WorldWideScience

Sample records for primary photochemical reactions

  1. Photochemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  2. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  3. Photochemical reaction products in air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, E R; Darley, E F; Taylor, O C; Scott, W E

    1961-01-01

    Isolation and purification of peroxyacetyl nitrate (PAN) from artificial photochemical reaction of olefins and NO/sub x/ in air are analyzed. Olefin splits at the double bond, one end forming carbonyl compound and the other yielding PAN, among others. At concentrations below 1 ppM, PAN causes plant damage. At a concentration of about 1 ppM, PAN is a strong eye irritant.

  4. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    Science.gov (United States)

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  5. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  6. Photochemical reactions of aqueous plutonium systems

    International Nuclear Information System (INIS)

    Friedman, H.A.; Toth, L.M.; Bell, J.T.

    1977-01-01

    The photochemical shift of the Pu 4+ disproportionation equilibrium in aqueous perchloric acid solutions has been measured and shown to be reversible. Ratios of equilibrium quotients between light and dark conditions have been measured for 0.01 M Pu ion concentrations in 0.53 to 1.24 N acid solutions exposed to 0.5 Watt of UV light. The photodecomposition of time- and temperature-aged Pu(IV) polymers in perchloric and nitric acid solutions have been examined as a function of aging conditions. Effects similar to those seen previously for fresh polymers have been observed in the aged perchloric acid solutions. (author)

  7. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  8. Effect of temperature on photochemical smog reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bufalini, J J; Altshuller, A P

    1963-01-01

    In the present investigation the photo-oxidation reactions to trans-2-butene-nitric oxide and 1,3,5-trimethylbenzene (mesitylene)-nitric oxide in air have been followed. The rates of formation and disappearance of nitrogen dioxide and the rate of reaction of the hydrocarbons have been measured at 20 and 40/sup 0/. The results obtained indicate about a twofold decrease in conversion times over the 20/sup 0/ interval and a corresponding increase in rates of reactions. 5 references.

  9. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems

    NARCIS (Netherlands)

    Vredenberg, W.J.

    2011-01-01

    In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with

  10. Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview

    Directory of Open Access Journals (Sweden)

    Davide Ravelli

    2015-01-01

    Full Text Available Photocatalytic reactions have been defined as those processes that require both a (not consumed catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal equilibrium. This consideration brings in the question whether a part of the photon energy is incorporated into the photochemical reaction products. Data are provided for representative organic reactions involving or not molecular catalysts and show that energy storage occurs only when a heavily strained structure is generated, and in that case only a minor part of photon energy is actually stored (ΔG up to 25 kcal·mol−1. The green role of photochemistry/photocatalysis is rather that of forming highly reactive intermediates under mild conditions.

  11. Molecular-beam studies of primary photochemical processes

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser

  12. Molecular-beam studies of primary photochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  13. Redox reaction in photochemical and ionizing irradiation systems

    International Nuclear Information System (INIS)

    Slama-Schwok, A.

    1985-09-01

    This work presents a basic study of electron transfer reactions which could be involved in appropriate systems for photochemical conversion and storage of solar energy. The aim was to extend the knowledge to new photosensitizers and quenchers and to compare them with the most popular photosensitizers-quenchers system, i.e. a rubidium complex. The photosensitizer studied here is an irridium complex. We studied in this work the air oxidation of bromide to Br 3 - and H 2 O 2 using the irridium complex as the sensitizer. The reducing properties of the reduced irridium complex photosensitizer were studied, using the pulse radiolysis techniques. In conclusion, the oxidation reduction properties of the irridium and its lowest excited state correspond to most of the photosensitizer for electron transfer reactions. The energy temporary present in the charge separation products can be stored using appropriate environment such as polyelectrolytes

  14. The photochemical reaction of hydrocarbons under extreme thermobaric conditions

    Science.gov (United States)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir

    2017-10-01

    The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.

  15. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arnon, D I; Allen, M B; Whatley, F R

    1956-01-01

    Procedures are described for the preparation of chloroplasts capable of carrying out three photochemical reactions, each representing an increasingly complex phase of photosynthesis: photolysis of water (Hill reaction), esterification of inorganic phosphate into adenosine triphosphate (photosynthetic phosphorylation) and the reduction of carbon dioxide to the level of carbohydrates with a simultaneous evolution of oxygen. The three photochemical reactions were separable by variations in the technique for preparation of chloroplasts and by differential inhibition by several reagents. Inhibition of a more complex phase of photosynthesis does not affect the simpler one which precedes it and, conversely, the inhibition of a simpler phase of photosynthesis is paralleled by an inhibition of the more complex phase which follows. Reversible inhibition of CO/sub 2/ fixation and photosynthetic phosphorylation, but not of photolysis, by sulfhydryl group inhibitors suggests that sulfhydryl compounds (enzymes, cofactors, or both) are involved in phosphorylation and CO/sub 2/ fixation, but not in the primary conversion of light into chemical energy as measured by the Hill reaction. Evidence is presented in support of the conclusion that the synthesis of ATP by green cells occurs at two distinct sites: anaerobically in chloroplasts by photosynthetic phosphorylation, and acrobically in smaller cytoplasmic particles, presumably mitochondria, by oxidative phosphorylation independent of light. A general scheme of photosynthesis by chloroplasts, consistent with these findings, is presented. 44 references, 8 figures, 4 tables.

  16. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC

    International Nuclear Information System (INIS)

    Fedorowski, Jennifer; LaCourse, William R.

    2010-01-01

    Post-column photochemical reaction systems have developed into a common approach for enhancing conventional methods of detection in HPLC. Photochemical reactions as a means of 'derivatization' have a significant number of advantages over chemical reaction-based methods, and a significant effort has been demonstrated to develop an efficient photochemical reactor. When coupled to electrochemical (EC) detection, the technique allows for the sensitive and selective determination of a variety of compounds (e.g., organic nitro explosives, beta-lactam antibiotics, sulfur-containing antibiotics, pesticides and insecticides). This review will focus on developments and methods using post-column photochemical reaction systems followed by EC detection in liquid chromatography. Papers are presented in chronological order to emphasize the evolution of the approach and continued importance of the application.

  17. Photochemical reactions of nucleic acids and their constituents of photobiological relevance

    International Nuclear Information System (INIS)

    Saito, I.; Sugiyama, H.; Matsuura, T.

    1983-01-01

    A review is given of the papers published from 1977 to May 1983 on the UV-induced photochemical reactions of nucleic acids and their constituents of photobiological relevance where the structures of photoproducts have been fully characterized. Among the topics discussed are photoadditions relevant to nucleic acid-protein photocrosslinking, photoreactions with psoralens and nucleic acids and photochemical reactions of polynucleotides. (U.K.)

  18. Fabrication of self-written waveguide in photosensitive polyimide resin by controlling photochemical reaction of photosensitizer

    International Nuclear Information System (INIS)

    Yamashita, K.; Kuro, T.; Oe, K.; Mune, K.; Tagawa, K.; Naitou, R.; Mochizuki, A.

    2004-01-01

    We have investigated optical properties of photosensitive polyimide appropriating for long self-written waveguide fabrication. From systematic measurements of absorption properties, it was found that photochemical reaction of photosensitizer dissolved in the photosensitive polyimide resins relates to transparency after the exposure, which limits the length of the fabricated self-written waveguide. By controlling the photochemical reaction, in which the photosensitive polyimide resin has sufficient transparency during exposure, four times longer self-written waveguide core was fabricated

  19. Primary photochemical processes for Pt(iv) diazido complexes prospective in photodynamic therapy of tumors.

    Science.gov (United States)

    Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M

    2017-07-25

    Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.

  20. Photochemical reactions of triplet benzophenone and anthraquinone molecules with amines in the gas phase

    International Nuclear Information System (INIS)

    Zalesskaya, G.A.; Sambor, E.G.; Belyi, N.N.

    2004-01-01

    The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423-573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q (ΔG) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG

  1. Photochemical reactions of neptunium in nitric acid solution containing photocatalyst

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Kawamura, Fumio

    1991-01-01

    Photochemical oxidation and reduction behaviors of neptunium were preliminarily investigated in 3 mol/l nitric acid solution. Nitric acid of 3 mol/l simulated the high level waste solution from a spent fuel reprocessing process. Concentrations of Np(V), Np(VI) and nitrous acid were determined with a photospectrometer, and solution potential with an electrode. Without additives, Np(VI) was reduced to Np(V) by nitrous acid which was photolytically generated from nitric acid. With a scavenger for nitrous acid, Np(V) was oxidized to extractable Np(VI) by a photolytically generated oxidizing reagent which were predicted by the solution potential measurement. The reduction rate was higher than the oxidation rate because of the larger quantity and higher reactivity of nitrous acid than an oxidizing reagent. Photocatalyst was proved to be effective for the oxidation of Np(V) to Np(VI). (author)

  2. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    Science.gov (United States)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  3. Photochemical exchange reactions of thymine, uracil and their nucleosides with selected amino acids

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Taylor, J.A.; Hom, K.

    1984-01-01

    The photoinduced exchange reactions of thymine with lysine at basic pH, using 254 nm light, have been studied. Three products have been isolated, namely, 6-amino-2-(1-thyminyl)hexanoic acid (Ia), 2-amino-6-(1-thyminyl)hexanoic acid (IIa) and 1-amino-5-(1-thyminyl)pentane (IIIa). Compound IIIa was shown to be a secondary product, produced by photochemical decarboxylation of Ia. Photochemical reaction of thymine with glycine and alanine at basic pH led, respectively, to formation of 2-(1-thyminyl)acetic acid (Ic) and 2-(1-thyminyl)propionic acid (Id). Compounds Ic and Id underwent photolysis to produce the decarboxylated secondary products 1-methylthymine and 1-ethylthymine, respectively. Thymidine reacts photochemically with glycine and alanine to produce the same products. Irradiation of DNA in the presence of lysine at basic pH led to the formation of the same products formed in the thymine-lysine system, namely Ia, IIa and IIIa. Uracil was found to undergo analogous photochemical exchange reactions with lysine to form 6-amino-2-(1-uracilyl)hexanoic acid (Ib), and 2-amino-6-(1-uracilyl)hexanoic acid (IIb). Compound Ib was found to undergo photodecarboxylation to form 1-amino-5-(1-uracilyl)pentane (IIIb), analogous to the secondary photoreaction of Ia. Photoreaction of uracil with 1,5-diaminopentane (cadaverine) likewise led to formation of IIIb. (author)

  4. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  5. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  6. Nonequilibrium photochemical reactions induced by lasers. Technical progress report

    International Nuclear Information System (INIS)

    Steinfeld, J.I.

    1978-04-01

    Research has progressed in six principal subject areas of interest to DOE advanced (laser) isotope separation efforts. These are (1) Infrared double resonance spectroscopy of molecules excited by multiple infrared photon absorption, particularly SF 6 and vinyl chloride. (2) Infrared multiphoton excitation of metastable triplet-state molecules, e.g., biacetyl. (3) An Information Theory analysis of multiphoton excitation and collisional deactivation has been carried out. (4) The mechanism of infrared energy deposition and multiphoton-induced reactions in chlorinated ethylene derivatives; and RRKM (statistical) model accounts for all observed behavior of the system, and a deuterium-specific reaction pathway has been identified. (5) Diffusion-enhanced laser isotope separation in N 16 O/N 18 O. (6) A technical evaluation of laser-induced chemistry and isotope separation

  7. Large-scale photochemical reactions of nanocrystalline suspensions: a promising green chemistry method.

    Science.gov (United States)

    Veerman, Marcel; Resendiz, Marino J E; Garcia-Garibay, Miguel A

    2006-06-08

    Photochemical reactions in the solid state can be scaled up from a few milligrams to 10 grams by using colloidal suspensions of a photoactive molecular crystal prepared by the solvent shift method. Pure products are recovered by filtration, and the use of H(2)O as a suspension medium makes this method a very attractive one from a green chemistry perspective. Using the photodecarbonylation of dicumyl ketone (DCK) as a test system, we show that reaction efficiencies in colloidal suspensions rival those observed in solution. [reaction: see text

  8. Photochemical reaction of Si-substituted ethynylsilanes with 1,2-ethanedithiol

    Energy Technology Data Exchange (ETDEWEB)

    Voronkov, M.G.; Brodskaya, E.I.; Kalabin, G.A.; Vlasova, N.N.; Yarosh, O.G.; Zhila, G.Y.

    1985-12-01

    The authors investigate the chief products of the photochemical reactions of Si-substituted ethynylsilanes with 1,2,-ethanedithiol at 60-70 C. It is found that the chief products are 2-triorganylsilyl-substituted 1,4-dithiacyclopentanes and 1,4-dithiacyclohexanes. On lowering the temperature to -30 C, formation of bis (triorganylsilyl)-substituted 1,4,7,10-tetrathiacyclododecanes occurs along with the abo ve-mentioned five- and six-membered heterocycles.

  9. Chemical degradation of proteins in the solid state with a focus on photochemical reactions.

    Science.gov (United States)

    Mozziconacci, Olivier; Schöneich, Christian

    2015-10-01

    Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  11. The kinetics of the photochemical reaction cycle of deuterated bacteriorhodopsin and pharaonis halorhodopsin

    International Nuclear Information System (INIS)

    Szakacs, Julianna; Lakatos, Melinda; Varo, Gy.; Ganea, Constanta

    2005-01-01

    Kinetic isotope effects in the photochemical reaction cycle of bacteriorhodopsin and pharaonis halorhodopsin were determined in H 2 O and D 2 O at normal pH, to get insight in the proton dependent steps of the transport process. All the steps of the bacteriorhodopsin photocycle at normal pH exhibited a strong isotope effect. In the case of halorhodopsin in both the chloride and nitrate transporting conditions the photocycle was not strongly affected by the deuterium exchange. In the case of chloride, a slight slow down of the photocycle could be observed. On the opposite, in the nitrate transport conditions a reverse effect is present. (author)

  12. Kinetics of the Br2-CH3CHO Photochemical Chain Reaction

    Science.gov (United States)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Time-resolved resonance fluorescence spectroscopy was employed in conjunction with laser flash photolysis of Br2 to study the kinetics of the two elementary steps in the photochemical chain reaction nBr2 + nCH3CHO + hv yields nCH3CBrO + nHBr. In the temperature range 255-400 K, the rate coefficient for the reaction Br((sup 2)P(sub 3/2)) + CH3CHO yields CH3CO + HBr is given by the Arrhenius expression k(sub 6)(T) = (1.51 +/- 0.20) x 10(exp -11) exp(-(364 +/- 41)/T)cu cm/(molecule.s). At 298 K, the reaction CH3CO + Br2 yields CH3CBrO + Br proceeds at a near gas kinetic rate, k(sub 7)(298 K) = (1.08 +/- 0.38) x 10(exp -10)cu cm/(molecule.s).

  13. Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.

    Science.gov (United States)

    Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong

    2017-06-08

    Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.

  14. Influence of a photochemical reaction on the controlled potential coulometric determination of plutonium in a mixture with uranium

    International Nuclear Information System (INIS)

    Le Duigou, Y.; Leidert, W.

    1976-01-01

    Data are provided in support of a photochemical reaction which takes place simultaneously with the electrochemical reduction of quadrivalent plutonium during the controlled potential coulometric determination of plutonium in a mixture with uranium. The interfering effect of this reaction is overcome by placing the cell in a dark environment. (orig.) [de

  15. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan [Pusan National University, Busan (Korea, Republic of); Kim, Dong Uk [Daegu National University of Education, Daegu (Korea, Republic of); Xue, Jin Ying [Harbin Normal University, Harbin (China); Mariano, Patrick S. [University of New Mexico, Albuquerque (United States)

    2010-09-15

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways.

  17. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    International Nuclear Information System (INIS)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan; Kim, Dong Uk; Xue, Jin Ying; Mariano, Patrick S.

    2010-01-01

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways

  18. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment

    Science.gov (United States)

    Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu

    2017-05-01

    Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.

  19. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.; Fabry, D.C.; Heddrich, S.; Sugiono, E.; Liauw, M.A.; Rueping, Magnus

    2018-01-01

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  20. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.

    2018-04-07

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  1. Organic photochemical reactions on solid surfaces: Enrichment and separation of isotopes. Final report. SBIR-1988, Phase 2

    International Nuclear Information System (INIS)

    Ruderman, W.; Fehlner, J.; Spencer, J.

    1988-01-01

    The objectives of the Phase II program were to: (1) investigate organic photochemical reactions on solid porous silica surfaces, (2) utilize the magnetic isotope effect to develop a (13)C enrichment process using a fluidized bed reactor, and (3) investigate the possibility of enrichment of heavier isotopes having a nuclear spin. Although researchers were able to demonstrate a continuous fluidized bed (13)C enrichment process, analysis showed that the process could not compete with low temperature distillation of CO because of the high cost of the starting material, dibenzylketone (DBK), and the difficulty of converting the photochemical decomposition products back to DBK. However, the process shows promise for the separation of heavier isotopes such as (29)Si. The photochemical studies led to the discovery that the selectivity for terminal chlorination of alkanes can be increased more than 25 fold by sorbing the alkanes on ZSM-5 zeolites in a fluidized bed. The selectivity is ascribed to the presence of interfaces within the crystals

  2. Gas-to-particle conversion in the atmospheric environment by radiation-induced and photochemical reactions

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1975-01-01

    During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained

  3. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  4. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  5. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  6. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    Science.gov (United States)

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  7. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  8. Photochemical reaction of triplet 9,10-anthraquinone with ethylbenzene in the presence of DPPH as a radical trapping agent

    International Nuclear Information System (INIS)

    Moger, G.

    1983-01-01

    DPPH was used as a scavenger of α-phenyl-ethyl radicals produced in the photochemical reaction between triplet anthraquinone (Qsup(T)) and ethylbenzene (RH 2 ) in benzene solutions. The rate constant ratio ksub(2)/ksub(-1) was determined from the measurements of the quantum yield of scavenging against (RH 2 ) and found to be (0.49+-0.015) M at 25 deg C. (author)

  9. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    Science.gov (United States)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  10. Photochemical and radiation chemistry investigations of reaction kinetics of dissolved electrons in water and ammonium-water mixtures

    International Nuclear Information System (INIS)

    Telser, T.

    1986-01-01

    In the reaction of hydrated electrons in aqueous alkaline solutions, an intermediate product is observed. In this work, this intermediate product was determined to be a long life photoactive product in double flash experiments, which reacts at a speed constant K = 1x10 9 M -1 s -1 in a reaction of the 2nd order. It is formed in a reaction of the 1st order with reference to the electron concentration (e aq - → X, 2X → H 2 ). The alkaline metal cations of the solution appear as reaction partners of the hydrated electrons. The hydrated metal atoms formed were observed in the UV spectrum as absorpton bands at 270 nm. Pulse radiolytic measurements confirm the conclusions of the photochemical experiments. (RB) [de

  11. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  12. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  13. Some experiments on the primary electron acceptor in reaction centres from Rhodopseudomanas sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Wraight, C A; Cogdell, R J; Clayton, R K

    1975-01-01

    The bacterial reaction center absorbance change at 450 nm (A-450), assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the ''true'' primary acceptor is reduced. Alternatively, the primary acceptor may act in a ''ping-pong'' fashion with respect to subsequent photoelectrons.

  14. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  15. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  16. Factors controlling the redox potential of ZnCe6 in an engineered bacterioferritin photochemical 'reaction centre'.

    Science.gov (United States)

    Mahboob, Abdullah; Vassiliev, Serguei; Poddutoori, Prashanth K; van der Est, Art; Bruce, Doug

    2013-01-01

    Photosystem II (PSII) of photosynthesis has the unique ability to photochemically oxidize water. Recently an engineered bacterioferritin photochemical 'reaction centre' (BFR-RC) using a zinc chlorin pigment (ZnCe6) in place of its native heme has been shown to photo-oxidize bound manganese ions through a tyrosine residue, thus mimicking two of the key reactions on the electron donor side of PSII. To understand the mechanism of tyrosine oxidation in BFR-RCs, and explore the possibility of water oxidation in such a system we have built an atomic-level model of the BFR-RC using ONIOM methodology. We studied the influence of axial ligands and carboxyl groups on the oxidation potential of ZnCe6 using DFT theory, and finally calculated the shift of the redox potential of ZnCe6 in the BFR-RC protein using the multi-conformational molecular mechanics-Poisson-Boltzmann approach. According to our calculations, the redox potential for the first oxidation of ZnCe6 in the BRF-RC protein is only 0.57 V, too low to oxidize tyrosine. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. We discuss the possibilities for modifying the BFR-RC to achieve this goal.

  17. Photochemical effects of sunlight.

    Science.gov (United States)

    Daniels, F

    1972-07-01

    The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.

  18. CuI-catalyzed photochemical or thermal reactions of 3-(2-azidobenzylidene)lactams. Application to the synthesis of fused indoles.

    Science.gov (United States)

    Shi, Zongjun; Ren, Yuwei; Li, Bing; Lu, Shenci; Zhang, Wei

    2010-06-14

    Photochemical or thermal reactions of 3-(2-azidobenzylidene)-lactams afforded fused indoles such as indolo[3,2-c]quinolin-6-ones, pyrido[4,3-b]indol-1-ones and other similar compounds in moderate to high yields via cyclization-ring expansion reactions. The photolytic process was much more facile than the thermal process and could be further improved by addition of CuI.

  19. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring

    NARCIS (Netherlands)

    Gomez, M.V.; Juan, Alberto; Jiménez-Márquez, Francisco; La Hoz, De Antonio; Velders, Aldrik H.

    2018-01-01

    We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet

  20. Photochemical Ring-Opening Reaction in 2(1H)-Pyrimidinones: A Matrix Isolation Study

    OpenAIRE

    Lapinski, Leszek; Rostkowska, Hanna; Khvorostov, Artem; Fausto, Rui; Nowak, Maciej J.

    2003-01-01

    Photoreactions induced by UV-B (290−320 nm) irradiation were studied for 1-methyl-2(1H)-pyrimidinone and 1-methylcytosine monomers isolated in low-temperature inert gas matrixes. A Norrish type I α-cleavage reaction leading to open-ring conjugated isocyanate was observed for 1-methyl-2(1H)-pyrimidinone. The structure of the photoproduct was identified by comparison of its experimental IR spectrum with the spectrum theoretically calculated at the DFT(B3LYP)/6-31++G(d,p) level. The main indicat...

  1. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    Science.gov (United States)

    Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.

    2013-01-01

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731

  2. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  3. Bacterial Growth on Photochemically Transformed Leachates from Aquatic and Terrestrial Primary Producers

    DEFF Research Database (Denmark)

    Anesio, A.M.; Nielsen, Jon Theil; Granéli, W.

    2000-01-01

    We measured bacterial growth on phototransformed dissolved organic matter (DOM) leached from eight different primary producers. Leachates (10 mg C liter-1) were exposed to artificial UVA + UVB radiation, or kept in darkness, for 20 h. DOM solutions were subsequently inoculated with lake water...

  4. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Science.gov (United States)

    Carraher, Jack McCaslin

    -olefins selectively. This process is made catalytic by the introduction of O2. Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu +. Longer-chain acids also yield alpha olefins as exclusive products. In the absence of continued purging with O2 to aid removal of olefin, Cu+(olefin) complexes accumulate and catalytic activity slows dramatically due to depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids. Free Oxygen Atom in Solution from 4-Benzoylpyridine N-Oxide Excited Singlet. Photolysis of 4-benzoylpyridine N-oxide (BPyO) in the presence of quenchers of the triplet excited state produces up to 41% O(3P) (as determined by generation of ethylene upon scavenging with cyclopentene). In the absence of 3BPyO* quenchers a maximum of 13% O(3P) relative to consumed BPyO is obtained. The remaining products are hydroxylated-4-benzoylpyridine and 4-benzoylpyridine. Additionally, the rate of BPyO consumption (as determined by UV-vis) decreases in the presence of 3BPyO* quenching agents. Second order rate constants for 3BPyO* quenching were determined. A mechanism for photochemical deoxygenation of BPyO is proposed on the basis of kinetic data and product distribution under various conditions. Additionally, comparisons are made between the observed intermediates and similar triplet excited states and radical anions.

  5. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  6. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations.

    Science.gov (United States)

    Boggio-Pasqua, Martial; Burmeister, Carl F; Robb, Michael A; Groenhof, Gerrit

    2012-06-14

    Organisms have evolved a wide variety of mechanisms to utilize and respond to light. In many cases, the biological response is mediated by structural changes that follow photon absorption in a protein complex. The initial step in such cases is normally the photoisomerization of a highly conjugated prosthetic group. To understand better the factors controlling the isomerization, we perform atomistic molecular dynamics simulations. In this perspective article we briefly review the key theoretical concepts of photochemical reactions and present a practical simulation scheme for simulating photochemical reactions in biomolecular systems. In our scheme, a multi-configurational quantum mechanical description is used to model the electronic rearrangement for those parts of the system that are involved in the photon absorption. For the remainder, typically consisting of the apo-protein and the solvent, a simple force field model is used. The interactions in the systems are thus computed within a hybrid quantum/classical framework. Forces are calculated on-the-fly, and a diabatic surface hopping procedure is used to model the excited-state decay. To demonstrate how this method is used we review our studies on photoactivation of the photoactive yellow protein, a bacterial photoreceptor. We will show what information can be obtained from the simulations, and, by comparing to recent experimental findings, what the limitations of our simulations are.

  7. Integrating Chlorophyll fapar and Nadir Photochemical Reflectance Index from EO-1/Hyperion to Predict Cornfield Daily Gross Primary Production

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian

    2016-01-01

    The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16

  8. Reaction of photochemical resists used in screen printing under the influence of digitally modulated ultra violet light

    Science.gov (United States)

    Gmuender, T.

    2017-02-01

    Different chemical photo-reactive emulsions are used in screen printing for stencil production. Depending on the bandwidth, optical power and depth of field from the optical system, the reaction / exposure speed has a diverse value. In this paper, the emulsions get categorized and validated in a first step. After that a mathematical model gets developed and adapted due to heuristic experience to estimate the exposure speed under the influence of digitally modulated ultra violet (UV) light. The main intention is to use the technical specifications (intended wavelength, exposure time, distance to the stencil, electrical power, stencil configuration) in the emulsion data sheet primary written down with an uncertainty factor for the end user operating with large projector arc lamps and photo films. These five parameters are the inputs for a mathematical formula which gives as an output the exposure speed for the Computer to Screen (CTS) machine calculated for each emulsion / stencil setup. The importance of this work relies in the possibility to rate with just a few boundaries the performance and capacity of an exposure system used in screen printing instead of processing a long test series for each emulsion / stencil configuration.

  9. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    Science.gov (United States)

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  10. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack McCaslin [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  11. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    International Nuclear Information System (INIS)

    Pan Yang; Zhao Junshu; Ji Yuanyuan; Yan Lei; Yu Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3 TMB* after rapid intersystem crossing from 1 TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k q T values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k q S have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k q values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation

  12. Photochemical Reaction of 7,12-Dimethylbenz[a]anthracene (DMBA and Formation of DNA Covalent Adducts

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2005-04-01

    Full Text Available DMBA, 7,12-dimethylbenz[a]anthracene, is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a probable human carcinogen. It has been found that DMBA is phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella typhimurium strain TA102. This article tempts to explain the photochemistry and photomutagenicity mechanism. Light irradiation converts DMBA into several photoproducts including benz[a]anthracene-7,12-dione, 7-hydroxy-12-keto-7-methylbenz[a]anthracene, 7,12-epidioxy-7,12-dihydro-DMBA, 7-hydroxymethyl-12-methylbenz[a]anthracene and 12-hydroxymethyl-7-methylbenz[a]anthracene. Structures of these photoproducts have been identified by either comparison with authentic samples or by NMR/MS. At least four other photoproducts need to be assigned. Photo-irradiation of DMBA in the presence of calf thymus DNA was similarly conducted and light-induced DMBA-DNA adducts were analyzed by 32P-postlabeling/TLC, which indicates that multiple DNA adducts were formed. This indicates that formation of DNA adducts might be the source of photomutagenicity of DMBA. Metabolites obtained from the metabolism of DMBA by rat liver microsomes were reacted with calf thymus DNA and the resulting DNA adducts were analyzed by 32P-postlabeling/TLC under identical conditions. Comparison of the DNA adduct profiles indicates that the DNA adducts formed from photo-irradiation are different from the DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results suggest that photo-irradiation of DMBA can lead to genotoxicity through activation pathways different from those by microsomal metabolism of DMBA.

  13. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    El-Omar, Abdel Karim

    2013-01-01

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H 2 O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  14. Further studies of the thermal and photochemical diels-alder reactions of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with naphthalene and some substituted naphthalenes

    Science.gov (United States)

    Breton; Newton

    2000-05-19

    MeTAD thermally reacted with naphthalene (2) and methylated naphthalenes to give equilibrium mixtures of starting materials and [4 + 2] cycloadducts. Methyl substitution on the naphthalene ring generally increased both the amount of cycloadduct formed and the rate of cycloaddition relative to 2. The isolated cycloadducts were all thermally labile and quantitatively reverted to the parent naphthalene in the presence of 2,3-dimethyl-2-butene as a trap for liberated MeTAD. The rates of the cycloreversion reactions were affected by substitution patterns but not appreciably by solvent. A mechanism for the cycloaddition reaction is presented that proposes the involvement of a charge-transfer complex. Photochemically, MeTAD demonstrated lower regioselectivity in its reactions with substituted naphthalenes relative to the corresponding thermal reactions.

  15. Photochemical heavy-atom effects

    International Nuclear Information System (INIS)

    Koziar, J.C.; Cowan, D.O.

    1978-01-01

    The effects of halogenated solvents such as n-butyl chloride, n-propyl bromide, and ethyl iodide, on the photochemistry of several aromatic compounds are reviewed. Dimerization of acenaphthylene is discussed in terms of spin -orbit coupling induced by the solvents. Appropriate wave functions are given for both the solvents and the compound. Cycloaddition reactions, electrocyclic rearrangements, and photochemical cis-trans isomerization are also considered

  16. Influência do meio reacional no comportamento fotoquímico do inseticida paration etílico Influence of reaction mean in the behavior photochemical of insecticide ethyl parathion

    Directory of Open Access Journals (Sweden)

    Francismário Ferreira Santos

    2002-02-01

    Full Text Available The photodegradation of parathion in natural and dezionised waters was studied under irradiation at two different wavelengths: 280 nm and 313 nm. The influence of humic acids was evaluated. The results demonstrated that the degradation occurred only due to photochemical processes. The chemical hydrolysis and biological processes can be neglected in this case. The addition of humic acids did not increase the photodegradation rate in either water samples (natural or dezionised. In alkaline solutions the photodegradation rate was higher in dezionised water when compared to natural waters. The kinetic degradation in all experiments obeyed a first order reaction pattern.

  17. Photochemical air pollution

    International Nuclear Information System (INIS)

    Te Winkel, B.H.

    1992-01-01

    During periods of severe photochemical air pollution (smog) the industry in the Netherlands is recommended by the Dutch government to strongly reduce the emissions of air pollutants. For the electric power generating companies it is important to investigate the adequacy of this policy. The purpose of this investigation is to determine the contribution of electric power plants to photochemical air pollution and to assess the efficacy of emission reducing measures. A literature survey on the development of photochemical air pollution was carried out and modelled calculations concerning the share of the electric power plants to the photochemical air pollution were executed

  18. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 16. Supplement to Evaluation 15: Update of Key Reactions

    Science.gov (United States)

    Sander, S. P.; Friedl, R. R.; Barker, J. R.; Golden, D. M.; Kurylo, M. J.; Wine, P. H.; Abbatt, J.; Burkholder, J. B.; Kolb, C. E.; Moortgat, G. K.; hide

    2009-01-01

    This is the supplement to the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.

  19. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-11-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q{sub A} in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of {beta}-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of {beta}-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680{sup -} or Car{sup +} in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q{sub A} reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680{sup +} with consequent recombination of

  20. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of β-carotene

    International Nuclear Information System (INIS)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-01-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q A in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of β-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of β-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680 - or Car + in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q A reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680 + with consequent recombination of Car + and Chl-680 - (or Pheo

  1. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    Science.gov (United States)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  2. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  3. Photochemically Synthesized Polyimides

    Science.gov (United States)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use

  4. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  5. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  6. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  7. The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.

    Science.gov (United States)

    Montare, Alberto

    2016-12-01

    Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.

  8. Photochemical dynamics of surface oriented molecules

    International Nuclear Information System (INIS)

    Ho, W.

    1992-01-01

    The period 8/01/91-7/31/92 is the first year of a new project titled ''Photochemical Dynamics of Surface Oriented Molecules'', initiated with DOE Support. The main objective of this project is to understand the dynamics of elementary chemical reactions by studying photochemical dynamics of surface-oriented molecules. In addition, the mechanisms of photon-surface interactions need to be elucidated. The strategy is to carry out experiments to measure the translational energy distribution, as a function of the angle from the surface normal, of the photoproducts by time-of-flight (TOF) technique by varying the photon wavelength, intensity, polarization, and pulse duration. By choosing adsorbates with different bonding configuration, the effects of adsorbate orientation on surface photochemical dynamics can be studied

  9. The samarium Grignard reaction. In situ formation and reactions of primary and secondary alkylsamarium(III) reagents

    Energy Technology Data Exchange (ETDEWEB)

    Curran, D.P.; Totleben, M.J. [Univ. of Pittsburgh, PA (United States)

    1992-07-15

    This work shows that primary and secondary radicals are rapidly reduced in THF/HMPA to form primary- and secondary-alkylsamarium reagents. The primary- and secondary-radicals can be formed either by direct SmI{sup 2} reductions of primary- and secondary-halides or by a previous rapid radical cyclization. The samarium reagents have moderate stability in solution, and they react with a variety of typical electrophiles, including aldehydes and ketones. The work further shows that organosamarium intermediates can be involved in the traditional samarium Barbier reaction of aldehydes and ketones conducted in THF/HMPA. A new procedure called the {open_quotes}samarium Grignard{close_quotes} method is introduced, and it is suggested that this new procedure will have considerably more scope and generality than the samarium Barbier reaction. 37 refs., 4 tabs.

  10. Photochemical smog and plants

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T.

    1974-07-01

    Surveys of plant damage due to photochemical smog are summarized. The components of smog which appear to be responsible for plant damage include ozone and peroxyacyl nitrates. Their phytotoxic effects are much greater than those due to sulfur oxides. Damage surveys since 1970 reveal the following symptoms appearing on herbaceous plants (morning glory, cocks comb, dahlia, knotweed, petunia, chickweed, Welsh onion, spinach, Chinese cabbage, chard, taro): yellowish-white leaf discoloration, white and brown spots on matured leaves, and silvering of the lower surfaces of young leaves. Symptoms which appear on arboraceous plants such as zelkova, poplar, ginkgo, planetree, rose mallow, magnolia, pine tree, and rhododendron include early yellowing and reddening, white or brown spots, and untimely leaf-fall. The above plants are now utilized as indicator plants of photochemical smog. Surveys covering a broad area of Tokyo and three other prefectures indicate that plant damage due to photochemical smog extends to relatively unpolluted areas.

  11. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  13. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    Blesa, M.A.; Litter, M.I.

