the-Art for Small Satellite Propulsion Systems

    Science.gov (United States)

    Parker, Khary I.

    2016-01-01

    SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.

  20. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  1. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  2. Definition of an arcjet propulsion sub-system

    International Nuclear Information System (INIS)

    Price, T.W.

    1989-01-01

    An engineering flight demonstration of a 100 kW3 Space Reactor Power System is planned for the mid to late 1990s. An arcjet based propulsion subsystem will be included on the flight demonstraction as a secondary experiment. Two studies, sponsored by the Kay Technologies Directorate of the SDI Organization and managed by the Jet Propulsion Laboratory are currently under way to define that propulsion subsystem. The principal tasks of those contracts and the plans for two later phases, an experimental verification of the concept and a flight qualification/delivery of a flight unit, are described. 9 refs

  3. Development and Qualification of ATV Propulsion Assemblies

    Science.gov (United States)

    Riehle, M.; Jost, R.

    2002-01-01

    In the frame of the development and operation of the International Space Station ISS, the European Space Agency ESA is not only contributing experiments and a laboratory module but also logistics capacity. This purpose of supplying the ISS shall be covered by an unmanned, Automated Transfer Vehicle (ATV) that will be launched for the first time in 2004 by Ariane 5. The development of the ATV is in close conjunction to the future Ariane 5 launch capacity of about 20 tons injected into low earth orbit. Thus this unmanned transporter will be a quite large space craft that is subjected to fulfil several mission objectives apart of only delivering cargo such as multiple automatic docking/de-docking, re-boost services and re-fuelling. For those reasons and due to its dimensions the propulsion sub-system is one of the most sophisticated in the field of space propulsion. Even safety issues of manned space flight have to be applied since the pressurised cargo section is part of the ISS when docked to the manned modules. This leads to by far the largest but also the most sophisticated propulsion system ever built in Europe. Astrium as one of the major partners of this european project is responsible for this major system that will be described in the paper. Focusing on the major core assemblies such as multi thruster platforms, pressure control system incl. safety and redundancy mechanisms as well as tanks and other components that completes a propulsion system. System Design and Qualification Starting from the basic criteria the paper will present the major performance requirements such as pressures, thrust levels and other parameters that led to the selection of major components of the system such as thrusters, valves, tanks, etc. Some of the component could be selected from off the shelve, whereas other core components such as the 200N Attitude Control and Braking Thrusters or Propellant Tanks had to be newly developed. The stepwise approach of development and careful

  4. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  5. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  6. Transient Region Coverage in the Propulsion IVHM Technology Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last several years researchers at NASA Glenn and Ames Research Centers have developed a real-time fault detection and isolation system for propulsion...

  7. A Breakthrough Propulsion Architecture for Interstellar Precursor Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new power/propulsion architecture to enable missions such as a 12-yr flight time to 500 AU—the distance at which solar gravity lensing can be used to...

  8. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  9. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines

    Science.gov (United States)

    Sakaue, T.; Kapral, R.; Mikhailov, A. S.

    2010-06-01

    Molecular machines execute nearly regular cyclic conformational changes as a result of ligand binding and product release. This cyclic conformational dynamics is generally non-reciprocal so that under time reversal a different sequence of machine conformations is visited. Since such changes occur in a solvent, coupling to solvent hydrodynamic modes will generally result in self-propulsion of the molecular machine. These effects are investigated for a class of coarse grained models of protein machines consisting of a set of beads interacting through pair-wise additive potentials. Hydrodynamic effects are incorporated through a configuration-dependent mobility tensor, and expressions for the propulsion linear and angular velocities, as well as the stall force, are obtained. In the limit where conformational changes are small so that linear response theory is applicable, it is shown that propulsion is exponentially small; thus, propulsion is nonlinear phenomenon. The results are illustrated by computations on a simple model molecular machine.

  10. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  11. 100-lbf Non-Toxic Storable Liquid Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Road Maps for both Launch and In Space Propulsion call for the development of non-toxic, monopropellant reaction control systems to replace current...

  12. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — All nuclear thermal propulsion (NTP) ground testing conducted in the 1950s and 1960s during the ROVER/(Nuclear Engine Rocket Vehicle Application (NERVA) program...

  13. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  14. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2010-01-01

    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  15. Low-Cost, Scalable, Hybrid Launch Propulsion Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI), in collaboration Purdue University, proposes to develop a novel launch propulsion technology for rapid insertion of nano/micro...

  16. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  17. Optimal propulsion of an undulating slender body with anisotropic friction.

    Science.gov (United States)

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2018-01-24

    This study investigates theoretically and numerically the propulsive sliding of a slender body. The body sustains a transverse and propagative wave along its main axis, and undergoes anisotropic friction caused by its surface texture sliding on the floor. A model accounting for the anisotropy of frictional forces acting on the body is implemented. This describes the propulsive force and gives the optimal undulating parameters for efficient forward propulsion. The optimal wave characteristics are effectively compared to the undulating motion of a slithering snakes, as well as with the motion of sandfish lizards swimming through the sand. Furthermore, numerical simulations have indicated the existence of certain specialized segments along the body that are highly efficient for propulsion, explaining why snakes lift parts of their body while slithering. Finally, the inefficiency of slithering as a form of locomotion to ascend a slope is discussed.

  18. Plasmonic Force Propulsion Revolutionizes Nano/PicoSatellite Capability

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to assess the ability of plasmonic force propulsion to advance the state-of-the-art. We propose to numerically simulate plasmonic force fields with...

  19. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  20. Vehicle Dynamics due to Magnetic Launch Propulsion

    Science.gov (United States)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  1. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  2. Ionic liquid propellants: future fuels for space propulsion.

    Science.gov (United States)

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  4. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    Science.gov (United States)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  5. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  6. An Evaluation of Electric Motors for Ship Propulsion

    Science.gov (United States)

    2003-06-01

    AIM). Permanent magnet motors are more power dense than a comparatively sized in- duction motor. The permanent magnet motor has been chosen to...study. They include the axial flux, the ra- dial flux, and the transverse flux permanent magnet motors . Each motor has its unique advantages...to be ideal for ship propulsion, work is ongoing to develop the PMSM for ship propulsion. Permanent magnet motors are expected to have significant

  7. FY2010 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  8. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  9. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  10. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    Science.gov (United States)

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  11. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  12. Swimming mechanics and propulsive efficiency in the chambered nautilus

    Science.gov (United States)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  13. A Power-Efficient Propulsion Method for Magnetic Microrobots

    Directory of Open Access Journals (Sweden)

    Gioia Lucarini

    2014-07-01

    Full Text Available Current magnetic systems for microrobotic navigation consist of assemblies of electromagnets, which allow for the wireless accurate steering and propulsion of sub-millimetric bodies. However, large numbers of windings and/or high currents are needed in order to generate suitable magnetic fields and gradients. This means that magnetic navigation systems are typically cumbersome and require a lot of power, thus limiting their application fields. In this paper, we propose a novel propulsion method that is able to dramatically reduce the power demand of such systems. This propulsion method was conceived for navigation systems that achieve propulsion by pulling microrobots with magnetic gradients. We compare this power-efficient propulsion method with the traditional pulling propulsion, in the case of a microrobot swimming in a micro-structured confined liquid environment. Results show that both methods are equivalent in terms of accuracy and the velocity of the motion of the microrobots, while the new approach requires only one ninth of the power needed to generate the magnetic gradients. Substantial equivalence is demonstrated also in terms of the manoeuvrability of user-controlled microrobots along a complex path.

  14. Legal Implications of Nuclear Propulsion for Space Objects

    Science.gov (United States)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  15. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  16. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    Science.gov (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  17. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  18. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  19. Drag Reduction Through Distributed Electric Propulsion

    Science.gov (United States)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  20. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  1. Interstellar rendezvous missions employing fission propulsion systems

    International Nuclear Information System (INIS)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ''Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability

  2. Prognostics Applied to Electric Propulsion UAV

    Science.gov (United States)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  3. Optimal propulsive flapping in Stokes flows.

    Science.gov (United States)

    Was, Loïc; Lauga, Eric

    2014-03-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.