    1987-01-01

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  14. The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    BACKGROUND: The ligase chain reaction Mycobacterium tuberculosis assay uses ligase chain reaction technology to detect tuberculous DNA sequences in clinical specimens. A study was undertaken to determine its sensitivity and specificity as a primary screening tool for the detection of culture positive tuberculosis. METHODS: The study was conducted on 2420 clinical specimens (sputum, bronchoalveolar lavage fluid, pleural fluid, urine) submitted for primary screening for Mycobacterium tuberculosis to a regional medical microbiology laboratory. Specimens were tested in parallel with smear, ligase chain reaction, and culture. RESULTS: Thirty nine patients had specimens testing positive by the ligase chain reaction assay. Thirty two patients had newly diagnosed tuberculosis, one had a tuberculosis relapse, three had tuberculosis (on antituberculous therapy when tested), and three had healed tuberculosis. In the newly diagnosed group specimens were smear positive in 21 cases (66%), ligase chain reaction positive in 30 cases (94%), and culture positive in 32 cases (100%). Using a positive culture to diagnose active tuberculosis, the ligase chain reaction assay had a sensitivity of 93.9%, a specificity of 99.8%, a positive predictive value of 83.8%, and a negative predictive value of 99.9%. CONCLUSIONS: This study is the largest clinical trial to date to report the efficacy of the ligase chain reaction as a primary screening tool to detect Mycobacterium tuberculosis infection. The authors conclude that ligase chain reaction is a useful primary screening test for tuberculosis, offering speed and discrimination in the early stages of diagnosis and complementing traditional smear and culture techniques.

  15. Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.

    Science.gov (United States)

    Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

    2014-03-28

    The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

  16. The photochemical reaction of 1,1-dicyano-3-phenylbut-1-ene. Simultaneous occurrence of p-methane and di-p-methane rearrangements

    Directory of Open Access Journals (Sweden)

    Silva Francisco A. da

    1999-01-01

    Full Text Available The direct photolysis of 1,1-dicyano-3-phenylbut-1-ene (3-MDCN was investigated at room temperature in solvents of different polarities (hexane, dichloromethane and acetonitrile. Cyclopropanes arising from both the di-pi-methane and pi-methane (1,2-H migration processes were obtained as photoproducts. The structures of the products were elucidated by ¹H-NMR, GC/MS, IR and chromatography. Relative quantum yield determination and GC analysis of sequential irradiations gave evidence that: i no secondary reactions occur, even at high conversions; ii the di-pi-methane rearrangement is significantly more affected by the solvent variation than the pi-methane reaction. Photosensitization with acetophenone or acetone did not yield any observable products. The existence of the simultaneous mechanisms and the observed effects were considered as evidence of a possible differentiation between localized and delocalized excitation on the excited state surface.

  17. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light

  18. Effects of mercaptans and disulfides on photochemical and high energy radiation induced reactions. Progress report, November 1, 1974--October 31, 1975

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1975-10-01

    A chain reaction may be formulated at alkaline pH in terms of e - /sub aq/ acting as a source of - OH as a reactant and H. regenerating e - /sub aq/. This may account for radiolytic conversion of CO to formate with high G. 60 Co γ-radiolysis of alkaline aqueous acetonitrile and acetamide gave no evidence of a chain; extensive hydrolysis of methyl acetate is now attributed to non-radiolytic, normal hydrolysis. Aromatic mercaptans are found to retard photoreduction of a benzophenone by aliphatic amines, largely by hydrogen atom-transfer repair reactions. Aliphatic mercaptans accelerate photoreduction, apparently by affecting the reduction to quenching ratio in the intermediate charge-transfer complex. In photoreduction of a benzophenone by 2,3-butylene glycol at pH 3, the glycol is converted, not to 3-hydroxy-2-butanone, but to 2-butanone, and about 4 molecules of this are formed per molecule of ketone reduced. A short chain appears to be established. Mercaptan appears to accelerate the reduction of the ketone and retard the formation of 2-butanone

  19. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan Yang [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Zhao Junshu [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Ji Yuanyuan [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yan Lei [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yu Shuqin [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China)], E-mail: sqyu@ustc.edu.cn

    2006-01-05

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields {sup 3}TMB* after rapid intersystem crossing from {sup 1}TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), {alpha}-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property ({pi}-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k{sub q}{sup T} values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k{sub q}{sup S} have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k{sub q} values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation.

  20. The photochemical stability of the Venus atmosphere against UV radiation

    International Nuclear Information System (INIS)

    Mills, F.P.; Slanger, T.G.; Allen, M.

    2004-01-01

    Full text: One unresolved question regarding the Venus atmosphere is what chemical mechanism(s) stabilize its primary constituent (CO 2 ) against UV radiation. CO 2 photolyzes on the day side into CO and O after absorbing photons at 2 rather than recombining with CO to form CO 2 , and the intense night side O 2 airglow observed quantitatively supports this. CO and O 2 are photochemically stable in an otherwise pure CO 2 atmosphere so significant abundances of CO and O 2 could accumulate on Venus if no catalytic mechanism existed to speed the reformation of CO 2 . However, the observational upper limit on ground state O 2 is equivalent to 2 from CO and O 2 . Recent laboratory work verified the existence of the ClC(O)OO catalytic mechanism that has been used in photochemical models since the early 1980s. However, there are significant uncertainties in the rates for the component steps of this catalytic mechanism. An alternative mechanism for production of CO 2 that has not previously been modeled but which could be competitive with the ClCO(O)O mechanism is the reaction CO + O 2 (c 1 Σ - u ) → CO 2 + O( 1 D) or O( 1 S), Reaction (1). A range of values for Reaction (1) will be examined in model calculations to compare with observational (UV to IR) constraints and to assess under what conditions this mechanism is competitive with the ClC(O)OO catalytic mechanism. The sensitivity of the results to uncertainties in the CO 2 UV absorption cross section also will be examined

  1. Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: experiments and theory on methyl formate.

    Science.gov (United States)

    Tsai, Po-Yu; Chao, Meng-Hsuan; Kasai, Toshio; Lin, King-Chuen; Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo

    2014-02-21

    The exploration of alternative roads that open to molecules with sufficient energy to yield different products permits prediction and eventually control of the outcomes of chemical reactions. Advanced imaging techniques for monitoring laser-induced photodissociation are here combined with dynamical simulations, involving ample sets of classical trajectories generated on a quantum chemical potential energy surface. Methyl formate, HCOOCH3, is photodissociated at energies near the triple fragmentation threshold into H, CO and OCH3. Images of velocity and rotational distributions of CO exhibit signatures of alternative routes, such as those recently designated as transition-state vs. roaming-mediated. Furthermore, a demonstration of the triple fragmentation route is given, and also confirmed by H-atom product imaging and FTIR time-resolved spectra of the intermediate HCO radical. In addition, the relevance of nonadiabatic transitions promoted by a conical intersection is clarified by simulations as the privileged "reactivity funnel" of organic photochemistry, whereby the outcomes of molecular photoexcitation are delivered to electronic ground states.

  2. Photochemical Assessment Monitoring Stations (PAMS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites...

  3. Photochemical reduction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  4. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  5. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  6. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  7. Photochemical synthesis of biomolecules under anoxic conditions

    Science.gov (United States)

    Folsome, C.; Brittain, A.; Zelko, M.

    1983-01-01

    The long-wavelength UV anoxic photosynthesis of uracil, various sugars (including deoxyribose and glycoaldehyde), amino acids, and other organic photoproducts is reported. The reactions were conducted in a mixture of water, calcium carbonate, hydrazine, and formaldehyde which were subjected to 24 hr or 72 hr radiation. Product yields were greatest when the hydrazine/formaldehyde ratio was one, and when the reactant concentrations were low. These data suggest that organic products can be formed in variety from those amounts of formaldehyde and hydazine precursors which are themselves formed under anoxic UV photochemical conditions.

  8. Photochemically induced oscillations of aromatic pentazadienes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, T; Hahn, C; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Aromatic pentazadienes are used to enhance the laser induced ablation of standard polymers with low absorption in the UV. Therefore the photochemistry of substituted 1,5-diaryl-3-alkyl-1,4-pentazadiene monomers was studied with a pulsed excimer laser as irradiation source. The net photochemical reaction proceeds in an overall one-step pathway A{yields}B. Quantum yields for the laser decomposition were determined to be up to 10%. An oscillating behaviour of the absorption was found during the dark period following the irradiation. The temperature dependence of this dark reaction has been studied. An attempt to model this behaviour in terms of a non-linear coupling between heat released, heat transfer, and reaction kinetics will be described. (author) 4 figs., 4 refs.

  9. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    Baglan, R.J.; Marks, J.E.

    1981-01-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals ( 2 ) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  10. Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.

    Science.gov (United States)

    Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A

    2004-01-01

    The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.

  11. Photochemical fate of beta-blockers in NOM enriched waters

    International Nuclear Information System (INIS)

    Wang, Ling; Xu, Haomin; Cooper, William J.; Song, Weihua

    2012-01-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4–10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h −1 at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical (·OH) and singlet oxygen ( 1 ΔO 2 ), and, the direct reaction with the triplet excited state, 3 NOM ⁎ , also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with 1 ΔO 2 and ·OH were measured and accounted for 0.02–0.04% and 7.2–38.9% of their loss, respectively. These data suggest that the 3 NOM ⁎ contributed 50.6–85.4%. Experiments with various 3 NOM ⁎ quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC–MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: ► Photochemical degradation of beta-blockers in the simulated natural waters. ► Reactive Oxygen Species play a minor role in the indirect photodegradation. ► The loss of beta-blockers results from direct reaction with 3 DOM ⁎ .

  12. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  13. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    Science.gov (United States)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  14. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  15. Seasonal photochemical transformations of nitrogen species in a forest stream and lake.

    Directory of Open Access Journals (Sweden)

    Petr Porcal

    Full Text Available The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic. Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40-58 µmol L-1 decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4-5 days of natural solar insolation due to photochemical mineralization to ammonium (NH4+ and other N forms (Nx; possibly N oxides and N2. In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3- reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4+ production in winter and spring, and the maximum NO3- reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4+ concentrations in streams (doubling their terrestrial fluxes from soils and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3- fluxes by a negligible (<1% amount and had a negligible effect on the aquatic cycle of this N form.

  16. Polymerase chain reaction detection of Propionibacterium propionicus and Actinomyces radicidentis in primary and persistent endodontic infections.

    Science.gov (United States)

    Siqueira, José F; Rôças, Isabela N

    2003-08-01

    Propionibacterium propionicus and the recently described species Actinomyces radicidentis have been isolated from infections of endodontic origin; nevertheless, the possibility exists that their actual prevalence may have been underestimated by culture. The purpose of our study was to assess the occurrence of these 2 species in different types of endodontic infections by using the sensitive 16S rDNA-based nested polymerase chain reaction approach. To detect these 2 species, nested polymerase chain reaction was performed directly in samples taken from primary endodontic infections associated with asymptomatic periradicular lesions, acute apical periodontitis, or acute periradicular abscesses and in samples from patients in whom endodontic therapy had failed. DNA was extracted from the samples and initially amplified by using universal 16S rDNA primers. In the second round of amplification, the first polymerase chain reaction products were used to detect a specific 16S rDNA fragment of either P propionicus or A radicidentis. P propionicus was detected in 6/21 (29%) root canal samples from teeth with chronic periradicular lesions, in 5/10 (50%) cases diagnosed as acute apical periodontitis, and in 7/19 (37%) pus samples aspirated from acute periradicular abscesses. Overall, this species was found in 18/50 (36%) samples taken from primary endodontic infections. Of the root canal samples obtained from root-filled teeth with chronic periradicular lesions, P propionicus was detected in 7/12 (58%) cases. A radicidentis was detected in 1/21 (5%) root canal samples from teeth with chronic periradicular lesions and in 1/10 (10%) cases of acute apical periodontitis. No pus sample yielded this species. In general, A radicidentis was detected in 2/50 (4%) samples taken from primary endodontic infections and in 1/12 (8%) root canal samples taken from patients in whom endodontic treatment had failed. P propionicus was found in a relatively large number of patients with primary and

  17. [Adverse reactions to drugs reported by the primary care physicians of Andalusia. Analysis of underreporting].

    Science.gov (United States)

    Torelló Iserte, J; Castillo Ferrando, J R; Laínez, M M; García Morillas, M; Arias González, A

    1994-04-15

    To discover the sort of adverse reactions to medication (ARM) notified by Primary Care doctors and identify the under-notification of those cases having special clinical-epidemiological interest. Retrospective study in which 2,597 ARM corresponding to 1,467 Yellow Cards (YC) were analysed. These were notified by Primary Care doctors to the Centro Andaluz de Farmacovigilancia (Andalusian Drug-watch centre) during the period from 1/6/90 to 31/12/92. To assess the seriousness of the ARM, their terminological classification and imputability, the criteria used in the WHO's international "Yellow Card" programme of spontaneous notification were followed. 77.2% of all notifications were from Primary Care, of which 7.4% were of special interest due to their serious or novel character. However an undernotification of serious and well-known ARM was detected, such as digestive haemorrhages (1.07/10(6) inhibitants per year), anaphylactic shock (0.34/10(6) inhab/year), agranulocytosis (0.23/10(6) inhab/year) and aplastic anaemia (0.05/10(6) inhab/year), among others. Most of the main under-notified ARM are generated in the community but treated in hospital Casualty departments. Therefore it would be useful to develop specific Drug-watch programmes in the hospitals themselves.

  18. Photochemical degradation of alachlor in water

    Directory of Open Access Journals (Sweden)

    Tajana Đurkić

    2017-01-01

    Full Text Available This study investigates the photochemical degradation of alachlor, a chloroacetanilide herbicide. All experiments were conducted in ultra-pure deionized water (ASTM Type I quality using direct ultraviolet (UV photolysis and the UV/H2O2 advanced oxidation process. The direct UV photolysis and UV/H2O2 experiments were conducted in a commercial photochemical reactor with a quartz reaction vessel equipped with a 253.7 nm UV low pressure mercury lamp (Philips TUV 16 W. The experimental results demonstrate that UV photolysis was very effective for alachlor degradation (up to 97% removal using a high UV fluence of 4200 mJ/cm2. The UV/H2O2 process promoted alachlor degradation compared to UV photolysis alone, with a high degree of decomposition (97% achieved at a significantly lower UV fluence of 600 mJ/cm2 when combined with 1 mg H2O2/L. The application of UV photolysis alone with a UV fluence of 600 mJ/cm2 gave a negligible 4% alachlor degradation. The photo degradation of alachlor, in both direct UV photolysis and the UV/H2O2 process, followed pseudo first-order kinetics. The degradation rate constant was about 6 times higher for the UV/H2O2 process than for UV photolysis alone.

  19. A Tool Measuring Remaining Thickness of Notched Acoustic Cavities in Primary Reaction Control Thruster NDI Standards

    Science.gov (United States)

    Sun, Yushi; Sun, Changhong; Zhu, Harry; Wincheski, Buzz

    2006-01-01

    Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria.

  20. Study of the photochemical isomerization of ergosterol

    International Nuclear Information System (INIS)

    Mermet-Bouvier, Rene

    1972-01-01

    The photochemical reaction scheme of Ergosterol-Vitamin D 2 was studied. The schemes proposed in published literature are described together with earlier methods used for the analysis and determination. The method used is then discussed. In the first part, the factors concerning the changes occurring in molecular systems exposed to radiation, and the formalism used, are examined. Investigations of linear molecular systems and their applications to the reaction scheme of Ergosterol-Vitamin D 2 are discussed. The properties which enable the last three reaction schemes proposed in the literature to be distinguished are described. In the second part, the experimental analytical methods and the determinations made of the different isomers formed are presented. Chromatographic techniques (thin films, columns, gaseous phase) suitable for separating the various isomeric species are used. The existence of 8 isomers was established as well as a transformation occurring in one of them. The ultraviolet and infrared spectra were obtained. A reaction scheme is proposed (in which all the quantum yield values are given) from comparisons between the calculated and experimental values of the eigenvalue of the absolute minimum value λ m and the eigenvector corresponding to V m . (author) [fr

  1. International conference on the photochemical conversion and storage of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, M.Z.

    1977-01-31

    Abstracts are given for the eight formal lectures and the contributed papers from delegates which were presented in the form of posters. There were seven sessions divided by subject as follows: (1) photochemistry, (2) electron transfer mechanisms in photochemical energy conversion processes, (3) photoelectrolysis, (4) photogalvanics, (5) photochemical production of fuels in homogeneous solutions, (6) membranes for photosynthesis reactions, and (7) non-biological systems for organic molecular energy storage. (WHK)

  2. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  3. Isotopic yields and kinetic energies of primary residues in 1 A GeV 208Pb + p reactions

    International Nuclear Information System (INIS)

    Enqvist, T.; Wlazlo, W.; Armbruster, P.

    2000-09-01

    The production of primary residual nuclei in the reaction 1 A GeV 208 Pb on proton has been studied by measuring isotopic distributions for all elements from titanium (Z=22) to lead (Z=82). Kinematical properties of the residues were also determined and used to disentangle the relevant reaction mechanisms, spallation (projectile fragmentation) and fission. The fragment separator FRS at GSI, Darmstadt, was used to separate and identify the reaction products. The measured production cross sections are highly relevant for the design of accelerator-driven subcritical reactors and for the planning of future radioactive-beam facilities. (orig.)

  4. Photochemically induced emission tuning of conductive polumers used in OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M [NCSR ' Demokritos' , Institute of Microelectronics, POB 60228, 153 10 Agia Paraskevi, Attiki (Greece); Pistolis, G [Institute of Physical Chemistry, NCSR ' Demokritos' Athens 153 10 (Greece); Argitis, P [NCSR ' Demokritos' , Institute of Microelectronics, POB 60228, 153 10 Agia Paraskevi, Attiki (Greece)

    2005-01-01

    The present work focuses on the use of novel patterning technology schemes for the fabrication of OLED-based displays and in particular on the definition of two colour emitting pixels in one polymeric conducting layer. The approach adopted to this end is based on photochemically induced emition tuning. On the basis of this approach a novel photolithographic patterning technique was developed, aiming at the considerable simplification of the display fabrication process and on the performance improvement. We prepared electroluminescent devices that are emitting blue colour ({lambda}{sub max} 413 nm) with a turnon voltage about 12-15 V. In other devices we introduce a dispersed dye (1-[4-(dimethylamino)phenyl]-6-phenylhexatriene) and a series of photoacid generators (onium salts) in the polymeric layer and, by using an appropriate photochemical transformation through a photomask in a single layer, we were able to change the colour to desirable direction, since the parent compound and its photochemical product have distinguishable luminescence spectra (green and blue colour respectively). We were able to produce two of the three primary colours in a single layer of a conductive polymer by using a photochemical transformation based on photoacid induced emission change. A series of photoacid generators were evaluated.

  5. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  6. Expression of primary emotions and defence and protective reactions among deaf adolescents

    Directory of Open Access Journals (Sweden)

    Maša Černelič Bizjak

    2007-11-01

    Full Text Available The study examined the differences in defense, protective reactions, and expression of primary emotions between deaf or partially hearing impaired adolescents and their peers with normal hearing. Participants in the two groups were assessed by means of The Profile Emotions, The Life Style Index, and Non-verbal Scale of Suffering. Deaf adolescents tended more towards uncontrolled and oppositional behaviour, and had a weaker sense of self-protection and deprivation. Moreover, their defense mechanisms (intellectualization, projection and negation were more intensively expressed. A higher level of defense mechanisms of intellectualization was observed in hearing adolescents. On the basis of the obtained results and analyses we may conclude that deaf adolescents demonstrated some characteristics of lower level of adjustment: negative emotional responses, lower degree of control (more uncontrolled and oppositional behaviour, weakened sense of self-protection and several simple, evolutionary more primitive defense mechanisms (excluding intellectualization. Our interpretation also takes into account that adolescents need to develop a new adjustment system as the old one ceased to function.

  7. IR laser induced reactions: temperature distributions and detection of primary products

    International Nuclear Information System (INIS)

    Bachmann, F.

    1981-12-01

    The products of laser-driven pyrolysis in the gas phase often differ drastically from those of conventional pyrolysis. In this work some reasons for this behaviour are considered. First, temperature distributions in cylindrical cells, filled with SF 6 at low pressure and heated by cw CO 2 laser radiation, are calculated by a simple model. The influence of convection is not taken into account. Comparison of theoretical prediction and corresponding experiments included the temperature-dependent absorption cross section. In the second part we describe a molecular-beam sampling system for real time monitoring of primary products in laser-driven reactions. With this system initial tests were made in nonreacting SF 6 /rare-gas mixtures. The influence of thermal diffusion was indicated by changes in concentration when the laser was switched on and off. A theoretical treatment is given solving the time-dependent heat-conduction and diffusion equation numerically. As an example for reacting systems, the laser-driven pyrolysis of methanol with SF 6 as an absorber was studied. (orig./HT)

  8. Photochemical fate of beta-blockers in NOM enriched waters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Xu, Haomin; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song, Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-06-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4-10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h{sup -1} at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical ({center_dot}OH) and singlet oxygen ({sup 1}{Delta}O{sub 2}), and, the direct reaction with the triplet excited state, {sup 3}NOM{sup Low-Asterisk }, also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with {sup 1}{Delta}O{sub 2} and {center_dot}OH were measured and accounted for 0.02-0.04% and 7.2-38.9% of their loss, respectively. These data suggest that the {sup 3}NOM{sup Low-Asterisk} contributed 50.6-85.4%. Experiments with various {sup 3}NOM{sup Low-Asterisk} quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC-MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: Black-Right-Pointing-Pointer Photochemical degradation of beta-blockers in the simulated natural waters. Black-Right-Pointing-Pointer Reactive Oxygen Species play a minor role in the indirect photodegradation. Black-Right-Pointing-Pointer The loss of beta-blockers results from direct reaction with {sup 3}DOM{sup Low-Asterisk }.

  9. The 6th Grade Primary History Book and the Reactions of the Greek and Cypriot Educational Communities and Societies

    Science.gov (United States)

    Kimitris, Petros N.

    2017-01-01

    The present study was designed to explore the role of Rebousi et al's primary 6th grade history school book in evaluating the experience of a nation but also to examine the causes behind the reactions of political parties, historians and the wider public. History books and politics have very deep roots that reflect on old responsibilities,…

  10. Leukemoid reaction, a rare manifestation of autoimmune hemolytic anemia in a case of small duct primary sclerosing cholangitis.

    Science.gov (United States)

    Salagre, Kaustubh D; Sahay, Ravindra Nath; Patil, Anuja; Pati, Anuja; Joshi, Amita; Shukla, Akash

    2013-10-01

    A 48 year old lady presented with jaundice and exertional breathlesness. Her laboratory reports showed anaemia, reticulocytosis, leucocytosis, elevated Lactate Dehydrogenase (LDH), alkaline phosphatase levels, hyperbillirubinemia and positive direct Coomb's test. After ruling out all the other causes of autoimmunity and hemolytic anemia, she was diagnosed as leukemoid reaction due to autoimmune hemolytic anemia with primary sclerosing cholangitis. Patient showed immediate improvement after corticosteroids.

  11. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  12. Engineering photochemical smog through convection towers

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L. [Los Alamos National Lab., NM (United States); Jacobson, M.Z.; Turco, R.P. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Los Angeles, CA (United States). Atmospheric Sciences Dept.

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  13. High performance oligomers: synthesis and photochemical properties of calix(n)arene containing various photoreactive groups

    International Nuclear Information System (INIS)

    Nishikubo, T.; Kameyama, A.

    1999-01-01

    Photoreactive calix(n)arenes containing radical polymerizable (meth)acrylate groups, and catatonically polymerizable vinyl ether, propargyl ether, oxirane and oxetane groups were synthesized by certain reactions of calix(n)arenes with the corresponding (meth)acrylic acid derivatives, vinyl ether compound, epibromohydrin and oxetane derivatives, respectively. The photochemical reaction of these calix(n)arene derivatives were also examined

  14. The chitosan - Porphyrazine hybrid materials and their photochemical properties.

    Science.gov (United States)

    Chełminiak-Dudkiewicz, Dorota; Ziegler-Borowska, Marta; Stolarska, Magdalena; Sobotta, Lukasz; Falkowski, Michal; Mielcarek, Jadwiga; Goslinski, Tomasz; Kowalonek, Jolanta; Węgrzynowska-Drzymalska, Katarzyna; Kaczmarek, Halina

    2018-04-01

    Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  16. Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden.

    Science.gov (United States)

    Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide

    2018-02-01

    Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Photochemical degradation of PCBs in snow.

    Science.gov (United States)

    Matykiewiczová, Nina; Klánová, Jana; Klán, Petr

    2007-12-15

    This work represents the first laboratory study known to the authors describing photochemical behavior of persistent organic pollutants in snow at environmentally relevant concentrations. The snow samples were prepared by shock freezing of the corresponding aqueous solutions in liquid nitrogen and were UV-irradiated in a photochemical cold chamber reactor at -25 degrees C, in which simultaneous monitoring of snow-air exchange processeswas also possible. The main photodegradation pathway of two model snow contaminants, PCB-7 and PCB-153 (c approximately 100 ng kg(-1)), was found to be reductive dehalogenation. Possible involvement of the water molecules of snow in this reaction has been excluded by performing the photolyses in D2O snow. Instead, trace amounts of volatile organic compounds have been proposed to be the major source of hydrogen atom in the reduction, and this hypothesis was confirmed by the experiments with deuterated organic cocontaminants, such as d6-ethanol or d8-tetrahydrofuran. It is argued that bimolecular photoreduction of PCBs was more efficient or feasible than any other phototransformations under the experimental conditions used, including the coupling reactions. The photodegradation of PCBs, however, competed with a desorption process responsible for the pollutant loss from the snow samples, especially in case of lower molecular-mass congeners. Organic compounds, apparently largely located or photoproduced on the surface of snow crystals, had a predisposition to be released to the air but, at the same time, to react with other species in the gas phase. It is concluded that physicochemical properties of the contaminants and trace co-contaminants, their location and local concentrations in the matrix, and the wavelength and intensity of radiation are the most important factors in the evaluation of organic contaminants' lifetime in snow. Based on the results, it has been estimated that the average lifetime of PCBs in surface snow, connected

  18. Quadrupole type mass spectrometric study of the abstraction reaction between hydrogen atoms and ethane.

    Science.gov (United States)

    Bayrakçeken, Fuat

    2008-02-01

    The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.

  19. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China

    Science.gov (United States)

    Wang, Chuan; Huang, Xiao-Feng; Han, Yu; Zhu, Bo; He, Ling-Yan

    2017-11-01

    Formaldehyde (HCHO) is an important intermediate in tropospheric photochemistry. However, study of its evolution characteristics under heavy pollution conditions in China is limited, especially for high temporal resolutions, making it difficult to analyze its sources and environmental impacts. In this study, ambient levels of HCHO were monitored using a proton-transfer reaction mass spectrometer at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter in 2016. The highest averaged HCHO concentrations were observed in autumn (5.1 ± 3.1 ppbv) and summer (5.0 ± 4.4 ppbv), followed by winter (4.2 ± 2.2 ppbv) and spring (3.4 ± 1.6 ppbv). The daily maximum of HCHO occurs in the early afternoon and shows good correlations with O3 and the secondary organic aerosol tracer during the day, revealing close relationships between ambient HCHO and secondary formations in Shenzhen, especially in summer and autumn. The daytime HCHO is estimated to be the major contributor to O3 formation and OH radical production, indicating that HCHO plays a key role in the urban atmospheric photochemical reactions. Anthropogenic secondary formation was calculated to be the dominant source of HCHO using a photochemical age-based parameterization method, with an average proportion of 39%. The contributions of biogenic sources in summer (41%) and autumn (39%) are much higher than those in spring (26%) and winter (28%), while the contributions of anthropogenic primary sources in spring (20%) and winter (18%) are twice those in summer (9%) and autumn (9%).

  20. Gravitropic reaction of primary seminal roots of Zea mays L. influenced by temperature and soil water potential.

    Science.gov (United States)

    Nakamoto, T

    1995-03-01

    The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.

  1. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  2. Potato cv. Romano reaction to primary and secondary infection with potato necrotic strain Y virus (PVYNTN

    Directory of Open Access Journals (Sweden)

    Drago Milošević

    2015-01-01

    Full Text Available Primary and secondary infections with PVYNTN were investigated on forty plants of the potato cv. Romano inoculated in a greenhouse in Serbia in 2012 and 2013. PVY isolates were collected from the potato growing region of Čačak and identified by ELISA and RT-PCR methods. The sequence of the Serbian isolate 3D (Acc. No. KJ946936 showed 100% match with seven PVY isolates deposited in GenBank and described as NTN. A significant difference was detected between PVYNTN symptoms exibited on leaves of the cv. Romano under primary and secondary infections. The findings are significant because they are based on symptoms observed, so that it is clear that there are two distinct types of infection: primary and secondary. Symptoms of primary and secondary infection were the same on potato tubers and had the form of necrotic rings.

  3. Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry.

    Directory of Open Access Journals (Sweden)

    Juan Yang

    Full Text Available Catechol chemistry is used as a crosslinking tool abundantly in both natural organisms (e.g. mussels, sandcastle worms and synthetic systems to achieve the desired mechanical properties. Despite this abundance and success, the crosslinking chemistry is still poorly understood. In this study, to simplify the system, yet to capture the essential chemistry, model compounds 4-methyl catechol and propylamine are used. The reaction of 4-methyl catechol (2 mM with propylamine (6 mM is carried out in the presence of NaIO4 (2 mM in 10 mM Na2CO3 aqueous solution. A variety of spectroscopic/spectrometric and chromatographic methods such as 1H NMR, LC-MS, and UV-VIS are used to track the reaction and identify the products/intermediates. It is found that the crosslinking chemistry of a catechol and an amine is both fast and complicated. Within five minutes, more than 60 products are formed. These products encompass 19 different masses ranging from molecular weight of 179 to 704. By combining time-dependent data, it is inferred that the dominant reaction pathways: the majority is formed via aryloxyl-phenol coupling and Michael-type addition, whereas a small fraction of products is formed via Schiff base reactions.

  4. Mechanism of the Primary Charge Transfer Reaction in the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M; Schulten, Klaus; Solov'yov, Ilia A

    2016-01-01

    , the quinol-protein interaction, which initiates the Q-cycle, has not yet been completely described. Furthermore, the initial charge transfer reactions of the Q-cycle lack a physical description. The present investigation utilizes classical molecular dynamics simulations in tandem with quantum density...

  5. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  6. Southern Africa - a giant natural photochemical reactor

    CSIR Research Space (South Africa)

    Diab, RD

    2006-04-01

    Full Text Available photochemical reactor’ are abundant sources of ozone precursors (biomass burning, lightning, biogenic and urban-industrial sources), and meteorological conditions that promote anticyclonic recirculation on a subhemispheric scale....

  7. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  8. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  9. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...

    Science.gov (United States)

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information

  10. Highly efficient destruction of squamous carcinoma cells of the head and neck by photochemical internalization of Ranpirnase.

    Science.gov (United States)

    Liebers, Nora; Holland-Letz, Tim; Welschof, Mona; Høgset, Anders; Jäger, Dirk; Arndt, Michaela A E; Krauss, Jürgen

    2017-11-01

    Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck. Cell viability was measured in 8 primary human cell lines of squamous cell carcinoma of the head and neck after treatment with Ranpirnase and Photochemical Internalization. For Photochemical Internalization the photosensitizer disulfonated tetraphenyl porphine was incubated with tumor cells followed by exposure to blue light (435 nm). Our study demonstrates significant enhancement of antitumor activity of Ranpirnase by Photochemical Internalization. Treatment responses were heterogeneous between the primary cancer cell lines. Combining Photochemical Internalization with Ranpirnase resulted in 4.6 to 1,940-fold increased cytotoxicity when compared with the ribonuclease alone (P Internalization in squamous cell carcinoma of the head and neck.

  11. Providing care to relatives with mental illness: reactions and distress among primary informal caregivers.

    Science.gov (United States)

    Chang, Sherilyn; Zhang, Yunjue; Jeyagurunathan, Anitha; Lau, Ying Wen; Sagayadevan, Vathsala; Chong, Siow Ann; Subramaniam, Mythily

    2016-03-25

    The responsibility of caring for relatives with mental illness often falls on the family members. It has been reported that the reactions to or consequences of providing care are what rendered the role of a caregiver challenging and hence a source of distress. This present study thus aimed to identify socio-demographic correlates of caregiving experiences using the Caregiver Reaction Assessment (CRA) and to examine the associations between reactions to caregiving and psychological distress. A total of 350 caregivers with relatives seeking outpatient care at a tertiary psychiatric hospital were recruited for this study. Distress among caregivers was assessed using the Patient Health Questionnaire (PHQ-9). The CRA was administered to measure reactions from caregiving in four domains including impact on schedule and health (ISH), impact on finance (IF), lack of family support (LFS) and caregiver esteem (CE). Participants also completed a questionnaire that asked for their socio-demographic information. Multivariable linear regression analysis was first used with domains of CRA as outcome variables and socio-demographic variables as predictors in the models. The next set of multivariable linear regression analysis tested for the association between CRA domains and distress with CRA domain scores as outcome variables and PHQ-9 score as predictor, controlling for socio-demographic variables. Socio-demographic correlates of CRA domains identified were age, education, employment, income and ethnicity. Domain scores of CRA were significantly associated with PHQ-9 score even after controlling for socio-demographic variables. A higher distress score was associated with greater impact felt in the domain of ISH (β = 0.080, P social care support in these domains may help to address caregiver distress.

  12. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  13. The study on laser photochemical process of Diazonaphthoquinon-Cresol system

    International Nuclear Information System (INIS)

    Wei Jie; Huang Yu Li; Wang Wenke

    1999-01-01

    The kinetic process of laser photochemical reaction of diazonaphthoquinon-cresol system was studied by using laser spectrophotofluorimetry and laser induced fluorescence attenuation method. The nonlinear relationship between photodecomposition rate of the sensitizer and laser power, exposure time and concentration of solutions was discussed in detail

  14. Exploration and exploitation of homologous series of bis(acrylamidoalkanes containing pyridyl and phenyl groups: β-sheet versus two-dimensional layers in solid-state photochemical [2 + 2] reactions

    Directory of Open Access Journals (Sweden)

    Mousumi Garai

    2015-09-01

    Full Text Available The homologous series of phenyl and pyridyl substituted bis(acrylamidoalkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N—H...Npy versus N—H...O=C and network geometries. In this series, a greater tendency towards the formation of N—H...O hydrogen bonds (β-sheets and two-dimensional networks over N—H...N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N—H...O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.

  15. Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    Science.gov (United States)

    Taylor, E. C.; Davis, J. D.

    1978-01-01

    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.

  16. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  17. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  18. Formation of new halogenothiocarbonylsulfenyl halides, XC(S)SY, through photochemical matrix reactions starting from CS2 and a dihalogen molecule XY (XY=Cl2, Br2, or BrCl).

    Science.gov (United States)

    Tobón, Yeny A; Romano, Rosana M; Védova, Carlos O Della; Downs, Anthony J

    2007-05-28

    Isolation of a dihalogen molecule XY (XY=Cl2, Br2, or BrCl) with CS2 in a solid Ar matrix at about 15 K leads, by broad-band UV-vis photolysis (200reaction pathways accessed by matrix photolysis.

  19. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    Science.gov (United States)

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-07

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation.