  4. Optimal propulsive flapping in Stokes flows

    International Nuclear Information System (INIS)

    Was, Loïc; Lauga, Eric

    2014-01-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. (paper)

  5. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  6. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  7. Civilian application of propulsion reactor in Indonesia

    International Nuclear Information System (INIS)

    Djokolelono, M.; Arbie, B.; Lasman, A.N.

    2000-01-01

    It has been learned that to cope with energy requirement in the remote islands and less developed regions of Indonesia, small or very small nuclear reactors producing electricity and/or process heat could be appropriately applied. The barge mounted propulsion power reactors are the attractive examples so far envisioned, and technology information of which is being exposed to the world these last years. The solutions for least maintenance and no on-site refueling, no radioactive discharge, and no radioactive waste to remain in the user country are among the attractions for further deliberations. It has been understood, however, that there are many uncertainties to overcome, especially for the developing countries to introduce this novel application. International acceptance is the most crucial, availability of first-of-the-kind engineering, prototype or reference plant that would prove licensibility in the vendor's country is the second, and economic competitiveness due to very small size is the third among issues to enlighten. The relevant regulations concerning marine nuclear safety, marine transportation, and proliferation of information, as well as international forums to justify the feasibility of related transfer of technology, are the items that the IAEA could help to provide to smoothen any possible international transaction. Indonesia supports this AGM as one of the appropriate IAEA efforts in this line, and expects from it positive international consensus and possible studies/R and D work that this country could participate in. (author)

  8. Active colloidal propulsion over a crystalline surface

    Science.gov (United States)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  9. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  10. Brain drain: Propulsive factors and consequences

    Directory of Open Access Journals (Sweden)

    Dragan ILIC

    2018-01-01

    Full Text Available When speaking about the total number of highly educated individuals’ migration, it is easy to spot that it is rapidly increasing. The brain drain issues should be taken very seriously especially in under developed and in the developing countries, knowing that the human capital is globally mobile and that highly educated individuals can without any issues market their knowledge around the globe. Dealing with it requires a carefully tailored strategy for these countries, which are suffering from severe human capital losses on annual basis. Since the labor markets of today are highly competitive, it is necessary for these countries to secure good advancement and doing business opportunities. The purpose of this research is to provide an insight into the key propulsive factors and potential consequences caused by the brain drain. The method used in order to conduct the research was a carefully designed questionnaire taken by the date subject enrolled at the third and fourth years of state governed and privately owned universities. This research shows that one of the key reasons for brain drain in underdeveloped and in the developing countries is shortage of further educational advancement opportunities.

  11. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  12. The effect of symptoms of carpal tunnel syndrome on ultrasonographic median nerve measures before and after wheelchair propulsion.

    Science.gov (United States)

    Impink, Bradley G; Collinger, Jennifer L; Boninger, Michael L

    2011-09-01

    To quantify median nerve characteristics before and after strenuous wheelchair propulsion and relate them to symptoms of carpal tunnel syndrome (CTS). We hypothesized that persons with and without symptoms of CTS would have significantly different nerve characteristics at baseline and after propulsion. A repeated-measures design was used to obtain ultrasound images of the median nerve at 3 levels of the wrist (radius, pisiform, and hamate) before and after wheelchair propulsion. Investigators were blinded to subject history related to CTS. The 2007 and 2008 National Veterans Wheelchair Games and the Human Engineering Research Laboratories. Fifty-four participants between the ages of 18 and 65 years with a nonprogressive disability who used a manual wheelchair as their primary means of mobility completed this study. Participants completed questionnaires regarding demographics and the presence and severity of symptoms of CTS. Ultrasound images of the median nerve were obtained before and after a 15-minute strenuous wheelchair-propulsion task. Baseline values and post-propulsion changes were determined for median nerve cross-sectional area, flattening ratio, and swelling ratio. Differences in median nerve variables between symptomatic and asymptomatic groups were assessed. No significant differences between symptom groups were identified at baseline; however, persons with symptoms of CTS showed a significantly different percent change from baseline compared with the asymptomatic participants for cross-sectional area at pisiform (P = .014) and flattening ratio at hamate (P = .022), and they showed a strong trend toward a difference in swelling ratio (P = .0502). For each of these variables, the change in the symptomatic group was in the opposite direction of the change in the asymptomatic group. We found several median nerve responses to wheelchair propulsion associated with symptoms of CTS. These responses occurred even though no baseline ultrasound difference was