  20. A Universal Protocol for Photochemical Covalent Immobilization of Intact Carbohydrates for the Preparation of Carbohydrate Microarrays

    Science.gov (United States)

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2010-01-01

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274

  1. Simulations of photochemical smog formation in complex urban areas

    Science.gov (United States)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  2. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species evaluation for atmospheric chemistry

    International Nuclear Information System (INIS)

    Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F. Jr.; Kerr, J.A.; Rossi, M.J.; Troe, J.

    2000-01-01

    This paper updates and extends part of the previous data base of critical evaluations of the kinetics and photochemistry of gas-phase chemical reactions of neutral species involved in atmospheric chemistry [J. Phys. Chem. Ref. Data 9, 295 (1980); 11, 327 (1982); 13, 1259 (1984); 18, 881 (1989); 21, 1125 (1992); 26, 521 (1997); 26, 1329 (1997); 28, 191 (1999)]. The present evaluation is limited to the inorganic halogen family of atmospherically important reactions. The work has been carried out by the authors under the auspices of the IUPAC Subcommittee on Gas Phase Kinetic Data Evaluation for Atmospheric Chemistry. Data sheets have been prepared for 102 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each thermal reaction, a preferred value of the rate coefficient at 298 K is given together with a temperature dependence where possible. The selection of the preferred value is discussed and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. For each photochemical reaction the data sheets list the preferred values of the photoabsorption cross sections and the quantum yields of the photochemical reactions together with comments on how they were selected. The data sheets are intended to provide the basic physical chemical data needed as input for calculations that model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available values of enthalpies of formation of the reactant and product species

  3. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    Science.gov (United States)

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  4. Summary Report of the Technical Meeting on Primary Radiation Damage: From Nuclear Reaction to Point Defects

    International Nuclear Information System (INIS)

    Stoller, R. E.; Nordlund, K.; Simakov, S.P.

    2012-11-01

    The Meeting was convened to bring together the experts from both the nuclear data and materials research communities because of their common objective of accurately characterizing irradiation environments and resulting material damage. The meeting demonstrated that significant uncertainties remain regarding both the status of nuclear data and the use of these data by the materials modeling community to determine the primary damage state obtained in irradiated materials. At the conclusion of the meeting, the participants agreed that there is clear motivation to initiate a CRP that engages participants from the nuclear data and materials research communities. The overall objective of this CRP would be to determine the best possible parameter (or a few parameters) for correlating damage from irradiation facilities with very different particle types and energy spectra, including fission and fusion reactors, charged particle accelerators, and spallation irradiation facilities. Regarding progress achieved during the last decade in the atomistic simulation of primary defects in crystalline materials, one of the essential and quantitative outcomes from the CRP is expected to be cross sections for point defects left after recoil cascade quenching. (author)

  5. Photochemical reduction of CO{sub 2} to fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. [National Renewable Energy Lab., Golden, CO (United States); Eisenberg, R. [Univ. of Rochester, NY (United States); Fujita, E. [Brookhaven National Lab., Upton, NY (United States)

    1996-09-01

    Photochemical reduction of CO{sub 2} represents a potentially useful approach to developing a sustainable source of carbon-based chemicals, fuels, and materials. In this report the present status of photochemical CO{sub 2} reduction is assessed, areas that need to be better understood for advancement are identified, and approaches to overcoming barriers are suggested. Because of the interdisciplinary nature of this field, assessments of three closely interrelated areas are given including integrated photochemical systems for catalytic CO{sub 2} reduction, thermal catalytic CO{sub 2} reactions, and electrochemical CO{sub 2} reduction. The report concludes with a summary and assessment of potential impacts of this area on chemical and energy technologies.

  6. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    International Nuclear Information System (INIS)

    Ashby, C.I.H.; Myers, D.R.

    1992-01-01

    This patent describes a process for selectively photochemically etching a semiconductor material. It comprises introducing at least one impurity into at least one selected region of a semiconductor material to be etched to increase a local impurity concentration in the at least one selected region relative to an impurity concentration in regions of the semiconductor material adjacent thereto, for reducing minority carrier lifetimes within the at least one selected region relative to the adjacent regions for thereby providing a photochemical etch-inhibiting mask at the at least one selected region; and etching the semiconductor material by subjecting the surface of the semiconductor material to a carrier-driven photochemical etching reaction for selectively etching the regions of the semiconductor material adjacent the at least one selected region having the increase impurity concentration; wherein the step of introducing at least one impurity is performed so as not to produce damage to the at least one selected region before any etching is performed

  7. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    Science.gov (United States)

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  8. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation No. 12

    Science.gov (United States)

    DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1997-01-01

    This is the twelfth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  9. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher

    2015-05-05

    Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.

  10. Applying green chemistry to the photochemical route to artemisinin.

    Science.gov (United States)

    Amara, Zacharias; Bellamy, Jessica F B; Horvath, Raphael; Miller, Samuel J; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else-solvents, photocatalyst and aqueous acid-can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  11. Applying green chemistry to the photochemical route to artemisinin

    Science.gov (United States)

    Amara, Zacharias; Bellamy, Jessica F. B.; Horvath, Raphael; Miller, Samuel J.; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W.

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else—solvents, photocatalyst and aqueous acid—can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  12. Matrix isolation and theoretical study of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, Christine E. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Goldberg, Nicola [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Klein-Riffle, Evan T. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Kronberg, Jon K. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Ault, Bruce S. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States)], E-mail: bruce.ault@uc.edu

    2006-08-01

    The matrix-isolation technique has been combined with infrared spectroscopy and theoretical calculations to characterize the products of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}. For these systems, oxygen-atom transfer occurred upon visible-near ultraviolet irradiation, yielding bromoacetaldehyde and CrOCl{sub 2} in the former case and bromoacetyl bromide and CrCl{sub 2}O in the latter. For each system, the products were formed in the same matrix cage and strongly interacted to form a distinct molecular complex. No evidence was obtained for the acetyl bromide derivative in the C{sub 2}H{sub 3}Br system, indicating the occurrence of oxygen-atom attack at the less substituted carbon of vinyl bromide, nor was any evidence obtained for the formation of a possible five-membered metallocycle. Two different modes of interaction were explored computationally: {eta}{sup 1} (end-on) to the oxygen atom and {eta}{sup 2} (side-on) to the C=O bond. Theoretical calculations indicated that the {eta}{sup 1} complex of CH{sub 2}BrCHO-CrCl{sub 2}O was 13 kcal mol{sup -1} more stable than the {eta}{sup 2} complex at the B3LYP/6-311++G(d,2p) level of theory. The binding energy of the {eta}{sup 1} complex was found to be 21 kcal mol{sup -1}, compared to 8 kcal mol{sup -1} for the {eta}{sup 2} complex at this level of theory.

  13. Photochemical reduction of uranyl ion with triphenylphosphine

    International Nuclear Information System (INIS)

    Brar, A.S.; Sidhu, M.S.; Sandhu, S.S.

    1981-01-01

    Photochemical reduction of uranyl ion with triphenylphosphine has been studied in acetone-water medium in the presence of sulphuric acid at 346nm, 400nm and 434nm wavelengths. The photochemical reduction is of second order and increases with increase in hydrogen ion concentration. Absorption spectra of uranyl ion in acidic medium and uranyl ion with triphenylphosphine do not show any ground state complex formation. The value of quantum yield increases with the wavelength of the radiation increase from 346 to 434nm. Plots of reciprocal of quantum yield for the formation of U(IV) versus reciprocal [triphenylphosphine] are linear. Products characterized by UV and visible, IR and TLC show the formation of U(IV) and triphenylphosphine oxide. On the basis of above observations mechanism of the photochemical reduction has been proposed. (author)

  14. Photochemical separation and extraction device

    International Nuclear Information System (INIS)

    Wada, Yukio; Morimoto, Kyoichi.

    1998-01-01

    The present invention concerns a device for separating neptunium and plutonium from highly radioactive liquid wastes, in which valance control by irradiation of UV rays and extraction operation by using an organic solvent can be conducted simultaneously in the same reaction vessel. Namely, a step of irradiating UV rays to the liquid in the reaction vessel to control the valence of predetermined materials and a step of separating the materials by conducting solvent-extraction while stirring with a solvent are conducted simultaneously or successively. Then, facilities for the separation method can be reduced and the operation steps can be simplified. (N.H.)

  15. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  17. Ozonolysis and Subsequent Photolysis of unsaturated organic molecules: Model Systems for Photochemical Aging of Organic Aerosol Particles

    Science.gov (United States)

    Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.

    2005-12-01

    Chemical and photochemical aging of organic species adsorbed on aerosol particle surfaces is believed to have a significant effect on cloud condensation properties of atmospheric aerosols. Ozone initiated oxidation reactions of thin films of undecylenic acid and alkene-terminated self assembled monolayers (SAMs) on SiO2 surface were investigated using a combination of spectroscopic and mass spectrometric techniques. Photolysis of the oxidized film in the tropospheric actinic region (λ>290 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the enhanced photochemical activity. The presence of peroxides in the oxidized sample was confirmed by mass-spectrometric analysis and by an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is also observed. The reaction mechanism and its implications for photochemical aging of atmospheric aerosol particles will be discussed.

  18. Trace organic removal by photochemical oxidation

    International Nuclear Information System (INIS)

    Gupta, S.K. Sen; Peori, R.G.; Wickware, S.L.

    1995-02-01

    Photochemical oxidation methods can be used for the destruction of dissolved organic contaminants in most process effluent streams, including those originating from the nuclear power sector. Evaporators can be used to separate organic contaminants from the aqueous phase if they are non volatile, but a large volume of secondary waste (concentrate) is produced, and the technology is capital-intensive. This paper describes two different types of photochemical oxidation technologies used to destroy trace organics in wastewater containing oil and grease. (author). 9 refs., 4 figs

  19. Peptostreptococcus micros in primary endodontic infections as detected by 16S rDNA-based polymerase chain reaction.

    Science.gov (United States)

    Siqueira, José F; Rôças, Isabela N; Andrade, Arnaldo F B; de Uzeda, Milton

    2003-02-01

    A 16S rDNA-based polymerase chain reaction (PCR) method was used to detect Peptostreptococcus micros in primary root canal infections. Samples were collected from 50 teeth having carious lesions, necrotic pulps, and different forms of periradicular diseases. DNA extracted from the samples was amplified using the PCR assay, which yielded a specific fragment of P. micros 16S rDNA. P. micros was detected in 6 of 22 root canals associated with asymptomatic chronic periradicular lesions (27.3%), 2 of 8 teeth with acute apical periodontitis (25%), and 6 of 20 cases of acute periradicular abscess (30%). In general, P. micros was found in 14 of 50 cases (28%). There was no correlation between the presence of P. micros and the occurrence of symptoms. Findings suggested that P. micros can be involved in the pathogenesis of different forms of periradicular lesions.

  20. EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION

    Science.gov (United States)

    The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...

  1. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  2. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  3. Isotope effects in photochemical rearrangements

    International Nuclear Information System (INIS)

    Sommer, F.

    1983-01-01

    Taking anthracene resp. 9-deuteroanthracene as the initial substance, different substitution products have been prepared. The products originating by direct photolysis have been characterized and their structure has been determined. By comparing the measured kinetic isotope effect and the quantum yield of the nondeuterated and the monodeuterated fluorenes formed it could been demonstrated that the isotope effect mainly is due to the reaction rates and the influence of the deuterium substitution upon the radiationless desactivation against that is small. (HBR) [de

  4. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.

    Science.gov (United States)

    Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang

    2018-01-15

    Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The influence of aerosols on photochemical smog in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T.; Mar, B. [UNAM, Mexico, Centro de Ciencias de la Atmosfera (Mexico); Madronich, S.; Rivale, S. [National Center for Atmospheric Research, Boulder, CO (United States); Muhlia, A. [UNAM, Mexico, Inst. de Geofysica (Mexico)

    2001-04-01

    Aerosols in the Mexico City atmosphere can have a non-negligible effect on the ultraviolet radiation field and hence on the formation of photochemical smog. We used estimates of aerosol optical depths from sun photometer observations in a detailed radiative transfer model, to calculate photolysis rate coefficients (J{sub NO2}) for the key reaction NO{sub 2}+h{nu}{yields}NO+O ({lambda}<430nm). The calculated values are in good agreement with previously published measurements of J{sub NO2} at two sites in Mexico City: Palacio de Mineria (19 degrees 25'59''N, 99 degrees 07'58''W, 2233masl), and IMP (19 degrees 28'48''N, 99 degrees 11'07''W, 2277masl) and in Tres Marias, a town near Mexico City (19 degrees 03'N, 99 degrees 14'W, 2810masl). In particular, the model reproduces very well the contrast between the two urban sites and the evidently much cleaner Tres Marias site. For the measurement days, reductions in surface J{sub NO2} by 10-30% could be attributed to the presence of aerosols, with considerable uncertainty due largely to lack of detailed data on aerosol optical properties at ultraviolet wavelengths (esp. the single scattering albedo). The potential impact of such large reductions in photolysis rates on surface ozone concentrations is illustrated with a simple zero-dimensional photochemical model. (Author)

  6. Photochemical hydrogen production through solar radiation by means of the membrane principle

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This report was written by Enelbert Broda from the University of Vienna for the UNESCO-Solar-Energy-Symposium in Geneva in 1976. Nuclear experts are considering a 'hydrogen economy' where H 2 serves as a fuel to make electricity, as a chemical reactant, as a metallurgical reductant and as a source of food. Now H 2 could also be made by photolysis of water. Theoretically, a quantum of green light carries enough energy for the reaction H 2 0 = H 2 + 0.5 0 2 . With long-wave light, photolysis could be achieved by combination of 2 quanta. Yet attempts to photolyze water, in presence of sensitizers (photocatalysts), have failed. In the last analysis, this is due to re-combination of the primary, highly reactive, products of the photochemical reaction. A solution of the problem is to be found by the spatial separation of the primary production by development of suitable membranes where these products, and therefore also the stable gases H 2 and 0 2 , come out on opposite sides. The feasibility of this 'membrane principle' has been shown in Nature for 3 giga-years. Using membranes, all photosynthetic cells (photosynthetic bacteria and plants) succeed in the photo-production of a reductant (in many cases at least ferredoxin in the reduced form) with a redox potential equal to that of H 2 in neutral solution (-0.4 v). The reductant can, but need not, be used by the cells for C0 2 assimilation. In man-made technology, the reducing power would be diverted as H 2 . Here it is not suggested to use or copy living cells. Rather their operation is to be studied so that technically useful membranes for water photolysis can be constructed abiotically. The scientific and practical aspects of large-scale photolytic H 2 production are discussed. (author)

  7. Photochemical synthesis of UO2 nanoparticles

    International Nuclear Information System (INIS)

    Rath, M.C.; Keny, Sangeeta; Naik, D.B.

    2014-01-01

    UO 2 nanoparticles have been recently synthesized by us from aqueous solutions of uranyl nitrate through radiolytic method on high-energy electron beam irradiation. In this study, the synthesis of UO 2 nanoparticles through photochemical method is reported which is a complementary route to radiation chemical method

  8. Photochemical reaction monitoring by ultra-violet spectrophotometry.

    Science.gov (United States)

    Roig, B; Touraud, E; Thomas, O

    2002-11-01

    Within the framework of the monitoring of the trichloroacetylchloride (TCAC) photosynthesis, ultra-violet (UV) spectrophotometry is proposed as a simple and rapid tool allowing, in real time, the control of the process efficiency. A good correlation has been obtained between the results acquired by this alternative method and the standard gas chromatography.

  9. Synthesis of hydroxyl liquid polybutadiene by photochemical decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Moutinho, Marcus Tadeu Moura

    1995-01-01

    The synthesis of hydroxyl terminated polybutadienes (HTPB) by photochemical decomposition (λ=254 nm) of hydrogen peroxide (H 2 O 2 ) in alcoholic medium was studied. The influence of reaction time, H 2 O 2 and alcohol concentrations, type of alcohol and radiation intensity on the polymerization rate was determined. Higher polymerization rates were attained when t-butyl alcohol was used as the compatibilizing agent (19% conversion after 8 hours). The HTPBs were characterized by hydroxyl content (acetylation), functionality, IR microstructure and types of hydroxyl groups ( 1 H-NMR and 13 C-NMR), 2-vinyl cyclohexene (VCH) content and viscosity. The polymers showed molecular weights (Mn) in the range of 458 to 1,099, molecular weight distribution (Mw/Mn) in the range of 1.20 to 1.46 and functionality between 1.2 and 3.2 depending on the alcohol used. NMR results 1 H and 13 C) revealed low cis content for the polybutadienes and identified primary and secondary hydroxyl groups, depending on the alcohol employed as compatibilizing agent. The incorporation of alcohol in polymer chain ends was evidenced. The produced HTPBs presented viscosities in the range of 850 to 1,250 cP (at 25 deg C) and were VCH free. (author)

  10. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  11. Photochemical Microscale Electrophoresis Allows Fast Quantification of Biomolecule Binding.

    Science.gov (United States)

    Möller, Friederike M; Kieß, Michael; Braun, Dieter

    2016-04-27

    Intricate spatiotemporal patterns emerge when chemical reactions couple to physical transport. We induce electrophoretic transport by a confined photochemical reaction and use it to infer the binding strength of a second, biomolecular binding reaction under physiological conditions. To this end, we use the photoactive compound 2-nitrobenzaldehyde, which releases a proton upon 375 nm irradiation. The charged photoproducts locally perturb electroneutrality due to differential diffusion, giving rise to an electric potential Φ in the 100 μV range on the micrometer scale. Electrophoresis of biomolecules in this field is counterbalanced by back-diffusion within seconds. The biomolecule concentration is measured by fluorescence and settles proportionally to exp(-μ/D Φ). Typically, binding alters either the diffusion coefficient D or the electrophoretic mobility μ. Hence, the local biomolecule fluorescence directly reflects the binding state. A fit to the law of mass action reveals the dissociation constant of the binding reaction. We apply this approach to quantify the binding of the aptamer TBA15 to its protein target human-α-thrombin and to probe the hybridization of DNA. Dissociation constants in the nanomolar regime were determined and match both results in literature and in control experiments using microscale thermophoresis. As our approach is all-optical, isothermal and requires only nanoliter volumes at nanomolar concentrations, it will allow for the fast screening of biomolecule binding in low volume multiwell formats.

  12. Photochemical Production of Hydrogen from Water

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    The energy flux in sunlight is 40 000 kW per head of the world population. Theoretically much of this energy can be used to photolyze water, in presence of a sensitizer, to H2 (and 02) for a hydrogen economy. The main difficulty in a homogeneous medium is the back-reaction of the primary products. According to the 'membrane principle', the reducing and the oxidizing primary products are released on opposite sides of asymmetric membranes, and so prevented from back-reacting. In essence, this is the mechanism of the photosynthetic machinery in plants and bacteria. This therefore serves as an example in the artificial construction of suitable asymmetric, 'vectorial', membranes. Relatively small areas of photolytic collectors, e.g. in tropical deserts, could cover the energy needs of large populations through hydrogen. (author)

  13. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie; Xiao, Qian [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China)

    2017-06-15

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters. - Highlights: •Long-term EIS measurements of 316L SS in simulated PWR primary water. •Highest charge-transfer resistance and oxide film resistance in oxygenated water. •Highest electric double-layer capacitance and oxide film CPE in hydrogenated water. •Similar compositions, different shapes of oxides in deaerated/hydrogenated water. •Inner layer Cr-rich in hydrogenated/deaerated water, Ni-rich in oxygenated water.

  14. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  15. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  16. WATER DEFICIT ENSURES THE PHOTOCHEMICAL EFFICIENCY OF Copaifera langsdorffii Desf1

    Directory of Open Access Journals (Sweden)

    Angélica Lino Rodrigues

    2017-02-01

    Full Text Available ABSTRACT The intensity and frequency of drought periods has increased according to climate change predictions. The fast overcome and recovery are important adaptive features for plant species found in regions presenting water shortage periods. Copaifera langsdorffii is a neotropical species that has developed leaves presenting physiological mechanisms and morphological adaptations that allow its survival under seasonal water stress. We aimed in this work to observe substantial physiological responses for water saving and damage representative to the photochemical reaction after exposed plants to water stress and to subsequent recovery. We found in plants mechanisms to control water loss through the lower stomatal conductance, even after rehydration. It goes against the rapid recovery of leaves, indicated by the relative water content values restored to previously unstressed plants. Stomatal conductance was the only variable presenting high plasticity index. In photochemical activity, the species presented higher photochemical quenching, electron transport rate and effective quantum yield of photosystem II when they were subjected to rehydration after water stress period. Our results suggest that C. langsdorffii presented rapid rehydration and higher photochemical efficiency even after water restriction. These data demonstrate that this species can be used as a model for physiological studies due to the adjustment developed in response to different environmental schemes.

  17. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    Science.gov (United States)

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photochemical stability of electrochromic polymers and devices

    DEFF Research Database (Denmark)

    Jensen, Jacob; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    The stability of fully printed flexible organic electrochromics based on 11 different conjugated polymers is explored from the fundamental chemical degradation level to the operational device level. The photochemical stability of the electrochromic polymers (ECPs) is studied enabling an analysis ...... based on flexible barrier substrates exhibit increased stability and are indeed viable in devices such as shading elements, light management systems, displays with low switching speed requirements and signage. © 2013 The Royal Society of Chemistry....

  19. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants. Copyright 2003 Wiley-Liss, Inc.

  20. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Andrizhiyevskaya, E.G.; Dekker, J.P.; van Grondelle, R.

    2005-01-01

    We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have

  1. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  2. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.

    Science.gov (United States)

    Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R

    1979-10-30

    Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.

  3. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  4. The composition dependence of the photochemical reactivity of strontium barium titanate

    Science.gov (United States)

    Bhardwaj, Abhilasha

    The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization

  5. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of conju......Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability...... of conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....

  6. Photochemical smog incident on June 30, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Hata, S

    1973-01-01

    The first photochemical smog incident in Shizuoka prefecture (June 30, 1973) started in Hamamatsu and extended 100 km northeast as far as Fujinomiya city. This not only involved an extraordinarily large area, but the type of smog was different from that in Tokyo and Osaka. The victims were all pupils exercising at the time in the playgrounds. In Hamamatsu, 1050 children were involved and complained of eye irritation and pain, throat pain, coughs, and headaches between 2 and 3 pm, but there were no serious effects. The damages to agricultural produce were extensive and 70% of the total rice fields (1656 hectares), and 40 hectares of green scallions were affected. In Shizuoka, 716 children were affected about 5:30 pm, but in Fujinomiya, which is located further northeast, 16 children were affected about 4 pm. The movement of the damages, the locations, the extent of damages, and the direction of the wind, were puzzling in the light of the normal pattern of photochemical smogs, and the pollution sources could not be the coastal industrial area or automobile exhaust gases. Meteorological factors were similar to the usual photochemical smog conditions, but the locations of the cities involved and the wind direction from the sea suggested that the pollution source was the Pacific Ocean. Since the wind above 1000 m was northeast, circulation of industrial pollutants by the sea breeze is a possible explanation. The maximum concentration of oxidants was about 0.2 ppm in all areas except for Hamamatsu, where it was a little over 0.2 ppm.

  7. Photochemical generation of highly destabilized vinyl cations: the effects of alpha- and beta-trifluoromethyl versus alpha- and beta-methyl substituents

    NARCIS (Netherlands)

    Alem, van K.; Belder, G.; Lodder, G.; Zuilhof, H.

    2005-01-01

    The photochemical reactions in methanol of the vinylic halides 1-4, halostyrenes with a methyl or a trifluoromethyl substituent at the - or -position, have been investigated quantitatively. Next to E/Z isomerization, the reactions are formation of vinyl radicals, leading to reductive dehalogenation

  8. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  9. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    Science.gov (United States)

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  10. Investigation of the photochemical changes of chlorogenic acids induced by ultraviolet light in model systems and in agricultural practice with Stevia rebaudiana cultivation as an example.

    Science.gov (United States)

    Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai

    2015-04-08

    Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.

  11. Implications of imprecision in kinetic rate data for photochemical model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R W; Thompson, A M [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center

    1998-12-31

    Evaluation of uncertainties in photochemical model calculations is of great importance to scientists performing assessment modeling. A major source of uncertainty is the measurement imprecision inherent in photochemical reaction rate data that modelers rely on. A rigorous method of evaluating the impact of data imprecision on computational uncertainty is the study of error propagation using Monte Carlo techniques. There are two problems with the current implementation of the Monte Carlo method. First, there is no satisfactory way of accounting for the variation of imprecision with temperature in 1, 2, or 3D models; second, due to its computational expense, it is impractical in 3D model studies. These difficulties are discussed. (author) 4 refs.

  12. Implications of imprecision in kinetic rate data for photochemical model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.W.; Thompson, A.M. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center

    1997-12-31

    Evaluation of uncertainties in photochemical model calculations is of great importance to scientists performing assessment modeling. A major source of uncertainty is the measurement imprecision inherent in photochemical reaction rate data that modelers rely on. A rigorous method of evaluating the impact of data imprecision on computational uncertainty is the study of error propagation using Monte Carlo techniques. There are two problems with the current implementation of the Monte Carlo method. First, there is no satisfactory way of accounting for the variation of imprecision with temperature in 1, 2, or 3D models; second, due to its computational expense, it is impractical in 3D model studies. These difficulties are discussed. (author) 4 refs.

  13. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  14. Energetic change of the primary quinone in photosynthetic reaction center. Mutation, delayed fluorescence and model calculations (Theses of the Ph.D. dissertation)

    International Nuclear Information System (INIS)

    Rinyu, L.

    2007-01-01

    Complete text of publication follows. Photosynthesis is one of the basic metabolic processes of living organisms. Photosynthesizing species (bacteria, algae and higher class plants) convert the energy of light into other forms of free energy (redox potential, electro- chemical potential of ions and protons and phosphate-potential) which are directly suit- able either to cover the energy need of the vital processes of the cell or to storage. In reaction center (RC) protein of photo- synthetic bacteria, electron transfer is initiated upon light excitation from the excited bacteriochlorophyll dimer (P) to the secondary quinone (Q B ) via bacteriopheophytine (Bph) and the primary quinone (Q A ). In Rhodobacter sphaeroides purple bacteria, both quinones are ubiquinone-10, but due to the different protein environment, their electrochemical properties is highly different. Whereas Q A makes one-electron chemistry, Q B can be doubly reduced to form hydroquinone, Q B H 2 by uptake of two protons. Q B H 2 subsequently leaves the RC and is replaced by an oxidized quinone from to membrane pool. The semiquinones are important intermediates in the quinone reduction cycle of the RC. The redox midpoint potentials of the Q/Q - redox pairs (E m ) are also different: the Q A /Q A - has 60 mV more negative potential than the Q B /Q B - couple (pH 8) to make the (interquinone) electron transfer favorable. For fine tuning of the midpoint redox potentials of the quinones, the protein assures appropriate steric and electrostatic environment. The most important aim of this study was the design and production of reaction center mutants in the binding pocket of the primary quinone to investigate the effect of the amino acids of the protein and lipids of the membrane on the thermodynamics of the primary quinone. The first priority was the determination of the absolute free energy gap between the P* and the P + Q A - states in wild type and mutant reaction centers by comparison of the

  15. Trends in photochemical smog in the Cape Peninsula and the ...

    African Journals Online (AJOL)

    There has been growing public concern over reports of increasing air pollution in the Cape Peninsula. Attention has been focused on the 'brown haze' and on photochemical smog. Because of deficiencies in the monitoring equipment, information on trends in photochemical smog levels over the past decade is limited.

  16. The Type 1 Homodimeric Reaction Center in Heliobacterium modesticaldum

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-01-15

    In this funding period, we (i) found that strong illumination of Heliobacterium modesticaldum cells results in saturation of the electron acceptor pool, leading to reduction of the acceptor side and the creation of a back-reacting state that gives rise to delayed fluorescence; (ii) noted that when the FX cluster is reduced in purified reaction centers, no electron transfer occurs beyond A0, even though a quinone is present; (iii) observed by photochemically induced dynamic nuclear polarization (photo-CIDNP) studies of whole cells of Heliobacterium mobilis that primary charge separation is retained even after conversion of the majority of BChl g to Chl aF. ; and (iv) purified a homogeneous preparation of reaction center cores, which led to promising crystallization trials to obtain a three-dimensional structure.

  17. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-06-01

    When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.

  18. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  19. [Nature of the electron excited state in pigment redox reactions. II. Analysis of the scheme of primary processes in the photooxidation reaction of chlorophylls a and b and pheophytin a ].

    Science.gov (United States)

    Andreeva, N E; Barashkov, B I; Zakharova, G V; Shubin, V V; Chibisov, A K

    1978-01-01

    A scheme of primary reactions in photooxidation of pigments was considered assuming that electron transfer processes can occur via singlet excited as well as triplet states. The results of analysis are compared with the experimental data on relative yield values of chlorophylls a, b, and pheophytin a cation-radicals, as well as with the data on fluorescence quenching. A conclusion has been drawn that photooxidation of pigments proceeds exclusively via the triplet state. The dependence of rate constant quenching values of chlorophyll a triplet state by certain electron acceptors on values of half cell potentials was given.

  20. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  1. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  2. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26

    International Nuclear Information System (INIS)

    Norris, J.R.; Budil, D.E.; Gast, P.; Chang, C.H.; El-Kabbani, O.; Schiffer, M.

    1989-01-01

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms

  3. Nocturnal enuresis in a longitudinal perspective. A primary problem of maturity and/or a secondary environmental reaction?

    Science.gov (United States)

    Klackenberg, G

    1981-07-01

    The study is part of a prospective longitudinal investigation, involving annual somatic, psychological and social check-ups in a random sample of 212 children. Data are presented on the gradual achievement of bladder control, with relapses into wetting. Information is provided on relationships with training, with behavioural variables, with emotional maturity (Rorschach) and with sleep. It seems probable that primary enuresis usually ceases by the age of 8 at the latest and that enuresis in older children is a secondary emotional disorder which may, however, have started at an earlier age. The 6-year-old enuretic shows signs of delayed emotional maturity. The relation with somnambulism is ambiguous. Enuresis is not significantly related to training. None of the data obtained in this study conflict with the theory that primary enuresis is chiefly a maturity problem, the nature of which can be emotional. The neurophysiological aspect has not been investigated.

  4. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  5. Method of making gold thiolate and photochemically functionalized microcantilevers

    Science.gov (United States)

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  6. Photochemically enhanced microbial degradation of environmental pollutants

    International Nuclear Information System (INIS)

    Katayama, A.; Matsumura, F.

    1991-01-01

    Biodegradation of persistent halogenated organic pollutants is of great interest from the viewpoint of its potential use to cleanup the contaminated sites and industrial waste streams on-site (i.e., in situ remediation). Recent studies have shown that lignin-degrading white rot fungi possess capabilities to degrade a variety of highly recalcitrant and toxic compounds. On the other hand, photodegradation by sunlight or ultraviolet light (UV) has not been considered as a potential technology to detoxify the contaminated sites, in spite of the availability of extensive research data, because of its limited reaching ability to subsurface locations. In view of the urgent needs for the development of technology to deal with mounting problems of toxic wastes, the authors have decided to experiment with the ideas of combining photochemical and microbial technologies. The main obstacle in developing such simultaneous combination systems has been the susceptibilities of microorganisms in general to UV irradiation. To overcome this problem, the authors have developed an ultraviolet- and fungicide-resistant strain of white rot fungus and now report their results

  7. Photochemical oxidants: state of the science.

    Science.gov (United States)

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.

  8. Photochemical reduction of uranyl ion with amides

    International Nuclear Information System (INIS)

    Brar, A.S.; Chander, R.; Sandhu, S.S.

    1981-01-01

    The photochemical reduction of uranyl ion by formamide, acetamide, propionamide, butyramide, iso butyramids, n-methylformamide, N, N-dimethylformamide and N, N-diethylformamide in aqueous medium using radiation >= 380 nm from a medium pressure mercury vapour lamp has been investigated. The reduction with the said amides has been found to obey pseudo first order kinetics. The magnitude of the rate of reduction for the simple amides has been found to follow the following order formamide > isobutyramide approx. butyramide > propionamide > acetamide while the rate order for N-alkylformamides compared with that of the formamide has been found to be formamide > N-methylformamide > N,N-diethylformamide approx. N,N-dimethylformamide. The pseudo first order rate constants and quenching constants have been found from the kinetic data. It has been found that physical and chemical quenching compete with each other. Plots of reciprocal of quantum yields versus reciprocal [amide] have been found to be linear with intercepts on the ordinate axis. Absorption spectra of uranyl ion in doubly distilled water, in the presence of acid and in the presence of acid and amide reveal that there is no ground state interaction between uranyl ion and the amide. A mechanism of photoreduction of uranyl ion with amides has been proposed. (author)

  9. Selective laser-induced photochemical dry etching of semiconductors controlled by ion-bombardment-induced damage

    International Nuclear Information System (INIS)

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1987-01-01

    When a photochemical dry etching process requires direct participation of photogenerated carriers in the chemical reaction, it is sensitive to the electronic properties of the semiconductor. For such solid-excitation-based dry etching processes, the balance between reaction and carrier recombination rates determines the practical utility of a particular reaction for device fabrication. The distance from the surface at which the photocarriers are generated by light adsorption is determined by the absorption coefficient. In the absence of an external bias potential, only those carriers formed within a diffusion length of the surface space-charge region will have an opportunity to drive the dry etching reaction. When the absorption coefficient is high, most of the photons generate carriers within a diffusion length from the surface space-charge region, and the etching rate is largely determined by the balance between the rate of the carrier-driven reaction and the surface recombination velocity. When the recombination rate of free carriers in the bulk of the semiconductor is high, the effective diffusion length is reduced and fewer of the carriers generated in the subsurface region ever reach the surface. An important effect of ion bombardment is the creation of many lattice defects that increase the rate of recombination of electrons and holes. When a sufficient number of defects, which act as recombination sites, are formed during ion implantation, the recombination of photogenerated carriers at these defects in the subsurface region can greatly reduce the number of carriers which can reach the surface and drive a photochemical etching reaction

  10. On the mechanism of vomiting in the primary reaction period following whole-body irradiation at high doses

    International Nuclear Information System (INIS)

    Martirosov, K.S.; Grigor'ev, Yu.G.; Zorin, V.V.; Norkin, I.M.

    1997-01-01

    In the experiments of dogs exposed to ionizing radiations at doses of 50 and 70 Gy, an essential role of the central mechanism in the origin of early postradiation vomiting has been confirmed. Insufficient efficiency of dimethpramide, a dophaminolytics, in this case may be connected either with initiation of other (non-dophaminosensitive) structures of the chemoreceptor trigger zone or with a growing role of the reflex way of vomiting arising due to a considerable intestinal injury that causes diarrhea. The inhibition of intestinal M-cholinoreceptors by methacine prevented diarrhea but didn't change the intensity of the vomiting reaction which, however, dose not eliminate the possibility of afferentation from receptors that respond to others biologically active substances. (author)

  11. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    Science.gov (United States)

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.

  12. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    Science.gov (United States)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  13. Upper atmosphere research: Reaction rate and optical measurements

    Science.gov (United States)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  14. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  15. Photochemical and other air pollutants in South Holland

    Energy Technology Data Exchange (ETDEWEB)

    Posthumus, A.C.