  13. Children's Gender-Typed Toy Interests: Does Propulsion Matter?

    Science.gov (United States)

    Dinella, Lisa M; Weisgram, Erica S; Fulcher, Megan

    2017-07-01

    Children's toy play is at the foundation of child development. However, gender differentiation in early play experiences may result in gender differences in cognitive abilities, social interactions, and vocational choices. We investigated gender-typing of toys and toys' propulsive properties (e.g., wheels, forward motion) as possible factors impacting children's toy interests, perceptions of other children's interests, and children's actual toy choices during free play. In Studies 1 and 2, 82 preschool children (42 boys, 40 girls; mean age = 4.90 years) were asked to report their interest and perceptions of other children's interests in toys. In Study 1, masculine, feminine, and neutral toys with and without propulsive properties were presented. Children reported greater interest in gender-typed toys and neutral toys compared to cross-gender-typed toys. In Study 2, unfamiliar, neutral toys with and without propulsive properties were presented. Propulsive properties did not affect children's interest across both studies. Study 3 was an observational study that assessed toy preferences among 42 preschool children (21 males, 21 females, mean age = 4.49 years) during a play session with masculine, feminine, and neutral toys with and without propulsive properties. Gender-typed toy preferences were less apparent than expected, with children showing high interest in neutral toys, and girls playing with a wide variety of masculine, feminine, and neutral toys. Gender differences in interest for toys with propulsion properties were not evident. Overall, gender differences in children's interest in toys as a function of propulsion properties were not found in the three experiments within this study.

  14. The Enabling Use of Ion Propulsion on Dawn

    Science.gov (United States)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  15. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  16. Jet Propulsion Laboratory: Annual Report 2003

    Science.gov (United States)

    2004-01-01

    If you stepped outdoors on the final evening of 2003 and looked up into the night sky, many celestial events were taking place. A hundred million miles away from Earth, a dust storm swirled across the terracotta peaks and gullies of Mars, as two six-wheeled robots bore down on the planet. They were soon to join two orbital sentries already stationed there. A few hops across the inner solar system, another spacecraft was closing in on a ball of ice and rock spewing forth a hailstorm of dust grains, heated as it swung in toward the Sun. Closer in, two newly lofted space telescopes scanned the skies, their mirrors gathering photons that had crossed the empty vastness of space for billions of years, recording ancient events in unimaginably distant galaxies. And streaking overhead every few minutes directly above our home planet, a handful of satellites was recording the unfolding events of a tropical cyclone off the east coast of Africa and a blizzard that carpeted the northwestern United States. As 2003 drew to a close, the Jet Propulsion Laboratory was on the cusp of an extraordinarily busy period, a time when JPL will execute more fly-bys, landings, sample returns and other milestones than at any other time in its history. The exploration we undertake is important for its own sake. And it serves other purposes, none more important than inspiring the next generation of explorers. If the United States wishes to retain its status as a world leader, it must maintain the technological edge of its workforce. What we do here is the stuff of dreams that will inspire a new generation to continue the American legacy of exploration.

  17. A Plasmoid Thruster for Space Propulsion

    Science.gov (United States)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  18. Amenorrhea - primary

    Science.gov (United States)

    ... of periods - primary Images Primary amenorrhea Normal uterine anatomy (cut section) Absence of menstruation (amenorrhea) References Bulun SE. The physiology and pathology of the female reproductive axis. In: ...

  19. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    Science.gov (United States)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  20. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    Science.gov (United States)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  1. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  2. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  3. Prediction of applied forces in handrim wheelchair propulsion.

    Science.gov (United States)

    Lin, Chien-Ju; Lin, Po-Chou; Guo, Lan-Yuen; Su, Fong-Chin

    2011-02-03

    Researchers of wheelchair propulsion have usually suggested that a wheelchair can be properly designed using anthropometrics to reduce high mechanical load and thus reduce pain and damage to joints. A model based on physiological features and biomechanical principles can be used to determine anthropometric relationships for wheelchair fitting. To improve the understanding of man-machine interaction and the mechanism through which propulsion performance been enhanced, this study develops and validates an energy model for wheelchair propulsion. Kinematic data obtained from ten able-bodied and ten wheelchair-dependent users during level propulsion at an average velocity of 1m/s were used as the input of a planar model with the criteria of increasing efficiency and reducing joint load. Results demonstrate that for both experienced and inexperienced users, predicted handrim contact forces agree with experimental data through an extensive range of the push. Significant deviations that were mostly observed in the early stage of the push phase might result from the lack of consideration of muscle dynamics and wrist joint biomechanics. The proposed model effectively verified the handrim contact force patterns during dynamic propulsion. Users do not aim to generate mechanically most effective forces to avoid high loadings on the joints. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Numerical simulation of the flow around a steerable propulsion unit

    International Nuclear Information System (INIS)

    Pacuraru, F; Lungu, A; Ungureanu, C; Marcu, O

    2010-01-01

    Azimuth propulsion units have become during the last decade a more and more popular solution for all kinds of vessels. Azimuth thruster system, combining the propulsion and steering units of conventional ships replaces traditional propellers and lengthy drive shafts and rudders ensuring an excellent vessel steering. In many cases the interaction between the propeller and other components of the propulsion system strongly affects the inflow to the propeller and therefore its performance. The correct estimation of this influence is important for propulsion systems which consist of more than one element, such as pods (shaft, gondola and propeller), ducted propellers (duct, struts and propeller) or bow thrusters (ship form, tunnel, gondola and propeller). The paper proposes a numerical investigation based on RANS computation for solving the viscous flow around an azimuth thruster system to provide a detailed insight into the critical flow regions for determining the optimum inclination angle for struts, for studying the hydrodynamic interactions between various components of the system, for predicting the hydrodynamic performance of the propulsion system and to investigate regions with possible flow separations.

  5. Jet Propulsion Laboratory: Annual Report 2009

    Science.gov (United States)

    2010-01-01

    2009 was truly the year of astronomy at the Jet Propulsion Laboratory. While the world at large was celebrating the International Year of Astronomy, we were sending more telescopes into space than in any other year, ever. As these missions unfold, the astronomers are sure to change the way we see the universe. One of the newly lofted observatories is on a quest to find planets like our own Earth orbiting other stars. Another is a telescope that gathers infrared light to help discover objects ranging from near-Earth asteroids to galaxies in the deepest universe. We also contributed critical enabling technologies to yet two other telescopes sent into space by our partners in Europe. And astronauts returned to Earth with a JPL-built camera that had captured the Hubble Space Telescope's most memorable pictures over many years. And while it was an epic time for these missions, we were no less busy in our other research specialties. Earth's moon drew much attention from our scientists and engineers, with two JPL instruments riding on lunar orbiters; previously unseen views of shadowed craters were provided by radar imaging conducted with the giant dish antennas of the Deep Space Network, our worldwide communication portal to spacecraft around the solar system. At Mars, our rovers and orbiters were highly productive, as were missions targeting Saturn, comets and the asteroid belt. Here at our home planet, satellites and instruments continued to serve up important information on global climate change. But our main business is, of course, exploring. Many initiatives will keep us busy for years. In 2009, NASA gave approval to start planning a major flagship mission to Jupiter's moon Europa in search of conditions that could host life, working with our partners in Europe. In addition to our prospective Earth science projects, we have full slates of missions in Mars exploration, planetary exploration and space-based astronomy. This year's annual report continues our recent

  6. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  7. K. Linda Kivi autoriõhtu Tartu College´is / Eda Sepp ; fotod: Eda Sepp

    Index Scriptorium Estoniae

    Sepp, Eda

    2006-01-01

    19. jaanuaril 2006, Linda Kivi kolmanda raamatu "The Inner Green: Exploring Home in the Columbia Mountains" raamatuesitlusest. Korraldajateks Toronto Ülikooli Eesti Õppetool, Tartu Instituut, Tartu College´i laenuraamatukogu

  8. The Economics of Advanced In-Space Propulsion

    Science.gov (United States)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  9. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  10. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  11. An N+3 Technology Level Reference Propulsion System

    Science.gov (United States)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  12. NASA N3-X with Turboelectric Distributed Propulsion

    Science.gov (United States)

    Felder, James L.