    1975-01-01

    This year at fifteen places, regularly distributed over the industrial area west of Rotterdam, indicator plants for air pollution were again set out in the open. Tulip, gladiolus and freesia, indicators for HF, all demonstrated the same two sites to have maximum HF concentration. Spinach, an indicator for O/sub 3//SO/sub 2/, showed maximum injury in April and May and more south of the New Waterway than north of it. Medicago sativa, a plant species rather sensitive for SO/sub 2/ and O/sub 3/, showed little damage, and the reaction of petunia indicated a possible effect of ethylene only in a few cases. The photochemical air pollutant PAN caused in a few cases as well a slight injury to the indicator plants Urtica urens and Poa annua. The frequency of the injury to tobacco Bel W3 by O/sub 3//SO/sub 2/ was maximum during some periods in summer and autumn. This year again the effect of air pollution on growth and yield of tulips, tobacco and tomato plants was studied at six sites at the mouth of the Rhine with filtered and unfiltered greenhouses. The climatic conditions in these greenhouses were completely alike. Tulips in all the unfiltered greenhouses showed twice as heavy leaf injury as those in the filtered greenhouses. Tobacco plants had a higher average fresh and dry weight in the filtered greenhouses than in the unfiltered ones. The same usually held for tomato plants and also for the number of fruits and the average fresh and dry weight of tomato fruits.

  16. Photochemical internalization enhanced macrophage delivered chemotherapy.

    Science.gov (United States)

    Shin, Diane; Christie, Catherine; Ju, David; Nair, Rohit Kumar; Molina, Stephanie; Berg, Kristian; Krasieva, Tatiana B; Madsen, Steen J; Hirschberg, Henry

    2018-03-01

    Macrophage (Ma) vectorization of chemotherapeutic drugs has the advantage for cancer therapy in that it can actively target and maintain an elevated concentration of drugs at the tumor site, preventing their spread into healthy tissue. A potential drawback is the inability to deliver a sufficient number of drug-loaded Ma into the tumor, thus limiting the amount of active drug delivered. This study examined the ability of photochemical internalization (PCI) to enhance the efficacy of released drug by Ma transport. Tumor spheroids consisting of either F98 rat glioma cells or F98 cells combined with a subpopulation of empty or doxorubicin (DOX)-loaded mouse Ma (RAW264.7) were used as in vitro tumor models. PCI was performed with the photosensitizer AlPcS 2a and laser irradiation at 670 nm. RAW264.7 Ma pulsed with DOX released the majority of the incorporated DOX within two hours of incubation. PCI significantly increased the toxicity of DOX either as pure drug or derived from monolayers of DOX-loaded Ma. Significant growth inhibition of hybrid spheroids was also observed with PCI even at subpopulations of DOX-loaded Ma as low as 11% of the total initial hybrid spheroid cell number. Results show that RAW264.7 Ma, pulsed with DOX, could effectively incorporate and release DOX. PCI significantly increased the ability of both free and Ma-released DOX to inhibit the growth of tumor spheroids in vitro. The growth of F98 + DOX loaded Ma hybrid spheroids were synergistically reduced by PCI, compared to either photodynamic therapy or released DOX acting alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Instantaneous global nitrous oxide photochemical rates

    International Nuclear Information System (INIS)

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  18. Photochemical and other pollution in South Holland

    Energy Technology Data Exchange (ETDEWEB)

    Posthumus, A.C.

    1976-01-01

    At the same 15 places as in 1974, regularly distributed over the industrial area west of Rotterdam, indicator plants for air pollution were set out in the open and were cultivated by the same standard method. Tulip and gladiolus were used as indicators for HF, during spring and summer, respectively. Both indicated that the same two sites, at Vlaardingen and Spijkenisse, had maximum HF concentration. In general, the mean leaf-tip injury at all sites was somewhat heavier than in 1974. Lucerne, as an indicator for SO2, sometimes showed more injury north of the New Waterway than south of it in June. Spinach, an indicator for O3/SO2, showed maximum injury in three different periods in June, July and mostly in August. The frequency and the measure of the injury to tobacco Bel W3 by O3 was maximum during some periods in August and September, the mean injury being heavier than in 1974. Urtica urens and Poa annua too, indicator plants for photochemical air pollution by peroxyacetyl nitrate and O3, showed more frequent injury in 1975, specially in some weeks in June and most of it in August. Petunia too indicated more influence of ethylene than in 1974, mostly in the second half of June. This year again the effect of air pollution on growth and yield of tulip Blue Parrot, tobacco Bel W3 and tomato extase plants was studied at the same six sites as last year by the mouth of the Rhine, with filtered and unfiltered greenhouses. Tulips in the unfiltered greenhouses showed a heavier leaf injury than those in the filtered greenhouses, except at the site in The Hague. These injured plants had a significantly lower average fresh and dry weight of the stems and leaves and of the bulbs too. Tobacco and tomato plants had a higher average dry weight of stems and leaves in the filtered greenhouses than in the unfiltered ones.

  19. Neuropeptide Y stimulation as primary target for preventive measures of maladaptative cardiovascular reactions in occupational chronic stress exposure.

    Science.gov (United States)

    Ciumaşu-Rîmbu, Mălina; Popa, Livia; Vulpoi, Carmen

    2012-01-01

    Chronic stress may produce a decrease in central NPY expression and subjects exposed to it may prove hypersensitivity to a novel stressor with dysfunctions in the NPY system and cardiovascular maladaptation to stress, even hypertension. Upregulation of NPY expression may contribute to successful behavioral adaptation to stress by reducing cardiovascular tone and suppressing anxious behaviors. Adaptogens, a new class of metabolic regulators stimulate NPY expression and release. The aim of this study is to increase tolerance and adaptation to stress of hypersensitive to novel stressor, occupational chronic stress exposed subjects with cardiovascular maladaptation to mild new stressor using adaptogens as part of prevention protocol. 40 military personnel with known cardiostressor reactional mode and occupational chronic stress exposure were exposed to mild novel stressor: occupational medicine routine evaluation and clinically assessed for maladaptative cardiovascular response prior and before application of 30 day prevention protocol. Employees were randomly split in two groups, one receiving standard prevention protocol (lifestyle counseling) plus adaptogens in multiple dose administration, twice daily and the other receiving only standard prevention protocol. We found significant statistic differences in all cardiovascular parameters in adaptogen group and only in diastolic blood pressure in control group. Adaptogens could be an important factor in successful prevention protocols of chronic occupational stress dysfunctions involving NPY systems.

  20. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  1. Primary care patients' views and decisions about, experience of and reactions to direct-to-consumer genetic testing: a longitudinal study.

    Science.gov (United States)

    Wasson, Katherine; Sanders, Tonya Nashay; Hogan, Nancy S; Cherny, Sara; Helzlsouer, Kathy J

    2013-10-01

    Little is known about the decisions and perspectives of participants undergoing direct-to-consumer genetic testing (DTCGT). The aims of this study were to examine the views, attitudes and decision-making factors of primary care patients regarding DTCGT. Their experience of and reactions to testing also emerged during the study. In this longitudinal, qualitative study, 20 primary care patients participated in DTCGT and individual interviews: (1) prior to testing after the informed consent session, (2) after receiving results, (3) 3 months post-test, and (4) 12 months post-test. Interviews included open-ended questions and all transcripts were analyzed using grounded theory, constant comparison methods. Five key themes emerged from data analysis as participants underwent DTCGT and reflected on their decision over time: (1) limited concerns about DTCGT, (2) motivations for testing, (3) expectations of testing, (4) understanding of results, and (5) impact of testing and results. While a few participants expressed concerns before testing, participants were motivated to test by curiosity, gaining actionable knowledge, and altruism. Most were uncertain of what to expect from DTCGT and needed assistance in understanding results. While many reported testing had no significant impact on them, being relieved or pleased after testing was the most common emotional effect. Notably, a few participants made positive health changes in response to testing. Given the paucity of information about primary care patients and DTCGT, this study adds more in-depth information to the emerging research on how such participants' view, make decisions about, experience and react to DTCGT over time. Because uncertainty remains about the accuracy of DTCGT, the response of primary care patients to this testing requires further investigation.

  2. Optospectroscopic Detection of Primary Reactions Associated with the Graviperception of Phycomyces. Effects of Micro- and Hypergravity1

    Science.gov (United States)

    Schmidt, Werner; Galland, Paul

    2004-01-01

    The graviperception of sporangiophores of the fungus Phycomyces blakesleeanus involves gravity-induced absorbance changes (GIACs) that represent primary responses of gravitropism (Schmidt and Galland, 2000). GIACs (ΔA460–665) of sporangiophores were measured in vivo with a micro-dual wavelength spectrometer at 460 and 665 nm. Sporangiophores that were placed horizontally displayed an instant increase of the GIACs while the return to the vertical position elicited an instant decrease. The GIACs are specific for graviperception, because they were absent in a gravitropism mutant with a defective madJ gene. During parabola flights hypergravity (1.8g) elicited a decrease of the GIACs, while microgravity (0 ± 3 × 10−2g) elicited an instant increase. Hypergravity that was generated in a centrifuge (1.5–6.5g) elicited also a decrease of the GIACs that saturated at about 5g. The GIACs have a latency of about 20 ms or shorter and are thus the fastest graviresponses ever measured for fungi, protists, and plants. The threshold for eliciting the GIACs is near 3 × 10−2g, which coincides numerically with the threshold for gravitropic bending. In contrast to gravitropic bending, which requires long-term stimulation, GIACs can be elicited by stimuli as short as 20 to 100 ms, leading to an extremely low threshold dose (acceleration × time) of about 3 × 10−3g s, a value, which is four orders of magnitude below the ones described for other organisms and which makes the GIACs of Phycomyces blakesleeanus the most sensitive gravi-response in literature. PMID:15122026

  3. Behavioral and EEG reactions in primary school-aged children to emotionally colored verbal stimuli with the condition of their own or forced choice

    Directory of Open Access Journals (Sweden)

    Aiusheeva T. A.

    2017-12-01

    Full Text Available The aim of the study is to compare behavioral and EEG reactions of primary school-aged children during the recognition of syntactic errors in emotionally (positively or negatively colored sentences that appeal to the choice of the child differently. 20 children (mean age 9,0±0,3 years, 12 boys, 8 girls were examined. We found out that the children with a high quality of solving a linguistic task concentrate all their attention on finding an error in the sentences, and children with a low quality of solving a task demonstrate increased emotionality, possibly connected with their unsuccessfulness. The strongest EEG reactions in the ranges of alpha- and theta- rhythms were recorded in children with slow speed and bad quality of the solution of the task. The recognition of sentences with negative emotions took longer than sentences with positive emotions. The increase of emotions (synchronization in theta range during the recognition of negative sentences was provoked by the expectation of failure and “identification” with it. The children found the mistake better in the sentences with their own choice than in the sentences that describes the forced-choice situation. Desynchronization (i.e. decrease in the spectral power and synchronization (i.e. increase in spectral power was detected on the EEG in the alpha-rhythm range. Desynchronization was associated with the recognition of sentences describing the children’s own choice; synchronization was recorded when recognizing sentences describing the forced-choice situation.

  4. Photochemical Cycling of Reactive Oxygen Species in Hydrothermal Springs: Impacts on Biosignature Preservation

    Science.gov (United States)

    Mave, M. A.; Hinman, N. W.; Stevens, L.

    2017-12-01

    Biosignatures can be preserved via rapid entombment by aqueous minerals in a system. Wilson et al. (2000) found that high UV flux leads to increased production of reactive oxygen species (ROS), which promote iron (Fe) oxidation, and possible accumulation on microbial surfaces, leading to detectable microfossils. Hydrogen peroxide (H2O2) is a measurable ROS that serves as proxy for less stable ROS. Overall diel cycling of H2O2 is likely controlled by changes in photoreactive speciation of Fe (McKnight et al., 1988) in Fe-rich systems. To test this hypothesis, we conducted a 48-hour photochemical field study of Elk Pool in the Norris Geyser Basin at Yellowstone National Park in July, 2017 in which we measured UVA and UVB, along with H2O2 via the scopoletin fluorescence quenching method (Holm et al., 1987). Measurements were taken every few hours, and we found that maximum ROS production occurred during maximum UV irradiation. We also ran several experiments on-site in which we collected and altered spring water to either inactivate or catalyze naturally occurring reactions as well as to isolate primary mechanisms responsible for production of H2O2. Experiments were run in UV permeable Whirlpak bags and Fisherbrand tubes. Elk Pool showed only trace Fe content (pH 4) at the time of our study, so Fe-silica coated petrographic slides were added to the tube experiments (Fe-added experiments). Both sets of experiments included filtered and unfiltered spring water to differentiate biotic from abiotic mechanisms, and both UV-exposed and dark controls to separate UV-induced mechanisms for ROS formation. UV-exposed water always had greater ROS than dark experiments. Filtered spring water had higher ROS concentrations than unfiltered water, except when Fe was added. In the Fe-added experiments, unfiltered spring water had slightly greater ROS production relative to filtered water and had the lowest pH and highest aqueous Fe content after 7 hours. All Fe-added experiments showed

  5. European scale modeling of sulfur, oxidized nitrogen and photochemical oxidants. Model development and evaluation for the 1994 growing season

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden); Pleijel, K. [Swedish Environmental Research Inst., Goeteborg (Sweden)

    1998-09-01

    A chemical mechanism, including the relevant reactions leading to the production of ozone and other photochemical oxidants, has been implemented in the MATCH regional tracer transport/chemistry/deposition model. The aim has been to develop a model platform that can be used as a basis for a range of regional scale studies involving atmospheric chemistry, including assessment of the importance of different sources of pollutants to the levels of photochemical oxidants and air pollutant forecasting. Meteorological input data to the model were taken from archived output from the operational version of HIRLAM at SMHI. Evaluation of model calculations over Europe for a six month period in 1994 for a range of chemical components show good results considering known sources of error and uncertainties in input data and model formulation. With limited further work the system is sufficiently good to be applied for scenario studies and for regional scale air pollutant forecasts 42 refs, 24 figs, 17 tabs

  6. Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, D.J.; Boxer, S.G.

    1987-02-10

    The magnitude and direction of the change in dipole moment, ..delta mu.., associated with the Q/sub y/ transition of the dimeric primary electron donor (special pair or P870) in Rhodopseudomonas sphaeroides reaction centers have been measured by Stark spectroscopy at 20 /sup 0/C. The magnitude of ..delta mu.. is found to be f/sup -1/ (10.3 +/- 0.7) D, where f is a correction factor for the local dielectric properties of the protein matrix. With the spherical cavity approximation and an effective local dielectric constant of 2, f = 1.2, and absolute value of ..delta mu.. is 8.6 +/- 0.6 D. Absolute value of ..delta mu.. for the Q/sub y/ transition of the special pair is approximately a factor of 3.4 and 2 greater than for the monomeric bacteriochlorophylls and bacteriopheophytins, respectively, in the reaction center. The angle between ..delta mu.. and the transition dipole moment for excitation of the first singlet electron state of the special pair was found to be 24 +/- 2/sup 0/. The measured values are combined to suggest a physical model in which the lowest excited singlet state of the special pair has substantial charge-transfer character and where charge is separated between the two monomers comprising the dimeric special pair. This leads to the hypothesis that the first charge-separated state in bacterial photosynthesis is formed directly upon photoexcitation. These data provide stringent values for comparison with theoretical calculations of the electronic structure of the chromophores in the reaction center.

  7. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis

    Science.gov (United States)

    2016-01-01

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis. PMID:27120289

  8. Inheritance of photochemical air pollution tolerance in petunias

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.P.; Addis, D.H.; Thorne, L.

    1976-12-01

    Seven commercial inbred lines of pink flowered multiflora petunia (Petunia hybrida Vilm.) which differed widely in degrees of tolerance to photochemical oxidants were crossed in all possible combinations to yield a complete diallel cross. Sibling representatives of all 49 possible hybrids were then separately subjected to ozone (O/sub 3/), peroxyacetyl nitrate (PAN), and ambient oxidants at Arcadia, California. The seedlings were scored for tolerance to each pollutant and the inheritance of tolerance to each pollutant was studied. At the ambient levels of photochemical oxidants encountered, PAN more severely injured the petunias than did the O/sub 3/ component. Hybrids tolerant to one oxidant were not necessarily tolerant to the other. The genes which contributed photochemical oxidant tolerance in petunia acted primarily in an additive manner with some indication of partial dominance for tolerance. Gene interaction was evident in the expression of petunia sensitivity to PAN.

  9. Photochemical and microbial alterations of DOM spectroscopic properties in the estuarine system Ria de Aveiro.

    Science.gov (United States)

    Santos, L; Santos, E B H; Dias, J M; Cunha, A; Almeida, A

    2014-08-01

    The influence of photochemical transformations of chromophoric dissolved organic matter (CDOM) on microbial communities was evaluated in the estuarine system Ria de Aveiro. Two sites, representative of the marine and brackish water zones of the estuary, were surveyed regularly in order to determine seasonal and vertical profiles of variation of CDOM properties. Optical parameters of CDOM indicative of aromaticity and molecular weight were used to establish CDOM sources, and microbial abundance and activity was characterized. Additionally, microcosm experiments were performed in order to simulate photochemical reactions of CDOM and to evaluate microbial responses to light-induced changes in CDOM composition. The CDOM of the two estuarine zones showed different spectral characteristics, with significantly higher values of the specific ultra-violet absorbance at 254 nm (SUVA254) (5.5 times) and of the absorption coefficient at 350 nm (a350) (12 times) and lower SR (S275-295/S350-400) ratio at brackish water compared with the marine zone, reflecting the different amounts and prevailing sources of organic matter, as well as distinct riverine and oceanic influences. At the marine zone, the abundance of bacteria and the activity of Leu-AMPase correlated with a350 and a254, suggesting a microbial contribution to the HMW CDOM pool. The irradiation of DOM resulted in a decrease of the values of a254 and a350 and an increase of the slope S275-295 and of the ratios E2 : E3 (a250/a365) and SR, which in turn increase its bioavailability. However, the extent of photoinduced transformations and microbial responses was dependent on the initial optical characteristics of CDOM. In Ria de Aveiro both photochemical and microbial processes yielded optical changes in CDOM and the overall results of these combined processes determine the fate of CDOM in the estuarine system and have an influence on local productivity and in adjacent coastal areas.

  10. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children.

    Science.gov (United States)

    Pitetti, Raymond D; Laus, Stella; Wadowsky, Robert M

    2003-08-01

    Epstein-Barr virus (EBV) infectious mononucleosis is often diagnosed based on characteristic clinical features and either a positive heterophil antibody test or serology, both of which can be unreliable in young children. Real time quantitative PCR assays that measure EBV DNA load in serum or plasma are highly sensitive in young children, but serum and plasma contain inhibitors of PCR which must be removed by DNA extraction techniques. A real time TaqMan PCR assay was designed and evaluated for simultaneously measuring EBV DNA load and validating the removal of PCR inhibitors from serum samples. A serum sample was available from patients classified serologically as primary EBV infection (n = 28), EBV-seronegative (n = 25) and EBV-seropositive (n = 26). Patients were classified as having EBV infectious mononucleosis if they had specified clinical findings and > or =10% atypical lymphocytes in peripheral blood or had a positive Monospot test result. DNA was purified by a spin column method and tested in PCR reactions with primers for EBV DNA polymerase gene and internal control targets. Amplification of the two PCR products was measured in real time with separate TaqMan DNA probes labeled with various fluorescent reporters. The mean age of study patients was 9 years, 4 months. Twenty-one (75%) of the patients in the primary EBV infection group, one (4%) of the seronegatives and none of the seropositives had detectable EBV DNA. Within the primary infection group, those with detectable virus were more likely than those without detectable virus to have evidence of lymphadenopathy (14 of 16 vs.1 of 5; P = 0.011), higher mean atypical (11.7 vs.0.9%; P = 0.002) and absolute atypical (1.5 vs.0.1 x 109/l; P = 0.004) lymphocyte count, higher mean absolute lymphocyte count (4.7 vs.2.3 x 109/l; P = 0.026) and higher mean aspartate aminotransferase value (119.8 vs.37.3 IU/l; P = 0.036). Ten patients, all in the primary infection group, had EBV infectious mononucleosis, and all

  11. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  12. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  13. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  14. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Pengyi; Pan Gang; Chen Hao

    2008-01-01

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 μM ferric ion, 47.3% of initial PFOA (48 μM) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 μM, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu 2+ and Zn 2+ also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way

  15. Role of nitrite in the photochemical formation of radicals in the snow.

    Science.gov (United States)

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  16. Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Glenn A.; Bausch, Alexandra R. [Department of Chemistry, Villanova University, Villanova, PA 19085 (United States); Grannas, Amanda M., E-mail: amanda.grannas@villanova.edu [Department of Chemistry, Villanova University, Villanova, PA 19085 (United States)

    2011-05-15

    Organochlorine (OC) contaminants are transported to the Polar Regions, where they have the potential to bioaccumulate, presenting a threat to the health of wildlife and indigenous communities. They deposit onto snowpack during winter, and accumulate until spring, when they experience prolonged solar irradiation until snowmelt occurs. Photochemical degradation rates for aldrin and dieldrin, in frozen aqueous solution made from MilliQ water, 500 {mu}M hydrogen peroxide solution or locally-collected melted snow were measured in a field campaign near Barrow, AK, during spring-summer 2008. Significant photoprocessing of both pesticides occurs; the reactions depend on temperature, depth within the snowpack and whether the predominant phase is ice or liquid water. The effect of species present in natural snowpack is comparable to 500 {mu}M hydrogen peroxide, pointing to the potential significance of snowpack-mediated reactions. Aldrin samples frozen at near 0 deg. C were more reactive than comparable liquid samples, implying that the microenvironments experienced on frozen ice surfaces are an important consideration. - Highlights: > Photodegradation rates for aldrin and dieldrin in frozen aqueous solutions made from MilliQ water, H{sub 2}O{sub 2} or melted snow are reported. > Photoprocessing depends on temperature, depth beneath the snowpack surface and dominant phase. > Species present in natural snowpack have a photosensitizing effect comparable to 500 {mu}M H{sub 2}O{sub 2}. > Aldrin samples frozen at near 0 deg. C were more reactive than comparable liquid samples. > Collectively we find that frozen aqueous surfaces play a unique role in aldrin and dieldrin photochemistry. - A field study finds that frozen aqueous solutions of aldrin and dieldrin undergo photochemical degradation under arctic snowpack conditions. The reactions are enhanced in frozen systems and by natural snowpack constituents.

  17. A Model Study of the Photochemical Fate of As(III in Paddy-Water

    Directory of Open Access Journals (Sweden)

    Luca Carena

    2017-03-01

    Full Text Available The APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics software previously developed by one of us was used to model the photochemistry of As(III in paddy-field water, allowing a comparison with biotic processes. The model included key paddy-water variables, such as the shielding effect of the rice canopy on incident sunlight and its monthly variations, water pH, and the photochemical parameters of the chromophoric dissolved organic matter (CDOM occurring in paddy fields. The half-life times (t1/2 of As(III photooxidation to As(V would be ~20–30 days in May. In contrast, the photochemical oxidation of As(III would be much slower in June and July due to rice-canopy shading of radiation because of plant growth, despite higher sunlight irradiance. At pH < 8 the photooxidation of As(III would mainly be accounted for by reaction with transient species produced by irradiated CDOM (here represented by the excited triplet states 3CDOM*, neglecting the possibly more important reactions with poorly known species such as the phenoxy radicals and, to a lesser extent, with the hydroxyl radicals (HO•. However, the carbonate radicals (CO3•− could be key photooxidants at pH > 8.5 provided that the paddy-water 3CDOM* is sufficiently reactive toward the oxidation of CO32−. In particular, if paddy-water 3CDOM* oxidizes the carbonate anion with a second-order reaction rate constant near (or higher than 106 M−1·s−1, the photooxidation of As(III could be quite fast at pH > 8.5. Such pH conditions can be produced by elevated photosynthetic activity that consumes dissolved CO2.

  18. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    Science.gov (United States)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤ 1 µm), mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67). The photochemical age of the pollutants, t[OH] (the reaction time × the mean concentration of OH radical during the atmospheric transport), was calculated from both the NOx / NOy concentration ratio (NOx / NOy clock) and the toluene / ethyne concentration ratio (hydrocarbon clock). It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx / NOy clock ranged from 2.9 × 105 to 1.3 × 108 h molecule cm-3 and were compared with the fractional contribution of the m/z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids) and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA) formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03) × 10-9 × [OH] h-1, which is comparable to the background-corrected increase rate observed during the New England Air Quality

  19. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  20. Photochemical Aryl Radical Cyclizations to Give (E-3-Ylideneoxindoles

    Directory of Open Access Journals (Sweden)

    Michael Gurry

    2014-09-01

    Full Text Available (E-3-Ylideneoxindoles are prepared in methanol in reasonable to good yields, as adducts of photochemical 5-exo-trig of aryl radicals, in contrast to previously reported analogous radical cyclizations initiated by tris(trimethylsilylsilane and azo-initiators that gave reduced oxindole adducts.

  1. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  2. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  3. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  4. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    Science.gov (United States)

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  5. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  6. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  7. Photooxidative reactions of psoralens

    International Nuclear Information System (INIS)

    Potapenko, A.Ya.; Sukhorukov, V.L.

    1984-01-01

    The mechanism and biological significance of photooxidative reactions of psoralens are reviewed. Skin-photosensitizing activities of bifunctional and monofunctional psoralens are compared. Antioxidants tocopherols and butilated hydroxytoluene inhibit photochemical reactions of psoralens responsible for induction of erythema. The same antioxidants do not inhibit PUVA-therapy of psriasis. Though psoralens can generate singlet oxygen under UVA-irradiation (315 - 400 nm), nevertheless singlet oxygen does not play significant role in 8-methoxypsoralen (8-MOP) sensitized photooxidation of tocopherol or dihydroxyphenylalanine (DOPA). SH-compounds enhance the rate of 8-MOP sensitized photooxidation of DOPA by a factor of four, simultaneously the rate of oxidation of SH-groups is enhanced many fold in the presence of DOPA. Under UVA-irradiation in organic solvents psoralens are photooxidized. Dimeric photooxidized psoralens are easily destructed in water medium, their destruction induce oxidation of unsaturated lipids and DOPA. (author)

  8. A tribute to Ulrich Heber (1930-2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment.

    Science.gov (United States)

    Dietz, Karl-Josef; Krause, G Heinrich; Siebke, Katharina; Krieger-Liszkay, Anja

    2018-07-01

    The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO 2 tolerance of tree leaves and dehydrating lichens and mosses.

  9. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  10. Photochemical transformation of phenylurea herbicides in surface waters: a model assessment of persistence, and implications for the possible generation of hazardous intermediates.

    Science.gov (United States)

    Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-01-01

    This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    Science.gov (United States)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  12. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... for singlet oxygen, was examined. Despite published claims to the contrary, the data presented herein indicate that SOSG can, in fact, be incorporated into a living mammalian cell. However, for a number of reasons, caution must be exercised when using SOSG. First, it is shown that the immediate product...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  13. Influence of processing and intrinsic polymer parameters on photochemical stability of polythiophene thin films

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Tromholt, Thomas; Böttiger, Arvid P.L.

    2012-01-01

    shielding effects were shown to have a negligible effect on the photochemical degradation rate. The results obtained in this work advance the understanding of polymer stability and will help improve the design of materials used for polymer solar cells resulting in longer lifetimes, which will push......Intrinsic polymer parameters such as regio-regularity, molecular weight, and crystallinity play an important role when studying polymer stability. 18 different batches of poly-3-hexyl-thiophene (P3HT) were degraded in a solar simulator (AM1.5G, 1000 W/m2) and the degradation kinetics were monitored....... The results suggest that the radical reaction responsible for the photodegradation takes place at terminal thiophene rings exposed at points were the conjugation is broken. This proposed mechanism is supported by the fact that stability scales with regio-regularity following the ratio of head...

  14. Photoclickable dendritic molecular glue: noncovalent-to-covalent photochemical transformation of protein hybrids.

    Science.gov (United States)

    Uchida, Noriyuki; Okuro, Kou; Niitani, Yamato; Ling, Xiao; Ariga, Takayuki; Tomishige, Michio; Aida, Takuzo

    2013-03-27

    A water-soluble dendron with a fluorescein isothiocyanate (FITC) fluorescent label and bearing nine pendant guanidinium ion (Gu(+))/benzophenone (BP) pairs at its periphery (Glue(BP)-FITC) serves as a "photoclickable molecular glue". By multivalent salt-bridge formation between Gu(+) ions and oxyanions, Glue(BP)-FITC temporarily adheres to a kinesin/microtubule hybrid. Upon subsequent exposure to UV light, this noncovalent binding is made permanent via a cross-linking reaction mediated by carbon radicals derived from the photoexcited BP units. This temporal-to-permanent transformation by light occurs quickly and efficiently in this preorganized state, allowing the movements of microtubules on a kinesin-coated glass plate to be photochemically controlled. A fundamental difference between such temporal and permanent bindings was visualized by the use of "optical tweezers".

  15. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  16. Selective photochemical dry etching of compound semiconductors

    International Nuclear Information System (INIS)

    Ashby, C.I.H.

    1988-01-01

    When laser-driven etching of a semiconductor requires direct participation of photogenerated carriers, the etching quantum yield will be sensitive to the electronic properties of a specific semiconductor material. The band-gap energy of the semiconductor determines the minimum photon energy needed for carrier-driven etching since sub-gap photons do not generate free carriers. However, only those free carriers that reach the reacting surface contribute to etching and the ultimate carrier flux to the surface is controlled by more subtle electronic properties than the lowest-energy band gap. For example, the initial depth of carrier generation and the probability of carrier recombination between the point of generation and the surface profoundly influence the etching quantum yield. Appropriate manipulation of process parameters can provide additional reaction control based on such secondary electronic properties. Applications to selective dry etching of GaAs and related materials are discussed

  17. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: Radical cation photochemical transformations without photons

    International Nuclear Information System (INIS)

    Barnabas, M.V.; Trifunac, A.D.

    1994-01-01

    Radical cations of quadricyclane (Q) and norbornadiene (NBD) are produced by γ-radiolysis in zeolites. In polar ZSM-5, only one radical cation is initially observed below 100K. Increasing the temperature above 200K gives rise to the cyclopentadiene radical cation. Higher temperatures (>360K) give rise to the cyclopenten-4-yl radical. The observation of cyclopentadiene radical cation implies the occurrence of the reverse Diels-Alder reaction. This is a thermally forbidden, photochemically allowed, process, which is made possible by the interaction of the polar zeolite matrix sites with parent NBD and Q radical cations

  18. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2004-01-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl

  19. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    Science.gov (United States)

    Brandt, L. A.; Bohnet, C.; King, J. Y.

    2009-06-01

    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  20. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    Directory of Open Access Journals (Sweden)

    R. R. Gokhale

    2012-06-01

    Full Text Available A novel route employing UV laser pulses (KrF Excimer, 248 nm to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS process when applied to routine laboratory solvents (or toxic chemical wastes when discarded Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  1. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  2. Dispersion and photochemical evolution of reactive pollutants in street canyons

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  3. Separation of the mercury isotopes by the indirect photochemical method

    International Nuclear Information System (INIS)

    Botter nee Bergheaud, F.; Scaringella nee Desnoyer, M.; Wacongne, M.

    1976-01-01

    A method of photochemical separation of the mercury isotopes by the so-called indirect route in which a gas stream of oxygen and butadiene containing a mixture of mercury isotopes is passed through one or a number of vessels placed in series. The gas stream is irradiated by a lamp containing mercury which is depleted in one or a number of the isotopes and said isotopes are recovered in a trap placed downstream of the vessel or vessels

  4. A plasmaless, photochemical etch process for porous organosilicate glass films

    Science.gov (United States)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  5. Dehydrophenylnitrenes: matrix isolation and photochemical rearrangements.

    Science.gov (United States)

    Sander, Wolfram; Winkler, Michael; Cakir, Bayram; Grote, Dirk; Bettinger, Holger F

    2007-02-02

    The photochemistry of 3-iodo-2,4,5,6-tetrafluorophenyl azide 8 and 3,5-diiodo-2,4,6-trifluorophenyl azide 9 was studied by IR and EPR spectroscopy in cryogenic argon and neon matrices. Both compounds form the corresponding nitrenes as primary photoproducts in photostationary equilibria with their azirine and ketenimine isomers. In contrast to fluorinated phenylnitrenes, ring-opened products are obtained upon short-wavelength irradiation of the iodine-containing systems, indicative of C-I bond cleavage in the nitrenes or didehydroazepines under these conditions. Neither 3-dehydrophenylnitrene 6 nor 3,5-didehydrophenylnitrene 7 could be detected directly. The structures of the acyclic photoproducts were identified by extensive comparison with DFT calculated spectra. Mechanistic aspects of the rearrangements leading to the observed products and the electronic properties of the title intermediates are discussed on the basis of DFT as well as high-level ab initio calculations. The computations indicate strong through-bond coupling of the exocyclic orbital in the meta position with the singly occupied in-plane nitrene orbital in the monoradical nitrenes. In contrast to the ortho or para isomers, this interaction results in low-spin ground states for meta nitrene radicals and a weakening of the C1-C2 bond causing the kinetic instability of these species even under low-temperature conditions. 3,5-Didehydrophenylnitrenes, on the other hand, in which a strong C3-C5 interaction reduces coupling of the radical sites with the nitrene unit, might be accessible synthetic targets if the intermediate formation of labile monoradicals could be circumvented.

  6. Photochemical degradation of 1,3-dichloro-2-propanol aqueous solutions

    International Nuclear Information System (INIS)

    Nikolaki, M.D.; Philippopoulos, C.J.

    2007-01-01

    The photochemical oxidation of 1,3-dichloro-2-propanol (1,3-DCP) was studied by following the target compound degradation, the total carbon removal rate by a total organic carbon (TOC) analyzer and by identifying the oxidation products by gas chromatography-mass spectrometry (GC-MS). The reaction was performed in a batch recycle reactor, at room temperature, using UV radiation provided by a low pressure 12 W Hg lamp and H 2 O 2 as oxidant. Chloride ions, formic, acetic and chloroacetic acid were measured by ion chromatography. Apart from the chloride ions and the organic acids, the presence of 1,3-dichloro-2-propanone and chloroacetyl chloride was also detected and a possible pathway is proposed for the degradation of the parent compound. Complete degradation of 1,3-dichloro-2-propanol was achieved and the TOC removal reached as much as 80% at the end of the reaction time. The effect of the initial concentration of hydrogen peroxide was investigated and it was established that higher concentrations of H 2 O 2 slow down the reaction rate. Finally, the effect of the initial concentration of 1,3-DCP was investigated

  7. Photochemical reductions of benzil and benzoin in the presence of triethylamine and TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Woo; Kim, Eun Kyung [Ewha Womans Univ., Seoul (Korea, Republic of); Koh Park, Kwang Hee [Chungnam National Univ., Daejon (Korea, Republic of)

    2002-09-01

    This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO{sub 2}. Without TEA or TiO{sub 2}, the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO{sub 2} increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO{sub 2} followed by protonation. In the reaction medium of 88:7:2:3 CH{sub 3}CN/CH{sub 3}OH/H{sub 2}O/TEA with 2.5 mg/mL of TiO{sub 2}, the yield of 2 was as high as 85% at 50% conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of ({+-}) and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO{sub 2}-sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of {alpha}-cleavage. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO{sub 2} by methanol, to product 1,2-diphenylpropenone after dehydration reaction.