    2014-01-01

    Presentation summarizing the phase I study of the NASA N3-X turboelectric distributed propulsion power aircraft to the IMechE Disruptive Green Propulsion Technologies conference in London, UK November 16th and 17th, 2014. This presentation contains the results of a NASA internal study funded by the NASA Fixed Wing program to look at the application of turboelectric distributed propulsion to a long-range 300 seat aircraft. The reference aircraft is the Boeing 777-200LR. The N3-X reduced energy consumption by 70 compared to the 777-200LR, LTO NOx by 85 compared to the CAEP 6 limits, and noise by 32-64 EPNdB depending on engine placement compared to the stage 4 noise standards. This exceeded the N+3 metrics of reducing energy by 60, LTO NOx by 80, and noise by 52 EPNdB. Cruise NOx was not estimated, but likely meet the 80 reduction goal as well.

  13. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  14. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  15. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  16. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  17. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  18. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  19. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  20. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  1. American Institute of Beamed Energy Propulsion: An Introduction

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.

    2008-01-01

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose 'to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large'. The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed

  2. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    Science.gov (United States)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  3. Multi-disciplinary coupling for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  4. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  5. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  6. Development priorities for in-space propulsion technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  7. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  8. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  9. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.

    Science.gov (United States)

    Lauder, George V; Anderson, Erik J; Tangorra, James; Madden, Peter G A

    2007-08-01

    As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational analyses of fluid movement and attendant forces. But it is clear that substantial future progress in understanding aquatic propulsion will require new lines of attack. Recent years have seen the advent of one such new avenue that promises to greatly broaden the scope of intellectual opportunity available to researchers: the use of biorobotic models. In this paper we discuss, using aquatic propulsion in fishes as our focal example, how using robotic models can lead to new insights in the study of aquatic propulsion. We use two examples: (1) pectoral fin function, and (2) hydrodynamic interactions between dorsal and caudal fins. Pectoral fin function is characterized by considerable deformation of individual fin rays, as well as spanwise (along the length) and chordwise (across the fin) deformation and area change. The pectoral fin can generate thrust on both the outstroke and instroke. A robotic model of the pectoral fin replicates this result, and demonstrates the effect of altering stroke kinematics on the pattern of force production. The soft dorsal fin of fishes sheds a distinct vortex wake that dramatically alters incoming flow to the tail: the dorsal fin and caudal fin act as dual flapping foils in series. This design can be replicated with a dual-foil flapping robotic device that demonstrates this phenomenon and allows examination of regions of the flapping performance space not available to fishes. We show how the robotic flapping foil device can also be used to better understand the significance of flexible propulsive surfaces for locomotor performance. Finally we emphasize the utility of self

  10. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  11. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  12. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  13. The TRANSRAPID propulsion system - development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Henning, U [Siemens AG, Erlangen (Germany); Kamp, P G [Siemens AG, Erlangen (Germany); Hochleitner, J [Siemens AG, Erlangen (Germany)

    1996-12-31

    The structure of the propulsion system for the Transrapid comprises a number of components which are located along the guideway. These drive components are temporarily switched together to form the drive control zones necessary to permit maglev operation over the guideway. The paper describes the development of the stationary propulsion converter with GTO thyristors. The drive components are tested under realistic operating conditions. The test results confirm the performance capability as well as verify the suitability of the concept for use in revenue service. (HW)

  14. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  15. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  16. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  17. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  18. Propulsion systems from takeoff to high-speed flight

    Science.gov (United States)

    Billig, F. S.

    Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.

  19. Development costs for a nuclear electric propulsion stage.

    Science.gov (United States)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  20. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  1. A graphical user-interface for propulsion system analysis

    Science.gov (United States)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  2. Tutorial on nuclear thermal propulsion safety for Mars

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments

  3. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  4. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  5. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  6. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

    Science.gov (United States)

    Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu

    2014-10-14

    The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.

  7. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    Science.gov (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  8. Concept for a shuttle-tended reusable interplanetary transport vehicle using nuclear electric propulsion

    Science.gov (United States)

    Nakagawa, R. Y.; Elliot, J. C.; Spilker, T. R.; Grayson, C. M.