  8. Photochemical reductions of benzil and benzoin in the presence of triethylamine and TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Park, Joon Woo; Kim, Eun Kyung; Koh Park, Kwang Hee

    2002-01-01

    This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO 2 . Without TEA or TiO 2 , the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO 2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO 2 followed by protonation. In the reaction medium of 88:7:2:3 CH 3 CN/CH 3 OH/H 2 O/TEA with 2.5 mg/mL of TiO 2 , the yield of 2 was as high as 85% at 50% conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of (±) and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO 2 -sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of α-cleavage. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO 2 by methanol, to product 1,2-diphenylpropenone after dehydration reaction

  9. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Santoke, Hanoz, E-mail: hsantoke@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song, Weihua, E-mail: wsong@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China); Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Peake, Barrie M., E-mail: bpeake@chemistry.otago.ac.nz [Chemistry Department, University of Otago, P.O. Box 56, Dunedin 9054 (New Zealand)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We elucidate the photochemical degradation of three antidepressant pharmaceuticals. Black-Right-Pointing-Pointer Hydroxyl radical is the most significant contributor to the degradation. Black-Right-Pointing-Pointer Excited state dissolved organic matter also plays a significant role for duloxetine. Black-Right-Pointing-Pointer Tentative reaction byproducts are identified. - Abstract: Antidepressant pharmaceuticals have recently been detected at low concentrations in wastewater and surface water. This work reports studies of the direct and indirect photochemical fate and treatment by advanced oxidation of three antidepressant compounds (duloxetine, venlafaxine and bupropion) in solutions of humic acid in order to elucidate their behavior in the natural environment prior to reaching a water treatment facility and potentially entering a potable water supply. Humic acid solution was prepared by adding to distilled water a known amount of organic matter as a photosensitizer. All three antidepressants react very rapidly with hydroxyl radicals ({center_dot}OH) and hydrated electrons (e{sup -}{sub aq}) with rate constants of {approx}10{sup 8} to 10{sup 10} M{sup -1} s{sup -1}, but significantly slower with singlet oxygen ({sup 1}{Delta}O{sub 2}) ({approx}10{sup 3} to 10{sup 5} M{sup -1} s{sup -1}). The steady-state concentrations of {center_dot}OH and {sup 1}{Delta}O{sub 2}, in a sample of humic acid solution were measured and used with the second order rate constants to show that the hydroxyl radical was an order of magnitude more effective than the singlet oxygen in the solar-induced photochemical degradation of the antidepressants. Excited state dissolved organic matter also accounted for a substantial portion of degradation of duloxetine, decreasing its half-life by 27% under solar irradiation. Several reaction pathways and by-products arising from the photodegradation were identified using gamma-irradiation followed by LC

  10. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  11. Development of a mouse model of neuropathic pain following photochemically induced ischemia in the sciatic nerve.

    Science.gov (United States)

    Hao, J X; Blakeman, K H; Yu, W; Hultenby, K; Xu, X J; Wiesenfeld-Hallin, Z

    2000-05-01

    A mouse model of neuropathic pain was developed by a photochemically induced ischemic nerve injury in normal male C57/BL6 mice. The ischemia was induced by unilateral irradiation of the sciatic nerve with an argon ion laser after intravenous administration of a photosensitizing dye, erythrosin B. The nerve injury resulted in a significant decrease in withdrawal threshold of the hindpaws to mechanical stimulation with von Frey hairs, as well as increased responsiveness to cold and heat stimulation. The mice, however, did not exhibit overt spontaneous pain-like behaviors. The evoked pain-related behaviors were observed bilaterally, although the ipsilateral changes were greater than on the contralateral side. The extent and time course of the behavioral changes were related to the duration of laser irradiation, with 1-min exposure producing the most consistent effect. Morphological examination at the light microscopic level revealed partial demyelination and axonal degeneration of the large myelinated fibers at the epicenter of the lesion 1 week postirradiation. The extent of the damage was correlated with the duration of irradiation. Injury and loss of unmyelinated fibers were also observed at the electronmicroscopic level. We conclude that an intravascular photochemical reaction leading to ischemia results in graded damage to the sciatic nerve in mice. Moreover, the nerve injury is associated with the development of abnormal pain-related behaviors. Both the behavioral and the morphological changes are correlated with the duration of irradiation. These results establish a mouse model of partial nerve injury with neuropathic pain-like behaviors which may be useful in studies using genetically modified mice. Copyright 2000 Academic Press.

  12. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  13. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    Science.gov (United States)

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.

  14. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    Science.gov (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  15. Photochemical Cyclopolymerization of Polyimides in Ultraviolet Ridgidizing Composites for Use in Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation uses photochemical cyclopolymerization of polyimides to manufacture ultraviolet rigidizable composites for use in RIS (ridgidizing inflatable)...

  16. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  17. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  18. Cycloaddition Reaction of Hydrogen-Bonded Zn(II)

    Indian Academy of Sciences (India)

    Solid-state Photochemical [2+2] Cycloaddition Reaction of ... and free bpe and lattice water molecules shows face-to-face, π ··· π stacking of two of the four free bpe molecules with coordinated .... were decanted and dried in air. [Yield: 0.068 g ...

  19. Supramolecular structures for photochemical energy conversion. Technical progress report, 1993--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This research project is concerned with the design, synthesis and study by photochemical and spectroscopic methods of complex molecular devices that mimic some important aspects of photosynthetic electron and energy transfer. Properly engineered molecules of this type can functionally mimic photosynthetic light harvesting (singlet-singlet energy transfer between chromophores), photoprotection from light-initiated singlet oxygen damage (triplet-triplet energy transfer from chlorophylls to carotenoid polyenes), and, most importantly, photoinduced multistep electron transfer to generate charge-separated states that preserve some of the photon energy as chemical potential. During the last three years, progress has been made on several fronts, all of which are related to the overall goal. A biomimetic system based on carotenoid-porphyrin-quinone triads has been constructed that demonstrates photoinduced transmembrane charge separation which in turn drives transmembrane proton transfer. Another investigation has focused on the use of proton transfer reactions to stabilize the initial products of photoinduced electron transfer and thereby increase the yield of long-lived charge separation. A third study has investigated the influence of rigid molecular geometries and short donor-acceptor separations on photoinduced electron transfer reactions. Finally, generation and quenching of singlet molecular oxygen by chlorophyll aggregates has been studied. All four studies are described and results are discussed.

  20. Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

    International Nuclear Information System (INIS)

    Park, Hea Jung; Sung, Nam Kyung; Kim, Su Rhan; Kim, Su Rhan; Ahn, So Hyun; Yoon, Ung Chan; Cho, Dae Won; Mariano, Patrick S.

    2013-01-01

    This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation Hg 2+ and Pb 2+ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals

  1. Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hea Jung; Sung, Nam Kyung; Kim, Su Rhan; Kim, Su Rhan; Ahn, So Hyun; Yoon, Ung Chan [Pusan National Univ., Busan (Korea, Republic of); Cho, Dae Won [Yeungnam Univ., Geoungsan (Korea, Republic of); Mariano, Patrick S. [Univ. of New Mexico, Albuquerque (United States)

    2013-12-15

    This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation Hg{sup 2+} and Pb{sup 2+} showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

  2. Photochemical products causing fluorescence enhancement for 6H-benzo[cd]pyren-6-one in de-aerated and pre-irradiated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, M., E-mail: yagishita.mayuko@nies.go.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506 (Japan); Nakajima, D. [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506 (Japan); Ohshima, S. [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan)

    2016-11-15

    Polycyclic aromatic ketones emit very weak fluorescence, but their fluorescence is significantly enhanced by about one hundred times after preliminary irradiation of their degassed solution. To investigate the mechanism of such fluorescence enhancement, liquid chromatography/time-of-flight mass spectrometry measurements were performed for degassed methanol, ethanol, and acetonitrile solutions of 6H-benzo[cd]pyren-6-one (naphthanthrone), in which fluorescence enhancement had been induced. As a result, two kinds of photochemical products were identified as the substance causing fluorescence enhancement: they were produced by dehydrogenation and dehydration of adducts of a solvent molecule to naphthanthrone. On the basis of the findings, the mechanism of the fluorescence enhancement of naphthanthrone was discussed. Fluorescence enhancement; 6H-benzo[cd]pyren-6-one; Polycyclic aromatic ketones; Liquid chromatography-mass spectrometry; Photochemical reaction.

  3. Photochemical products causing fluorescence enhancement for 6H-benzo[cd]pyren-6-one in de-aerated and pre-irradiated solutions

    International Nuclear Information System (INIS)

    Yagishita, M.; Nakajima, D.; Ohshima, S.

    2016-01-01

    Polycyclic aromatic ketones emit very weak fluorescence, but their fluorescence is significantly enhanced by about one hundred times after preliminary irradiation of their degassed solution. To investigate the mechanism of such fluorescence enhancement, liquid chromatography/time-of-flight mass spectrometry measurements were performed for degassed methanol, ethanol, and acetonitrile solutions of 6H-benzo[cd]pyren-6-one (naphthanthrone), in which fluorescence enhancement had been induced. As a result, two kinds of photochemical products were identified as the substance causing fluorescence enhancement: they were produced by dehydrogenation and dehydration of adducts of a solvent molecule to naphthanthrone. On the basis of the findings, the mechanism of the fluorescence enhancement of naphthanthrone was discussed. Fluorescence enhancement; 6H-benzo[cd]pyren-6-one; Polycyclic aromatic ketones; Liquid chromatography-mass spectrometry; Photochemical reaction

  4. Homogeneous photocatalytic reactions with organometallic and coordination compounds--perspectives for sustainable chemistry.

    Science.gov (United States)

    Hoffmann, Norbert

    2012-02-13

    Since the time of Giacomo Ciamician at the beginning of the 20th century, photochemical transformations have been recognized as contributing to sustainable chemistry. Electronic excitation significantly changes the reactivity of chemical compounds. Thus, the application of activation reagents is frequently avoided and transformations can be performed under mild conditions. Catalysis plays a central role in sustainable chemistry. Stoichiometric amounts of activation reagents are often avoided. This fact and the milder catalytic reaction conditions diminish the formation of byproducts. In the case of homogeneous catalysis, organometallic compounds are often applied. The combination of both techniques develops synergistic effects in the sense of "Green Chemistry". Herein, metal carbonyl-mediated reactions are reported. These transformations are of considerable interest for the synthesis of complex polyfunctionalized compounds. Copper(I)-catalyzed [2+2] photocycloaddition gives access to a large variety of cyclobutane derivatives. Currently, a large number of publications deal with photochemical electron-transfer-induced reactions with organometallic and coordination compounds, particularly with ruthenium complexes. Several photochemically induced oxidations can easily be performed with air or molecular oxygen when they are catalyzed with organometallic complexes. Photochemical reaction conditions also play a certain role in C-H activation with organometallic catalysts, for instance, with alkanes, although such transformations are conveniently performed with a variety of other photochemical reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  6. Global emissions and models of photochemically active compounds

    International Nuclear Information System (INIS)

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-01-01

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1 degree x 1 degree grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings

  7. Photochemical reduction of uranyl ion by acetonitrile and propionitrile

    International Nuclear Information System (INIS)

    Brar, A.S.; Chander, R.; Sandhu, S.S.

    1979-01-01

    The photochemical reduction of uranyl ion by acetonitrile, propionitrile, benzonitrile, phenylacetonitrile, cyanoacetic acid and malononitrile in aqueous or aq. acetone medium using radiations >= 400 nm from a medium pressure mercury vapour lamp has been investigated. Except acetonitrile and propionitrile all other nitriles fail to bring about the reduction of uranyl ion. The reduction with aceto- and propionitriles has been found to obey pseudo-first order kinetics. The magnitude of rate of reduction with propionitrile is higher than that with acetonitrile. The pseudo-first order rate constants and quenching constant have been calculated from the kinetic data. It has been found that physical and chemical quenching compete with each other. The plot of reciprocal of quantum yield versus reciprocal (nitrile) is linear with a small intercept on the ordinate axis. Absorption spectra of uranyl ion in pure water, in the presence of acid and in the presence of acid+nitrile reveal that there is no ground state interaction between uranyl ion and the nitrile. A mechanism of photochemical reduction of uranyl ion based on α-hydrogen abstraction from the nitrile has been proposed. (auth.)

  8. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  9. Photochemical and other air pollutions in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Floor, H.

    1975-01-01

    Together with the State Institute of Public Health and the Royal Dutch Meteorological Institute, the Institute of Phytopathological Research continued investigations on incidence of air pollution in the country. The main purpose is to measure the effects of air pollution on indicator plants and to detect over the years which components separately or perhaps together damage indicator plants. In 1974, the network of experimental fields in the Netherlands was completed. From April until October, 29 fields were inspected weekly for typical symptoms of air pollution. Just as in the preceding year O3 caused most injury of the photochemical air pollutants, as shown by Spinacia oleracea and Nicotiana tabacum. Other photochemical air pollutants like PAN, and the pollutants SO2, NO/sub x/ and ethylene caused little injury to the indicator plants Urtica urens, Poa annua, Medicago sativa, Petunia nyctaginiflora and Solanum tuberosum. Symptoms of damage on Tulipa gesneriana, Gladiolus gandavensis and Freesia refracta indicated air pollution by HF in all experimental fields, but especially in the south of the country. The F determination in the air by means of the limed paper method established the results with the indicator plants.

  10. Relationships between ozone and other photochemical products at Ll. Valby, Denmark

    DEFF Research Database (Denmark)

    Skov, H.; Egeløv, A.H.; Granby, K.

    1997-01-01

    literature results it is estimated that the non-photochemical background mixing ratio of O-3 in the Northern Hemisphere is 24+/-6 ppbv. The correlation of HCOOH and CH3COOH with Ox indicates that these acids are of photochemical origin. A high correlation of HNO3 with Ox is also found. The anti-correlation...

  11. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.2426 Section 52.2426 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as...

  12. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  13. An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction.

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Sasamoto, Shin; Tanamura, Yoshihiko; Shimada, Tetsuya; Masui, Dai; Takagi, Shinsuke; Tachibana, Hiroshi; Tong, Zhiwei; Inoue, Haruo

    2013-04-21

    From the viewpoint of developing photoresponsive supramolecular systems in microenvironments to exhibit more sophisticated photo-functions even at the macroscopic level, inorganic/organic hybrid compounds based on clay or niobate nanosheets as the microenvironments were prepared, characterized, and examined for their photoreactions. We show here a novel type of artificial muscle model unit having much similarity with that in natural muscle fibrils. Upon photoirradiation, the organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale, and the interlayer spaces in the layered hybrid structure shrink and expand vertically. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) compared with the molecular size of ~1 nm, based on a reversible sliding mechanism.

  14. 6th symposium on photochemical and thermal reactions of coordination compounds (SOPTROCC 6)

    International Nuclear Information System (INIS)

    Sykora, J.; Sima, J.

    1988-01-01

    The proceedings contain 53 papers of which two deal with nuclear topics, viz.: Quenching of Excited States of Lanthanide Complexes by Electron and Energy Transfer Processes and Spin Trapping in the Radiolysis of Phosphate Esters. Some 70 specialists from 12 countries including Japan and the USA attended the conference. (J.B.)

  15. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses.

    Science.gov (United States)

    Fang, Chong; Tang, Longteng; Oscar, Breland G; Chen, Cheng

    2018-06-21

    Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.

  16. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-09-01

    Full Text Available This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

  17. Photochemical reactions of brominated diphenylethers in organic solvents and adsorbed on silicon dioxide in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Palm, W.U.; Kopetzky, R.; Sossinka, W.; Ruck, W. [Univ. of Lueneburg, Environmental Chemistry, Lueneburg (Germany); Zetzsch, C. [Univ. of Bayreuth, Atmos. Chem. Research, Bayreuth, and Fraunhofer-Inst. of Toxicology and Experimental Medicine, Hannover (Germany)

    2004-09-15

    Polybrominated diphenylethers (BDEs) are in use as flame retardants worldwide and are found as xenobiotics in environmental samples. Photolysis by sunlight, one of the potential abiotic degradation pathways, is found to be rapid in laboratory experiments, especially for deca-BDE, the most prominent BDE as compared to commercial penta- and octa-BDEs. Due to the extremely low water solubility of BDEs, these experiments were mostly performed in organic solvents so far, and a few in environmental matrices (sand and soil) and on dry and hydrated quartz glass. However, detailed UV absorption spectra of deca-BDE and debrominated BDEs in the relevant wavelength range above 300 nm have become available only recently, besides the UV maxima of a number of synthesized congeners at shorter wavelengths and an exploratory study from our laboratory. Other important parameters to assess the abiotic degradation in the environment, such as OH-rate constants and photolytic quantum yields of BDEs are not available. Furthermore, analysis of BDEs was mostly performed by GC-MS, and the capability of HPLC with a diode array detector (DAD) has not yet been exploited. This study presents kinetic results on the photolysis of BDEs in tetrahydrofuran (THF) with detailed photolytic pathways for a tetra-BDE (2,2'4,4'-BDE), a hexa-BDE (2,2'4,4',5,5'-BDE) and deca-BDE. Employing HPLC with a diode array detector (DAD) as analytical tool, quantum yields of BDEs with N{sub Br} = 1-10 are determined. Furthermore, the formation of brominated dibenzofurans (BDFs) was investigated. Since the environmental relevance of photolysis experiments in organic solvents is questionable, first results on photolysis of deca-BDE adsorbed on silicon dioxide particles, suspended in water, are presented.

  18. Mechanism of the Zn(IIPhthalocyanines’ Photochemical Reactions Depending on the Number of Substituents and Geometry

    Directory of Open Access Journals (Sweden)

    Leandro Henrique Zucolotto Cocca

    2016-05-01

    Full Text Available In this work, the synthesis and the nonlinear absorption and population dynamics investigation of a series of zinc phthalocyanines (ZnPcs dissolved in chloroform are reported. In order to determine the relevant spectroscopic parameters, such as absorption cross-sections of singlet and triplet excited states, fluorescence relaxation times, intersystem crossing, radiative decay and internal conversion, different optical and spectroscopic techniques were used. By single pulse and pulse train Z-scan techniques, respectively, singlet and triplet excited states‘ absorption cross-section were determined at 532 nm. Furthermore, the intersystem crossing time was obtained by using both techniques combined with the fluorescence lifetime determined by time-resolved fluorescence. The radiative and internal conversion rates were determined from the fluorescence quantum yield of the samples. Such spectroscopy parameters are fundamental for selecting photosensitizers used in photodynamic therapy, as well as for many other applications.

  19. Laser-induced photochemical reaction of aqueous maleic acid solutions containing H2O2

    International Nuclear Information System (INIS)

    Shimizu, Yuichi; Kawanishi, Shunichi; Suzuki, Nobutake

    1995-01-01

    Hydroxy acid such as glycolic, tartaric and malic acids was directly produced by XeF-laser irradiation of the N 2 -saturated maleic acid aqueous solution containing H 2 O 2 . The selectivities of these products at the maximum of tartaric acid were 71, 4, and 2% at H 2 O 2 feeding rate of 3.2 ml h -1 , respectively. On the other hand, the irradiation of maleates such as dipotassium, calcium, and disodium greatly enhanced the selectivities of tartaric acid formation to 19%, and of malic acid formation to 13%, respectively, for dipotassium maleate. It may be considered from these results that the stability of the hydroxylated intermediate radical plays an important role for the efficient formations of tartaric and malic acids. (author)

  20. Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions

    NARCIS (Netherlands)

    Ma, Fei; Swainsbury, David J. K.; Jones, Michael R.; van Grondelle, Rienk

    2017-01-01

    Engineering natural photosynthesis to address predicted shortfalls in food and energy supply requires a detailed understanding of its molecular basis and the intrinsic photoprotective mechanisms that operate under fluctuating environmental conditions. Long-lived triplet or singlet excited electronic

  1. Corrosion by photochemical reaction due to synchrotron radiation in TRISTAN vacuum system

    International Nuclear Information System (INIS)

    Momose, Takashi; Ishimaru, Hajime

    1989-01-01

    In the electron-positron collision ring (TMR) in the National Laboratory for High Energy Physics, the operation at the beam energy of 30 GeV is carried out. The critical energy of synchrotron radiation corresponding to this energy is 243 keV which is the highest in the world. Consequently, the radiation damage of various substances due to this radiation has become the problem. From the viewpoint that the TMR is the vacuum system totally made of aluminum alloy for the first time in the world, the problem peculiar to aluminum alloy and the related problem of material damage and the countermeasures are discussed. Beam energy and attenuation length, the radiation dose in the TMR tunnel, the beam current-time product of TMR, the examples of radiation damage such as the atmosphere in TAR, the atmosphere in TMR, the aluminum bellows, aluminum chamber and lead radiation shield in TMR, the aluminum beam line in the atmosphere of TAR, the heat-insulating kapton film with vacuum deposited aluminum films, Teflon and polystyrene insulators, the stainless steel terminals and cables for position monitors, the O-rings for gate valves, polyvinyl chloride and so on are reported. (K.I.)

  2. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    Directory of Open Access Journals (Sweden)

    S. Irei

    2016-04-01

    Full Text Available To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤  1 µm, mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne, and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67. The photochemical age of the pollutants, t[OH] (the reaction time  ×  the mean concentration of OH radical during the atmospheric transport, was calculated from both the NOx ∕ NOy concentration ratio (NOx ∕ NOy clock and the toluene ∕ ethyne concentration ratio (hydrocarbon clock. It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx ∕ NOy clock ranged from 2.9  ×  105 to 1.3  ×  108 h molecule cm−3 and were compared with the fractional contribution of the m∕z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03  ×  10−9

  3. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  4. Theoretical investigation of the photochemical C2-C6 cyclisation of enyne-heteroallenes.

    Science.gov (United States)

    Spöler, Carsten; Engels, Bernd

    2003-10-06

    Herein we discuss computations that explain experimental results regarding a highly efficient triplet analogue of the C(2)-C(6) cyclisation of enyne-heteroallenes recently discovered by Schmittel and co-workers.1 To shed some light on the reasons for the differences found between enyne-carbodiimides, enyne-ketenimines and enyne-allenes, we have computed the reaction profiles of the C(2)-C(6) and of the C(2)-C(7) cyclisations for various model compounds, assuming that the reactions take place on the lowest-lying triplet surfaces. Our results nicely explain the differences and the unexpected high efficiency found for the enyne-carbodiimides. The differences between enyne-carbodiimides and enyne-ketenimines prove to be due to differences in the shapes of the corresponding triplet surfaces. In contrast to the enyne-carbodiimides, for which our calculations predict that a direct cyclisation to the biradical intermediates should occur after the vertical excitation, the enyne-ketenimines relax into a local minimum on the triplet surface. As a consequence, further reaction channels are opened. Our computations indicate that enyne-allene compounds do not react because the necessary excitation energy lies outside the range of the employed triplet photosensitizer. Finally, the close agreement between our results and the experimental findings indicates that the underlying reasons for the differences in the photochemical behaviour of enyne-carbodiimides, enyne-ketenimines and enyne-allenes are related to differences in the electronic structures of the parent systems, while substituent effects are less important.

  5. Insights into the photochemical transformation pathways of triclosan and 2′-HO-BDE-28

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ya-nan; Xie, Qing; Chen, Jingwen, E-mail: jwchen@dlut.edu.cn; Li, Yingjie; Fu, Zhiqiang

    2015-12-30

    Highlights: • Direct photolysis of anionic HO-PXDEs occurs through excited singlet states. • Dioxin products are formed from excited singlet states of HO-PXDEs. • Self-sensitized photolysis is involved in the phototransformation of HO-PXDEs. • {sup 1} O{sub 2} and ·OH can be generated in energy or electron transfer reactions between excited HO-PXDEs and dissolved O{sub 2}. - Abstract: Hydroxylated polyhalogenated diphenyl ethers (HO-PXDEs) have been recognized as a group of widely detected emerging contaminants in natural waters. Photolysis was proved to be an important transformation pathway for these compounds and their direct phototransformation results in highly toxic dioxins. However, the roles of excited states and reactive oxygen species in the photochemical transformation of these compounds are still unclear. In this study, 2′-HO-2,4,4′-trichlorodiphenyl ether (triclosan) and 2′-HO-2,4,4′-tribromodiphenyl ether (2′-HO-BDE-28) were selected as model compounds to investigate their phototransformation processes. Results showed that the direct photolysis reactions of both triclosan and 2′-HO-BDE-28 occurred via their respective excited singlet states, leading to the generation of dioxins. In addition, the energy and electron transfer reactions between excited states of model compounds and molecular O{sub 2} can lead to the generation of {sup 1}O{sub 2} and ·OH, which results in self-sensitized photolysis. We also found that both the k, Φ dioxin yield for anionic triclosan were higher than those of anionic 2′-HO-BDE-28. This study revealed the roles of the excited states in direct photolysis and the generation pathway of reactive oxygen species in self-sensitized photolysis of HO-PXDEs, which is important for understanding the phototransformation mechanisms of HO-PXDEs.

  6. Photochemical and Spectroscopic Effects Resulting from Excimer Laser Excitation.

    Science.gov (United States)

    Wang, Xuan Xiao

    I. Photochemical production of ozone from pure oxygen using excimer lasers. Production of ozone was observed from experiments when oxygen was under a broadband pulsed KrF laser radiation. The production process was found to be autocatalytic. Mechanisms for the ozone formation were proposed. Experimental results over a range of oxygen pressure and laser pulse energy (irradiance) provided evidences in favor of the proposed mechanisms. Experiments were also numerically modeled. Good agreement between the experimental and the numerical results were observed, which provided further evidence to support the proposed mechanisms. Cross sections for some photochemical processes in the mechanisms were estimated. Production of ozone from pure oxygen under a ArF excimer laser radiation (193 nm) was also studied and numerically modeled. Effects of ambient water vapor on ozone production were investigated. Experimental results showed a fast ozone destruction when water vapor was present in the cell. However, numerical results obtained from the well-known OH and HO _2 chain ozone destruction mechanism predicted a slower ozone destruction. Possible reasons for the discrepancy are discussed. II. Resonance-enhanced multiphoton ionization of N_2 at 193 and 248 nm detected by N_sp{2}{+} fluorescence. Using a broadband excimer laser operating at 193 and 248 nm multiphoton ionization at high pressures in air and pure nitrogen has been detected by fluorescence from N_sp{2}{+} in the B-X firstnegative system. Measurements of the fluorescence intensity as a function of beam irradiance indicate resonance in N_2 at the energy of two 193 nm photons (2 + 1 REMPI) and three 248 nm photons (3 + 1 REMPI). Possible intermediate states are discussed. III. Excimer laser-induced fluorescence from some organic solvents. Fluorescence was observed from vapor phase benzene, toluene, p-xylene, benzyl chloride, methyl benzoate, acetic anhydride, ether, methanol, ethyl acetone, acetone, and 2-butanone using

  7. Knock-out reactions

    International Nuclear Information System (INIS)

    de Forest, T. Jr.

    1977-01-01

    It is pointed out that the primary motivation for performing high energy single nucleon knock-out reactions is based on the concept of quasi-elastic scattering. The validity of and corrections to the partial wave impulse approximation and kinematical invariance of knock-out reactions and tests of the reaction mechanism are treated. The effect of distortions on the momentum distribution in the effective momentum approximation for given parameters are plotted. 12 references

  8. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  9. Photochemical and microbial degradation technologies to remove toxic chemicals

    International Nuclear Information System (INIS)

    Matsumura, F.; Katayama, A.

    1992-01-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks

  10. Investigation on Surface Roughness of Inconel 718 in Photochemical Machining

    Directory of Open Access Journals (Sweden)

    Nitin D. Misal

    2017-01-01

    Full Text Available The present work is focused on estimating the optimal machining parameters required for photochemical machining (PCM of an Inconel 718 and effects of these parameters on surface topology. An experimental analysis was carried out to identify optimal values of parameters using ferric chloride (FeCl3 as an etchant. The parameters considered in this analysis are concentration of etchant, etching time, and etchant temperature. The experimental analysis shows that etching performance as well as surface topology improved by appropriate selection of etching process parameters. Temperature of the etchant found to be dominant parameter in the PCM of Inconel 718 for surface roughness. At optimal etching conditions, surface roughness was found to be 0.201 μm.

  11. Bibliographic study of photophysical and photochemical properties of laser dyes

    International Nuclear Information System (INIS)

    Doizi, D.

    1986-06-01

    Laser isotope separation of uranium requires high power and precise wave length. This report is a bibliographic and experimental study of the photophysical and photochemical properties of seven commercial laser dyes which have an emission wavelength in the range 5500-6500 A: Rhodamine 110 or 560, rhodamine 6G or 590, rhodamine B or 610, rhodamine 101 or 640, sulforhodamine B or kiton red 620, sulforhodamine 101 or 640 and DCM or LC 6500. Absorption and emission cross section values, fluorescence lifetimes and quantum yields in various solvents are indicated. For each dye, a non exhaustive list of laboratory experiments made with two types of pump sources: Nd YAG (532) and copper vapor laser is given. When it is known, the toxicity of the dyes is mentioned [fr

  12. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.; Sommers, J. M.; Viasus, C. J.; Wang, C. H T; Peneau, V.; Gambarotta, S.; Vidjayacoumar, B.; Al-Bahily, K. A.

    2016-01-01

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  13. Photochemical and microbial degradation technologies to remove toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, F.; Katayama, A.

    1992-07-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks.

  14. Bioavialability of Dom Photochemically Released from Resuspended Sediments

    Science.gov (United States)

    Avery, G. B., Jr.; Rainey, D. H.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Felix, J. D.; Helms, J. R.

    2016-02-01

    Little is known regarding the bioavailability of dissolved organic matter (DOM) released photochemically from resuspended estuarine sediments. Sediments were collected from two sites along the Cape Fear River estuary, NC, USA, size fractionated in 0.2 µm filtered Gulf Stream seawater and exposed to simulated sunlight for six hours. Light exposed samples resulted in increases of dissolved organic carbon (DOC) (34 ± 3 µM), chromophoric dissolved organic matter (CDOM) (a300nm, 2.7 m-1), and fluorescent dissolved organic matter (FDOM) (78.6 quinine sulfate equivalents (QSE)) compared to dark controls. Ultra high resolution mass spectrometric characterization indicated the photoreleased DOM was more oxidized and condensed based upon van Kreevlan analysis. Samples were then filtered and inoculated to a final ratio of 4% with coastal water sample filtered through a100 µm net to remove larger grazing organisms and particles while keeping most of bacterial community intact. All three parameters were monitored during a 30 day-long incubation in the dark to assess biological consumption and alteration. Previously light exposed samples had double (20 vs. 9 µM) the amount of DOC consumed compared to samples not previously exposed to light and twice the loss of CDOM (a300nm, 0.6 vs. 0.3 m-1) compared to samples not previously exposed to light. Previously light exposed samples resulted in a threefold loss of FDOM (9.5 QSE) compared to samples not previously exposed to light (2.8 QSE). Results of this study are important because they demonstrate dissolved organic matter released photochemically from resuspended sediments is more bioavailable than ambient material likely fueling secondary productivity and impacting ecosystem functioning in coastal regions.

  15. Application of photochemical technologies for treatment of landfill leachate

    International Nuclear Information System (INIS)

    Meeroff, Daniel E.; Bloetscher, Frederick; Reddy, D.V.; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-01-01

    Highlights: ► Photochemical iron-mediated aeration and TiO 2 photocatalysis for leachate treatment. ► Removal efficiency tested on COD, BOD 5 , color, ammonia, and lead. ► Contact times for 90% removal were 10–200 h for PIMA ► Contact times for 90% removal were 3–37 h for TiO 2 photocatalysis. ► Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO 2 photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO 2 photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10–200 h for PIMA and 3–37 h for TiO 2 photocatalysis. Testing with actual leachate samples showed 85% TiO 2 photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  16. Application of photochemical technologies for treatment of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Meeroff, Daniel E., E-mail: dmeeroff@fau.edu [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States); Bloetscher, Frederick; Reddy, D.V.; Gasnier, Francois; Jain, Swapnil; McBarnette, Andre; Hamaguchi, Hatsuko [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Photochemical iron-mediated aeration and TiO{sub 2} photocatalysis for leachate treatment. Black-Right-Pointing-Pointer Removal efficiency tested on COD, BOD{sub 5}, color, ammonia, and lead. Black-Right-Pointing-Pointer Contact times for 90% removal were 10-200 h for PIMA Black-Right-Pointing-Pointer Contact times for 90% removal were 3-37 h for TiO{sub 2} photocatalysis. Black-Right-Pointing-Pointer Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO{sub 2} photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO{sub 2} photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO{sub 2} photocatalysis. Testing with actual leachate samples showed 85% TiO{sub 2} photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  17. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    Science.gov (United States)

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  18. On line photochemically induced excitation-emission-kinetic four-way data

    International Nuclear Information System (INIS)

    Jimenez Giron, A.; Duran-Meras, I.; Espinosa-Mansilla, A.; Munoz de la Pena, A.; Canada Canada, F.; Olivieri, A.C.

    2008-01-01

    The determination of folic acid and its two main serum metabolites, 5-methyltetrahydrofolic acid and tetrahydrofolic acid, has been accomplished using four-way data modelled by the third-order multivariate calibration methods unfolded and N-dimensional partial least-squares (U-PLS and N-PLS), in combination with the separate procedure known as residual trilinearization (RTL). The four-way data were acquired by following the photochemical reaction of these compounds by on line irradiation with a UV lamp. The excitation-emission matrices (EEMs) were recorded as a function of the irradiation time, using a fast scanning spectrofluorimeter. The method achieves selectivity from the different rates at which the corresponding photoproducts of the folic acid derivatives are formed and degraded. Several N-dimensional chemometric algorithms were used and the method was applied to the determination of these compounds in serum samples. The best algorithms to perform the multivariate calibration were U-PLS and N-PLS in combination with the separate residual trilinearization procedure, achieving the second-order advantage. The approach allows minimizing or eliminating traditionally time-consuming sample pre-treatments and can facilitate quantifying an analyte in its native environment

  19. The properties and Roles of Resonance-Stabilized Radicals in Photochemical Pathways in Titan's Atmosphere

    Science.gov (United States)

    Sebree, Joshua A.; Kidwell, Nathan; Zwier, Timothy

    2010-11-01

    In recent years, the Cassini satellite has been providing details about the composition of Titan's atmosphere. Recent data has shown the existence of polycyclic aromatic hydrocarbons (PAHs) at higher altitudes than previously expected including masses tentatively ascribed to naphthalene and anthracene. The formation of indene (C9H9) and naphthalene (C10H8), the simplest PAHs, and their derivatives are of great interest as similar mechanisms may lead to the formation of larger fused-ring systems. In recent years it has been proposed that resonance-stabilized radicals (RSRs) may play an important role as intermediates along these pathways. RSRs gain extra stability by delocalizing the unpaired electron through a neighboring conjugated π-system. Because of this extra stability, RSRs are able to build up in concentration, allowing for the creation of larger, more complex systems through their recombination with other RSRs. Mass-selective UV-visible spectra of two RSRs, phenylallyl and benzylallenyl radicals, have been recorded under jet-cooled conditions. These two radicals, while sharing the same radical conjugation, have unique properties. The roles these radicals may play in the formation of fused ring systems will be discussed along with recent photochemical results on reaction pathways starting from benzylallene through the benzylallenyl radical.

  20. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Photochemical modelling of photo-oxidant levels over the Swiss plateau and emission reduction scenarios

    International Nuclear Information System (INIS)

    Rosselet, C.M.; Kerr, J.A.

    1993-05-01

    During summertime high pressure conditions, high photo-oxidant (O 3 , H 2 O 2 , PAN and others) levels are frequently observed in the planetary boundary layer in central Europe. It is well known that close to the earth's surface ozone is formed by complex reactions involving VOC, NO x , and sunlight. Substantial reductions of both precursors are needed to reduce photo-oxidant levels. In this context the reductions of the abundance of the precursors and the variation of their ratios is of great importance. Here we report model calculations from the Harwell Photochemical Trajectory Model of the levels of O 3 , H 2 O 2 and PAN along a trajectory over the Swiss Plateau from Lake Constance to Lake Geneva. These calculations are in satisfactory agreement with measurements made during the intensive observation period of the research program POLLUMET (Pollution and Meteorology in Switzerland). Sensitivity calculations of emission reduction scenarios indicate that on the Swiss Plateau the ozone production may be mainly NO x -limited; under conditions where the CO levels are closer to the upper limit within the range (120-600 ppbv). The calculated peak ozone level reduction caused by an exclusive NO x -emission reduction is about three times larger than that caused by an exclusive VOC reduction. The combined reduction of all precursor compounds is the most efficient strategy, although it is only marginally more efficient than the NO x -reduction scenario alone. (author) figs., tabs., 75 refs

  2. Theoretical perspectives on electron transfer and charge separation events in photochemical water cleavage systems

    International Nuclear Information System (INIS)

    Kozak, J.J.; Lenoir, P.M.; Musho, M.K.; Tembe, B.L.

    1984-01-01

    We study in this paper the dynamics induced by models for photochemical water cleavage systems, focusing on the spatial and temporal factors influencing electron transfer and charge separation processes in such systems. The reaction-diffusion theory is formulated in full generality and the consequences explored in a number of spatio-temporal regimes, viz. the spatially homogeneous system in the long-time limit (i.e. the steady state for a well-stirred system), the spatially homogeneous system in evolution, and the spatially inhomogeneous system in evolution (where, in the latter study, we consider electron transfer at the cluster surface to be governed by a rate constant that reflects the localized nature of such processes). The results of numerical simulations are presented for all three cases and used to highlight the importance of heterogeneous environments in enhancing the cage escape yield of charge separated species, and to demonstrate the dependence of the hydrogen yield on the localization of electron-transfer processes in the vicinity of the microcatalyst surface

  3. Reciprocity theory of homogeneous reactions

    Science.gov (United States)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  4. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?

    Science.gov (United States)

    Maharjan, Binita; Raghibi Boroujeni, Mahdi; Lefton, Jonathan; White, Ormacinda R; Razzaghi, Mortezaali; Hammann, Blake A; Derakhshani-Molayousefi, Mortaza; Eilers, James E; Lu, Yun

    2015-05-27

    The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and β-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

  5. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride-Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations.

    Science.gov (United States)

    Derakhshani-Molayousefi, Mortaza; Kashefolgheta, Sadra; Eilers, James E; Lu, Yun

    2016-06-30

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride-transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD) than in H-tunneling. To examine the isotopic DAD difference explanation, in this paper, following an activated motion-assisted H-tunneling model that requires a shorter DAD in a heavier isotope transfer process, we computed the 2° KIEs at various H/D positions at different DADs (2.9 Å to 3.5 Å) for the hydride-transfer reactions from 2-propanol to the xanthylium and thioxanthylium ions (Xn(+) and TXn(+)) and their 9-phenyl substituted derivatives (Ph(T)Xn(+)). The calculated 2° KIEs match the experiments and the calculated DAD effect on the 2° KIEs fits the observed 1° isotope effect on the 2° KIEs. These support the motion-assisted H-tunneling model and the isotopically different TRS conformations. Furthermore, it was found that the TRS of the sterically hindered Ph(T)Xn(+) system does not possess a longer DAD than that of the (T)Xn(+) system. This predicts a no larger 1° KIE in the former system than in the latter. The observed 1° KIE order is, however, contrary to the prediction. This implicates the stronger DAD-compression vibrations coupled to the bulky Ph(T)Xn(+) reaction coordinate.

  6. Infrared laser-induced chemical reactions

    International Nuclear Information System (INIS)

    Katayama, Mikio

    1978-01-01

    The experimental means which clearly distinguishes between infrared ray-induced reactions and thermal reactions has been furnished for the first time when an intense monochromatic light source has been obtained by the development of infrared laser. Consequently, infrared laser-induced chemical reactions have started to develop as one field of chemical reaction researches. Researches of laser-induced chemical reactions have become new means for the researches of chemical reactions since they were highlighted as a new promising technique for isotope separation. Specifically, since the success has been reported in 235 U separation using laser in 1974, comparison of this method with conventional separation techniques from the economic point of view has been conducted, and it was estimated by some people that the laser isotope separation is cheaper. This report briefly describes on the excitation of oscillation and reaction rate, and introduces the chemical reactions induced by CW laser and TEA CO 2 laser. Dependence of reaction yield on laser power, measurement of the absorbed quantity of infrared ray and excitation mechanism are explained. Next, isomerizing reactions are reported, and finally, isotope separation is explained. It was found that infrared laser-induced chemical reactions have the selectivity for isotopes. Since it is evident that there are many examples different from thermal and photo-chemical reactions, future collection of the data is expected. (Wakatsuki, Y.)

  7. Electro- and photochemical switching of dithienylethene self-assembled monolayers on gold electrodes

    DEFF Research Database (Denmark)

    Browne, W.R.; Kudernac, T.; Katsonis, N.

    2008-01-01

    forms of the dithienylethene SAMs is examined and found to be sensitive to the molecular structure of the switch. For the three dithienylethenes, the electrochemical behavior with respect to electrochemical ring opening/closing is retained in the SAMs. In contrast, a marked dependence on the nature...... of the anchoring group is observed upon immobilization in terms of the retention of the photochemical properties observed in solution. For the meta-thiophenol anchor both photochemical ring opening and closing are observed in the SAM, while for the thienyl-thiol-anchored switches the photochemically properties...

  8. Photochemical and Meteorological Conditions during the MCMA-2003 Field Measurement Campaign

    Science.gov (United States)

    Molina, L. T.; de Foy, B.; Molina, M. J.; Caetano, E.; Magana, V.; Zitacuaro, A.; Ramos, R.; Retama, A.; Cardenas, B.; Martinez, A.; Reyes, R.; Sosa, G.

    2004-12-01

    MCMA-2003 was a major field campaign of the atmospheric chemistry taking place in the Mexico City Metropolitan Area (MCMA) in April of 2003. April is in the transition from the dry to the wet season with predominant westerly synoptic winds and intense radiation heating leading to strong thermal mountain flows. Three basic types of meteorological conditions were identified: "Cold Surge", "O3-North" and "O3-South", corresponding to cloudy days associated with "Norte" events, peak ozone in the north of the city, and peak ozone in the south. The circulation associated with these is described both at the regional and local level, as high concentrations of both ozone and primary pollutants for each category make them equally relevant to chemical analyses of the basin. Modified wind roses (time roses) based on time of day categories instead of wind speed categories are used to identify shifts in wind directions associated with slope flows inside the basin and sea breeze flows outside of it. The photochemical episodes are compared with historical data from the RAMA monitoring network to assess the representativeness of MCMA-2003. The analysis of the episodes during the campaign shows the existence of one-day episodes where no build-up of pollutants is needed in order to attain very highly localized concentrations but where multi-day events lead to peaks covering a much larger geographic area.

  9. Gas and particle phase chemical characterization of photochemical smog in Beijing and Hong Kong

    Science.gov (United States)

    Hallquist, Mattias; Le Breton, Michael; Guo, Song; Zhen Yu, Jian; Hallquist, Åsa. M.; Pathak, Ravi K.; Liu, Qianyun; Wang, Yuchen; Li, Jinjian; Chan, Chak K.; Wang, Yujue; Zheng, Jing; Yang, Yudong; Lu, Keding; Wu, Zhijun; Hu, Min

    2017-04-01

    Secondary chemistry transforming primary pollutants is of high relevance for Chinese photochemical smog. In particular, formation of ozone (O3) and particulate matter (PM), including Secondary Organic Aerosols (SOA), are of major concern regarding impacts on health, climate and ecosystems. The atmospheric oxidation processes leading to SOA formation are complex and involves thousands of different compounds, both of biogenic and anthropogenic origin. Furthermore, for a thorough understanding both the gas and the particle phase need to be considered. As part of an intercollaborative project to assess the photochemical smog in China, two major field campaigns were arranged in 2016; in Changping, Bejing during springtime and at HKUST, Hong Kong during the autumn. Alongside with other advanced instrumentations, a Time of Flight Chemical Ionisation Mass Spectrometer (ToF CIMS) utilising the Filiter Inlet for Gases and AEROsols (FIGAERO) was used to chemically characterize the gas and the particle phase. This specific instrument applies soft ionization limiting the fragmentation and one can usually identify molecular composition of hundreds of different parent molecules. In both Beijing and Hong Kong the iodide ionization scheme was utilised, making it possible to specifically detect oxygenated compounds such as carboxylic acids, organic nitrates and sulphates as well as some inorganic compounds e.g. N2O5, ClNO2, and HONO. For numerous compounds significant levels were detected in both the gas and particle phase enabling evaluation of partitioning and gas-to-particle transformation and its relationship to atmospheric conditions and estimated vapour pressures. Furthermore, the detection of molecular markers such as levoglucosan, C6H5NO3, C10H16NSO7, C5H8SO7, C5H8O4 can support source apportionment and atmospheric process description. In order to further investigate atmospheric ageing/processing a portable laminar flow reactor (Go:PAM) was for selected periods utilized to

  10. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  11. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  12. Multiplicity of particles per primary reaction at 1500 MeV for the nuclei used on the accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Demirkol, Iskender, E-mail: idemirkol@bingol.edu.tr [Faculty of Art and Science, Bingoel University, Bingoel (Turkey); Tel, Eyyup [Faculty of Art and Science, Osmaniye Korkut Ata University, Osmaniye (Turkey)

    2011-05-15

    Research highlights: > We estimated multiplicities of particles in collision of 1500 MeV proton. > We used the CEM model, INC model and Evaporation model. > The particle multiplicities are nearly constant as the mass number-A increases. > Particle-particle interactions are dominant in the high-energy particles. > Conversion to the stabil state by gamma emitting is more probable. - Abstract: Multiplicities of neutron and other particles per incident proton in collision of 1500 MeV energetic proton beam with Bi, Au, Pb, W, Th, Hg, U, Fe and Cu thin targets have been estimated with the Cascade-Exciton Model (CEM), intranuclear cascade (INC) and Evaporation model. The calculations have been made using simulation codes based on specific models which describe elementary production of particles in nuclear reactions. The obtained results have been compared with the available data.

  13. Primary pollutants and potential photochemical smog formation in Makkah, Saudi Arabia

    International Nuclear Information System (INIS)

    Nasralla, M.M.; Seroji, A.R.

    2007-01-01

    This study was conducted in Mina Valley and the central district of the holy city, Makkah, during the pilgrimage (Hajj) season of 1424 Hijri (2004). During this season, more than 2.5 million people gathered in Makkah to perform the Hajj rituals. Two mobile air pollution laboratories were used to monitor NO, NO2, NOx, non-methane hydrocarbons and ozone (O3) in the atmosphere in Mina and Makkah. Instruments were calibrated periodically against standard gases. The present investigation showed clearly an ideal diurnal cycle of local ozone formation. Although the intensity of the incoming UV radiation was the lowest compared with other months of the year, recorded ozone levels approached the maximum allowable levels of 150 ug/m3 in Mina, and exceeded 160 ug/m3 in Makkah during the pilgrimage period. The problem was intensified by the high record levels NOx, sometimes reaching more than 800 ug/m3, 1h average, coupled with 1h average concentration of about 3 ppm non-methane hydrocarbons. Furthermore, the average maximum hourly ozone concentrations increased gradually from less than 60 ug/m3 during February to reach more than 200 ug/m3 (as an indication of smog formation) during some days of May. This coincides with the increase in the intensity of the incoming UV radiation reaching its maximum level in May. Consequently, it can be concluded that Makkah may face severe air pollution episodes when the pilgrimage season shifts to the summer months in the next few years. This may pose acute health problems for the elderly people and those with respiratory health problems. Good air quality and transportation management as well as the use of alternative clean fuel are highly recommended. (author)

  14. Photochemical degradation of dissolved organic matter reduces the availability of phosphorus for aquatic primary producers

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Kopáček, Jiří

    2018-01-01

    Roč. 193, FEB (2018), s. 1018-1026 ISSN 0045-6535 R&D Projects: GA ČR GA15-09721S Institutional support: RVO:60077344 Keywords : photochemistry * phosphorus * dissolved organic matter * aluminum * iron Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.208, year: 2016

  15. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease.

    Science.gov (United States)

    Habchi, Johnny; Arosio, Paolo; Perni, Michele; Costa, Ana Rita; Yagi-Utsumi, Maho; Joshi, Priyanka; Chia, Sean; Cohen, Samuel I A; Müller, Martin B D; Linse, Sara; Nollen, Ellen A A; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele

    2016-02-01

    The conversion of the β-amyloid (Aβ) peptide into pathogenic aggregates is linked to the onset and progression of Alzheimer's disease. Although this observation has prompted an extensive search for therapeutic agents to modulate the concentration of Aβ or inhibit its aggregation, all clinical trials with these objectives have so far failed, at least in part because of a lack of understanding of the molecular mechanisms underlying the process of aggregation and its inhibition. To address this problem, we describe a chemical kinetics approach for rational drug discovery, in which the effects of small molecules on the rates of specific microscopic steps in the self-assembly of Aβ42, the most aggregation-prone variant of Aβ, are analyzed quantitatively. By applying this approach, we report that bexarotene, an anticancer drug approved by the U.S. Food and Drug Administration, selectively targets the primary nucleation step in Aβ42 aggregation, delays the formation of toxic species in neuroblastoma cells, and completely suppresses Aβ42 deposition and its consequences in a Caenorhabditis elegans model of Aβ42-mediated toxicity. These results suggest that the prevention of the primary nucleation of Aβ42 by compounds such as bexarotene could potentially reduce the risk of onset of Alzheimer's disease and, more generally, that our strategy provides a general framework for the rational identification of a range of candidate drugs directed against neurodegenerative disorders.

  16. A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants.

    Science.gov (United States)

    Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2016-11-01

    The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Primary and secondary organic aerosols in summer 2016 in Beijing

    Science.gov (United States)

    Tang, Rongzhi; Wu, Zepeng; Li, Xiao; Wang, Yujue; Shang, Dongjie; Xiao, Yao; Li, Mengren; Zeng, Limin; Wu, Zhijun; Hallquist, Mattias; Hu, Min; Guo, Song

    2018-03-01

    To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP) and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS) during the Photochemical Smog in China field campaign in summer 2016. Chemical mass balance (CMB) modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be the important SOA formation

  18. Primary and secondary organic aerosols in summer 2016 in Beijing

    Directory of Open Access Journals (Sweden)

    R. Tang

    2018-03-01

    Full Text Available To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS during the Photochemical Smog in China field campaign in summer 2016. Chemical mass balance (CMB modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be

  19. Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

    Science.gov (United States)

    Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F

    2013-05-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with

  20. Photochemical transformation of benzotriazole, relevant to sunlit surface waters: Assessing the possible role of triplet-sensitised processes

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Angelica [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Fabbri, Debora; Minella, Marco [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Turin (Italy); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, BP 80026, F-63177 Aubière (France); Mailhot, Gilles [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, BP 80026, F-63177 Aubière (France); Maurino, Valter; Minero, Claudio [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Turin (Italy); Vione, Davide, E-mail: davide.vione@unito.it [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Turin (Italy); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (Italy)

    2016-10-01

    The corrosion inhibitor 1H-benzotriazole (pK{sub a} = 8.4) can exist in two different forms in natural waters, and photochemical transformation is a potentially significant attenuation pathway for both of them. Depending on conditions, the modelled half-life times range from some days/weeks to several months. In sunlit water bodies, the acidic (neutral) form would undergo direct photolysis (accounting for up to 7% of total phototransformation) and, most notably, reaction with the hydroxyl radicals ({sup ·}OH) and the triplet states of chromophoric dissolved organic matter ({sup 3}CDOM*). The basic (anionic) form would undergo significant transformation with {sup ·}OH and {sup 3}CDOM*. The {sup ·}OH reactions would be more important at low dissolved organic carbon (DOC) and the {sup 3}CDOM* processes at high DOC. In the presence of highly reactive triplet-state model compounds, the two benzotriazole forms react with similar rate constants. In this case, they would show comparable half-life times in surface-water environments. With less reactive triplet states, the rate constant of the anionic form can be a couple of orders of magnitude higher than that of the neutral one. Under these circumstances, the neutral form could be considerably more photostable than the anionic one at high DOC. Therefore, depending on {sup 3}CDOM* reactivity, the solution pH may or may not play an important role in the photoattenuation kinetics of 1H-benzotriazole in sunlit natural waters, especially at high DOC. Both forms of benzotriazole yield hydroxyderivatives as their main transformation intermediates under all the relevant photochemical reaction pathways. These intermediates could be formed via {sup ·}OH-induced hydroxylation, or upon electron abstraction followed by reaction with water. Differently from UVC irradiation data reported in previous studies, the concentration of aniline upon excitation of 1H-benzotriazole under environmentally significant UV wavelengths was always

  1. Photochemical transformation of benzotriazole, relevant to sunlit surface waters: Assessing the possible role of triplet-sensitised processes

    International Nuclear Information System (INIS)

    Bianco, Angelica; Fabbri, Debora; Minella, Marco; Brigante, Marcello; Mailhot, Gilles; Maurino, Valter; Minero, Claudio; Vione, Davide

    2016-01-01

    The corrosion inhibitor 1H-benzotriazole (pK a = 8.4) can exist in two different forms in natural waters, and photochemical transformation is a potentially significant attenuation pathway for both of them. Depending on conditions, the modelled half-life times range from some days/weeks to several months. In sunlit water bodies, the acidic (neutral) form would undergo direct photolysis (accounting for up to 7% of total phototransformation) and, most notably, reaction with the hydroxyl radicals ( · OH) and the triplet states of chromophoric dissolved organic matter ( 3 CDOM*). The basic (anionic) form would undergo significant transformation with · OH and 3 CDOM*. The · OH reactions would be more important at low dissolved organic carbon (DOC) and the 3 CDOM* processes at high DOC. In the presence of highly reactive triplet-state model compounds, the two benzotriazole forms react with similar rate constants. In this case, they would show comparable half-life times in surface-water environments. With less reactive triplet states, the rate constant of the anionic form can be a couple of orders of magnitude higher than that of the neutral one. Under these circumstances, the neutral form could be considerably more photostable than the anionic one at high DOC. Therefore, depending on 3 CDOM* reactivity, the solution pH may or may not play an important role in the photoattenuation kinetics of 1H-benzotriazole in sunlit natural waters, especially at high DOC. Both forms of benzotriazole yield hydroxyderivatives as their main transformation intermediates under all the relevant photochemical reaction pathways. These intermediates could be formed via · OH-induced hydroxylation, or upon electron abstraction followed by reaction with water. Differently from UVC irradiation data reported in previous studies, the concentration of aniline upon excitation of 1H-benzotriazole under environmentally significant UV wavelengths was always below the detection limit of the analytical

  2. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Second External Review Draft, Sep 2011)

    Science.gov (United States)

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  3. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  4. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    KAUST Repository

    Kshirsagar, Prakash; Sangaru, Shiv; Brunetti, Virgilio; Malvindi, Maria Ada Da; Pompa, Pier Paolo

    2014-01-01

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles

  5. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    Science.gov (United States)

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  6. Photochemical Degradation of Dimethyl Phthalate by Fe(III)/tartrate/H{sub 2}O{sub 2} System

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Xie, Faping [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photochemical degradation of dimethyl phthalate (DMP) in Fe(III)/tartrate/H{sub 2}O{sub 2} system was investigated utilizing fluorescent lamps as the primary light source. Effects of initial pH, light source, and initial concentration of each reactant on DMP photodegradation was examined. The results show that the system was able to effectively photodegrade DMP utilizing visible light. Fluorescent lamp, halide lamp, UV lamp and sunlight could all be used as the light sources. The optimal pH ranged among 3.0-4.0 for the system. Increases of the initial concentrations of Fe(III) and H{sub 2}O{sub 2} accelerated the photodegradation of DMP, whereas excessively high initial tartrate concentration resulted in the decrease of photodegradation efficiency and rate of DMP.

  7. Photochemical pollution indicators; Les indicateurs de la pollution photochimique. La mesure des composes azotes

    Energy Technology Data Exchange (ETDEWEB)

    Perros, P E; Marion, T [Paris-7 Univ., 75 (France). Laboratoire Interuniversitaire des Systemes Atmospheriques

    1998-11-01

    The number of photochemical pollution is generally based on the observation of ozone and nitrogen oxides concentration levels. So, the measurement of photochemical pollution indicators becomes essential to better understand the involved phenomena, and at the end to enable its reduction control and strategy. In this paper, we focus on the measurements of nitrogen compounds (NO{sub x} PAN, HNO{sub 3}). (authors) 24 refs.

  8. Photochemical surface modification of PP for abrasion resistance

    International Nuclear Information System (INIS)

    Bahners, Thomas; Haessler, Ruediger; Gao Shanglin; Maeder, Edith; Wego, Andreas; Schollmeyer, Eckhard

    2009-01-01

    The potential of a photo-chemical approach to increase the surface hardness of polypropylene (PP) has been studied. Using a 222 nm excimer lamp, fibers and film were irradiated in the presence of multi-functional substances diallylphthalate (DAP), tetraallyloxyethane (TAE), and pentaerithritoltriacylate (PETA) and characterized with regard to the resulting effect on abrasion resistance. AFM-based methods were employed to analyze thermo-mechanical surface properties. Nanoindentation and microthermal analyses of the outermost surface layers of UV treated fibers gave clear indications of an effective cross-linking of reactive substances present during irradiation. One may assume that the reactive media polymerize on top of the surface of the PP substrate and form a thin-layer. The abrasion resistance of the PP fibers was tested by applying stress through a rotating and axially oscillating roller of defined roughness and measuring the mass loss as a function of time. The abrasion resistance was found to be remarkably improved compared to the untreated fiber. Best effects were achieved using PETA as reactive substance. The experiments clearly showed the influence of processing conditions, namely with regard to homogeneous coverage of the substrate surface with the reactive medium.

  9. Application of photochemical technologies for treatment of landfill leachate.

    Science.gov (United States)

    Meeroff, Daniel E; Bloetscher, Frederick; Reddy, D V; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-03-30

    Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO(2) photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO(2) photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO(2) photocatalysis. Testing with actual leachate samples showed 85% TiO(2) photocatalyst recovery efficiency with no loss in performance after multiple (n>4 uses). Pre-filtration was not found to be necessary for effective treatment using either process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Photochemical ozone budget during the BIBLE A and B campaigns

    Science.gov (United States)

    Ko, Malcolm; Hu, Wenjie; Rodríguez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro

    2003-02-01

    Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.

  11. Could clinical photochemical internalisation be optimised to avoid neuronal toxicity?

    Science.gov (United States)

    O'Rourke, Caitriona; Hopper, Colin; MacRobert, Alexander J; Phillips, James B; Woodhams, Josephine H

    2017-08-07

    Photochemical Internalisation (PCI) is a novel drug delivery technology in which low dose photodynamic therapy (PDT) can selectively rupture endo/lysosomes by light activation of membrane-incorporated photosensitisers, facilitating intracellular drug release in the treatment of cancer. For PCI to be developed further, it is important to understand whether nerve damage is an impending side effect when treating cancers within or adjacent to nervous system tissue. Dorsal root ganglion (DRG) neurons and their associated satellite glia were subjected to PCI treatment in a 3D co-culture system following incubation with photosensitisers: meso-tetraphenylporphine (TPPS 2a ) or tetraphenylchlorin disulfonate (TPCS 2 a) and Bleomycin. Results from the use of 3D co-culture models demonstrate that a cancer cell line PCI30 and satellite glia were more sensitive to PCI than neurons and mixed glial cells, athough neurite length was affected. Neurons in culture survived PCI treatment under conditions sufficient to kill tumour cells, suggesting cancers within or adjacent to nervous system tissue could be treated with this novel technology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  13. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  14. Photochirogenesis: Photochemical Models on the Origin of Biomolecular Homochirality

    Directory of Open Access Journals (Sweden)

    Cornelia Meinert

    2010-05-01

    Full Text Available Current research focuses on a better understanding of the origin of biomolecular asymmetry by the identification and detection of the possibly first chiral molecules that were involved in the appearance and evolution of life on Earth. We have reasons to assume that these molecules were specific chiral amino acids. Chiral amino acids have been identified in both chondritic meteorites and simulated interstellar ices. Present research reasons that circularly polarized electromagnetic radiation was identified in interstellar environments and an asymmetric interstellar photon-molecule interaction might have triggered biomolecular symmetry breaking. We review on the possible prebiotic interaction of ‘chiral photons’ in the form of circularly polarized light, with early chiral organic molecules. We will highlight recent studies on enantioselective photolysis of racemic amino acids by circularly polarized light and experiments on the asymmetric photochemical synthesis of amino acids from only one C and one N containing molecules by simulating interstellar environments. Both approaches are based on circular dichroic transitions of amino acids that will be presented as well.

  15. Photochemical and other air pollutants in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Floor, H.

    1976-01-01

    In 1975, together with the State Institute of Public Health and the Royal Dutch Meteorological Institute, The Institute of Phytopathological Research continued investigations on incidence of air pollution throughout the Netherlands. Culture vessels with indicator plants were placed on 31 test plots of the National Air Pollution Monitoring Network. During the growing season from May until October, the indicator plants were inspected weekly for typical symptoms of air pollution. Until July, photochemical air pollution by ozone caused less injury to Spinacia oleracea than in the preceding year. On Nicotiana tabacum there was as much injury as in 1974, especially in the 33rd, 36th and 37th week, all over the country. An increasing number of injurious effects by peroxyacetyl nitrate was observed on Petunia nyctaginiflora, Poa annua and Urtica urens. Medicago sativa, Fagopyrum esculentuma nd Petunia nyctaginiflora, indicator plants for the pollutants SO2, NO/sub x/ and ethylene, showed little and Solanum tuberosum, possible indicator plant for ethylene and ozone, no injury in 1975. Finally air pollution by HG occurred on the same scale as in 1974, as shown by Tulipa gesneriana in spring and Gladiolus gandavensis in summer. These results corresponded with the figures for F from the limed paper method. As in 1974, data on injury to the plants and from the limed paper method showed a decline from south to north.

  16. Plants as indicators of photochemical oxidants in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J.S.

    1977-01-01

    Plant indicators have been important in identifying the photochemical oxidant problem in the USA since the 1940's. They continue to serve as an inexpensive means of detecting oxidants in the atmosphere and determining the geographical extent and frequency of occurrence of oxidants. Plant indicators are particularly useful for land-use planning and in the evaluation of air pollution effects on agriculture, forestry, and native vegetation. Plant indicators are not satisfactory substitutes for chemical monitoring of the atmosphere because their responses lack specificity and are affected by climatic, edaphic, and cultural factors, as well as the concentration and frequency of occurrence of oxidants. Because they integrate many environmental variables, plant indicators may be valuable models for the response of other species but only to the extent that they respond to oxidants in the same manner as these other species. The four most important factors for the successful use of plant indicators are: genetic uniformity of plant material; standardization of cultural conditions; standardization of procedures for scoring foliar symptoms; and uniformity of climatic and edaphic factors among study sites. The species used most frequently as indicators of oxidants in the US have been Bel W-3 tobacco and Pinto bean for 0/sub 3/ and petunia for peroxyacyl nitrate. 41 references, 1 table.

  17. Photochemical chlorine and bromine activation from artificial saline snow

    Directory of Open Access Journals (Sweden)

    S. N. Wren

    2013-10-01

    Full Text Available The activation of reactive halogen species – particularly Cl2 – from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [ozone] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack, which is initiated by heterogeneous oxidation and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates this important role of active chemistry occurring within the interstitial air of aged (i.e. acidic snow for halogen activation at polar sunrise.

  18. An Integrative Study of Photochemical Air Pollution in Hong Kong: an Overview

    Science.gov (United States)

    Wang, T.

    2014-12-01

    Hong Kong is situated in the Pearl River delta of Southern China. This region has experienced phenomenal economic growth in the past 30 years. Emissions of large amount of pollutants from urban areas and various industries coupled with subtropical climate have led to frequent occurrences of severe photochemical air pollution. Despite the long-term control efforts of the Hong Kong government, the atmospheric levels of ozone have been increasing in the past decade. To obtain an updated and more complete understanding of photochemical smog, an integrative study has been conducted during 2010-2014. Several intensive measurement campaigns were carried out at urban, suburban and rural sites in addition to the routine observations at fourteen air quality monitoring stations in Hong Kong. Meteorological, photochemical, and chemical-transport modeling studies were conducted to investigate the causes/processes of elevated photochemical pollution . The main activities of this study were to (1) examine the situation and trends of photochemical air pollution in Hong Kong, (2) understand some underlying chemical processes in particular the poorly-understood heterogeneous processes of reactive nitrogen oxides, (3) quantify the local, regional, and super-regional contributions to the ozone pollution in Hong Kong, and (4) review the control policy and make further recommendations based on the science. This paper will give an overview of this study and present some key results on the trends and chemistry of the photochemical pollution in this polluted subtropical region.

  19. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  20. Novel Fluorometric Method for the Determination of Production Rate and Steady-State Concentration of Photochemically Generated Superoxide Radical in Seawater Using 3',6'-(Diphenylphosphinyl)fluorescein.

    Science.gov (United States)

    Anifowose, Adebanjo Jacob; Takeda, Kazuhiko; Sakugawa, Hiroshi

    2015-12-15

    Superoxide radical (O2(•-)) is an important reactive oxygen species in seawater. Measurements of its production rates and steady-state concentrations generated by photochemical processes have been a Herculean task over the years. In this study, a probe - 3'6'-(diphenylphosphinyl)fluorescein (PF-1) - was used to trap photochemically generated O2(•-) in seawater, thereby yielding fluorescein. The fluorescein produced was measured by an isocratic fluorescence HPLC at excitation/emission wavelengths of 490/513 nm, respectively. The reaction rate constant of PF-1 with O2(•-) (kPF-1) was pH-dependent: (3.2-23.5) × 10(7) M(-1) s(-1) at pHTOT 7.65-8.50. By applying appropriate equations, both the production rate and the steady-state concentration of O2(•-) generated by photochemical reactions in the seawater were quantified. Under the optimized experimental conditions, fluorescein standards (3-50 nM) exhibited linearity in the seawater by HPLC. The photoformation of fluorescein, due to the reaction of PF-1 with the O2(•-) photochemically produced in the seawater, was linear within the 20 min irradiation. The detection limit of the fluorescein photoformation rate was 0.03 pM s(-1), defined as 3σ of the lowest standard fluorescein concentration per 20 min irradiation. Using this value, the yield of fluorescein, and the fraction of O2(•-) that reacted with PF-1 in the seawater, the detection limit of the O2(•-) photoformation rate was 1.78 pM s(-1). Superoxide measurements using the proposed method were relatively unaffected by the potential interfering species in seawater. Application of the proposed method to ten (10) seawater samples from the Seto Inland Sea, Japan, resulted in measured O2(•-) photoformation rates of 3.1-8.5 nM s(-1), with steady-state concentrations ranging (0.06-0.3) × 10(-10) M. The method is simple, requires no technical sample preparation, and can be used to analyze a large number of samples.

  1. Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp.

    Directory of Open Access Journals (Sweden)

    Kenneth D. Hoadley

    2017-11-01

    Full Text Available Active chlorophyll a fluorescence is an essential tool for understanding photosynthetic activity within cnidarian/dinoflagellate symbioses. Fluorescence measurement is typically achieved by utilizing a blue or red monochromatic excitation light source. However, algal photosynthetic pigments can differ in their absorption spectra, potentially leading to excitation wavelength dependent measurements of maximal and light acclimated PSII photosynthetic quantum yield (Fv/Fm or Fq′/Fm′ and functional absorption cross section (σPSII or σPSII′. Here we utilized an open source hardware development platform to construct a multispectral excitation fluorometer to assess spectrally dependent differences in photochemistry within four different Symbiodinium species (two of each ITS2-type A4 and B1. Multivariate analysis of light acclimated photochemical signatures showed separation between most alga types. These spectrally dependent differences in light acclimated PSII efficiency and PSII functional absorption cross section likely reflect changes in light harvesting compounds, their connectivity to the PSII reaction centers and the balance between photochemical and non-photochemical fluorescence quenching. Additionally, acclimation to low (20 μmol photons m−2 s−1 and high (200 μmol photons m−2 s−1 light conditions was examined in two of these symbionts types (ITS-2 type A4 and B1 As expected, chlorophyll a cell−1 decreased under high light acclimation in both symbionts. However, only A4 saw a subsequent reduction in absorbance whereas cellular volume decreased in the B1 (S. minutum symbiont. In response to high light acclimation, Fv/Fm was significantly lower at all excitation wavelengths for the B1 symbiont where as efficiencies remained the same for A4. However, high-light acclimated Fq′/Fm′ levels decreased in both symbionts, but only when measured using the 615 or 625 nm excitation wavelengths. Non-photochemical quenching within the

  2. Effects of induced energy deficiency on lactoferrin concentration in milk and the lactoferrin reaction of primary bovine mammary epithelial cells in vitro.

    Science.gov (United States)

    Danowski, K; Gross, J J; Meyer, H H D; Kliem, H

    2013-08-01

    A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo. © 2012 Blackwell Verlag GmbH.

  3. Enriched reaction center preparation from green photosynthetic bacteria. [Chlorobium limicola

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J M; Giddings, Jr, T H; Shaw, E K

    1976-01-01

    Bacteriochlorophyll a reaction-center complex I from Chlorobium limicola f. thiosulfatophilum 6230 (Tassajara) was incubated in 2 M guanidine . HCl and then chromatographed on cross-linked dextran or agarose gel. Two principal components were separated: a larger component with photochemical activity (bacteriochlorophyll a reaction-center complex II) and a smaller component without activity (bacteriochlorophyll a protein). Complex II contains carotenoid, bacteriochlorophyll a, reaction center(s), and cytochromes b and c, but lacks the well characterized bacteriochlorophyll a protein contained in Complex I. Complex II carries out a light-induced reduction of cytochrome b along with an oxidation of cytochrome c.

  4. Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol

    Science.gov (United States)

    Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.

    2011-03-01

    As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m-3 ppmvCO-1 h-1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.