    2003-01-01

    NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.

  9. Challenges and Experiences with Electric Propulsion Transit Buses in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Gifford, M.

    2003-11-01

    Document provides background for transit agencies and fleets that are considering electric propulsion technologies. It tells them what to expect and plan for when implementing vehicles with electric propulsion systems.

  10. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  11. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  12. Green Liquid Monopropellant Thruster for In-space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and AMPAC In-space Propulsion propose to develop a unique chemical propulsion system for the next generation NASA science spacecraft and...

  13. Exercise training programs to improve hand rim wheelchair propulsion capacity: a systematic review.

    NARCIS (Netherlands)

    Zwinkels, M.; Verschuren, O.; Janssen, T.W.J.; Ketelaar, M.; Takken, T.

    2014-01-01

    Objective: An adequate wheelchair propulsion capacity is required to perform daily life activities. Exercise training may be effective to gain or improve wheelchair propulsion capacity. This review investigates whether different types of exercise training programs are effective in improving

  14. Exercise training programs to improve hand rim wheelchair propulsion capacity: a systematic review

    NARCIS (Netherlands)

    Zwinkels, M.G.J.; Verschuren, O.W.; Janssen, T.; Ketelaar, M.; Takken, T.; Backx, F.J.G.; Groot, J.F. de; Smits, D.W.; Volman, MJM

    2014-01-01

    Objective: An adequate wheelchair propulsion capacity is required to perform daily life activities. Exercise training may be effective to gain or improve wheelchair propulsion capacity. This review investigates whether different types of exercise training programs are effective in improving

  15. Low Cost, Pump-fed, Non-Catalytic Thruster for Secondary Payload Green Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its technology in micropump-fed propulsion, including 1U CubeSat green propulsion, to the development and demonstration of a low...

  16. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  17. Jet Propulsion Laboratory: Annual Report 2004

    Science.gov (United States)

    2005-01-01

    Once or twice in an age, a year comes along that the historians proclaim as an Annus Mirabilis - a year of wonders. For the Jet Propulsion Laboratory, 2004 was just that sort of time. From beginning to end, it was a nonstop experience of wondrous events in space. Imagine that two robot rovers embark on cross-country rambles across Mars, scrutinizing rocks for signs of past water on the now-arid world. A flagship spacecraft brakes into orbit at Saturn to begin longterm surveillance of the ringed world, preparing to drop a sophisticated probe to the surface of its haze-shrouded largest moon. Another craft makes the closest-ever pass by the nucleus of a comet, collecting sample particles as it goes. Two new space telescopes peer into the depths of the universe far beyond our solar system, viewing stars, nebulas and galaxies in invisible light beyond the spectrum our eyes can see. A pair of instruments is lofted on a NASA Earth-orbiting satellite to monitor air quality and the protective layer of ozone blanketing our home planet. A small probe brings samples of the solar wind to Earth for in-depth study. While JPL was absorbed with all of these ventures on other worlds, NASA and the White House unveiled an ambitious new plan of space exploration. The Vision for Space Exploration announced in January foresees a program of robotic and astronaut missions leading to a human return to the Moon by 2020, and eventual crewed expeditions to Mars. The vision also calls for more robotic missions to the moons of the outer planets; spaceborne observatories that will search for Earth-like planets around other stars and explore the formation and evolution of the universe; and continued study of our home planet. In order to accomplish all of this, NASA must perfect many as-yet-uninvented technologies and space transportation capabilities. JPL has a great deal to bring to this vision. Robotic exploration of Mars will lead the way for missions that will carry women and men to the red

  18. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    Science.gov (United States)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  19. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  20. The need for expanded exploration of matter-antimatter annihilation for propulsion application

    Science.gov (United States)

    Massier, P. F.

    1982-01-01

    The use of matter-antimatter annihilation as a propulsion application for interstellar travel is discussed. The physical basis for the superior energy release in such a system is summarized, and the problems associated with antimatter production, collection and storage are assessed. Advances in devising a workable propulsion system are reported, and the parameters of an antimatter propulsion system are described.