  5. Sunlight technologies for photochemical deactivation of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Acher, A.; Fischer, E.; Tornheim, R. [The Volcani Center, Inst. of Soils and Water, Bet Dagan (Israel); Manor, Y. [Sheba Medical Center, Central Virology Lab., Ramat Gan (Israel)

    1997-12-31

    Sensitized-photochemical oxidation methods aimed at use in water treatment technologies for deactivation of biotic (microorganisms) and/or of xenobiotic (pesticides) pollutants in water were developed using global solar radiation or concentrated sunlight (up to 250 suns). The solar global radiation was used either for detoxification of industrial waste water from a pesticide factory to allow their discharge into the urban sewer, or for disinfection of domestric effluents to be used in crop irrigation. The disinfection process was eventually carried out in an experimental pilot-scale plant, capable of disinfection up to 50 m{sup 3}/h of effluent supplied by an activated sludge sewage treatment plant located in Tel-Aviv area. The treated effluents did not show any regrowth of the microorganisms during 7 days. The solar concentrated radiation experiments performed using facilities of the Sun Tower of The Weizman Institute of Science, Rehovot. The concentrated sunlight was provided by different combination of several computer controlled heliostates, up to 8, that track the sun and focus the received sunlight onto the target situated on the roof of the sun-tower. The sunlight intensities measured on the target reached up to 200 kW/m{sup 2}. The experiments were performed either batch- or continuous-wise. The water-samples exposed to disinfection were the above effluent, filtered and supplemented with vaccine strain poliovirus or with different concentrations of an industrial potential pollutant (bromacil), MB 2 mg/L and two concentrations of dissolved oxygen (8.0 or 40.0 mg O{sub 2}/L). An exposure time of 2-3 seconds at 150 kW/m{sup 2} was decreased the microorganisms alive (counts) by five orders of magnitude. A comparison between the two above water treatment technologies is presented. (orig./SR)

  6. Simulation of photochemical pollutants in summer 2013 in China

    Science.gov (United States)

    Zhang, H.; Guo, H.; Hu, J.

    2016-12-01

    Rapid economic growth and associated emissions increase in China have led to severe air pollution in recent decades. Photochemical pollutants are secondary formed pollutants in the atmosphere with the existence of sunlight. Ozone (O3) is adverse to human health and ecosystems and secondary organic aerosol (SOA) is a major component of fine particulate matter (PM2.5) that affects human health, visibility, and climate. In this work, the Community Multi-scale Air Quality (CMAQ) model was used to investigate the formation of O3 and SOA in three episodes from June to August 2013. Compared with observation data, O3 performance meets the EPA criteria of mean normalized bias (MNB) within ± 0.15 in major parts of China including five megacities. The diurnal variation of O3 had similar trend with the temperature. The August episode has the highest O3 concentrations of 100 ppb in North China Plain while the July episode has the lowest concentrations of 50 ppb. SOA concentrations were up to 35-40 μgm-3 at different cities in different episodes. Biogenic SOA was the majority with the contributions from glyoxal (GLY), methylglyoxal (MGLY), isoprene epoxydiol (IEPOX) and oligomers (OLGM) of 70%. Isopleth found that NOx controls O3 concentration in most areas of China. Reducing VOC would have minor effects on O3 concentrations while reducing NOx could largely reduce O3 concentration except for urban areas such as Shanghai and Guangzhou. On the contrary, SOA was controlled by VOCs in cities such as Beijing, Shanghai, and Xi'an. This study provides valuable information for designing effective control strategies for O3 and particulate matter in China.

  7. Photo-chemical transport modelling of tropospheric ozone: A review

    Science.gov (United States)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  8. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    Science.gov (United States)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  9. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  10. Atmospheric photochemical loss of H and H2 from formaldehyde

    DEFF Research Database (Denmark)

    Simonsen, Jens Bæk; Rusteika, Nerijus; Johnson, Matthew Stanley

    2008-01-01

    We have performed ab initio calculations to examine the potential energy along the normal modes of ground-state HCHO and along the reaction coordinates for loss of H2 and atomic hydrogen, respectively. This exploration showed that there are no specific features that will lead to reaction on the e......We have performed ab initio calculations to examine the potential energy along the normal modes of ground-state HCHO and along the reaction coordinates for loss of H2 and atomic hydrogen, respectively. This exploration showed that there are no specific features that will lead to reaction...... on the excited-state surfaces for excitations that are relevant to the troposphere and stratosphere. The calculations did however lead to the localization of a conical intersection point through which a specific loss of H2 could take place. However, the conical intersection lies at 5.4 eV relative to the ground...

  11. Photochemical of Polychlorinated biphenyl by the photolysis and ...

    African Journals Online (AJOL)

    Michael Horsfall

    reaction mixture inside the cell was continuously stirred with a .... work on PCB photolysis was carried out in alkanes and alcohols. .... dominant mechanism of PCBs destruction becomes hydroxyl ... (2004). Using solar and ultraviolet light to.

  12. The Photochemical Conversion of Surrogate Emissions for Use in Toxicological Studies: Role of Particulate- and Gas-Phase Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting...

  13. Effects of Biological and Photochemical Degradation on the Optical Properties of CDOM Exported to Coastal Marine Environments

    National Research Council Canada - National Science Library

    Moran, Mary

    2004-01-01

    .... This project quantitatively assessed the ability of coastal ocean bacteria to degrade and produce CDOM and investigated the synergistic interactions between bacterial degradation and photochemical...

  14. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  15. Biological diversity of photosynthetic reaction centers and the solid-state photo-CIDNP effect

    NARCIS (Netherlands)

    Roy, Esha

    2007-01-01

    Photosynthetic reaction centers (RCs) from plants, heliobacteria and green sulphur bacteria has been investigated with photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR. In photosystem (PS) I of spinach, all signals appear negative which is proposed by a predominance of the

  16. Reaction studies of hot silicon and germanium radicals. Progress report, February 1, 1982-July 31, 1984

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1984-01-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1982 to 1984 period is reviewed in sections entitled: (1) Recoil atom experiments, (2) Studies of thermally and photochemically generated silicon and germanium radicals, and (3) Ion-molecule reaction studies

  17. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  18. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  19. 2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent.

    Science.gov (United States)

    Senadheera, Sanjeewa N; Evans, Anthony S; Toscano, John P; Givens, Richard S

    2014-02-01

    α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.

  20. 2-Diazo-1-(4-hydroxyphenyl)ethanone: A Versatile Photochemical and Synthetic Reagenta

    Science.gov (United States)

    Senadheera, Sanjeewa N.; Evans, Anthony S.; Toscano, John P.; Givens, Richard S.

    2014-01-01

    α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rerrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii reangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a–c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 15 ns with a rate for appearance of 4a of k = 7,1 × 106 s−1 in aq. acetonitrile (1:1 v:v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates. PMID:24305682

  1. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    Science.gov (United States)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  2. Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes

    Science.gov (United States)

    He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; hide

    2018-01-01

    UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).

  3. Assessment of diphenylcyclopropenone for photochemically induced mutagenicity in the Ames assay

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, M.G.; Connor, T.H.; Henkin, J.; Wilkin, J.K.; Matney, T.S.

    1987-10-01

    The photochemical conversion of diphenylcyclopropenone to diphenylacetylene has recently been reported. Diphenylcyclopropenone is used in the treatment of alopecia areata and is nonmutagenic in a limited Ames assay. We examined diphenylcyclopropenone and diphenylacetylene, as well as synthetic precursors of diphenylcyclopropenone--dibenzylketone and alpha,alpha'-dibromodibenzylketone--for mutagenicity against TA100, TA98, TA102, UTH8413, and UTH8414. All compounds were nonmutagenic except alpha,alpha'-dibromodibenzylketone, which was a potent mutagen in TA100 with and without S-9 activation. The effect of photochemical activation of diphenylcyclopropenone in the presence of bacteria demonstrated mutagenicity in UTH8413 (two times background) at 10 micrograms/plate with S-9 microsomal activation. 8-Methoxypsoralen produces a mutagenic response in TA102 at 0.1 microgram/plate with 60 seconds of exposure to 350 nm light. In vitro photochemically activated Ames assay with S-9 microsomal fraction may enhance the trapping of short-lived photochemically produced high-energy mutagenic intermediates. This technique offers exciting opportunities to trap high-energy intermediates that may play an important role in mutagenesis. This method can be applied to a variety of topically applied dermatologic agents, potentially subjected to photochemical changes in normal use.

  4. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  5. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    Science.gov (United States)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  6. Laser induced photochemical and photophysical processes in fuel reprocessing: present scenario and future prospects

    International Nuclear Information System (INIS)

    Bhowmick, G.K.; Sarkar, S.K.; Ramanujam, A.

    2001-01-01

    State-of-art lasers can meet the very stringent requirements of nuclear technology and hence find application in varied areas of nuclear fuel cycle. Here, we discuss two specific applications in nuclear fuel reprocessing namely (a) add-on photochemical modifications of PUREX process where photochemical reactors replace the chemical reactors, and (b) fast, matrix independent sensitive laser analytical techniques. The photochemical modifications based on laser induced valency adjustment offers efficient separation, easy maintenance and over all reduction in the volume of radioactive waste. The analytical technique of time resolved laser induced fluorescence (TRLIF) has several attractive features like excellent sensitivity, element selective, and capability of on line remote process monitoring. For optically opaque solutions, optical excitation is detected by its conversion into thermal energy by non-radiative relaxation processes using the photo-thermal spectroscopic techniques. (author)

  7. Photochemical technique for reduction of uranium and subsequently plutonium in the Purex process

    International Nuclear Information System (INIS)

    Goldstein, M.; Barker, J.J.; Gangwer, T.

    1976-09-01

    A photochemical modification of the Purex process is described in which a purified side stream of UO 2 ++ ion is reduced to U +4 outside the radioactive area of the reprocessing plant. The U +4 is then cycled back to step 2 of the Purex process to reduce the plutonium and effect separation within the partitioning column. This process is shown to be very energy efficient and compatible with existing conventional lamp technology. Preliminary cost estimates of the energy requirements for photon production are essentially negligible. Conceptual systems and photochemical reactor designs are presented. Potential benefits of this system are discussed

  8. Photochemical oxidant transport - Mesoscale lake breeze and synoptic-scale aspects

    Science.gov (United States)

    Lyons, W. A.; Cole, H. S.

    1976-01-01

    Data from routine ozone monitoring in southeastern Wisconsin and limited monitoring of the Milwaukee area by the Environmental Protection Agency are examined. Hourly averages as high as 30 pphm have been recorded in southeastern Wisconsin, and high readings have been reported in rural regions throughout the state. The observations indicate that photochemical oxidants and their nitrogen oxide and reactive hydrocarbon precursers advect from Chicago and northern Indiana into southeastern Wisconsin. There is evidence that synoptic-scale transport of photochemical oxidants occurs, allowing the pollution of entire anticyclones. These results cast doubt on the validity of the Air Quality Control Regions established by amendment to the Clean Air Act of 1970.

  9. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  10. Ammonia removal from leachate by photochemical process using H2O2

    Directory of Open Access Journals (Sweden)

    Giovani Archanjo Brota

    2010-08-01

    Full Text Available In this work, it was studied the optimization of the photochemical process using H2O2/UV in order to reduce the concentration of ammonia in leachate. It was used landfills leachate previously treated in the development of studies. A photochemical reactor with the capacity of 1.7 liters equipped with refrigeration system and recirculation of leachate was employed in the research. The influence of temperature, the light bulb power, the concentration of H2O2 and treatment time were tested during the study. A removal of 97% of ammonia was observed at 90 min.

  11. Photochemical production of ozone in Beijing during the 2008 Olympic Games

    Science.gov (United States)

    Chou, C. C.-K.; Tsai, C.-Y.; Chang, C.-C.; Lin, P.-H.; Liu, S. C.; Zhu, T.

    2011-09-01

    As a part of the CAREBeijing-2008 campaign, observations of O3, oxides of nitrogen (NOx and NOy), CO, and hydrocarbons (NMHCs) were carried out at the air quality observatory of the Peking University in Beijing, China during August 2008, including the period of the 29th Summer Olympic Games. The measurements were compared with those of the CAREBeijing-2006 campaign to evaluate the effectiveness of the air pollution control measures, which were conducted for improving the air quality in Beijing during the Olympics. The results indicate that significant reduction in the emissions of primary air pollutants had been achieved; the monthly averaged mixing ratios of NOx, NOy, CO, and NMHCs decreased by 42.2, 56.5, 27.8, and 49.7 %, respectively. In contrast to the primary pollutants, the averaged mixing ratio of O3 increased by 42.2 %. Nevertheless, it was revealed that the ambient levels of total oxidant (Ox = O3+NO2+1.5 NOz) and NOz were reduced by 21.3 and 77.4 %, respectively. The contradictions between O3 and Ox were further examined in two case studies. Ozone production rates of 30-70 ppbv h-1 and OPEx of ~8 mole mole-1 were observed on a clear-sky day in spite of the reduced levels of precursors. In that case, it was found that the mixing ratio of O3 increased with the increasing NO2/NO ratio, whereas the NOz mixing ratio leveled off when NO2/NO>8. Consequently, the ratio of O3 to NOz increased to above 10, indicating the shift from VOC-sensitive regime to NOx-sensitive regime. However, in the other case, it was found that the O3 production was inhibited significantly due to substantial reduction in the NMHCs. According to the observations, it was suggested that the O3 and/or Ox production rates in Beijing should have been reduced as a result of the reduction in the emissions of precursors during the Olympic period. However, the nighttime O3 levels increased due to a decline in the NO-O3 titration, and the midday O3 peak levels were elevated because of the shift in

  12. Primary ovarian malignant melanoma

    Directory of Open Access Journals (Sweden)

    Kostov Miloš

    2010-01-01

    Full Text Available Background. Primary ovarian malignant melanoma is extremely rare. It usually appears in the wall of a dermoid cyst or is associated with another teratomatous component. Metastatic primary malignant melanoma to ovary from a primary melanoma elsewhere is well known and has been often reported especially in autopsy studies. Case report. We presented a case of primary ovarian malignant melanoma in a 45- year old woman, with no evidence of extraovarian primary melanoma nor teratomatous component. The tumor was unilateral, macroscopically on section presented as solid mass, dark brown to black color. Microscopically, tumor cells showed positive immunohistochemical reaction for HMB-45, melan-A and S-100 protein, and negative immunoreactivity for estrogen and progesteron receptors. Conclusion. Differentiate metastatic melanoma from rare primary ovarian malignant melanoma, in some of cases may be a histopathological diagnostic problem. Histopathological diagnosis of primary ovarian malignant melanoma should be confirmed by immunohistochemical analyses and detailed clinical search for an occult primary tumor.

  13. Quenching of excited uranyl ion during its photochemical reduction with triphenyl-phosphine : Part IV - effect of heterocyclic molecules

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Bhatia, P.V.K.

    1994-01-01

    The presence of heterocyclic compounds triggers off a competition between photophysical and photochemical annihilation of excited uranyl ion during its photochemical reduction with triphenylphosphine. This competition is used to measure Stern-Volmer constant using UV visible spectrophotometer for quenching the uranyl ion luminescence with a number of heterocyclic molecules viz., pyridine, thiophene bipyridyl, tetrahydrofuran and piperidine. (author). 7 refs., 2 figs., 1 tab

  14. Photogeochemical reactions of manganese under anoxic conditions

    Science.gov (United States)

    Liu, W.; Yee, N.; Piotrowiak, P.; Falkowski, P. G.

    2017-12-01

    Photogeochemistry describes reactions involving light and naturally occurring chemical species. These reactions often involve a photo-induced electron transfer that does not occur in the absence of light. Although photogeochemical reactions have been known for decades, they are often ignored in geochemical models. In particular, reactions caused by UV radiation during an ozone free early Earth could have influenced the available oxidation states of manganese. Manganese is one of the most abundant transition metals in the crust and is important in both biology and geology. For example, the presence of manganese (VI) oxides in the geologic record has been used as a proxy for oxygenic photosynthesis; however, we suggest that the high oxidation state of Mn can be produced abiotically by photochemical reactions. Aqueous solutions of manganese (II) as well as suspensions of rhodochrosite (MnCO3) were irradiated under anoxic condition using a 450 W mercury lamp and custom built quartz reaction vessels. The photoreaction of the homogeneous solution of Mn(II) produced H2 gas and akhtenskite (ɛ-MnO2) as the solid product . This product is different than the previously identified birnessite. The irradiation of rhodochrosite suspensions also produced H2 gas and resulted in both a spectral shift as well as morphology changes of the mineral particles in the SEM images. These reactions offer alternative, abiotic pathways for the formation of manganese oxides.

  15. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.

    Science.gov (United States)

    Schmitt-Kopplin, Philippe; Gelencsér, Andras; Dabek-Zlotorzynska, Ewa; Kiss, Gyula; Hertkorn, Norbert; Harir, Mourad; Hong, Yang; Gebefügi, Istvan

    2010-10-01

    Complementary molecular and atomic signatures obtained from Fourier transform ion cyclotron resonance (FTICR) mass spectra and NMR spectra provided unequivocal attribution of CHO, CHNO, CHOS, and CHNOS molecular series in secondary organic aerosols (SOA) and high-resolution definition of carbon chemical environments. Sulfate esters were confirmed as major players in SOA formation and as major constituents of its water-soluble fraction (WSOC). Elevated concentrations of SO(2), sulfate, and photochemical activity were shown to increase the proportion of SOA sulfur-containing compounds. Sulfonation of CHO precursors by means of heterogeneous reactions between carbonyl derivatives and sulfuric acid in gas-phase photoreactions was proposed as a likely formation mechanism of CHOS molecules. In addition, photochemistry induced oligomerization processes of CHOS molecules. Methylesters found in methanolic extracts of a SOA subjected to strong photochemical exposure were considered secondary products derived from sulfate esters by methanolysis. The relative abundance of nitrogen-containing compounds (CHNO and CHNOS series) appeared rather dependent on local effects such as biomass burning. Extensive aliphatic branching and disruption of extended NMR spin-systems by carbonyl derivatives and other heteroatoms were the most significant structural motifs in SOA. The presence of heteroatoms in elevated oxidation states suggests a clearly different SOA formation trajectory in comparison with established terrestrial and aqueous natural organic matter.

  16. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments

    Science.gov (United States)

    Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.

    2018-04-01

    Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.

  17. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption - a statistical approach

    Science.gov (United States)

    Kulikov, Mikhail Y.; Nechaev, Anton A.; Belikovich, Mikhail V.; Ermakova, Tatiana S.; Feigin, Alexander M.

    2018-05-01

    This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component's mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.

  18. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.

    Science.gov (United States)

    Avital, Shlomo; Brumfeld, Vlad; Malkin, Shmuel

    2006-07-01

    To get an insight to the mechanism of the zeaxanthin-dependent non-photochemical quenching in photosystem II of photosynthesis, we probed the interaction of some xanthophylls with excited chlorophyll-a by trapping both pigments in micelles of triton X-100. Optimal distribution of pigments among micelles was obtained by proper control of the micelle concentration, using formamide in the reaction mixture, which varies the micellar aggregation number over three orders of magnitude. The optimal reaction mixture was obtained around 40% (v/v) formamide in 0.2-0.4% (v/v) triton X-100 in water. Zeaxanthin in the micellar solution exhibited initially absorption and circular dichroism spectral features corresponding to a J-type aggregate. The spectrum was transformed over time (half-time values vary-an average characteristic figure is roughly 20 min) to give features representing an H-type aggregate. The isosbestic point in the series of spectral curves favors the supposition of a rather simple reaction between two pure J and H-types dimeric species. Violaxanthin exhibited immediately stable spectral features corresponding to a mixture of J-type and more predominately H-type dimers. Lutein, neoxanthin and beta-carotene did not show any aggregated spectral forms in micelles. The spectral features in micelles were compared to spectra in aqueous acetone, where the assignment to various aggregated types was established previously. The specific tendency of zeaxanthin to form the J-type dimer (or aggregate) could be important for its function in photosynthesis. The abilities of five carotenoids (zeaxanthin, violaxanthin, lutein, neoxanthin and beta-carotene) to quench chlorophyll-a fluorescence were compared. Zeaxanthin, in its two micellar dimeric forms, and beta-carotene were comparable good quenchers of chlorophyll-a fluorescence. Violaxanthin was a much weaker quencher, if at all. Lutein and neoxanthin rather enhanced the fluorescence. The implications to non-photochemical

  19. SMOG CHAMBERS: A TOOL TO EXAMINE EFFECTS OF PHOTOCHEMICALLY AGED AIR POLLUTANTS ON BIOLOGICAL SYSTEMS

    Science.gov (United States)

    Irradiative exposure chambers or 'Smog chambers' have been used at the University of North Carolina for over 30 years to study photochemically active mixtures of volatile organic compounds and their transformation products (a significant sub-set of Hazardous Air Pollutants, HAPs)...

  20. A single exposure to photochemical smog causes airway irritation and cardiac dysrhythmia in mice

    Science.gov (United States)

    The data presented here shows that a single exposure to photochemical smog causes airway irritation and cardiac dysrhythmia in mice. Smog, which is a complex mixture of particulate matter and gaseous irritants (ozone, sulfur dioxide, reactive aldehydes), as well as components whi...

  1. Considerations on photochemical genotoxicity. II: Report of the 2009 International Workshop on Genotoxicity Testing Working Group

    NARCIS (Netherlands)

    Lynch, A.M.; Guzzie, P.J.; Bauer, D.; Gocke, E.; Itoh, S.; Jacobs, A.; Krul, C.A.M.; Schepky, A.; Tanaka, N.; Kasper, P.

    2011-01-01

    A workshop to reappraise the previous IWGT recommendations for photogenotoxicity testing [E. Gocke, L. Muller, P.J. Guzzie, S. Brendler-Schwaab, S. Bulera, C.F. Chignell, L.M. Henderson, A. Jacobs, H. Murli, R.D. Snyder, N. Tanaka, Considerations on photochemical genotoxicity: report of the

  2. Interfacial electrochemistry of colloidal ruthenium dioxide and catalysis of the photochemical generation of hydrogen from water

    NARCIS (Netherlands)

    Kleijn, J.M.

    1987-01-01

    The formation of hydrogen from water using solar energy is a very attractive research topic, because of the potential use of hydrogen as an alternative, clean fuel. It has been shown by many workers in the field that photochemical hydrogen generation can be achieved in an aqueous system,

  3. 40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.430 Section 52.430 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Natural Resources & Environmental Control submitted a plan for the establishment and implementation of a...

  4. Water Treatment Process Intensification by Combination of Electrochemical and Photochemical Methods

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Tito, D.N.

    2015-01-01

    Roč. 94, SI (2015), s. 85-92 ISSN 0255-2701 R&D Projects: GA MPO(CZ) FR-TI1/065; GA TA ČR TA03010548 Institutional support: RVO:67985858 Keywords : electrocoagulation * photochemical oxidation * TOC removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.154, year: 2015

  5. A Highly Effective Photochemical System for Complex Treatment of Heavily Contaminated Wastewaters

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Hejda, S.; Mašín, P.; Tito, D.N.

    2014-01-01

    Roč. 86, č. 11 (2014), s. 2212-2220 ISSN 1061-4303 R&D Projects: GA MPO(CZ) FR-TI1/065 Institutional support: RVO:67985858 Keywords : advanced oxidation processes * photochemical oxidation * wastewater treatment Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.865, year: 2014

  6. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    (antisense activity) is still limited by endocytotic entrapment. We have shown that this low bioavailability can be greatly improved by combining CPP-PNA conjugate administration with a photochemical internalization technique using photosensitizers such as aluminum phthalocyanine (AlPcS(2a...

  7. 40 CFR 52.480 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... of Columbia's Department of Consumer and Regulatory Affairs submitted a plan for the establishment... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.480 Section 52.480 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.1080 Section 52.1080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1080 Photochemical Assessment Monitoring Stations (PAMS) Program. On March 24, 1994 Maryland's... Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as required by...

  9. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.2035 Section 52.2035 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Pennsylvania § 52.2035 Photochemical Assessment Monitoring Stations (PAMS) Program. On September 23, 1994... (PAMS) Program as a state implementation plan (SIP) revision, as required by section 182(c)(1) of the...

  10. Photochemical transformations accelerated in continuous-flow reactors : basic concepts and applications

    NARCIS (Netherlands)

    Su, Y.; Straathof, N.J.W.; Hessel, V.; Noel, T.

    2014-01-01

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable

  11. Photochemical recombination of deep centers in silicon: decay of donor-acceptor pairs

    International Nuclear Information System (INIS)

    Adilov, K.A.

    1991-01-01

    Processes of photochemical recombination of deep impurity centers (DIC) in p-Si alloyed by Te, Zn and Fe occuring at 300-350 K under irradiation by super-low-energy light from δ 14 -10 17 quantum/cm 2 )Xs intensity impurity absorption range, are considered

  12. Oxidative Capacity Predicted Using Photochemical Age Approximation from SAMBBA Airborne Observations in the Amazon Rainforest

    Science.gov (United States)

    dos Santos, F. C.; Longo, K.; Guenther, A. B.; Freitas, S. R.; Moreira, D. S.; Flávio, L.; Braz, R.; Oram, D.; Lee, J. D.; Bauguitte, S.

    2016-12-01

    Emitted by vegetation, isoprene (2-methyl-1,3-butadiene) is the most abundant non-methane hydrocarbons, with an annual global emission calculated ranging from 440 to 660Tg carbon, depending on the driving variables like temperature, solar radiation, leaf area index and plant functional type. It is estimated, for example, that the natural compounds like isoprene and terpenes present in the troposphere are about 90% and 50%, respectively, removed from the atmosphere by oxidation performed by hydroxyl radical (OH). Furthermore, the oxidation products of isoprene may contribute to secondary organic aerosol (SOA) formation, affecting the climate and altering the properties and lifetimes of clouds. Considering the importance of these emissions and the hydroxyl radical reaction in the atmosphere, the SAMBBA (South American Biomass Burning Analysis) experiment, which occurred during the dry season (September 2012) in the Amazon Rainforest, provided information about the chemical composition of the atmosphere through airborne observations. Although primarily focused on biomass burning flights, the SAMBBA project carried out other flights providing indirect oxidative capacity data in different environments: natural emission dominated flights and biomass-burning flights with fresh plumes and aged plumes. In this study, we evaluate the oxidative capacity of the Amazon rainforest in different environments, both for the unpolluted and biomass-burning disturbed atmosphere using the ratio [MVK + MACR]/[Isoprene]. Beyond that, we propose an improvement on the formulation of indirect OH density calculation, using the photochemical aging [O3]/[CO] as a parameter. During the day (11am-8pm - local time), the [OH] values for natural emission flights (8.1 x 106 molecules/cm3) and biomass-burning (9.4 x 106 molecules/cm3) are comparable with GABRIEL-2015 field campaign along Guyanas tropical rainforest and suggest that biomass-burning increase the oxidative capacity around 18% in average

  13. Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007

    Directory of Open Access Journals (Sweden)

    A. J. Huisman

    2011-09-01

    Full Text Available We present roughly one month of high time-resolution, direct, in situ measurements of gas-phase glyoxal acquired during the BEARPEX 2007 field campaign. The research site, located on a ponderosa pine plantation in the Sierra Nevada mountains, is strongly influenced by biogenic volatile organic compounds (BVOCs; thus this data adds to the few existing measurements of glyoxal in BVOC-dominated areas. The short lifetime of glyoxal of ~1 h, the fact that glyoxal mixing ratios are much higher during high temperature periods, and the results of a photochemical model demonstrate that glyoxal is strongly influenced by BVOC precursors during high temperature periods.

    A zero-dimensional box model using near-explicit chemistry from the Leeds Master Chemical Mechanism v3.1 was used to investigate the processes controlling glyoxal chemistry during BEARPEX 2007. The model showed that MBO is the most important glyoxal precursor (~67 %, followed by isoprene (~26 % and methylchavicol (~6 %, a precursor previously not commonly considered for glyoxal production. The model calculated a noon lifetime for glyoxal of ~0.9 h, making glyoxal well suited as a local tracer of VOC oxidation in a forested rural environment; however, the modeled glyoxal mixing ratios over-predicted measured glyoxal by a factor 2 to 5. Loss of glyoxal to aerosol was not found to be significant, likely as a result of the very dry conditions, and could not explain the over-prediction. Although several parameters, such as an approximation for advection, were found to improve the model measurement discrepancy, reduction in OH was by far the most effective. Reducing model OH concentrations to half the measured values decreased the glyoxal over-prediction from a factor of 2.4 to 1.1, as well as the overprediction of HO2 from a factor of 1.64 to 1.14. Our analysis has shown that glyoxal is particularly sensitive to OH concentration compared to other BVOC oxidation products. This

  14. Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2011-03-01

    Full Text Available As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA, direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1 fresh emissions from Detroit/Windsor and (2 regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m−3 ppmvCO−1 h−1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days. The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.

  15. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  16. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  17. Utility of Photochemical Traits as Diagnostics of Thermal Tolerance amongst Great Barrier Reef Corals

    Directory of Open Access Journals (Sweden)

    Matthew R. Nitschke

    2018-02-01

    Full Text Available Light availability is considered a key factor regulating the thermal sensitivity of reef building corals, where excessive excitation of photosystem II (PSII further exacerbates pressure on photochemical pathways already compromised by heat stress. Coral symbionts acclimate to changes in light availability (photoacclimation by continually fine-tuning the photochemical operating efficiency of PSII. However, how this process adjusts throughout the warmest months in naturally heat-tolerant or sensitive species is unknown, and whether this influences the capacity to tolerate transient heat stress is untested. We therefore examined the PSII photophysiology of 10 coral species (with known thermal tolerances from shallow reef environments at Heron Island (Great Barrier Reef, Australia, in spring (October-November, 2015 vs. summer (February-March, 2016. Corals were maintained in flow-through aquaria and rapid light curve (RLC protocols using pulse amplitude modulated (PAM fluorometry captured changes in the PSII photoacclimation strategy, characterized as the minimum saturating irradiance (Ek, and the extent of photochemical ([1 – C], operating efficiency vs. non-photochemical ([1 – Q] energy dissipation. Values of Ek across species were >2-fold higher in all coral species in spring, consistent with a climate of higher overall light exposure (i.e., higher PAR from lower cloud cover, rainfall and wind speed compared with summer. Summer decreases in Ek were combined with a shift toward preferential photochemical quenching in all species. All coral species were subsequently subjected to thermal stress assays. An equivalent temperature-ramping profile of 1°C increase per day and then maintenance at 32°C was applied in each season. Despite the significant seasonal photoacclimation, the species hierarchy of thermal tolerance [maximum quantum yields of PSII (Fv/Fm, monitored at dawn and dusk] did not shift between seasons, except for Pocillopora

  18. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    Starting from the early paper by Heber (1969), several studies have demonstrated a subtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) in response to rapid changes in environmental conditions. More recent work, briefly reviewed here, has also demonstrated the existence of two components in the maked peak centered at 505-540 nm: an irreversible component, attributed to the interconversion of leaf xanthophylls, and a reversible component at slightly longer wavelengths, resulting from conformational changes induced by the buildup of a pH gradient across the thylakoid membrane associated with photosynthetic electron transport. Both processes (xanthophyll de-epoxidation and conformational changes) are known to contribute to the dissipation of excess energy in Photosystem II (PSII). Leaf spectroscopy could therefore provide a powerful non-invasive tool for the determination of leaf photosynthetic processes. This led to the development of the normalized spectral index PRI (Photochemical Reflectance Index; Gamon, Penuelas &Field 1992; Gamon, Serrano &Surfus 1997), which relates the functional signal at 531 nm to a reference signal at 570 nm. The index has been found to track diurnal changes in xanthophyll de-epoxidation state, radiation use efficiency and fluorescence in response to light, both at the leaf and more recently at the canopy level. A common relationship has also beenreported across species and functional types, although such a generality has not always been confirmed. Recent reports (Stylinski et al. 2000) have also hinted of a possible link between PRI and leaf photosynthetic potential, possibly through the correlation between xanthophyll content and electron transport machinery in the chloroplast. Such a link, if confirmed, could prove very useful for the remote sensing and modelling ofvegetation. Some of these open questions were addressed in the present study. The correlation between leaf function and reflectance was

  19. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Directory of Open Access Journals (Sweden)

    C. Chou

    2013-01-01

    Full Text Available A measurement campaign (IMBALANCE conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi and 92% relative humidity with respect to water (RHw, and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  20. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Science.gov (United States)

    Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo

    2011-01-01

    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters

  1. Quasielastic reactions

    International Nuclear Information System (INIS)

    Henning, W.

    1979-01-01

    Quasielastic reaction studies, because of their capability to microscopically probe nuclear structure, are still of considerable interest in heavy-ion reactions. The recent progress in understanding various aspects of the reaction mechanism make this aim appear closer. The relation between microscopic and macroscopic behavior, as suggested, for example, by the single proton transfer data to individual final states or averaged excitation energy intervals, needs to be explored. It seems particularly useful to extend measurements to higher incident energies, to explore and understand nuclear structure aspects up to the limit of the energy range where they are important

  2. A photochemical proposal for the preparation of ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films from β-diketonate complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, G., E-mail: gerardocabelloguzman@hotmail.com [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Lillo, L.; Caro, C.; Seguel, M.; Sandoval, C. [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Buono-Core, G.E. [Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso (Chile); Chornik, B.; Flores, M. [Deparamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370415 (Chile)

    2016-05-15

    Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperature using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.

  3. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  4. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis.

    Science.gov (United States)

    Zhou, Chao; Zhang, H P; Tang, Jinyao; Wang, Wei

    2018-03-13

    Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.

  5. Effect of Si ion irradiation on polycrystalline CdS thin film grown from novel photochemical deposition technique

    International Nuclear Information System (INIS)

    Soundeswaran, S.; Senthil Kumar, O.; Ramasamy, P.; Kabi Raj, D.; Avasthi, D.K.; Dhanasekaran, R.

    2005-01-01

    CdS thin films have been deposited from aqueous solution by photochemical reactions. The solution contains Cd(CH 3 COO) 2 and Na 2 S 2 O 3 , and pH is controlled in an acidic region by adding H 2 SO 4 . The solution is illuminated with light from a high-pressure mercury-arc lamp. CdS thin films are formed on a glass substrate by the heterogeneous nucleation and the deposited thin films have been subjected to high-energy Si ion irradiations. Si ion irradiation has been performed with an energy of 80 MeV at fluences of 1x10 11 , 1x10 12 , 1x10 13 and 1x10 14 ions/cm 2 using tandem pelletron accelerator. The irradiation-induced changes in CdS thin films are studied using XRD, Raman spectroscopy and photoluminescence. Broadening of the PL emission peak were observed with increasing irradiation fluence, which could be attributed to the band tailing effect of the Si ion irradiation. The lattice disorder takes place at high Si ion fluences

  6. Allergic Reactions

    Science.gov (United States)

    American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...

  7. The effect of polyamines on the photochemical reactivity of DNA

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Hebrew Univ., Jerusalem

    1975-01-01

    The effects of diaminopentane (cadaverine), diaminoethane and the polyamine, spermine, on the photoreactions of 4,5', 8-trimethylpsoralen with DNA were studied. Near ultraviolet (UV) light (360 nm) irradiation of psoralen with DNA results in the formation of psoralen monoadducts with pyrimidine bases and DNA interstrand crosslinks. The polyamines studied reduced the rate of both photoreactions to the same extent by a factor of 1.5-2.0. The magnitude of the effect increased with polyamine concentration. Effectiveness was in the order spermine > cadaverine > diaminoethane. This is also the same order for stabilization of the DNA double-helix. Under conditions of higher DNA stability (higher ionic strength), higher polyamine concentrations were required to obtain an effect which was smaller than at low ionic strength. It is concluded that the photoreactions of psoralen with pyrimidines in DNA require some distortion of the double-helix. This distortion is made more difficult in the presence of stabilizing agents like polyamines and therefore the rate of the reaction is reduced. If crosslinking of DNA by psoralen is a two-step reaction then it must be concluded that the second step does not require further distortion. Consistently with the above, polyamines also reduced the UV-induced dimerization of thymine in DNA, although to a lesser extent. (author)

  8. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.

    2016-07-18

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  9. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.; Wang, Xia; Hassan, Youssef S.; Parida, Manas R.; Banavoth, Murali; Mohammed, Omar F.; Pellechia, Perry J.; Fontecave, Marc; Alkordi, Mohamed H.

    2016-01-01

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  10. Photochemical Internalization of Bleomycin Before External-Beam Radiotherapy Improves Locoregional Control in a Human Sarcoma Model

    International Nuclear Information System (INIS)

    Norum, Ole-Jacob; Bruland, Oyvind Sverre; Gorunova, Ludmila; Berg, Kristian

    2009-01-01

    Purpose: The aim of this study was to explore the tumor growth response of the combination photochemical internalization and external-beam radiotherapy. Photochemical internalization is a technology to improve the utilization of therapeutic macromolecules in cancer therapy by photochemical release of endocytosed macromolecules into the cytosol. Methods and Materials: A human sarcoma xenograft TAX-1 was inoculated subcutaneously into nude mice. The photosensitizer AlPcS 2a and bleomycin were intraperitoneally administrated 48 h and 30 min, respectively, before diode laser light exposure at 670 nm (20 J/cm 2 ). Thirty minutes or 7 days after photochemical treatment, the animals were subjected to 4 Gy of ionizing radiation. Results: Using photochemical internalization of bleomycin as an adjunct to ionizing radiation increased the time to progression for the tumors from 17 to 33 days as compared with that observed with photodynamic therapy combined with ionizing radiation as well as for radiochemotherapy with bleomycin. The side effects observed when photochemical internalization of bleomycin was given shortly before ionizing radiation were eliminated by separating the treatment modalities in time. Conclusion: Photochemical internalization of bleomycin combined with ionizing radiation increased the time to progression and showed minimal toxicity and may therefore reduce the total radiation dose necessary to obtain local tumor control while avoiding long-term sequelae from radiotherapy.

  11. cycloaddition reactions

    Indian Academy of Sciences (India)

    Unknown

    Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology,. Hyderabad ... thus obtained are helpful to model the regioselectivity ... compromise to model Diels–Alder reactions involving ...... acceptance.

  12. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity

    International Nuclear Information System (INIS)

    Hainzl, D.; Casida, J.E.

    1996-01-01

    Fipronil is an outstanding new insecticide for crop protection with good selectivity between insects and mammals. The insecticidal action involves blocking the gamma-aminobutyric acid-gated chloride channel with much greater sensitivity of this target in insects than in mammals. Fipronil contains a trifluoromethylsulfinyl moiety that is unique among the agrochemicals and therefore presumably important in its outstanding performance. We find that this substituent unexpectedly undergoes a novel and facile photoextrusion reaction on plants upon exposure to sunlight, yielding the corresponding trifluoromethylpyrazole, i.e., the desulfinyl derivative. The persistence of this photoproduct and its high neuroactivity, resulting from blocking the gamma-aminobutyric acid-gated chloride channel, suggest that it may be a significant contributor to the effectiveness of fipronil. In addition, desulfinylfipronil is not a metabolite in mammals, so the safety evaluations must take into account not only the parent compound but also this completely new environmental product

  13. Photochemical Synthesis of the Bioconjugate Folic Acid-Gold Nanoparticles

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Bertel, Linda; Páez-Mozo, Edgar

    2013-01-01

    In this paper we present a rapid and simple onepot method to obtain gold nanoparticles functionalized with folic acid using a photochemistry method. The bioconjugate folic acid-gold nanoparticle was generated in one step using a photo-reduction method, mixing hydrogen tetrachloroaurate with folic...... at 4°C prolongs the stability of folic acid-gold nanoparticle suspensions to up to 26 days. Ultraviolet visible and Fourier transform infrared spectroscopy showed a surface plasmon band of around 534nm and fluorescence spectroscopy exhibited a quenching effect on gold nanoparticles in the fluorescence...... emission of folic acid and thus confirmed the conjugation of folic acid to the surface of gold nanoparticles. In this study we demonstrate the use of a photochemistry method to obtain folic acid-gold nanoparticles in a simple and rapid way without the use of surfactants and long reaction times...

  14. Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process.

    Science.gov (United States)

    Córdova, Rolando Nunes; Nagel-Hassemer, Maria Eliza; Matias, William Gerson; Muller, Jose Miguel; de Castilhos Junior, Armando Borges

    2017-12-04

    This study investigates the effects of pH, H 2 O 2 concentration and reaction time of the UV/H 2 O 2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H 2 O 2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H 2 O 2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH 3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H 2 O 2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H 2 O 2 process for the removal of organic matter and ammonia from landfill leachates.

  15. Direct Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Austern, N. [University of Pittsburgh, Pittsburgh, PA (United States)

    1963-01-15

    In order to give a unified presentation of one point of view, these lectures are devoted only to a detailed development of the standard theories of direct reactions, starting from basic principles. Discussion is given of the present status of the theories, of the techniques used for practical calculation, and of possible future developments. The direct interaction (DI) aspects of a reaction are those which involve only a few of the many degrees of freedom of a nucleus. In fact the minimum number of degrees of freedom which must be involved in a reaction are those required to describe the initial and final channels, and DI studies typically consider these degrees of freedom and no others. Because of this simplicity DI theories may be worked out in painstaking detail. DI processes concern only part of the wave function for a problem. The other part involves complicated excitations of many degrees of freedom, and gives the compound nucleus (CN) effects. While it is extremely interesting to learn how to separate DI and CN effects in an orderly manner, if they are both present in a reaction, no suitable method has yet been found. Instead, current work stresses the kinds of reactions and the kinds of final states in which DI effects dominate and in which CN effects may almost be forgotten. The DI cross-sections which are studied are often extremely large, comparable to elastic scattering cross-sections. (author)

  16. [Characterization of photochemical smog chamber and initial experiments].

    Science.gov (United States)

    Jia, Long; Xu, Yong-Fu; Shi, Yu-Zhen

    2011-02-01

    A self-made new indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosols has been introduced and characterized. The characterization experiments include the measurements of wall effects for reactive species and the determination of chamber dependent * OH radical sources by CO-NO(x) irradiation experiments. Preliminary ethene-NO(x) and benzene-NO(x) experiments were conducted as well. The results of characterization experiments show that the wall effects for O3 and NO2 in a new reactor are not obvious. Relative humidity has a great effect on the wall losses in the old reactor, especially for O3. In the old reactor, the rate constant for O3 wall losses is obtained to be 1.0 x 10(-5) s(-1) (RH = 5%) and 4.0 x10(-5) s(-1) (RH = 91%), whereas for NO2, it is 1.0 x 10(-6) s(-1) (RH = 5%) and 0.6 x 10(-6) s(-1) (RH = 75%). The value for k(NO2 --> HONO) determined by CO-NO(x) irradiation experiments is (4.2-5.2) x 10(-5) s(-1) and (2.3-2.5) x 10(-5) s(-1) at RH = 5% and RH 75% -77%, respectively. The average *OH concentration is estimated to be (2.1 +/- 0.4) x 10(6) molecules/cm3 by using a reaction rate coefficient of CO and * OH. The sensitivity of chamber dependent auxiliary reactions to the O3 formation is discussed. Results show that NO2 --> HONO has the greatest impact on the O3 formation during the initial stage, N2O5 + H2O --> 2HNO3 has a minus effect to maximum O3 concentration, and that the wall losses of both O3 and NO2 have little impact on the O3 formation. The results from the ethene-NO(x) and benzene-NO(x) experiments are in good agreement with those from the MCM simulation, which reflects that the facility for the study of the formation of secondary pollution of ozone and secondary organic aerosols is reliable. This demonstrates that our facility can be further used in the deep-going study of chemical processes in the atmosphere.

  17. Solar photochemical treatment of winery wastewater in a CPC reactor.

    Science.gov (United States)

    Lucas, Marco S; Mosteo, Rosa; Maldonado, Manuel I; Malato, Sixto; Peres, José A

    2009-12-09

    Degradation of simulated winery wastewater was studied in a pilot-scale compound parabolic collector (CPC) solar reactor. Total organic carbon (TOC) reduction by heterogeneous photocatalysis (TiO(2)) and homogeneous photocatalysis with photo-Fenton was observed. The influence of TiO(2) concentration (200 or 500 mg/L) and also of combining TiO(2) with H(2)O(2) or Na(2)S(2)O(8) on heterogeneous photocatalysis was evaluated. Heterogeneous photocatalysis with TiO(2), TiO(2)/H(2)O(2) and TiO(2)/S(2)O(8)(2-) is revealed to be inefficient in removing TOC, originating TOC degradation of 10%, 11% and 25%, respectively, at best. However, photo-Fenton experiments led to 46% TOC degradation in simulated wastewater prepared with diluted wine (WV) and 93% in wastewater prepared with diluted grape juice (WG), and if ethanol is previously eliminated from mixed wine and grape juice wastewater (WW) by air stripping, it removes 96% of TOC. Furthermore, toxicity decreases during the photo-Fenton reaction very significantly from 48% to 28%. At the same time, total polyphenols decrease 92%, improving wastewater biodegradability.

  18. Reaction mechanisms

    International Nuclear Information System (INIS)

    Nguyen Trong Anh

    1988-01-01

    The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported [fr

  19. Interaction of light and atmospheric photochemical products (smog) within plants. [Phaseolius vulgaris; Petunia hydrida

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, O C; Dugger, W M; Cardiff, E A; Darley, E F

    1961-12-02

    Damage to plants from ozone and peroxyacetyl nitrate, two photochemically formed components of smog, has been described. However, variations in symptom expression and the degree of damage caused by a given concentration of these components, whether of synthetic or natural origin, have complicated development of an adequate biological assay method for these materials. These observed variations in symptomatology have implicated stomatal action, inorganic nutrition temperature, genetics, ascorbic acid content, physiological age of tissue and photoperiod. Plants grown under artificial illumination differ in their response to the photochemically formed pollutants as compared with plants grown in the greenhouse. Interactions between light and oxidants from the polluted atmosphere within plants, as reported here, might well explain some of the variabilities in symptomatology observed in earlier controlled experiments as well as the unexplained natural variability observed in the Los Angeles area. The results presented also emphasize the importance of standardizing plant growth conditions for future work of this nature. 10 references.

  20. A review of photochemical approaches for the treatment of a wide range of pesticides.

    Science.gov (United States)

    Reddy, P Venkata Laxma; Kim, Ki-Hyun

    2015-03-21

    Pesticides are renowned as some of the most pernicious chemicals known to humankind. Nine out of twelve most hazardous and persistent organic chemicals on planet have been identified as pesticides and their derivatives. Because of their strong recalcitrant nature, it often becomes a difficult task to treat them by conventional approaches. It is well perceived that many factors can interfere with the degradation of pesticides under ambient conditions, e.g., media, light intensity, humic content, and other biological components. However, for the effective treatment of pesticides, photochemical methods are viewed as having clear and perceivable advantages. In this article, we provide a review of the fundamental characteristics of photochemical approaches for pesticide treatment and the factors governing their capacity and potential in such a process. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of latitude on the potential for formation of photochemical smog

    Energy Technology Data Exchange (ETDEWEB)

    Neiboer, H [Central Laboratorium TNO, Delft, Netherlands; Carter, W P.L.; Lloyd, A C; Pitts, Jr, J N

    1976-01-01

    The effect of latitude on the potential for the formation of photochemical smog has been assessed. Calculations suggest that at the summer solstice, the integrated sunlight intensity at Rotterdam or Fairbanks (Alaska) is very similar to that in Los Angeles. Computations carried out, assuming the same pollutant emission inventory for the three locations, showed that ozone and PAN dosages depend more on the integrated light intensity than on the nature of the light intensity distribution with time. Therefore, if factors such as emissions and meteorological conditions are equal, the potential for significant photochemical smog formation during the summer months is similar for Los Angeles (34/sup 0/N) and northern cities such as Rotterdam (52/sup 0/N) and Nome or Fairbanks, Alaska (65/sup 0/N).

  2. Photophysical, Photochemical, and BQ Quenching Properties of Zinc Phthalocyanines with Fused or Interrupted Extended Conjugation

    Directory of Open Access Journals (Sweden)

    Gülşah Gümrükçü

    2014-01-01

    Full Text Available The effects of substituents and solvents on the photophysical and photochemical parameters of zinc(II phthalocyanines containing four Schiff’s base substituents attached directly and through phenyleneoxy-bridges on peripheral positions are reported. The group effects on peripheral position and the continual and intermittent conjugation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen, and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO, dimethylformamide (DMF, and tetrahydrofurane (THF. Among the different substituents, phthalocyanines with cinnamaldimine moieties (1c and 2c have the highest singlet oxygen quantum yields (ΦΔ and those with nitro groups (1a and 2a have the highest fluorescence quantum yields in all the solvents used. The fluorescence of the substituted zinc(II phthalocyanine complexes is effectively quenched by 1,4-benzoquinone (BQ in these solvents.

  3. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition

    DEFF Research Database (Denmark)

    Konhauser, Kurt; Amskold, Larry; Lalonde, Stefan

    2007-01-01

    to the rise of atmospheric oxygen and the development of a protective ozone layer, the Earth's surface was subjected to high levels of ultraviolet radiation. Bulk ocean waters that were anoxic at this time could have supported high concentrations of dissolved Fe(II). Under such conditions, dissolved ferrous...... for biology [Fran??ois, L.M., 1986, Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320, 352-354]. Here, we evaluate the potential importance of photochemical oxidation using a combination of experiments and thermodynamic models. The experiments simulate......-type systems, then we are driven to conclude that oxide-facies BIF are the product of a rapid, non-photochemical oxidative process, the most likely candidates being direct or indirect biological oxidation, and that a significant fraction of BIF could have initially been deposited as ferrous minerals. ?? 2007...

  4. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    Science.gov (United States)

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  5. Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces

    DEFF Research Database (Denmark)

    Koch, T.; Jacobsen, N.; Fensholdt, J.

    2000-01-01

    Ligand immobilization on solid surfaces is an essential step in fields such as diagnostics, bio sensor manufacturing, and new material sciences in general. In this paper a photochemical approach based on anthraquinone as the chromophore is presented. Photochemical procedures offer special...... advantages as they are able to generate highly reactive species in an orientation specific manner. As presented here, anthraquinone (AQ) mediated covalent DNA immobilization appears to be superior to currently known procedures. A synthetic procedure providing AQ-phosphoramidites is presented. These reagents...... facilitate AQ conjugation during routine DNA synthesis, thus enabling the AQ-oligonucleotides to be immobilized in a very convenient and efficient manner. AQ-conjugated PCR primers can be used directly in PCR. When the PCR is performed in solution, the amplicons can be immobilized after the PCR. Moreover...

  6. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    of atoms during a chemical transformation. This strategy of determining reaction mechanisms is illustrated in the article with several examples. Introduction. When a reaction is carried out, the primary effort goes towards the identification of the product(s) of the reaction. A more time consuming endeavour, however, is the ...

  7. A 3d Regional Scale Photochemical Air Quality Model. Application to a 3 Day Summertime Episode over Paris Un modèle photochimique 3D de qualité de l'air à l'échelle régionale. Application à un épisode de 3 jours à Paris en été

    OpenAIRE

    Carissimo B.; Dupont E.; Musson-Genon L.; Riboud P. M.; Jaecker-Voirol A.; Lipphardt M.; Martin B.; Quandalle Ph.; Salles J.; Aumont B.; Bergametti G.; Bey I.; Toupance G.

    2006-01-01

    This paper presents AZUR, a 3D Eulerian photochemical air quality model for the simulation of air pollution in urban and semi-urban areas. The model tracks gas pollutant species emitted into the atmosphere by transportation and industrial sources, it computes the chemical reactions of these species under varying meteorological conditions (photolysis, pressure, temperature, humidity), their transport by wind and their turbulent diffusion as a function of air stability. It has a modular softwar...

  8. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation.

    Science.gov (United States)

    Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio

    2018-01-01

    This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4  L mol -1  cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3  mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    OpenAIRE

    Adigbli, D. K.; Wilson, D. G. G.; Farooqui, N.; Sousi, E.; Risley, P.; Taylor, I.; MacRobert, A. J.; Loizidou, M.

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin ( photosensitiser) with mitoxantrone...

  10. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    OpenAIRE

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone ...

  11. Molecular orbital study of iron pentacarbonyl and its photochemical fragments Fe(CO) sub(n)

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.; De Paoli, M.-A.; Manella, H.

    1982-01-01

    Self-consistent Molecular Orbital calculations were performed for Fe(CO) 5 and its photofragments Fe(CO) sub(n), 1 5 , photoelectron and optical spectra are analysed, and photochemical behaviour is discussed. The Moessbauer isomer shifts and quadrupole splittings are investigated. In the case of Fe(CO) 5 and Fe(CO) 4 , the values derived for these hyperfine interactions are compared to experimental measurements reported in a polyethylene matrix. (Author) [pt

  12. Effects of Photo-chemically Activated Alkylating Agents of the FR900482 Family on Chromatin

    OpenAIRE

    Subramanian, Vidya; Ducept, Pascal; Williams, Robert M.; Luger, Karolin

    2007-01-01

    Bioreductive alkylating agents are an important class of clinical antitumor antibiotics that cross-link and mono-alkylate DNA. Here we use a synthetic photochemically activated derivative of FR400482 to investigate the molecular mechanism of this class of drugs in a biologically relevant context. We find that the organization of DNA into nucleosomes effectively protects it against drug-mediated cross-linking, while permitting mono-alkylation. This modification has the potential to form covale...

  13. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18

    Science.gov (United States)

    Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.

    2015-01-01

    This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/

  14. Plasmon mediated non-photochemical nucleation of nanoparticles by circularly polarized light

    OpenAIRE

    Karpov, Victor G.; Grigorchuk, Nicholas I.

    2014-01-01

    We predict nucleation of pancake shaped metallic nanoparticles having plasmonic frequencies in resonance with a non-absorbed circularly polarized electromagnetic field. We show that the same field can induce nucleation of randomly oriented needle shaped particles. The probabilities of these shapes are estimated vs. field frequency and strength, material parameters, and temperature. This constitutes a quantitative model of non-photochemical laser induced nucleation (NPLIN) consistent with the ...

  15. Using of Photochemical H2O2/UVC Decontamination Cell for Heavily Polluted Waters

    Czech Academy of Sciences Publication Activity Database

    Žebrák, R.; Mašín, P.; Klusoň, Petr; Krystyník, Pavel

    2014-01-01

    Roč. 2014, č. 2 (2014), s. 55-62 ISSN 1804-0195. [Symposium ODPADOVÉ FÓRUM 2014. Hustopeče u Brna, 23.042014-23.04.2013] R&D Projects: GA MPO(CZ) FR-TI1/065 Institutional support: RVO:67985858 Keywords : photochemical oxidation * remediation * pilot scale Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.wasteforum.cz/

  16. Photochemical production of aerosols from real plant emissions

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2009-07-01

    Full Text Available Emission of biogenic volatile organic compounds (VOC which on oxidation form secondary organic aerosols (SOA can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC, suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.

  17. PIXE analysis of proteins from a photochemical center

    Science.gov (United States)

    Solís, C.; Oliver, A.; Andrade, E.

    1998-03-01

    In oxygen evolving photosynthetic organisms, light is absorbed and its energy used for the conversion of chemical products in two photosystems: PSI and PSII. Each photosystem is composed of a protein core which binds a pigment antenna and a Reaction Center (RC). RC of PSI is considered an "Iron-Sulfur" type. There are six components that participate in the charge separation after light absorption occurs in PSI: the center chlorophyll P700, two acceptors A 0 and A 1 and three FeS centers F X, F A and F B. However, the exact number of polypeptides, their exact molecular weight, their relative abundances and the active components associated to those polypeptides remain still to be completely characterized. In particular the FeS centers have been difficult to detect in a direct way in a gel band, because the amount of centers involved is under the detection limits of the conventional techniques. This study has been under-taken to explore the capability of particle induced X-ray emission (PIXE) to detect in a qualitative way the presence of Fe in some of the protein bands obtained by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) from the PSI complex. The complex was isolated from membranes of thermophilic cyanobacteria: Synechochoccus sp. The polyacrylamide gel electrophoresis of the complex shows eight subunits of 66, 60-65, 14, 13, 9, 8 and 7 KDa. In-air PIXE was performed at 2 MeV and proved to be an adequate tool for direct identification of the iron present in the gel bands.

  18. Allergic reactions

    Science.gov (United States)

    ... that don't bother most people (such as venom from bee stings and certain foods, medicines, and pollens) can ... person. If the allergic reaction is from a bee sting, scrape the ... more venom. If the person has emergency allergy medicine on ...

  19. The contribution of the european project loop to the photochemical pollution in Lombardy; Il contributo del progetto europeo loop allo studio dell'inquinamento fotochimico in Lombardia

    Energy Technology Data Exchange (ETDEWEB)

    Longoni, M.G.; Maffeis, G. [TerrAria S.r.l., Milan (Italy); De Martini, A. [Regione Lombardia, Ufficio Prevenzione Rischi, Milan, (Italy); Balasso, A.; Borelli; Rimoldi, A.; Zabot, S.; Zanella, G. [Regione Lombardia, Direzione Generale Tutela Ambientale, Milan (Italy); Lanzani, G. [Amministrazione Provinciale di Como, Settore Ecologia, Como (Italy); Tamponi, M. [Azienda Sanitaria Locale, Lecco (Italy); Cattaneo, R.; Ghezzi, F.; Toscani, D.

    2000-06-01

    During the last years, in Lombardy, the concentrations of primary pollutants such as CO and SO{sub 2} have diminished thanks to some acts to abate emissions. On the other hand, the concentrations of pollutants, belonging to the photochemical mixture, have increased. The continual monitoring of photochemical pollutants and their measure on the ground level, but also along the vertical profile, present costs so high that they become no utilizable in a wide area. The experimental campaign PIPAPO (PIanura PAdana Produzione Ozono) has been carried on in the late spring in 1998 and it belongs to the European project LOOP (Limitation Of Oxidant Production). This campaign is an example of intensive campaign of measurement in which institutions of a lot of nationalities have collaborated. In this way the problem of a lot of nationalities have collaborated. In this way the problem of costs in continual monitoring has been obviated. PIPAPO has confirmed the criticity of photochemical smog in the Lombardy area. A modellistic approach, complementary to that of measurements, permits to verify the territory representativity of the points of measurement and to carry on evaluations of the politics to abate emissions. [Italian] In Lombardia durante gli ultimi anni le concentrazioni di inquinanti primari quali CO ed SO{sub 2} hanno subito una diminuzione grazie all'efficacia di alcuni interventi di abbattimento delle emissioni. D'altro lato si e' avuto un incremento delle concentrazioni degli inquinanti appartenenti alla miscela fotochimica di cui l'ozono e' considerato il principale tracciante. Il monitoraggio in continuo di tutti gli inquinanti fotochimici e la loro misura a livello sia del suolo, ma anche lungo la verticale, avrebbero dei costi per quanto riguarda le risorse strumentali e umane tali da renderli irrealizzabili su un'area estesa come quella lombarda. La campagna sperimentale PIPAPO (PIanura PAdana Produzione Ozono), avvenuta nella tarda

  20. The contribution of the european project loop to the photochemical pollution in Lombardy; Il contributo del progetto europeo loop allo studio dell'inquinamento fotochimico in Lombardia

    Energy Technology Data Exchange (ETDEWEB)

    Longoni, M G; Maffeis, G [TerrAria S.r.l., Milan (Italy); De Martini, A [Regione Lombardia, Ufficio Prevenzione Rischi, Milan, (Italy); Balasso, A; Borelli,; Rimoldi, A; Zabot, S; Zanella, G [Regione Lombardia, Direzione Generale Tutela Ambientale, Milan (Italy); Lanzani, G [Amministrazione Provinciale di Como, Settore Ecologia, Como (Italy); Tamponi, M [Azienda Sanitaria Locale, Lecco (Italy); Cattaneo, R; Ghezzi, F; Toscani, D

    2000-06-01

    During the last years, in Lombardy, the concentrations of primary pollutants such as CO and SO{sub 2} have diminished thanks to some acts to abate emissions. On the other hand, the concentrations of pollutants, belonging to the photochemical mixture, have increased. The continual monitoring of photochemical pollutants and their measure on the ground level, but also along the vertical profile, present costs so high that they become no utilizable in a wide area. The experimental campaign PIPAPO (PIanura PAdana Produzione Ozono) has been carried on in the late spring in 1998 and it belongs to the European project LOOP (Limitation Of Oxidant Production). This campaign is an example of intensive campaign of measurement in which institutions of a lot of nationalities have collaborated. In this way the problem of a lot of nationalities have collaborated. In this way the problem of costs in continual monitoring has been obviated. PIPAPO has confirmed the criticity of photochemical smog in the Lombardy area. A modellistic approach, complementary to that of measurements, permits to verify the territory representativity of the points of measurement and to carry on evaluations of the politics to abate emissions. [Italian] In Lombardia durante gli ultimi anni le concentrazioni di inquinanti primari quali CO ed SO{sub 2} hanno subito una diminuzione grazie all'efficacia di alcuni interventi di abbattimento delle emissioni. D'altro lato si e' avuto un incremento delle concentrazioni degli inquinanti appartenenti alla miscela fotochimica di cui l'ozono e' considerato il principale tracciante. Il monitoraggio in continuo di tutti gli inquinanti fotochimici e la loro misura a livello sia del suolo, ma anche lungo la verticale, avrebbero dei costi per quanto riguarda le risorse strumentali e umane tali da renderli irrealizzabili su un'area estesa come quella lombarda. La campagna sperimentale PIPAPO (PIanura PAdana Produzione Ozono), avvenuta nella tarda primavera 1998 ed avviata all

  1. Amenorrhea - primary

    Science.gov (United States)

    ... of periods - primary Images Primary amenorrhea Normal uterine anatomy (cut section) Absence of menstruation (amenorrhea) References Bulun SE. The physiology and pathology of the female reproductive axis. In: ...

  2. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  3. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.

    Science.gov (United States)

    Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M

    2017-10-03

    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

  4. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    Energy Technology Data Exchange (ETDEWEB)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey)

    2015-12-15

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, {sup 1}H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn{sup 2+}, Mg{sup 2+}, In{sup +3}) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  5. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    International Nuclear Information System (INIS)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz; Durmuş, Mahmut; Bulut, Mustafa

    2015-01-01

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, 1 H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn 2+ , Mg 2+ , In +3 ) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  6. Photochemical Synthesis and Properties of Colloidal Copper, Silver and Gold Adsorbed on Quartz

    International Nuclear Information System (INIS)

    Loginov, Anatoliy V.; Gorbunova, Valentina V.; Boitsova, Tatiana B.

    2002-01-01

    Original methods for the photochemical production of stable copper, silver and gold colloids in the form of films on quartz, and dispersion in liquids were devised. It is shown that photochemical synthesis of colloidal metals is a difficult multiphase process, and includes the formation of low-valence forms of Cu(I), Au(I) and nonmetal clusters, colloidal particles and their agglomerates. Cluster stabilization and further growth to colloidal particles are achieved by adsorption onto the solid surface (quartz) or by increasing the viscosity of photolyte. In the absence of these methods of stabilization, the processes of intermediate reoxidation to Cu(II) and Au(III) and agglomeration of Ag and Au colloids proceed in a photolyte. Adsorption and the rate of cluster growth on a quartz surface are speeded up by the action of monochromatic UV light. Experimental models of the mechanism of colloidal formation are suggested. The dependence of the growth rate and the properties of the colloids on conditions of the photochemical procedure (energy and light intensity, concentration of initial complex) has been established

  7. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path.

    Science.gov (United States)

    Timm, Matthew J; Matta, Chérif F

    2014-12-01

    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014

  8. Achievement report for fiscal 1983 on Sunshine Program-entrusted research and development. Research and development of water-splitting systems using thermochemical, photochemical, and electrochemical mixed cycle; 1983 nendo netsu kagaku, hikari kagaku, denki kagaku konsei cycle ni yoru suibunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    The report covers the outcome of a basic study of the splitting of water using photochemical reaction. The behavior of iron ions and iodine ions is important in the photochemical reaction in the phosphoric acid and in the energy exchange that follows, and the characteristics of iodine ions are investigated in detail. Since the response of a commercially available iodine ion electrode is slow in a strong phosphoric acid solution, a silver/silver iodide electrode is experimentally built, and is used in the investigation of the iodine ion activity coefficient. In the investigation, it is indicated that more energy is accumulated when temperature or concentration is higher. In the case where sunlight is used as the light source for photochemical reaction, it is necessary to perform optimal control in compliance with fluctuation in sunlight intensity. In the study, fluctuation in sunlight intensity is assumed to be composed of step waves, pulse waves, and sinusoidal waves, and a result of digital simulation is obtained by using a modelling method for control. For the convenience of computation, the number of cell division is set at approximately five, when the solution flow responsiveness and energy conversion utilization factor are found to be excellent. (NEDO)

  9. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Directory of Open Access Journals (Sweden)

    Leyre Corcuera

    Full Text Available As part of a program to select maritime pine (Pinus pinaster Ait. genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v/F(m, quantum yield of non-cyclic electron transport (Φ(PSII and photochemical quenching (qP. The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site on the photochemical parameters were much larger than the genotypic effects (population or family. LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v/F(m ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v/F(m, Φ(PSII, qP and non-photochemical quenching (NPQ in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀ than coastal populations that typically experience mild

  10. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  11. New Photosafety Assessment Strategy Based on the Photochemical and Pharmacokinetic Properties of Both Parent Chemicals and Metabolites.

    Science.gov (United States)

    Kato, Masashi; Suzuki, Gen; Ohtake, Hiroto; Seto, Yoshiki; Onoue, Satomi

    2015-11-01

    Photoreactivity and dermal/ocular deposition of compounds have been recognized as key considerations for evaluating the phototoxic risk of compounds. Because some drugs are known to cause phototoxic reactions via generation of potent phototoxic metabolites, photosafety assessments on parent drugs alone may lead to false predictions about their photosafety. This study aimed to establish a new photosafety assessment strategy for evaluating the in vivo phototoxic potential of both a parent substance and its metabolites. The in vivo phototoxic risk of fenofibrate (FF) and its metabolites, fenofibric acid (FA) and reduced fenofibric acid, were evaluated based on photochemical and pharmacokinetic analyses. FF and FA exhibited intensive UV absorption, with molar extinction coefficient values of 17,000 (290 nm) and 14,000 M(-1)cm(-1) (295 nm), respectively. Superoxide generation from FA was significantly higher than from FF, and a marked increase in superoxide generation from FF was observed after incubation with rat hepatic S9 fractions, suggesting enhanced photoreactivity of FF after metabolism. FA showed high dermal/ocular deposition after oral administration (5 mg/kg, p.o.) although the concentration of FF was negligible, suggesting high exposure risk from FA. On the basis of these findings, FA was deduced to be a major contributor to phototoxicity induced by FF taken orally, and this prediction was in accordance with the results from in vitro/in vivo phototoxicity tests. Results from this study suggest that this new screening strategy for parent substances and their metabolites provides reliable photosafety information on drug candidates and would be useful for drug development with wide safety margins. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Quasielastic reactions

    International Nuclear Information System (INIS)

    Hansen, O.

    1983-01-01

    A brief review is presented of the experimental and theoretical situation regarding transfer reactions and inelastic scattering. In the first category there is little (very little) precision data for heavy projectiles and consequently almost no experience with quantitative theoretical analysis. For the inelastic scattering the rather extensive data strongly supports the coupled channels models with collective formfactors. At the most back angles, at intensities about 10 -5 of Rutherford scattering, a second, compound-like mechanism becomes dominant. The description of the interplay of these two opposite mechanisms provides a new challenge for our understanding

  13. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    Science.gov (United States)

    Baker, K. R.; Woody, M. C.; Tonnesen, G. S.; Hutzell, W.; Pye, H. O. T.; Beaver, M. R.; Pouliot, G.; Pierce, T.

    2016-09-01

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas limited by NOX availability and the photolysis of aldehydes to produce free radicals (HOX) causes increased O3 production in NOX rich areas. The modeling system tends to overestimate hourly surface O3 at routine rural monitors in close proximity to the fires when the model predicts elevated fire impacts on O3 and Hazard Mapping System (HMS) data indicates possible fire impact. A sensitivity simulation in which solar radiation and photolysis rates were more aggressively attenuated by aerosol in the plume

  14. Nuclear reactions

    International Nuclear Information System (INIS)

    Corner, J.; Richardson, K.; Fenton, N.

    1990-01-01

    Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)

  15. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  16. Use of Combined Observational- and Model-Derived Photochemical Indicators to Assess the O3-NOx-VOC System Sensitivity in Urban Areas

    Directory of Open Access Journals (Sweden)

    Edson R. Carrillo-Torres

    2017-01-01

    Full Text Available Tropospheric levels of O3 have historically exceeded the official annual Mexican standards within the Monterrey Metropolitan Area (MMA in NE Mexico. High-frequency and high-precision measurements of tropospheric O3, NOy, NO2, NO, CO, SO2, PM10 and PM2.5 were made at the Obispado monitoring site near the downtown MMA from September 2012 to August 2013. The seasonal cycles of O3 and NOy are driven by changes in meteorology and to a lesser extent by variations in primary emissions. The NOy levels were positively correlated with O3 precursors and inversely correlated with O3 and wind speed. Recorded data were used to assess the O3-Volatile Organic Compounds (VOC-NOx system’s sensitivity through an observational-based approach. The photochemical indicator O3/NOy was derived from measured data during the enhanced O3 production period (12:00–18:00 Central Daylight Time (CDT, GMT-0500. The O3/NOy ratios calculated for this time period showed that the O3 production within the MMA is VOC sensitive. A box model simulation of production rates of HNO3 (PHNO3 and total peroxides (Pperox carried out for O3 episodes in fall and spring confirmed the VOC sensitivity within the MMA environment. No significant differences were observed in O3/NOy from weekdays to weekends or for PHNO3/Pperox ratios, confirming the limiting role of VOCs in O3 production within the MMA. The ratified photochemical regime observed may allow the environmental authorities to revise and verify the current policies for air quality control within the MMA.

  17. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Mariana A.; Ribeiro, Anderson S.; Curtius, Adilson J. [Universidade Federal de Santa Catarina, Departamento de Quimica, Florianopolis, SC (Brazil); Sturgeon, Ralph E. [National Research Council Canada, Institute for National Measurement Standards, Ottawa, ON (Canada)

    2007-06-15

    Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH{sub 3}Hg{sup +} was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH{sub 3}Hg{sup +} was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be {proportional_to}95% by comparing the response with traditional SnCl{sub 2} chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg{sup 2+}; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes ''green'' chemistry. The potential for application to other sample types and analytes is evident. (orig.)

  18. Action spectrum for photochemical retinal pigment epithelium (RPE) disruption in an in vivo monkey model

    Science.gov (United States)

    Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.

    2016-03-01

    Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.

  19. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  20. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    Science.gov (United States)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; pLignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.